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Abstract: We prove the existence of periodic solutions for the periodic bound-
ary value problem (1.1) under some resonant conditions on the asymptotic be-

t
haviour of 9(t,y)

for |y| — oc.
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1. Introduction

In this paper, we study the periodic boundary value problem
2 N(t) +a @ (t) + f(2)i(t) + g(t,2(t — 7)) + h(x) = p(t) (1.1)
29(0) =29 (27), i=0,1,2,3 (1.2)

with fixed delay 7 € [0,27) where f : R — R is continuous, p : [0,27] — R
and g : [0,27] x R — R are 2m-periodic in ¢ and ¢ satisfies caratheodory
conditions. The unknown function z : [0,27] — R is defined for 0 < ¢ < 7 by
x(t — 1) = [2m — (t — 7)]. We are specifically concerned with the existence of
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periodic solutions of (1.1) - (1.2) under some resonant conditions.

In a recent paper [4] we studied the above equation with f(&) = b and
h(z) = d where b and d are constants with ¢(t, y) satisfying certain non-resonant
conditions. In our present study, we will allow g(¢, y) to satisfy certain resonant
conditions.

In what follows, we shall use the spaces C([0, 27]), C*([0, 27]) and L¥([0, 27])
of continuous, k times continuously differentiable or measurable real functions
whose kth power of the absolute value is Lebesgue integrable. We shall use the
Sobolev spaces W,:> and HJ_ respectively defined by W,* = {z : [0,21] —
R|z, &, &, 7 are absolutely continuous on [0, 2x], 2 (0) = 2 (27), i = 0,1,2,3}

with the norm
) 4 1 2 () 5
= E — Y()|“dt

and
Hy = {x:[0,27] — Rz
is absolutely continuous on [0,27] and 4 € L3_}, with norm

2

2, = 1/2ﬂx(t)dt +1/2ﬂ|:i:2dt
H217T_ 271' 0 27T 0

2. The Linear Problem

Let us consider the equation
2O () +a & (t) + bi(t) + ci(t —7) +dz =0 (2.1)
29 (0) =29 (2r), i=0,1,2,3 (2.2)
where a, b, c and d are constants.

Lemma 2.1. Let a # 0 and let

(n—1)2< g < n? (2.3)

where n > 1 is a positive integer. Then the bvp (2.1) - (2.2) has no non trivial

2m-periodic solution.

Proof. We consider a solution of the form z(t) = AeM where A = in with
i? = —1 and A # 0 is a constant.
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Then Lemma 2.1 will follow if
¢(n,7) = —an® + ccosnt # 0
for all m > 1 and 7 € [0, 27). By (2.3) we get
a tp(n,T) = —n®+ gcosm- < -—n?4+ g <0

Thus ¢(n,7) # 0 and the result follows.
If z € L}, we shall write

so that

/O 7 syt =0

We shall consider next the delay equation
2O () +a @ (t) + ba(t) + c(t)i(t —7) +dz =0
29(0) = 29 (27), i =0,1,2,3

2

where a, b, d are constants and ¢ € L27r|.

315

Theorem 2.1. Let a # 0 and d # 0 and set I'(t) = a~'¢(t). Suppose that

0<T() <1

then the bvp (2.6) - (2.7) has no nontrivial solution for every T € [0, 27).

(2.8)

Proof. Let z(t) be any solution of (2.6) - (2.7). Then we can verify that

2
L7 i) @) + b + da)dt = 0
27T 0
Thus we have
1 [ . :
0 = —i(®)[a " Hz®™) 4 bi(t) + day+ & +T ()2t — 7)]dt
™ Jo
1 21

= o —2(t)[ +T ()2 (t — 7)]dt
T Jo
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1 [ .
= 5 (Z2(t) =Tz (t)z(t — 7)) dt
0
using , ) ,
_ (a—0) a® b
I S S}
we have
I N L) . I'(t) -
0 = o i (Z%(t) — T:cQ(t) TQL’Q(t—T))dt
1 [?"T(t) . .
+5- ; T(ac(t) —2(t —7))%dt
From (2.8) we have
0 > L [Mee - T a0 s
2 Jo 2
_ b u (22 —T(t)2%(t)) dt > 6|%|3.
2 Jo 2

27 2pi
By Lemma 1 of [6], where we have used the fact that / 22(t)dt = / 22 (t—
0

0
7)dt. Here, § > 0. Thus & = 0 and since d # 0 it is clear that z = constant
cannot be a solution of (2.6) - (2.7). Therefore z = 0.

3. The Nonlinear Case

We shall now consider a preliminary Lemma which will enable us obtain a priori
estimates required for our results.

