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We establish existence of a continuous selection of multifunctions associated with quantum stochastic evolution inclusions under
a general Lipschitz condition. The coefficients here are multifunctions but not necessarily Lipschitz.

1. Introduction

We consider the following Cauchy problem defined in [1]:

𝑑𝑋 (𝑡) ∈ (𝐸2 (𝑡, 𝑋 (𝑡)) 𝑑∧𝜋 (𝑡) + 𝐹2 (𝑡, 𝑋 (𝑡)) 𝑑𝐴𝑔 (𝑡)

+𝐺2 (𝑡, 𝑋 (𝑡)) 𝑑𝐴𝑓+ (𝑡) +𝐻2 (𝑡, 𝑋 (𝑡)) 𝑑𝑡)

− (𝐸1 (𝑡, 𝑋 (𝑡)) 𝑑∧𝜋 (𝑡) + 𝐹1 (𝑡, 𝑋 (𝑡)) 𝑑𝐴𝑔 (𝑡)

+𝐺1 (𝑡, 𝑋 (𝑡)) 𝑑𝐴𝑓+ (𝑡) +𝐻1 (𝑡, 𝑋 (𝑡)) 𝑑𝑡)

𝑋 (0) = 𝑎, 𝑡 ∈ [0, 𝑇] ,

(1)

where 𝐸1, 𝐹1, 𝐺1, and𝐻1 are hypermaximal monotone mul-
tivalued maps and 𝐸2, 𝐹2, 𝐺2, and𝐻2 are multifunctions but
not necessarily Lipschitz.

As observed by [2], problems of continuous selection,
features of reachable sets, and the solution sets of classical
differential inclusions have attracted considerable attention
[3–6]. The existence and nonuniqueness of solutions of such
inclusions have been investigated to a large extent. See [7] and
the references therein.

Existence of continuous selections of multifunctions
associated with the sets of solutions of Lipschitzian and
non-Lipschitzian quantum stochastic differential inclusions
(QSDIs) has been considered in [2, 8], while the existence of
solution of quantum stochastic evolution arising from hyper-
maximal monotone coefficients was established in [9].

Also in [10, 11] several results have been established
concerning some properties of the solution sets of QSDIs.
Results concerning the topological properties of solution sets
of Lipschitzian QSDI were also considered in [12]. In [1],
results on continuous selections of solution sets of quan-
tum stochastic evolution inclusions (QSEIs) were established
under the Lipschitz condition defined in [2, 13].

In order to generalize the results in the literature concern-
ing QSDI, in [8] existence of continuous selections of solu-
tions sets of non-Lipschitzian quantum stochastic differential
inclusions was considered. It was proved that certain inclu-
sion problems do not necessarily satisfy the Lipschitz condi-
tion defined in [2, 13]. In [8], themap 𝑥 → 𝑃(𝑡, 𝑥)(𝜂, 𝜉) satis-
fied a general Lipschitz condition with values that are closed
but not necessarily convex or bounded subsets of the field of
complex numbers.Thiswork is concernedwith similar results
established in [8] where the coefficients are not necessarily
Lipschitz. The results here generalize existing results in the
literature [1] concerning quantum stochastic evolution inclu-
sions (QSEIs).

The rest of this paper is organized as follows: in Section 2,
we present the foundations for establishing the major results.
In Section 3, we will establish the major results. Our method
will be a blend of the methods applied in [1, 8].

2. Preliminaries

All through this work, as in [2, 8], we adopt the definitions
and notations of the following spaces, subspaces, and sets:
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R ⊗ Γ(𝐿
2
𝛾
R
+
), 𝐴𝑑(Ã), 𝐴𝑑(Ã)wac, 𝐿

𝑝

loc(Ã), (𝐴𝑑(Ã)wac, 𝜏𝑤),
𝐿
1
(𝐼,D⊗E), 𝐶(𝐼,D⊗E), and 𝐿∞

𝑟,Loc(R+) for a fixed Hilbert
space 𝑟. 𝜏1, 𝜏𝑐, Ã, clos(𝑆), (resp., Comp(𝑆)), clos(Ã), 𝜌(𝐴, 𝐵),
clos(C), 𝑎

𝑘
, 𝑎
𝜂𝜉,𝑘

,Φ
𝜂𝜉,𝑘
(⋅), and so forth. For the completion of

the space (𝐴𝑑(Ã)wac, 𝜏
wac
) and the generated topology and

many more we refer the reader to [2, 8].
For the definitions of lower semicontinuous multivalued

map (l.s.c.) Φ : 𝑆 → 2Ã, measurability and measurability of
a multifunction (𝑡, 𝑥) → Φ(𝑡, 𝑥)(𝜂, 𝜉), decomposable subset
of a space, and locally absolutely 𝑃-integrable and adapted
multivalued stochastic processΦ, we refer the reader to [2, 8].

