ON THE RESONANT OSCILLATION OF CERTAIN FOURTH ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH DELAY

S.A. Iyase
Department of Mathematics
Covenant University
P.M.B. 1023, Ota, Ogun State, NIGERIA

Abstract: We prove the existence of periodic solutions for the periodic boundary value problem (1.1) under some resonant conditions on the asymptotic behaviour of $\frac{g(t, y)}{a y}$ for $|y| \rightarrow \infty$.

The uniqueness of periodic solutions is also examined.
AMS Subject Classification: 34B15
Key Words: periodic solution uniqueness Caratheodory conditions, fourth order ordinary differential equations, delay, coincidence degree

1. Introduction

In this paper, we study the periodic boundary value problem

$$
\begin{gather*}
x^{(i v)}(t)+a \dddot{x}(t)+f(\dot{x}) \ddot{x}(t)+g(t, \dot{x}(t-\tau))+h(x)=p(t) \tag{1.1}\\
x^{(i)}(0)=x^{(i)}(2 \pi), \quad i=0,1,2,3 \tag{1.2}
\end{gather*}
$$

with fixed delay $\tau \in[0,2 \pi)$ where $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuous, $p:[0,2 \pi] \longrightarrow \mathbb{R}$ and $g:[0,2 \pi] \times \mathbb{R} \longrightarrow \mathbb{R}$ are 2π-periodic in t and g satisfies caratheodory conditions. The unknown function $x:[0,2 \pi] \rightarrow \mathbb{R}$ is defined for $0<t \leq \tau$ by $x(t-\tau)=[2 \pi-(t-\tau)]$. We are specifically concerned with the existence of

Received: April 8, 2015
(C) 2015 Academic Publications, Ltd. url: www.acadpubl.eu
periodic solutions of (1.1) - (1.2) under some resonant conditions.
In a recent paper [4] we studied the above equation with $f(\dot{x})=b$ and $h(x)=d$ where b and d are constants with $g(t, y)$ satisfying certain non-resonant conditions. In our present study, we will allow $g(t, y)$ to satisfy certain resonant conditions.

In what follows, we shall use the spaces $C([0,2 \pi]), C^{k}([0,2 \pi])$ and $L^{k}([0,2 \pi])$ of continuous, k times continuously differentiable or measurable real functions whose k th power of the absolute value is Lebesgue integrable. We shall use the Sobolev spaces $W_{2 \pi}^{4,2}$ and $H_{2 \pi}^{1}$ respectively defined by $W_{2 \pi}^{4,2}=\{x:[0,2 \pi] \longrightarrow$ $\mathbb{R} \mid x, \dot{x}, \ddot{x}, \dddot{x}$ are absolutely continuous on $\left.[0,2 \pi], x^{(i)}(0)=x^{(i)}(2 \pi), i=0,1,2,3\right\}$ with the norm

$$
|x|_{W_{2 \pi}^{4,2}}^{2}=\sum_{i=0}^{4} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|x^{(i)}(t)\right|^{2} d t
$$

and

$$
H_{2 \pi}^{1}=\{x:[0,2 \pi] \longrightarrow \mathbb{R} \mid x
$$

is absolutely continuous on $[0,2 \pi]$ and $\left.\dot{x} \in L_{2 \pi}^{2}\right\}$, with norm

$$
|x|_{H_{2 \pi}^{1}}^{2}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) d t\right)^{2}+\frac{1}{2 \pi} \int_{0}^{2 \pi}|\dot{x}|^{2} d t
$$

2. The Linear Problem

Let us consider the equation

$$
\begin{gather*}
x^{(i v)}(t)+a \dddot{x}(t)+b \ddot{x}(t)+c \dot{x}(t-\tau)+d x=0 \tag{2.1}\\
x^{(i)}(0)=x^{(i)}(2 \pi), \quad i=0,1,2,3 \tag{2.2}
\end{gather*}
$$

where a, b, c and d are constants.
Lemma 2.1. Let $a \neq 0$ and let

$$
\begin{equation*}
(n-1)^{2}<\frac{c}{a}<n^{2} \tag{2.3}
\end{equation*}
$$

where $n \geq 1$ is a positive integer. Then the bvp (2.1) - (2.2) has no non trivial 2π-periodic solution.

