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Abstract 

 

A 5-step block predictor and 4-step corrector methods aimed at solving 

general second order ordinary differential equations directly will be 

constructed and implemented on non-stiff problems. This method, which 

extends the work of block predictor-corrector methods using variable step size 

technique possess some computational advantages of choosing a suitable step 

size, deciding the stopping criteria and error control. In addition, some 

selected theoretical properties of the method will be investigated as well as 

determination of the region of absolute stability. Numerical results will be 

given to show the efficiency of the new method. 

 

Keywords: predictor-corrector methods, stopping criteria, region of absolute 

stability, variable step size technique 

 

 

1.0. Introduction 

Many problems of science and engineering are reduced to quantifiable form through 

the process of mathematical modelling. The equations arising often are expressed in 

terms of the unknown quantities and their derivatives. Such equations are called 

differential equations. Since analytical methods are not adequate for finding accurate 

solutions to most differential equations, numerical methods are required. The ideal 

objective, in employing a numerical method, is to compute a solution of specified 

accuracy to the differential equation. Sometimes this is achieved by computing 

several solutions using a method which has known error characteristics as in John 
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[13]. This paper considered solving directly general second order ordinary differential 

equations of the form Adetola and Odekunle [1] 

bxayyxf yxyyxyy ,)(,)(),,,(
'

00

'

000

'''

 (1) 

Numerical methods of solving (1) exists in literature. Yayaya and Badmus [24] 

reported that (1) can be reduced to systems of first order equations and other one-step 

methods for solving first order equations are used. However, Anake et al. [3] and 

Majid and Suleiman [18] suggested that reducing (1) to the equivalent first order 

system of twice the dimension equations and then solved using one-step or multistep 

method. This technique is very well established but it apparently will increase the 

dimension of the equations. 

According to Jain and Iyengar [11], explicit and implicit methods combined together 

to obtain a new methods. Such methods is called the Predictor-Corrector Methods. 

Scholars such as Lambert [15] and Lambert [16] have suggested that this turns out to 

be an advantage in having the predictor and the corrector of the same order. Again, 

the predictor-corrector pair is applied in the mode of correcting to convergence which 

is one of the most important aspect of the predictor-corrector methods. Adetola and 

Odekunle [1] and Adetola et al. [2] sited the major setback of the predictor-corrector 

mode is the cost of developing subroutine. Furthermore, this subroutine developed are 

of lower order to the corrector, thus, it has great consequence on the accuracy of the 

corrector results. 

The Block multistep methods are one of the numerical methods which have been 

suggested by several researchers, see Adetola and Odekunle [1], Adetola et al. [2], 

James et al. [12], Majid et al. [17], Majid and Suleiman [18] and Zarina et al. [25]. 

The commonly block methods used to evaluate (1) can be categorise as one-step 

block method and multistep block method. Again, block methods was proposed by 

scholars to cater for the shortcoming of predictor-corrector method, since block 

method provides solutions at each grid within the interval of integration without 

overlapping thereby eradicating the idea of subroutine. 

Scholars such as Adetola and Odekunle [1], Ehigie et al. [5], Ismail et al. [9] and Ken 

et al. [14]proposed block multistep methods which were applied in predictor-corrector 

mode. Block multistep methods have the advantage of evaluating simultaneously at 

all points with the integration interval, thereby reducing the computational burden 

when evaluation is needed at more than one point within the grid. Again, starting 

values are provided by Taylor series expansion in order to compute the corrector 

method. 

Researchers in Adetola and Odekunle [1], Ehigie et al. [5], Ismail et al. [9] and Ken et 

al. [14]implemented block predictor-corrector method in which at each practical 

application of the method, the method was only intended to predict and correct the 

results generated. In this paper, the motivation is stemmedfrom the fact that block 

predictor-corrector methods applied by different authors never surpass its advantage 

as suggested above, which makes the block predictor-corrector method to be under-

utilized. Hence, there is a need to propose a type of block predictor-corrector method 

in the form of 5-step block predictor (explicit Adams-Bashforth) and 4-step corrector 

methods (implicit Adams-Moulton) implemented using variable step size technique. 
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This method possess the following advantages such as changing the stepsize and 

determining on a suitable step size for the block predictor-corrector method, choosing 

the stopping criteria and error control or minimization. 

 

 

2.0. Justification 

We first state the theorem that demonstrates the uniqueness of solutions of higher 

order ordinary differential equations. 

 

Theorem 1 (Existence and Uniqueness) 

Let ),( yxf  be defined and continuous for all points ),( yx  in the region D  defined 

by ,bxa ,x  where a  and b  are finite, and let there exists a constant L  

such that for any ],[ bax  and any two numbers y  and y
*

, 

yy yLxfyxf
**

),(),( . 