We consider the following quantum stochastic differential
inclusion (QSDI) defined in [2]:

𝑑𝑋 (𝑡) ∈ (𝐸 (𝑡, 𝑋 (𝑡)) 𝑑∧
𝜋
(𝑡) + 𝐹 (𝑡, 𝑋 (𝑡)) 𝑑𝐴

𝑔
(𝑡)

+𝐺 (𝑡, 𝑋 (𝑡)) 𝑑𝐴
𝑓
+ (𝑡) +𝐻 (𝑡, 𝑋 (𝑡)) 𝑑𝑡) ,

𝑋 (0) = 𝑎, almost all 𝑡 ∈ 𝐼 = [0, 𝑇] ,

(2)

where the multivalued stochastic processes 𝐸, 𝐹, 𝐺,𝐻 ∈

𝐿
2
loc(𝐼 × Ã)mvs and (𝑎, 0) ∈ 𝐼 × Ã is fixed. The equivalent

form of inclusion (1.2) established in [13] is given by

𝑑

𝑑𝑡
⟨𝜂,𝑋 (𝑡) 𝜉⟩ ∈ 𝑃 (𝑡, 𝑋) (𝜂, 𝜉)

𝑋 (𝑡0) = 𝑋0, 𝑡 ∈ [𝑡0, 𝑇] .

(3)

Inclusion (2) is understood in the sense of Hudson and
Parthasarathy [14] while inclusion (3) is a first order non-
classical ordinary differential inclusion with a sesquilinear
form valued map 𝑃 as the right-hand side. For existence of
solution of inclusion (3) and the explicit form of the map
(𝑡, 𝑋) → 𝑃(𝑡, 𝑋)(𝜂, 𝜉) appearing in inclusion (3) see [13] and
also see [7] for nonuniqueness of solution of (3). We employ
the locally convex topological (Ã) space of noncommutative
stochastic processes defined in [13].

In this work, we consider the following evolution problem
given by

𝑑

𝑑𝑡
⟨𝜂,𝑋 (𝑡) 𝜉⟩ ∈ 𝑃2 (𝑡, 𝑋) (𝜂, 𝜉) − 𝑃1 (𝑡, 𝑋) (𝜂, 𝜉)

𝑋 (0) = 𝑎, 𝑡 ∈ [0, 𝑇] ,
(4)

where the sesquilinear form valued map 𝑃1 : 𝐼 × Ã →

2sesq(D⊗E)
2
is hypermaximal monotone and the sesquilinear

form valued map 𝑃2 : 𝐼 × Ã → 2sesq(D⊗E)
2
satisfies a general

Lipschitz condition defined in [8]. The point 𝑎 ranges in a
subset 𝐴 of Ã such that the set 𝐴(𝜂, 𝜉) = ⟨𝜂, 𝑎𝜉⟩ : 𝑎 ∈ 𝐴
is compact in C.

Motivated by the result in [8], we extend the results in
[1], to a class of evolution inclusion that depends on a more
general Lipschitz condition𝑊(𝑡) ̸= 𝑡. Hence the results here
are weaker than the results in [1].

Let𝑃1 be hypermaximalmonotone, and themap (𝑡, 𝑥) →
𝑃2(𝑡, 𝑥)(𝜂, 𝜉) appearing in (4) is assumed to satisfy the
following conditions with𝑊(𝑡) ̸= 𝑡:

(1) The map (𝑡, 𝑥) ∈→ 𝑃2(𝑡, 𝑥)(𝜂, 𝜉) is measurable.