Proof. We consider a solution of the form $x(t)=A e^{\lambda t}$ where $\lambda=i n$ with $i^{2}=-1$ and $A \neq 0$ is a constant.

Then Lemma 2.1 will follow if

$$
\begin{equation*}
\phi(n, \tau)=-a n^{2}+c \cos n \tau \neq 0 \tag{2.4}
\end{equation*}
$$

for all $n \geq 1$ and $\tau \in[0,2 \pi)$. By (2.3) we get

$$
a^{-1} \phi(n, \tau)=-n^{2}+\frac{c}{a} \cos n \tau \leq-n^{2}+\frac{c}{a}<0
$$

Thus $\phi(n, \tau) \neq 0$ and the result follows.
If $x \in L_{2 \pi}^{1}$ we shall write

$$
\begin{equation*}
\bar{x}=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) d t, \quad \tilde{x}(t)=x(t)-\bar{x} \tag{2.5}
\end{equation*}
$$

so that

$$
\int_{0}^{2 \pi} \tilde{x}(t) d t=0
$$

We shall consider next the delay equation

$$
\begin{gather*}
x^{(i v)}(t)+a \dddot{x}(t)+b \dot{x}(t)+c(t) \dot{x}(t-\tau)+d x=0 \tag{2.6}\\
x^{(i)}(0)=x^{(i)}(2 \pi), i=0,1,2,3 \tag{2.7}
\end{gather*}
$$

where a, b, d are constants and $c \in L_{2 \pi \mid}^{2}$.
Theorem 2.1. Let $a \neq 0$ and $d \neq 0$ and set $\Gamma(t)=a^{-1} c(t)$. Suppose that

$$
\begin{equation*}
0<\Gamma(t)<1 \tag{2.8}
\end{equation*}
$$

then the bvp (2.6) - (2.7) has no nontrivial solution for every $\tau \in[0,2 \pi)$.
Proof. Let $x(t)$ be any solution of (2.6) - (2.7). Then we can verify that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}-\dot{\tilde{x}}(t)\left[a^{-1}\left(x^{(i v)}+b \ddot{x}+d x\right)\right] d t=0
$$

Thus we have

$$
\begin{aligned}
0 & =\frac{1}{2 \pi} \int_{0}^{2 \pi}-\dot{\tilde{x}}(t)\left[a^{-1}\left\{x^{(i v)}+b \ddot{x}(t)+d x\right\}+\dddot{x}+\Gamma(t) \dot{x}(t-\tau)\right] d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}-\dot{\tilde{x}}(t)[\ddot{x}+\Gamma(t) \dot{x}(t-\tau)] d t
\end{aligned}
$$

$$
=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\ddot{\tilde{x}}^{2}(t)-\Gamma(t) \dot{\tilde{x}}(t) \dot{\tilde{x}}(t-\tau)\right) d t
$$

using

$$
-a b=\frac{(a-b)^{2}}{2}-\frac{a^{2}}{2}-\frac{b^{2}}{2}
$$

we have

$$
\begin{aligned}
0= & \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\ddot{\tilde{x}}^{2}(t)-\frac{\Gamma(t)}{2} \dot{\tilde{x}}^{2}(t)-\frac{\Gamma(t)}{2} \dot{\tilde{x}}^{2}(t-\tau)\right) d t \\
& +\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\Gamma(t)}{2}(\dot{\tilde{x}}(t)-\dot{\tilde{x}}(t-\tau))^{2} d t
\end{aligned}
$$

From (2.8) we have

$$
\begin{aligned}
0 & \geq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\ddot{\tilde{x}}^{2}(t)-\frac{\Gamma(t)}{2}\left(\dot{\tilde{x}}^{2}(t)+\dot{\tilde{x}}^{2}(t-\tau)\right) d t\right. \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\ddot{\tilde{x}}^{2}-\Gamma(t) \dot{\tilde{x}}^{2}(t)\right) d t \geq \delta|\dot{x}|_{H_{2 \pi}^{1}}^{2}
\end{aligned}
$$

By Lemma 1 of [6], where we have used the fact that $\int_{0}^{2 \pi} \dot{\tilde{x}}^{2}(t) d t=\int_{0}^{2 p i} \dot{\tilde{x}}^{2}(t-$ $\tau) d t$. Here, $\delta>0$. Thus $\dot{x}=0$ and since $d \neq 0$ it is clear that $x=$ constant cannot be a solution of (2.6) - (2.7). Therefore $x=0$.