This condition is known as Lipchitz condition. Then there exists exactly one function 

)(xy  with the following four properties: 

(i) )(xy  is continuous and differentiable for ],[ bax , 

(ii) ))(,()(
'

xyxfxy , ],[ bax  

(iii) )),(,()(
'''

yy xyxfx , ],[ bax , 

(iv) )(ay  and 
''

)(xy . 

 

See Ken et al. [14] and Wendy [23] for details. 

 

Theorem 2 (Weierstrass) 

The Weierstrass approximation theorem states that a continuous function f(x) over a 

closed interval ],[ ba  can be approximated by a polynomial ),(xPn
],[ ba  of degree n, 

such that 

,)()( xxf Pn
],[ bax . 

Where 0 is a small quantity and  is sufficiently large, see Jain et al. [10]. 

 

 

3.0. Theoretical Procedure 

In this proposed study, we seek to examine directly the general second order ODEs of 

the form 

bxayyxf yxyyxyy ,)(,)(),,,(
'

00

'

000

'''

 (2) 

The solution to (2) may written as 

fhy
ji

j

i iji

j

i i 0

2

0
 (3) 
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Where )),(,( xxf jijiji
yf

i
and 

i
 are constant and assume that ,0

i

0
00

. Since (3) can be multiplied by the same constant without altering the 

relationship  are arbitrary to the extent of a multiplication constant. The 

arbitrariness has been removed by assuming that 1
j

. Method (3) is explicit if 

0
j

 and implicit if 0
j

 as introduced in Ken et al. [14], Lambert [15] and 

Lambert [16]. 

This study is focused on the use of Adam’s method of variable step size technique in 

developing a type of 5-step block predictor and 4 step corrector methods for solving 

general second order ODEs forthwith. The method will be constructed based on 

interpolation and collocation approach using power series as the approximate solution 

of the problem as stated in Ehigie et al. [5], Faires and Burden [7], Lambert [15] and 

Lambert [16]. Thus,this power series solution can be written in the form 

j

i

i

i

h

xx
a

n
xy

0
)(  (4) 

 

3.1. Formulation of the Method 

According to Ismail et al. [9] and Ken et al. [14] , in a 2-point block method, the 

interval  is divided into subintervals of blocks with each interval containing two 

points, i.e. xn
 and xn 1

 in the first block while xn 1
 and xn 2

 in the second block 

where solutions to (2) are to be computed. The method will formulate two new evenly 

spaced solution values concurrently. Similarly, this can be extended to a 3-point one 

block method where the backward and forward values are the points of interpolation 

and collocation as well as evaluation. 

 

3.2. Representation of r-Point Block Method 

From Fatunla [6] and Ken et al. [14], the k-point block method for (3) is given by the 

matrix finite difference equation 
j

i im

ij

i im

i

m FBhYAYA 0

)(2

0

)()0(
 (5) 

Where ,

.

.

.

2

1

y

y

y

Y

rn

n

n

m
,

.

.

.

2

1

f

f

f

F

rn

n

n

m
,

.

.

.

2

1

1

y

y

y

Y

n

rn

rn

m
,

.

.

.

2

1

1

f

f

f

F

n

rn

rn

m
 

for( ),1,...1,0,mmrn  
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A
i)(

and B
i)(

are rr matrices. It is assumed that matrix finite difference equation is 

normalized so that A
)0(
 is an identity matrix. The block scheme is explicit if the 

coefficient matrix B
)0(
 is a null matrix. 

 

3.3. Derivation of 5-Step Block Multistep Predictor Method 

As in Adetola and Odekunle [1] and Ehigie et al. [5], interpolating (4) at xx in
 for 

ji )1(0  and collocating (4) at xx in
 for ji )1(0  gives a system of equations 

which can be expressed as UAX . 

xxxxx
xxxxx
xxxxx

xxxxx
x

xxxxxx

nnnnn

nnnnn

nnnnn

nnnnn

n

nnnnnn

A

6

4

5

4

4

4

3

4

2

4

6

3

5

3

4

3

3

3

2

3

6

2

5

2

4

2

3

2

2

2

6

1

5

1

4

1

3

1

2

1

6

1

5

1

4

1

3

1

2

11

7680128019224200

243050410818200

1604812200

3020126200

0000200

1

0000001

480

 

yyyyyyy

aaaaaaa

nnnnnnn
U

X

T

T

654321

6543210

,,,,,,

,,,,,,
 (6) 