(2) There exists amap𝐾𝑝
𝜂𝜉
: [0, 𝑇] → R

+
lying in 𝐿𝐼loc([0,

𝑇]) and the function𝑊: [0,∞) → R increasing and
continuous with𝑊(0) = 0 such that

𝜌 (𝑃2 (𝑡, 𝑥) (𝜂, 𝜉) − 𝑃2 (𝑡, 𝑦) (𝜂, 𝜉))

≤ 𝐾
𝑝

𝜂𝜉
(𝑡)𝑊 (

󵄩󵄩󵄩󵄩𝑥 −𝑦
󵄩󵄩󵄩󵄩𝜂𝜉) ,

(5)

a.e., 𝑡 ∈ [0, 𝑇], and for each pair 𝑥, 𝑦 ∈ Ã.

(3) There exists a 𝛽 which lies in 𝐿1loc([0, 𝑇]) such that

𝑑 (0, 𝑃2 (𝑡, 0) (𝜂, 𝜉)) ≤ 𝛽𝜂𝜉, a.e., 𝑡 ∈ 𝐼. (6)

For the map 𝑃 : 𝐼 × Ã → 2sesq(D⊗E)
2
, define the map

⟨𝜂, 𝑎𝜉⟩ → 𝜙
𝑃
(𝑎
𝜂𝜉
) by

𝜙
𝑃
(𝑎
𝜂𝜉
) = {V

𝜂𝜉
∈ 𝐿

1
(𝐼,D⊗E) : V

𝜂𝜉

∈𝑃 (𝑡, 𝑎) (𝜂, 𝜉) , a.e., 𝑡 ∈ 𝐼} .
(7)

Remark 1. Conditions (1) and (3) are similar to conditions
𝑆
(𝑖)
and 𝑆
(𝑖𝑖𝑖)

in [1], while condition 𝑆
(𝑖𝑖)

has been modified to
accommodate the general Lipschitz condition defined above.
If we take𝑊(𝑡) = 𝑡, then condition (2) reduces to condition
𝑆
(𝑖𝑖)

in [1].

We adopt the proof of the following results established
in [1] since the proof of these results is independent of the
Lipschitz function.

Lemma 2. Consider the multivalued stochastic process 𝑃 : 𝐼 ×
Ã → 2𝑠𝑒𝑠𝑞(D⊗E)

2
, and assume that

(i) the map (𝑡, 𝑥) → 𝑃(𝑡, 𝑥)(𝜂, 𝜉) is measurable,

(ii) the map (𝑡, ⋅) → 𝑃(𝑡, ⋅)(𝜂, 𝜉) is l.s.c.

Then the map 𝜙
𝑃
given by (7) is lower semicontinuous (l.s.c)

from𝐴(𝜂, 𝜉) intoD if and only if there exists a continuous map
𝛽 : 𝐴(𝜂, 𝜉) → 𝐿

1
(𝐼,R) such that, for every 𝑎 ∈ 𝐴, 𝑎

𝜂𝜉
≡

⟨𝜂, 𝑎𝜉⟩ ∈ 𝐴(𝜂, 𝜉),

𝑑 (0, 𝑃 (𝑡, 𝑎) (𝜂, 𝜉)) ≤ 𝛽 (𝑎
𝜂𝜉
) (𝑡) , 𝑎.𝑒., 𝑡 ∈ 𝐼. (8)

Lemma 3. Let the multivalued stochastic process 𝜙 :

𝐴(𝜂, 𝜉) → D be l.s.c. Assume that

(i) 𝜑 : 𝐴(𝜂, 𝜉) → 𝐿
1
(𝐼,D⊗E) and 𝜙 : 𝐴(𝜂, 𝜉) → 𝐿

1
(𝐼,

R) are continuous,

(ii) for every 𝑎
𝜂𝜉
∈ 𝐴(𝜂, 𝜉) the setΦ(𝑎

𝜂𝜉
) defined by (10) in

[1] is nonempty.

Then the multivalued stochastic process 𝜙 : 𝐴(𝜂, 𝜉) → D is
l.s.c. and therefore admits a continuous selection.
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For 𝑎 ∈ 𝐷(𝑃1(𝑡, ⋅)(𝜂, 𝜉)) and 𝑝 ∈ 𝐿
1
(𝐼,D⊗E), we consider

the Cauchy problem

(𝐻
𝑝
)
𝑑

𝑑𝑡
⟨𝜂,𝑋 (𝑡) 𝜉⟩ ∈ ⟨𝜂, 𝑝 (𝑡) 𝜉⟩

−𝑃1 (𝑡, 𝑋 (𝑡)) (𝜂, 𝜉) ,

𝑋 (0) = 𝑎.