3. The Nonlinear Case

We shall now consider a preliminary Lemma which will enable us obtain a priori estimates required for our results.

Lemma 3.1. Let all the conditions of Theorem 2.1 hold and let δ be related to $\Gamma(t)$ by Theorem 2.1. Suppose that for $V \in L_{2 \pi}^{2}, 0 \leq V(t) \leq \Gamma(t)+\varepsilon$ a.e. $t \in[0,2 \pi], \varepsilon>0$.

Then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}-\dot{\tilde{x}}\left[a^{-1}\left\{x^{(i v)}+b \ddot{x}+d x\right\}+\dddot{x}+v(t) \dot{x}(t-\tau)\right] d t \geq(\delta-\varepsilon)|\ddot{\tilde{x}}|_{2}^{2}
$$

Proof. From the proof of Lemma 2.1 we have

$$
\begin{aligned}
&\left.\begin{array}{rl}
\frac{1}{2 \pi} \int_{0}^{2 \pi} & -\dot{\tilde{x}}
\end{array} a^{-1}\left\{x^{(i v)}+b \ddot{x}+d x\right\}+\dddot{x}+v(t) \dot{x}(t-\tau)\right] d t \\
& \geq \frac{1}{2}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[\ddot{\tilde{x}}^{2}-\Gamma(t) \dot{\tilde{x}}^{2}\right] d t\right\} \\
&+\frac{1}{2}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[\ddot{\tilde{x}}^{2}(t-\tau)-\Gamma(t) \dot{\tilde{x}}^{2}(t-\tau)\right] d t\right\} \\
& \quad-\frac{\varepsilon}{2} \cdot \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\dot{\tilde{x}}^{2}(t-\tau)+\dot{\tilde{x}}^{2}(t)\right) d t \\
&=\frac{1}{2 \pi} \int_{0}^{2 \pi} \quad\left[\ddot{\tilde{x}}^{2}(t-\tau)-\Gamma(t) \dot{\tilde{x}}^{2}(t-\tau)\right] d t \\
& \quad-\frac{1}{2}\left[\frac{\varepsilon}{2 \pi} \int_{0}^{2 \pi} \dot{\tilde{x}}^{2}(t-\tau) d t+\frac{\varepsilon}{2 \pi} \int_{0}^{2 \pi} \dot{\tilde{x}}^{2}(t-\tau)\right] d t \\
& \geq \delta|\ddot{\tilde{x}}|_{2}^{2}-\varepsilon \mid \ddot{\tilde{x}}_{2}^{2} \\
&=(\delta-\varepsilon)|\ddot{\tilde{x}}|_{2}^{2}
\end{aligned}
$$

We shall next consider the nonlinear delay equation

$$
\begin{gather*}
x^{(i v)}(t)+a \dddot{x}(t)+f(\dot{x}) \ddot{x}(t)+g(t, \dot{x}(t-\tau))+h(x)=p(t) \tag{3.1}\\
x^{(i)}(0)=x^{(i)}(2 \pi), \quad i=0,1,2,3 \tag{3.2}
\end{gather*}
$$

where $f, h: \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions and $g:[0,2 \pi] \times \mathbb{R} \rightarrow \mathbb{R}$ is such that $g(\cdot, x)$ is measurable on $[0,2 \pi]$ for each $x \in \mathbb{R}$ and $g(t, \cdot)$ is continuous on \mathbb{R} for almost each $t \in[0,2 \pi]$. We assume moreover that for each $r>0$ there exists $Y_{r} \in L_{2 \pi}^{2}$ such that $g(t, y) \leq Y_{r}(t)$ for a.e. $t \in[0,2 \pi]$ and all $x \in[-r, r]$ such a g is said to satisfy Caratheodory's conditions.

