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Abstract 

 

In this work we revisited an earlier work, analytical solution of extended Schwartz 

and Moon growth option model, a model used for valuing a company, a particular 

case of a bank, the solution to the model proposed in the earlier work was 

represented and solved. The analytical problem presented in the earlier work was 

partitioned; an algorithm presented and solved using Monte Carlo simulation. 
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1 Introduction 
 

The framework of the present paper is based on the one presented in Owoloko [1], 

Schwartz and Moon [2] and a special case of Chang et al in [3]. The assumptions 

of the model proposed in [2] which also applies in [3] were enumerated in [1].  

As stated in [1], the models in [2, 4], and those previously reported in literatures: 

[5], [6] and [7], where the model have been used, a discrete version of the 

continuous-time process is used to simulate the value of a company.  

In [1], the mathematical formulation of the extended case was given and this led 

to the derivation of equation (25) of [1].  This equation is as a result of the 

application of Ito’s lemma to the expression of bank value dynamics given as:  
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 , , , , , , , , , ,L DV V L D r S X Y p t                   (1)                                    

 

Where 

 

L Bank loans 

L Expected growth rate in loans 

D Bank deposit 

D Expected growth rate in deposit 

 Variable cost 

r  Interest rate 

S  Interest spread 

X Loss-carry forward 

Y Accumulated property, plant and equipment 

p Cash balance 

t Time 

 

 

Other authors [9], [8] and [10] have also tried to model the value of banks. In 

particular, Owoloko et al gave the value of bank via the contingent claim 

approach [8]. 

 

 

2 Mathematical Formulation 

 
In [1], the value of bank was given in equation (25), as  
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We concluded by saying that taking the integral of both sides of (2) with some 

necessary adjustments, the value of the bank can be found.  

The new approach we adopted in finding solution to (2) is to partition the equation 

and then solve them separately. This approach was applied in [8]; that is, taking 

the integral of (2), we have: 

 

       1 2 4 3 5

0 0

1
( ) ( ) ( ) ( )

N N
r T t

i i i i

i i

V t e p p L t p p D t p t L t
N


 

 

  
       

  
    

(3) 

where 

 N Number of partitions 
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2 (1 )p M r    

3 ( 1)(2 )cp s r       

4 ( 1)p M s    

5 (1 )cp M     

 (2 ) (1 ) ( ) ( )C C Cr F M Dep T t Capx T t M                  

 

3.0  The Simulation Algorithm 
 

Equation (3) was implemented using the simulation algorithm below: 

Set paths to value 

Set period to a value 

//  random number 

//   market price 

// t   time interval 

While Not EOF Do 

 For I = 1 to paths 

 For J = 1 to periods 

 Set time to J 

 Generate random number.  

Multiply initial volatility loan growth rate by exponential (mean reversion- 

coefficient*time) and store in volatility rate for loan.  

   Call loan (J, I)// call function to compute loan // store the returned result of loan 

in L. 

Multiply initial volatility deposit growth rate by exponential  

(mean reversion coefficient*time) and store in volatility rate for deposit. 
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Call Deposit (J, I)// call function to compute deposit 

 Next J 

 Next I 

 Call Cash available (J, I), // call function to compute cash available, store the 

result in X. 

 Set M as multiplier for loan and deposit 

 Set C as addition of variable cost and fixed cost 

  ( ) ( ) ( ) ( ) rT

QV t E X T M T C T e        

 Print V as bank value. 

   END DO 

End 

 FUNCTION loan (J, I) 

  //function to compute loan 

  // L = initial loan 

  // L   volatility of loan 

  // L   growth rate in loan 

  Set  
2

1( ) ( )exp
2

L
i i L i i iL t L t t t


 

   
       

   
  

 RETURN L 

 FUNCTION Deposit 

  //Function to compute deposit 

  // D = Initial deposit 

  // D   volatility of deposit 

  //  D   growth rate of deposit 



1026                                             E. A. Owoloko et al. 

 

 

  Set  
2

1( ) ( )exp
2

D
i i D i D i iD t D t t t


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 RETURN D 

 

 

FUNCTION Cash available (J, I) 

 // r = interest rate 

 // ( )t   bank revenue 

 // ( )Y t  after tax net income 

 // Compute depreciation  

 IF J = 1 then Dep = Dep multiply accumulated property 

 Else 

 Dep = Dep multiply (J-1, I) 

 End if 

 Set  1 ( ) ( ) ( )X r t Y t Dep Capx t       

 

RETURN X                (4) 

 

 

 

4.0 Conclusion 
 

In this paper, we modified the problem posed in [1], and a solution to the 

problem was solved by equation (3) using the simulation algorithm given in (4). 

With the formula given by (3) and the simulation algorithm given in (4), we can 

successfully estimate the value of a bank at an arbitrary time  0, .t T  
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( )t    Growth rate of bank loan 

M     Multiplier 
re     Continuously compounded discount factor 

( )L t    Volatility of bank loan at time t    

( )D t    Bank deposit at time t   

( )D t    Growth rate of bank deposit time t   

( )D t    Volatility rate of bank deposit time t   

1W     Standard Brownian motion from the dynamics of loan 

( )t    Bank value time t  

     Long-term average volatility of variable cost 

2W     Standard Brownian motion from the dynamics of deposit 

3W     Standard Brownian motion from the source of growth rate in loan 

( )L t    Volatility of growth rate in loan at time t   

( )D t    Volatility of growth rate in deposit at time t   

k     Mean reversion coefficient 

     Risk Premium 

fr     Risk free rate 

k     Beta of the market 

mR     Market risk 

( )C t    Total cost at time t   

( )t    Variable cost at time t   

F     Fixed cost 

     Long term average of variable cost 

( )t    Volatility of variable cost at time t   

4W     Standard Brownian motion associated with growth rate in deposit 

5W     Standard Brownian motion associated with variable cost 

     Other sources of bank income 

r     Interest on loan 

s     Interest on deposit 

( )Y t    After tax net income 

( )X t    Cash balance at time 

Dep    Depreciation 

P     Accumulated property plant and equipment 

Capx    Capital expenditure 

DR    Percentage of depreciation 

( )V t    Value of bank at an arbitrary time t   
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(0)V    Value of bank at present time t   

QE     Equivalent martingale measure 

C     Corporate tax rate 
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