(9)

For the existence of a unique weak solution of the Cauchy
problem (𝐻

𝑝
) see [15].We adopt definition 2.1 concerning the

solution of (𝐻
𝑝
) and remark 2.1 all in [1]. Hence condition (11)

in [1] follows.
Let 𝑃2 : 𝐼 × Ã → 2sesq(D⊗E)

2
satisfy conditions (1)–(3).

Consider the Cauchy problem

(𝐻
𝑎
)
𝑑

𝑑𝑡
⟨𝜂,𝑋 (𝑡) 𝜉⟩ ∈ 𝑃2 (𝑡, 𝑋 (𝑡)) (𝜂, 𝜉)

− 𝑃1 (𝑡, 𝑋 (𝑡)) (𝜂, 𝜉) ,

𝑋 (0) = 𝑎,

(10)

where 𝑎 ∈ 𝐴0.

Definition 4. A function 𝑥(⋅, 𝑎) : 𝐼 → Ã is called a solution
of (𝐻
𝑎
) if there exists ⟨𝜂, 𝑝(𝑡)𝜉⟩ ∈ 𝐿1(𝐼, sesq(D⊗E)), a selec-

tion of 𝑃2(⋅, 𝑥(⋅, 𝑎))(𝜂, 𝜉) such that 𝑥(⋅, 𝑎) is a weak solution
of the Cauchy problem𝐻

𝑝(⋅,𝑎)
.

We denote by 𝑆
𝑇
(𝑎) the set of all solutions of (𝐻

𝑎
)

and prove a continuous selection theorem from the map
𝑆
𝑇
(𝑎)(𝜂, 𝜉), where

𝑆
𝑇
(𝑎) (𝜂, 𝜉) = ⟨𝜂, Φ𝜉⟩ \ Φ ∈ 𝑆

𝑇
(𝑎) . (11)

Just as in [8], an important consequence of our main result is
that the set map ⟨𝜂, 𝑎𝜉⟩ → 𝑆

𝑇
(𝑎)(𝜂, 𝜉) can be continuously

represented in the form

𝑔 (⟨𝜂, 𝑎𝜉⟩ , 𝑢) = 𝑆
𝑇
(𝑎) (𝜂, 𝜉) (12)

with the Lipschitz condition 𝑊(𝑡) ̸= 𝑡. See Corollaries 3.2
and 3.3 in [2]. This generalizes all results in the literature
established under the Lipschitz condition𝑊(𝑡) = 𝑡.

3. Major Results

In this section, we present ourmajor results under the general
Lipschitz condition defined above.Wewill establish the result
by employing similar argument employed in the proof of
Theorems 3.1 in [1] and 3.1 in [8] by highlighting the major
changes due to condition (iii).

Theorem 5. Assume that the maps 𝑃1, 𝑃2 : 𝐼 × Ã →

2𝑠𝑒𝑠𝑞(D⊗E)
2
satisfy the following conditions:

(i) 𝑃1 is hypermaximal monotone.
(ii) (𝑡, 𝑥) → 𝑃2(𝑡, 𝑥)(𝜂, 𝜉) is measurable.

(iii) There exists a map𝐾
𝜂𝜉
: [0, 𝑇] → R

+
lying in 𝐿1

𝑙𝑜𝑐
([0,

𝑇]), such that

𝜌 (𝑃2 (𝑡, 𝑥) (𝜂, 𝜉) , 𝑃2 (𝑡, 𝑦) (𝜂, 𝜉))

≤ 𝐾
𝜂𝜉
(𝑡)𝑊

󵄩󵄩󵄩󵄩𝑥 −𝑦
󵄩󵄩󵄩󵄩𝜂𝜉

(13)

a.e. in 𝐼, where𝑊(𝑡) ̸= 𝑡.
(iv) There exists 𝛽 ∈ 𝐿1

𝑙𝑜𝑐
(𝐼) such that

𝑑 (0, 𝑃2 (𝑡, 0) (𝜂, 𝜉)) ≤ 𝛽𝜂𝜉, 𝑎.𝑒., 𝑡 ∈ 𝐼. (14)