Theorem 3.1. Let $a \neq 0$. Suppose that g is a Caratheodory function with respect to the space $L_{2 \pi}^{2}$ such that:
(i) There exists $r>0$ such that

$$
\operatorname{axg}(t, x) \geq 0 \text { for }|x| \geq r
$$

(ii) $\limsup _{|x| \rightarrow \infty} \frac{g(t, x)}{a x} \leq \Gamma(t)$
for $t \in[0,2 \pi]$ with $\Gamma(t)$ satisfying $0<\Gamma(t)<1$.
(iii) $\lim _{|x| \rightarrow+\infty} \operatorname{sgnxh}(x)=+\infty$

Suppose further that $p \in L_{2 \pi}^{2}$, then for arbitrary continuous function f, equation (3.1) has at least one 2π-periodic solution.

Proof. Let $\delta>0$ be related to Γ by Lemma 3.1. Then by (i) and (ii) there exists a constant $R>0$ such that for a.e $t \in[0,2 \pi]$ and all y with $|y| \geq R$ we have

$$
\begin{equation*}
0 \leq \frac{g(t, y)}{a y} \leq \Gamma(t)+\delta / 2 \tag{3.3}
\end{equation*}
$$

We define

$$
\tilde{Y}(t, x)= \begin{cases}(a x)^{-1} g(t, x), & |x|>R \\ (a R)^{-1} g(t, R), & 0<x<R \\ -(a R)^{-1} g(t,-R), & -R_{1}<x<0 \\ \Gamma(t), & x=0\end{cases}
$$

Then

$$
\begin{equation*}
0 \leq \tilde{Y}(t, x) \leq \Gamma(t)+\delta / 2 \tag{3.5}
\end{equation*}
$$

for a.e $t \in[0,2 \pi]$ and all $x \in \mathbb{R}$.
Clearly the function

$$
\tilde{g}=a \tilde{Y}(t, \dot{x}(t-\tau)) \dot{x}(t-\tau)
$$

is a Caratheorody function. So also is g_{0} defined by

$$
\begin{equation*}
g_{0}(t, \dot{x}(t-\tau))=g(t, \dot{x}(t-\tau))-\tilde{g}(t, \dot{x}(t-\tau)) \tag{3.6}
\end{equation*}
$$

Thus there exists $\alpha \in L_{2 \pi}^{2}$ such that

$$
\begin{equation*}
\left|g_{0}(t, \dot{x}(t-\tau))\right| \leq \alpha(t) \tag{3.7}
\end{equation*}
$$

for a.e $t \in[0,2 \pi]$ and all $x \in \mathbb{R}$. Problem (3.1) is thus equivalent to $x^{(i v)}(t)+a \dddot{x}(t)+f(\dot{x}) \ddot{x}(t)+\tilde{Y}\left(t, \dot{x}(t-\tau) \dot{x}(t-\tau)+g_{0}(t, \dot{x}(t-\tau))+h(x)=p(t)\right.$
to which we shall apply coincidence degree theory.
Let $X=C^{3}[0,2 \pi], Z=L_{2 \pi}^{2}$
$\operatorname{dom} L=\left\{x \in X: x^{(i)}(0)=x^{(i)}(2 \pi), \quad i=0,1,2,3\right.$ and $\dot{x}, \ddot{x}, \dddot{x}$ are absolutely continuous on $[0,2 \pi]\}$.

Define as in [6]

$$
\begin{aligned}
& L: \operatorname{dom} L \subset X \longrightarrow Z, x \longrightarrow x^{(i v)}+a \ddot{x} \\
& F: \operatorname{dom} L \subset X \longrightarrow Z, x \longrightarrow f(\dot{x}) \ddot{x} \\
& G: \operatorname{dom} L \subset X \longrightarrow Z, x \longrightarrow \tilde{Y}(t, \dot{x}(t-\tau)) \dot{x}(t-\tau) \\
& H: \operatorname{dom} L \subset X \longrightarrow Z, x \longrightarrow h(x) \\
& A: \operatorname{dom} L \subset X \longrightarrow Z, x \longrightarrow \Gamma(t) \dot{x}(t-\tau) \\
& G_{0}: \operatorname{dom} L \subset X \longrightarrow Z, x \longrightarrow g_{0}(t, \dot{x}(t-\tau)) \\
& T: \operatorname{dom} L \subset X \longrightarrow Z, x \longrightarrow-p(t)
\end{aligned}
$$

It is seen that G and G_{0} are well defined and L-compact on bounded subsets of X and that L is a linear Fredholm mapping of index zero.