Lemma 3.1. Let all the conditions of Theorem 2.1 hold and let § be related
to '(t) by Theorem 2.1. Suppose that for V € L2 0 < V(t) < T'(t) + ¢ a.e.
t €[0,27], e > 0.
Then
1 2

o —&[a "z 4+ bi + da}+ T +o()a(t — 7)]dt > (5 — €)|F|3.
™Jo
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Proof. From the proof of Lemma 2.1 we have

2
! —i[a Y2 ") 4+ bi 4 dae}+ 7 4o(t)i(t — 7))dt

{2177 /0277 [% = T(t)2%] dt}

= {;ﬂ /O% [32(t — ) — T(0)F(t - 7)] dt}

e 1 2
2 27 0

21 Jy

(z2(t — 7) + 2%(t))dt

1 2

=3/, [22(t —7) = T(t)z*(t — 7)] dt

1 € 27r.2 € 27r‘2
e 2 (t — 7)dt + — T4 (t — dt
: [2ﬂ-/£ P2t — 1) +—2ﬂ_j£ 32 T)]

> dlal; — elal
= (6 —¢)|zf3
We shall next consider the nonlinear delay equation
20 (8) +a @ (8) + f(@)E() + g(t, 2t — 7)) + h(z) = p(t)

29(0) =29 (2r), i=0,1,2,3

317

(3.1)

(3.2)

where f,h : R — R are continuous functions and ¢ : [0,27] x R — R is such
that g(-,z) is measurable on [0, 27] for each z € R and ¢(¢,-) is continuous on
R for almost each ¢t € [0,27]. We assume moreover that for each r > 0 there
exists Y, € L3 such that g(t,y) < Y,(t) for a.e. t € [0,27] and all x € [—r,7]

such a g is said to satisfy Caratheodory’s conditions.

Theorem 3.1. Let a # 0. Suppose that g is a Caratheodory function with

respect to the space L2 _ such that:

(i) There exists r > 0 such that

axg(t,x) >0 for |x|>r
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(ii) limsup gtf) <T'(¢)

|z| =00

for t € [0,2n] with I'(t) satisfying 0 < I'(t) < 1.

(iii)  lim sgnxh(x) = +o0

|z|—+o0

S.A. Iyase

Suppose further that p € L2, then for arbitrary continuous function f,

equation (3.1) has at least one 2m-periodic solution.

Proof. Let § > 0 be related to I" by Lemma 3.1. Then by (i) and (ii) there
exists a constant R > 0 such that for a.e t € [0,27] and all y with |y| > R we

have .
ay
We define
( (az)"'g(t, ), x| > R
) (aR)g(t, R), 0<z<R
Y(t,z) =
—(aR) " Yg(t,—R), —Ry <z <0
I'(t), =0
Then

0<Y(t,x) <T(t)+5/2

for a.e t € [0,27] and all z € R.
Clearly the function

g=aY(t,&(t—7))i(t—71)
is a Caratheorody function. So also is gy defined by
go(t,&(t = 7)) = g(t,&(t = 7)) = g(t,2(t — 7))
Thus there exists a € L3 such that
9o (t, &(t = 7))| < ()

for a.e t € [0,27] and all z € R. Problem (3.1) is thus equivalent to

(3.3)

(3.5)

2O +a k() + f(@)EE) +Y (¢, it — )it —7) + gol(t, &t — 7))+ h(z) = p(t)

(3.8)
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to which we shall apply coincidence degree theory.
Let X = C30,2n], Z = L3,

domL = {z € X : z(0) = z®(2n), i =0,1,2,3 and &, &, 7 are absolutely
continuous on [0, 27]}.
Define as in [6]

L:domnLCX — Z, 2 — 2™ +a %

F:domLCX — Z, v — f(2)%

G:domLCc X — Z, v — ?(t,:i‘(t —7))&(t —71)

H:domL C X — Z, z — h(x)

A:domLC X — Z,x — T()&(t — 1)

Go:domL C X — Z, z — go(t,&(t — 7))

T:domL CX — Z, z — —p(t)

It is seen that G and G are well defined and L-compact on bounded subsets
of X and that L is a linear Fredholm mapping of index zero.