If 𝐴0 ⊂ Ã, then there exists an adapted stochastic process 𝑥 :
𝐼 × 𝐴0 → 𝑠𝑒𝑠𝑞(D⊗E) such that

(i) ⟨𝜂, 𝑥(⋅, 𝑎)𝜉⟩ ∈ 𝑆
𝑇
(𝑎)(𝜂, 𝜉) for every 𝑎 ∈ 𝐴0;

(ii) ⟨𝜂, 𝑎𝜉⟩ → ⟨𝜂, 𝑥(⋅, 𝑎)𝜉⟩ is continuous from 𝐴0(𝜂, 𝜉) to
𝐶(𝐼,D⊗E).

Proof. Let 𝑎 ∈ 𝐴0 and 𝑥0(⋅, 𝑎) : 𝐼 → Ã be the unique weak
solution of the Cauchy problem

𝑑

𝑑𝑡
⟨𝜂,𝑋 (𝑡) 𝜉⟩ ∈ −𝑃1 (𝑡, 𝑋 (𝑡)) (𝜂, 𝜉) , 𝑋 (0) = 𝑎. (15)

For 𝐾
𝜂𝜉

and 𝛽 defined by (iii) and (iv), we define 𝑏 : 𝐴0(𝜂,

𝜉) → 𝐿
1
loc(𝐼) by

𝑏 (𝑎
𝜂𝜉
) (𝑡) = 𝛽

𝜂𝜉
(𝑡) +𝐾

𝜂𝜉
(𝑡)𝑊 (

󵄩󵄩󵄩󵄩𝑥0 (𝑡, 𝑎)
󵄩󵄩󵄩󵄩𝜂𝜉) . (16)

By remark 2.1 in [1], the map ⟨𝜂, 𝑎𝜉⟩ → ⟨𝜂, 𝑥0(⋅, 𝑎)𝜉⟩ is
weakly continuous from 𝐴0(𝜂, 𝜉) to 𝐶(𝐼,D⊗E). Hence from
(16), it follows that 𝑏(⋅) is continuous from𝐴0(𝜂, 𝜉) to 𝐿

1
loc(𝐼).

And we have

𝑑 (0, 𝑃2 (𝑡, 𝑥0 (𝑡, 𝑎)) (𝜂, 𝜉)) ≤ 𝑏 (𝑎𝜂𝜉) (𝑡) , a.e. in 𝐼 (17)

for each 𝑎
𝜂𝜉
∈ 𝐴0(𝜂, 𝜉).

As in [8] we fix 𝜖 > 0 and set 𝜖 = 𝜖/2𝑛+1, 𝑛 ∈ N. Define
Φ0 : 𝐴0(𝜂, 𝜉) → 2𝐿(𝐼,D⊗E) and 𝜙0 : 𝐴0(𝜂, 𝜉) → 2𝐿(𝐼,D⊗E)
by (14) and (15) in [1]. Using (16) and Lemma 2, 𝜙0(⋅) is
lower semicontinuous (l.s.c.) and for each 𝑎

𝜂,𝜉
∈ 𝐴0(𝜂, 𝜉),

𝜙0(𝑎𝜂𝜉) ̸= 0, and 𝑊(𝑡) ̸= 𝑡. Again by Lemma 3, there
exists 𝜑0(𝜂, 𝜉) → 𝐿(𝐼,D⊗E), a continuous selection of 𝜙0(⋅).
Set 𝑝0(𝑡, 𝑎)(𝜂, 𝜉) = 𝜑0(𝑎𝜂𝜉)(𝑡) as in [1]; then 𝑝0(⋅, 𝑎)(𝜂, 𝜉) is
continuous, 𝑝0(𝑡, 𝑎)(𝜂, 𝜉) ∈ 𝑃2(𝑡, 𝑎)(𝜂, 𝜉), and

󵄨󵄨󵄨󵄨𝑝0 (𝑡, 𝑎) (𝜂, 𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝑏 (𝑎𝜂𝜉) (𝑡) + 𝜖0, a.e. 𝑡 ∈ 𝐼. (18)