Therefore the proof of the theorem will follow from theorem 4.5 of [7] if we show that the possible solutions of the equation

$$
\begin{equation*}
L x+\lambda F x+(1-\lambda) A x+\lambda G x+\lambda G_{0} x+(1-\lambda) d x+\lambda H x+\lambda T x=0 \tag{3.9}
\end{equation*}
$$

or equivalently the equation

$$
\begin{align*}
& a^{-1}\left[x^{(i v)}+\lambda f(\dot{x}) \ddot{x}\right]+\dddot{x}+(1-\lambda) \Gamma(t) \dot{x}(t-\tau)+\lambda \tilde{Y}(t, \dot{x}(t-\tau)) \dot{x}(t-\tau) \\
& +(1-\lambda) a^{-1} d x+a^{-1} \lambda g_{0}(t, \dot{x}(t-\tau))+a^{-1} \lambda h(x)-a^{-1} \lambda p(t)=0 \tag{3.10}
\end{align*}
$$

where $d>0$ are apriori bounded independently of $\lambda \in[0,1]$.
For $\lambda=0$ we get the equation

$$
x^{(i v)}+a \dddot{x}+\Gamma(t) \dot{x}(t-\tau)+d x=0
$$

which by Theorem 2.1 has only the trivial solution. We observe that

$$
0<(1-\lambda) \Gamma(t)+\lambda \tilde{Y}(t, \dot{x}(t-\tau)) \leq \Gamma(t)+\delta / 2
$$

for a.e $t \in[0,2 \pi]$ and all $x \in \mathbb{R}$.

Hence using $V(t)=(1-\lambda) \Gamma(t)+\lambda \tilde{Y}(t, \dot{x}(t-\tau))$, Lemma 3.1 and Cauchy Schwartz inequality we get

$$
\begin{aligned}
0= & \frac{1}{2 \pi} \int_{0}^{2 \pi}-\dot{\tilde{x}}(t)\left\{a^{-1}\left[x^{(i v)}+\lambda f(\dot{x}) \ddot{x}\right]+\dddot{x}+[(1-\lambda) \Gamma(t)\right. \\
& +\lambda \tilde{Y}(t, \dot{x}(t-\tau))] \dot{x}(t-\tau)+(1-\lambda) a^{-1} d x+\lambda a^{-1} g_{0}(t, \dot{x}(t-\tau) \\
& \left.\left.+a^{-1} \lambda h(x)-a^{-1} \lambda p(t)\right)\right\} d t \\
\geq & \delta / 2|\ddot{x}|_{2}^{2}-\left(|\alpha|_{2}+|p|_{2}\right)|\dot{x}|_{2}
\end{aligned}
$$

Using Wirtinger's inequality gives

$$
0 \geq \frac{\delta}{2}|\ddot{x}|_{2}^{2}-\beta|\ddot{x}|_{2}^{2}, \quad \text { for some } \beta>0
$$

Hence

$$
\begin{equation*}
|\ddot{x}|_{2}^{2} \leq \frac{2 \beta}{\delta}=\beta_{1}, \quad \beta_{1}>0 \tag{3.11}
\end{equation*}
$$

Thus,

$$
|\dot{x}|_{2} \leq \beta_{2}, \quad \beta_{2}>0
$$

and inequality (3.11) implies that

$$
|\dot{x}|_{\infty} \leq \beta_{3}, \quad \beta_{3}>0
$$

By the continuity of f, we derive

$$
|f(\dot{x})|_{\infty} \leq \beta_{4}, \quad \beta_{4}>0
$$

Taking the average of equation (3.10) on $[0,2 \pi]$ we get by the mean value theorem