Therefore the proof of the theorem will follow from theorem 4.5 of [7] if we
show that the possible solutions of the equation

Lz +AFz+ (1 —ANAz + A\Gz + A\Gox + (1 = N)de + AHz + XTx =0 (3.9)
or equivalently the equation
a2 £ N f(#)E] + T + (1= ND@)a(t —7) + AY (¢, @t — 7))@t — 1)

+(1 = Natde + aAgo(t, (t — 7)) + a " Ah(z) —a " Ap(t) =0 (3.10)

where d > 0 are apriori bounded independently of A € [0, 1].
For A = 0 we get the equation

) 4 a i 4T ()it —7) + dx =0
which by Theorem 2.1 has only the trivial solution. We observe that
0 < (1—=ND(t)+AY (¢, a(t—7)) <T(t)+6/2

for a.e t € [0,27] and all z € R.
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Hence using V(t) = (1 — \)['(t) + AY (¢, &(t — 7)), Lemma 3.1 and Cauchy
Schwartz inequality we get

1 2

0 = g [ —EOL ) 4 M@+ 40N

+AY (t, @ (t — 7))t —7) + (1 — Na"tdz + Na Lgo(t, (t — 1)
+a""An(z) — atAp(t))} dt
> 6/2[&]3 — (Jel2 + [pl2)|2]2

Using Wirtinger’s inequality gives
1)
0> §|x]% — B|#[3, for some >0

Hence

73 < % =B, B >0 (3.11)

Thus,
|‘T|2 S BQ? BQ >0

and inequality (3.11) implies that

‘$|OO S 637 53 >0

By the continuity of f, we derive

|f(@)oo < Ba, Ba>0.

Taking the average of equation (3.10) on [0,27] we get by the mean value
theorem

27 27
(1= A)da(t*) + Ma(z(t)] = ’(1 - /\)d217T/0 2(t)dt + )\217T/0 h(:):(t))dt‘

27
< 1 [T D) + AT (@ it — )|t — )t
27T 0
1 21 1 27
rgm [ Attt = mide+ 5ox [ o)l
< B3(1+6/2) + |a|i + |pl = Bs

for some t* € [0, 27]. By (iii) we have for & > 0 there is ¢ = ¢ > 0 such that

|h(x)| = Sgn(x)h(z) > 0 for every |z| > maX{S’Q}
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Hence for any A € [0, 1] we have
|(1 = AN)dx + Mh(x)| = Sgn(x)(1 — N)dx + Ah(z) > (1 =Nk + e =k

for every |z| > max{%, q}. We now choose k > 5 and derive that

o(e7) < ma{ 5.0} = 6o

Now,
2

x(t) = x(t%) —|—/t x(t) dt

*

Hence
|00 < P7 + 2783 = B

multiplying (3.10) by —#(¢) and integrating over [0, 27] we obtain

|25 < |F(2)|oolE]3 + la™[6/2 + 1| E[2]E]2 + [a] ! |alo|E]2
+ [pl2|Z|2 + |h(2)|oo|E|2 + |d] |25
Thus
| % | < B, Bz >0

and
|x|00 < 697 59 >0

Multiplying (3.10) by (™) (t) and integrating over [0, 27] we get

2B < @) lsoldlae ™|z + a7 L+ 872 |l |
+d|[z]2]2 2 + a2 |ala] Tt + (@) |o] ™2 + [pl2]= )2

Therefore

20|y < Bro, Bio >0
and thus

| Z oo < P11, P11 >0
Therefore

|zlcs = [|T]oo + [Floo + [#]oo + | T|oo
< B+ B3+ By + Bi1 = B2

Choosing p > 12 > 0 we obtain the required a priori bound in C3[0, 27]
independently of x and .
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4. Uniqueness Result

If in (1.1), f(&) = b, h(x) = d where b and d are constants, then we have the
following uniqueness result.

Theorem 4.1. Let a,b,d be constants, with a # 0, d > 0. Suppose g is a
Caratheodory function satisfying

g(t, i?) - g(t, i)
a(dvl — ii'Q)

0< < I(t) (4.1)

for all &1, @2 € R, &1 # @9, where I'(t) € L2_ is such that
0<TI(t) <1

then for all arbitrary constant b and every 7 € [0,2w) the boundary value
problem
) 4 a & +bi + g(t, &t — 7))t dt = p(t) (4.2)

29(0) = 29 (27), i=0,1,2,3 (4.3)

has at most one solution.

Proof. Let z1,x2 be any two solutions of (4.2) - (4.3). Set z = z1 — 2.
Then x satisfies the boundary value problem

a4 T a7 E + T()i(t —7) +a tde =0
290) =29 (@2r), i=0,1,2,3
where the function I'(t) € L2_ is defined by

g(t, i1 (t — 7)) — g(t,@a(t — 7))
i(t)

if @(t) #0

1 if &(t) =0

If (t) = 0 on every subset of [0,27] of positive measure, then x = constant
= 0 since d # 0. Hence x; = x2. Suppose on the other hand that &(t) # 0
on a certain subset of [0, 27| of positive measure. Then using the argument of
theorem 2.1 we obtain that x = 0 and hence x1 = x9 a.e.
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