If we set𝑀
𝜂𝜉
= ∫
𝑡

0 𝐾𝜂𝜉(𝑠)𝑑𝑠, where 𝑎𝜂𝜉 is as defined, then, for
each 𝑎 ∈ 𝐴0, we can define 𝛽

𝑛
(𝑎
𝜂𝜉
)(𝑡), 𝑛 ≥ 1 as follows:

𝛽
𝑛
(𝑎
𝜂𝜉
) (𝑡) = ∫

𝑡

0
(𝑎
𝜂𝜉
) (𝑠)

[𝑀
𝜂𝜉
(𝑡) − 𝑀

𝜂𝜉
(𝑠)]
𝑛−1
𝑑𝑠

(𝑛 − 1)!

+𝑊𝑇(

𝑛

∑

𝑖=0
𝜖
𝑖
)
[𝑀
𝜂𝜉
(𝑡)]
𝑛−1

(𝑛 − 1)!
, 𝑡 ∈ 𝐼.

(19)
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Thus by (19) 𝛽
𝑛
(⋅) is continuous from 𝐴0(𝜂, 𝜉) to 𝐿

1
loc(𝐼,R)

since 𝑏(⋅) is continuous. Now if𝑥1(⋅, 𝑎) : 𝐼 → Ã is the unique
solution of the Cauchy problem

𝑑

𝑑𝑡
⟨𝜂,𝑋 (𝑡) 𝜉⟩ ∈ ⟨𝜂, 𝑝0 (𝑡) 𝜉⟩ −𝑃1 (𝑡, 𝑋 (𝑡)) (𝜂, 𝜉) ,

𝑋 (0) = 𝑎
(20)

then, by (11) in [1], we have

󵄨󵄨󵄨󵄨⟨𝜂, 𝑥1 (𝑡) 𝜉⟩ − ⟨𝜂, 𝑥0 (𝑡) 𝜉⟩
󵄨󵄨󵄨󵄨 ≤ ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑝0 (𝑠, 𝑎) (𝜂, 𝜉)
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ (∫

𝑡

0
𝑏 (𝑎
𝜂𝜉
) (𝑠) 𝑑𝑠 + 𝜖0𝑇) < 𝛽1 (𝑎𝜂𝜉) (𝑡) ,

(21)

for each 𝑎
𝜂𝜉
∈ 𝐴0(𝜂, 𝜉) and 𝑡 ∈ 𝐼\{0}. Now set ⟨𝜂, 𝑝

𝑛
(𝑠, 𝑎)𝜉⟩ ≡

𝑝
𝑛
(𝑠, 𝑎)(𝜂, 𝜉) and assume that there exist sequences {𝑝

𝑛
(⋅,

𝑎)}
𝑛∈N and {𝑥

𝑛
(⋅, 𝑎)}
𝑛∈N such that, for each 𝑛 ≥ 1, (a), (b),

and (d) in [1] hold in this case while (c) becomes

󵄨󵄨󵄨󵄨⟨𝜂, 𝑝1 (𝑡, 𝑎) 𝜉⟩ − ⟨𝜂, 𝑝𝑛−1 (𝑡, 𝑎) 𝜉⟩
󵄨󵄨󵄨󵄨 ≤ 𝑊𝐾𝜂𝜉 (𝑡) 𝛽𝑛 (𝑡) ,

a.e. 𝑡 ∈ 𝐼,
(22)

where𝑊 is due to the Lipschitz function 𝐾. We now obtain
the following by (22) and (11) in [1], 𝑡 ∈ 𝐼 \ {0}

󵄨󵄨󵄨󵄨⟨𝜂, 𝑥𝑛+1 (𝑡, 𝑎) 𝜉⟩ − ⟨𝜂, 𝑥𝑛 (𝑡, 𝑎) 𝜉⟩
󵄨󵄨󵄨󵄨

≤ ∫

𝑡

0

󵄨󵄨󵄨󵄨⟨𝑝𝑛 (𝑠, 𝑎) (𝜂, 𝜉)⟩ − ⟨𝑝𝑛−1 (𝑠, 𝑎) (𝜂, 𝜉)⟩
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝑊∫

𝑡

0
𝐾
𝜂𝜉
(𝑠) 𝛽
𝑛
(𝑎
𝜂𝜉
) (𝑠) 𝑑𝑠

= 𝑊[

[

∫

𝑡

0
𝑏 (𝑎
𝜂𝜉
) (𝑠)

[𝑀
𝜂𝜉
(𝑡) − 𝑀

𝜂𝜉
(𝑠)]
𝑛

𝑛!
𝑑𝑠]

]

+𝑊𝑇(

𝑛

∑

𝑖=0
𝜖
𝑖
)
[𝑀
𝜂𝜉
(𝑡)]
𝑛

𝑛!
< 𝑊(𝛽1 (𝑎𝜂𝜉) (𝑡)) .