$$
\begin{aligned}
& \left|(1-\lambda) d x\left(t^{*}\right)+\lambda h\left(x\left(t^{*}\right)\right)\right|=\left|(1-\lambda) d \frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) d t+\lambda \frac{1}{2 \pi} \int_{0}^{2 \pi} h(x(t)) d t\right| \\
& \quad \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|(1-\lambda) \Gamma(t)+\lambda \tilde{Y}(t, \dot{x}(t-\tau))||\dot{x}(t-\tau)| d t \\
& \quad+\frac{1}{2 \pi} \int_{0}^{2 \pi} \lambda\left|g_{0}(t, \dot{x}(t-\tau))\right| d t+\frac{1}{2 \pi} \lambda \int_{0}^{2 \pi}|p(t)| d t \\
& \quad \leq \beta_{3}(1+\delta / 2)+|\alpha|_{1}+|p|_{1}=\beta_{5}
\end{aligned}
$$

for some $t^{*} \in[0,2 \pi]$. By (iii) we have for $k>0$ there is $q=q_{k}>0$ such that

$$
|h(x)|=\operatorname{Sgn}(x) h(x)>0 \text { for every }|x|>\max \left\{\frac{k}{d}, q\right\}
$$

Hence for any $\lambda \in[0,1]$ we have

$$
|(1-\lambda) d x+\lambda h(x)|=\operatorname{Sgn}(x)(1-\lambda) d x+\lambda h(x) \geq(1-\lambda) k+\lambda k=k
$$

for every $|x|>\max \left\{\frac{k}{d}, q\right\}$. We now choose $k>\beta_{5}$ and derive that

$$
\left|x\left(t^{*}\right)\right| \leq \max \left\{\frac{k}{d}, q\right\}=\beta_{6}
$$

Now,

$$
x(t)=x\left(t^{*}\right)+\int_{t^{*}}^{2 \pi} \dot{x}(t) d t
$$

Hence

$$
|x|_{\infty} \leq \beta_{7}+2 \pi \beta_{3}=\beta_{7}
$$

multiplying (3.10) by $-\ddot{x}(t)$ and integrating over $[0,2 \pi]$ we obtain

$$
\begin{aligned}
|\dddot{x}|_{2}^{2} \leq|f(\dot{x})|_{\infty}|\ddot{x}|_{2}^{2}+\left|a^{-1}\right| \delta / 2+\left.1| | \dot{x}\right|_{2}|\ddot{x}|_{2} & +|a|^{-1}|\alpha|_{2}|\ddot{x}|_{2} \\
& +|p|_{2}|\ddot{x}|_{2}+|h(x)|_{\infty}|\ddot{x}|_{2}+|d||\dot{x}|_{2}^{2}
\end{aligned}
$$

Thus

$$
|\dddot{x}|_{2} \leq \beta_{8}, \quad \beta_{8}>0
$$

and

$$
|\ddot{x}|_{\infty} \leq \beta_{9}, \quad \beta_{9}>0
$$

Multiplying (3.10) by $x^{(i v)}(t)$ and integrating over [$0,2 \pi$] we get

$$
\begin{aligned}
\left|x^{(i v)}\right|_{2}^{2} \leq & |f(\dot{x})|_{\infty}|\dot{x}|_{2}\left|x^{(i v)}\right|_{2}+|a|^{-1}|1+\delta / 2||\dot{x}|_{2}\left|x^{(i v)}\right|_{2} \\
& +|d||x|_{2}\left|x^{(i v)}\right|_{2}+|\alpha|_{2}\left|x^{(i v)}\right|_{2}|a|^{-1}+|h(x)|_{\infty}\left|x^{(i v)}\right|_{2}+|p|_{2}\left|x^{(i v)}\right|_{2}
\end{aligned}
$$

Therefore

$$
\left|x^{(i v)}\right|_{2} \leq \beta_{10}, \quad \beta_{10}>0
$$

and thus

$$
|\dddot{x}|_{\infty} \leq \beta_{11}, \quad \beta_{11}>0
$$

Therefore

$$
\begin{aligned}
|x|_{C^{3}} & =|x|_{\infty}+|\dot{x}|_{\infty}+|\ddot{x}|_{\infty}+|\dddot{x}|_{\infty} \\
& \leq \beta_{7}+\beta_{3}+\beta_{9}+\beta_{11}=\beta_{12}
\end{aligned}
$$

Choosing $\rho>\beta_{12}>0$ we obtain the required a priori bound in $C^{3}[0,2 \pi]$ independently of x and λ.