(23)

Since 𝑃 is maximal monotone and hence hypermaximal
monotone, we get

𝑑 (⟨𝜂, 𝑝 (𝑡, 𝑎) 𝜉⟩ , 𝑃2 (𝑡, 𝑥𝑛+1 (𝑡, 𝑎)) (𝜂, 𝜉))

≤ 𝐾
𝜂𝜉
(𝑡)𝑊 (

󵄩󵄩󵄩󵄩𝑥𝑛+1 (𝑡, 𝑎) − 𝑥𝑛 (𝑡, 𝑎)
󵄩󵄩󵄩󵄩𝜂𝜉)

< 𝐾
𝜂𝜉
(𝑡)𝑊 (𝛽

𝑛+1 (𝑎𝜂𝜉) (𝑡)) .

(24)

By (24) and Lemma 2, the multivalued map 𝜙
𝑛+1 :

𝐴0(𝜂, 𝜉) → 2𝐿
1
(𝐼,D⊗E) defined by (19) in [1] is l.s.c. with

decomposable closed nonempty values. Then by Lemma 3,
the sesquilinear form valued map 𝜑

𝑛+1(𝑎𝜂𝜉)(𝑡) still admits a
continuous selection of Φ

𝑛+1(⋅).

If we set ⟨𝜂, 𝑝
𝑛+1(𝑡, 𝑎)𝜉⟩ = 𝜑𝑛+1(𝑎𝜂𝜉)(𝑡) for 𝑎𝜂𝜉 ∈ 𝐴0(𝜂, 𝜉),

𝑡 ∈ 𝐼, we have that 𝑝
𝑛+1 satisfies the properties (a), (b) in [1]

and (22); hence by (24), we obtain

Φ
𝑛+1 (𝑎𝜂𝜉) = cl {V

𝜂𝜉

∈ 𝜙
𝑛+1 (𝑎𝜂𝜉) :

󵄨󵄨󵄨󵄨󵄨
V
𝜂𝜉
− ⟨𝜂, 𝑝

𝑛𝑘
(𝑡, 𝑎) 𝜉⟩

󵄨󵄨󵄨󵄨󵄨

<𝐾
𝜂𝜉
(𝑡)𝑊 (𝛽

𝑛+1 (𝑎𝜂𝜉) (𝑡))} , 𝑡 ∈ 𝐼.

(25)

Again by (22) and (23), we have

󵄨󵄨󵄨󵄨⟨𝜂, 𝑝𝑛 (⋅, 𝑎) 𝜉⟩ − ⟨𝜂, 𝑝𝑛−1 (⋅, 𝑎) 𝜉⟩
󵄨󵄨󵄨󵄨

= ∫

𝑇

0

󵄨󵄨󵄨󵄨⟨𝑝𝑛 (𝑠, 𝑎) (𝜂, 𝜉)⟩ − ⟨𝑝𝑛−1 (𝑠, 𝑎) (𝜂, 𝜉)⟩
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝑊[

[

∫

𝑇

0
𝑏 (𝑎
𝜂𝜉
) (𝑠)

[𝑀
𝜂𝜉
(𝑇) −𝑀

𝜂𝜉
(𝑠)]
𝑛

𝑛!
𝑑𝑠]

]

+𝑊𝑇(

𝑛

∑

𝑖=0
𝜖
𝑖
)
[𝑀
𝜂𝜉
(𝑇)]
𝑛

𝑛!

≤ 𝑊(
[
󵄩󵄩󵄩󵄩󵄩
𝐾
𝜂𝜉
(𝑡)
󵄩󵄩󵄩󵄩󵄩1]
𝑛

𝑛!
(
󵄩󵄩󵄩󵄩󵄩
𝑏 (𝑎
𝜂𝜉
)
󵄩󵄩󵄩󵄩󵄩
+𝑇𝜖)) .

(26)

Since 𝑎
𝜂𝜉

→ ‖𝑏(𝑎
𝜂𝜉
)(𝑡)‖ is continuous, then it is locally

bounded. It follows by (26) that the sequence {𝑝
𝑛
(⋅, 𝑎)}
𝑛∈N

satisfies the Cauchy condition uniformly. If 𝑝(⋅, 𝑎) is the limit
of the given sequence, then 𝑎

𝜂𝜉
→ ⟨𝜂, 𝑝(⋅, 𝑎)𝜉⟩ is also weakly

continuous from 𝐴0(𝜂, 𝜉) into 𝐿
1
(𝐼,D⊗E).

Now if we use (23) and (26), we get

󵄨󵄨󵄨󵄨⟨𝜂, 𝑥𝑛+1 (⋅, 𝑎) 𝜉⟩ − ⟨𝜂, 𝑥𝑛 (⋅, 𝑎) 𝜉⟩
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨⟨𝜂, 𝑝𝑛 (⋅, 𝑎) 𝜉⟩ − ⟨𝜂, 𝑝𝑛−1 (⋅, 𝑎) 𝜉⟩

󵄨󵄨󵄨󵄨

≤
𝑊 [

󵄩󵄩󵄩󵄩󵄩
𝐾
𝜂𝜉
(𝑡)
󵄩󵄩󵄩󵄩󵄩1]
𝑛

𝑛!
(
󵄩󵄩󵄩󵄩󵄩
𝑏 (𝑎
𝜂𝜉
)
󵄩󵄩󵄩󵄩󵄩1 +𝑇𝜖) .

(27)

Hence {⟨𝜂, 𝑥
𝑛
(⋅, 𝑎)𝜉⟩} is Cauchy in 𝐶(𝐼,D⊗E) with respect

to 𝑎. Then the map 𝑎
𝜂𝜉

→ ⟨𝜂, 𝑥
𝑛
(⋅, 𝑎)𝜉⟩ is weakly con-

tinuous from 𝐴0(𝜂, ) to 𝐶(𝐼,D⊗E) and so also the map
⟨𝜂, 𝑥
𝑛
(⋅, 𝑎)𝜉⟩ → ⟨𝜂, 𝑥(⋅, 𝑎)𝜉⟩ uniformly and

𝑑 (⟨𝜂, 𝑝
𝑛
(𝑡, 𝑎) 𝜉⟩ , 𝑃 (𝑡, 𝑥 (𝑡, 𝑎)) (𝜂, 𝜉))

≤ 𝐾
𝜂𝜉
(𝑡)𝑊 (

󵄩󵄩󵄩󵄩𝑥𝑛 (⋅, 𝑎) − 𝑥 (⋅, 𝑎)
󵄩󵄩󵄩󵄩𝜂𝜉) .

(28)

Therefore, the result (22) in [1] holds here. If we let𝑝0 = 𝑝 and
𝑥1(⋅, 𝑎) be the unique weak solution of the Cauchy problem
(20), we obtain by (11) in [1]

󵄨󵄨󵄨󵄨⟨𝜂, 𝑥𝑛 (𝑡, 𝑎) 𝜉⟩ − ⟨𝜂, 𝑥1 (𝑡, 𝑎) 𝜉⟩
󵄨󵄨󵄨󵄨

≤ ∫

𝑡

0

󵄨󵄨󵄨󵄨⟨𝜂, 𝑝𝑛 (𝑠, 𝑎) 𝜉⟩ − ⟨𝜂, 𝑝 (𝑠, 𝑎) 𝜉⟩
󵄨󵄨󵄨󵄨 𝑑𝑠.

(29)
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If 𝑛 → ∞, then ⟨𝜂, 𝑥1(⋅, 𝑎)𝜉⟩ ≡ ⟨𝜂, 𝑥(⋅, 𝑎)𝜉⟩.Therefore,𝑥(⋅, 𝑎)
is the weak solution of (20), and the result

⟨𝜂, 𝑥 (⋅, 𝑎) 𝜉⟩ ∈ 𝑆
𝑇
(𝑎) (𝜂, 𝜉) (30)

holds here under the general Lipschitz condition.
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