4. Uniqueness Result

If in (1.1), $f(\dot{x})=b, h(x)=d$ where b and d are constants, then we have the following uniqueness result.

Theorem 4.1. Let a, b, d be constants, with $a \neq 0, d>0$. Suppose g is a Caratheodory function satisfying

$$
\begin{equation*}
0<\frac{g\left(t, \dot{x}_{2}\right)-g\left(t, \dot{x}_{2}\right)}{a\left(\dot{x}_{1}-\dot{x}_{2}\right)} \leq \Gamma(t) \tag{4.1}
\end{equation*}
$$

for all $\dot{x}_{1}, \dot{x}_{2} \in \mathbb{R}, \dot{x}_{1} \neq \dot{x}_{2}$, where $\Gamma(t) \in L_{2 \pi}^{2}$ is such that

$$
0<\Gamma(t)<1
$$

then for all arbitrary constant b and every $\tau \in[0,2 \pi)$ the boundary value problem

$$
\begin{gather*}
x^{(i v)}+a \dddot{x}+b \ddot{x}+g(t, \dot{x}(t-\tau)) t d t=p(t) \tag{4.2}\\
x^{(i)}(0)=x^{(i)}(2 \pi), \quad i=0,1,2,3 \tag{4.3}
\end{gather*}
$$

has at most one solution.
Proof. Let x_{1}, x_{2} be any two solutions of (4.2) - (4.3). Set $x=x_{1}-x_{2}$. Then x satisfies the boundary value problem

$$
\begin{gathered}
a^{-1} x^{(i v)}+\dddot{x}+a^{-1} b \ddot{x}+\Gamma(t) \dot{x}(t-\tau)+a^{-1} d x=0 \\
x^{(i)}(0)=x^{(i)}(2 \pi), \quad i=0,1,2,3
\end{gathered}
$$

where the function $\Gamma(t) \in L_{2 \pi}^{2}$ is defined by

$$
\Gamma(t)= \begin{cases}\frac{g\left(t, \dot{x}_{1}(t-\tau)\right)-g\left(t, \dot{x}_{2}(t-\tau)\right)}{\dot{x}(t)} & \text { if } \dot{x}(t) \neq 0 \\ \frac{1}{2} & \text { if } \dot{x}(t)=0\end{cases}
$$

If $\dot{x}(t)=0$ on every subset of $[0,2 \pi]$ of positive measure, then $x=$ constant $=0$ since $d \neq 0$. Hence $x_{1}=x_{2}$. Suppose on the other hand that $\dot{x}(t) \neq 0$ on a certain subset of $[0,2 \pi]$ of positive measure. Then using the argument of theorem 2.1 we obtain that $x=0$ and hence $x_{1}=x_{2}$ a.e.

References

[1] R. Gaines, J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math. No. 568, Springer-Verlag, Berlin (1977).
[2] R. Iannachi, M.N. Nkashama, On Periodic Solutions of Forced Second Order Differential Equations with a Deviating Argument, Sem. Math. (Nour. Ser) Univ. Catholique Louvain (1988).
[3] S.A. Iyase, Non-responant oscillations for some fourth-order differential equations with delay, Mathematical Proceedings of the Royal Irish Academy, 99A, No. 1 (1999), 113-121.
[4] 4 S.A. Iyase, On the Non-resonant oscillation of a fourth order periodic boundary value problem with delay, Journal of the Nigerian Math. Soc., 32 (2013), 217-227.
[5] S.A. Iyase, Periodic boundary-value problems for fourth-order differential equations with delay, Electronic Journal of Differential Equations, 2011, No. 130 (2011), 1-7.
[6] J. Mawhin, J.R. Ward, Periodic solution of some forced Lienard differential equations at resonance, Arch. Math., 41 (1988), 337-351.
[7] J. Mawhin, Topological degree methods in non-linear boundary value problems, In: Regional Conf. in Math., No. 40, American Math. Soc. Providence R.I. (1979).