Solving (6) and substituting the values of (6) into (4) gives a continuous linear 

multistep method of the form 

fhy
i

j

i ii

j

i i
xy

10

2

10
)(  (7) 

Evaluating (7) at points x in
x for ji )1(1 , we obtain the convergent 5-step block 

multistep predictor method as 

fffffhyyy

fffffhyyy

fffffhyyy

nnnnnnnn

nnnnnnnn

nnnnnnnn

4321

2

13

4321

2

12

4321

2

11

40

329

15

596

20

1507

5

342

120

3667
4

240

337

20

139

40

547

60

787

80

639
3

240

19

5

2

120

97

15

11

240

299
2

3

2  (8) 

Adopting Fatunla [6] and Ken et al. [14], the 5-step block multistep predictor method 

can be written in matrix finite difference equation as 

FBhYAYA mmm 1

)1(2

1

)1()0(
 (9) 

Differentiating (7) once and evaluating at the same three discrete points of 3,2,1i  

for ,x in
x 3,2,1i , for x in

x , we obtain a block of first order derivative which 
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can be used to determine the derivative term in the initial value problem (2), seen in 

Ehigie et al. [5]. 

fffffyyy

fffffyyy

fffffyyy

nnnnnnnn

nnnnnnnn

nnnnnnnn

h
h

h
h

h
h

4321

'

1

''

1

4321

'

1

''

1

4321

'

1

''

1

96

1183

45

2639

240

26089

10

951

1440

521531

1440

4283

24

349

240

6737

360

9449

160

19591

1440

481

45

76

16

55

90

313

1440

41691

 (10) 

 

3.4. Derivation of 4- Step Block Multistep Corrector Method 

Interpolating (4) at xx in
 for ji )1(0  and collocating (4) at xx in

, xx in
 for 

ji )1(0 gives a system of equations which can be expressed as UAX  as discussed 

above. 

xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxxx

nnnnn

nnnn

nnnnn

nnnnn

nnnnn

nnnnnn

A

6

3

5

3

4

3

3

3

2

3

6

2

5

2

4

2

3

2

2

2

6

1

5

1

4

1

3

1

2

1

6

3

5

3

4

3

3

3

2

3

6

1

5

1

4

1

3

1

2

1

6

1

5

1

4

1

3

1

2

11

243050410818200

4801604812200

20126200

243050410818200

3020126200

1

0000001

30

 

fffffyy

aaaaaaa

nnn nnnn
U

X

T

T

323 111

6543210

,,,,,,

,,,,,,
 (11) 

Solving (11)and substituting the values of (11) into (4) yields a continuous linear 

multistep method of the form 

fhy
i

j

i ii

j

i i
xy

10

2

10
)(  (12) 

Evaluating (12) at points x in
x for ji )1(1 , we obtain the convergent 4-step block 

multistep corrector method as 

fffffhyyy

fffffhyyy

fffffhyyy

nnnnnnnn

nnnnnnnn

nnnnnnnn

32131

2

13

32131

2

12

32131

2

11

240

97

25

14

80

397

1200

83

80

101
4

80

17

75

71

20

59

200

9

240

199
3

480

49

75

37

480

487

800

17

480

191
2

3

2  (13) 

As usual, Fatunla [6] and Ehigie et al. [14] stated that the 4-step block multistep 

corrector method can be written in matrix finite difference equation as 

FBFBhYAYA mmmm 1

)2()1(2

1

)1()0(
 (14) 
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Differentiating (12) once and evaluating at the same three discrete points of 3,2,1i

for x in
x  we have a block of first order derivative which can be used to determine 

the derivative term in the initial value problem (2). 

fffffyyy

fffffyyy

fffffyyy

nnnnnnnn

nnnnnnnn

nnnnnnnn

h
h

h
h

h
h

32131

'

1

''

1

32131

'

1

''

1

32131

'

1

''

1

576

263

150

107

960

1831

14400

377

960

4311

480

43

450

43

120

253

400

9

288

1211

2880

371

450

287

320

509

14400

361

2880

12771

 (15) 

 

 

4.0. Investigation of the Theoretical Properties of the Methods 

4.1. Order of the Method 

Definition 1.EmbracingJain et al. [10], Lambert [15] and Lambert [16], the linear k-

step method of (8) and (13) with associated difference operator 
j

i ii
ihxihxyhxyL yh0

''2
)()();(  (16) 

where )(xy  is an arbitrary function, continuously differentiable on an interval ba, . 

If we assume that )(xy  has a many higher derivatives as we require, then, expanding 

using Taylor series about the point x , we obtain 

jC ...
100

 

jC j
...2 211

 

jj
jC ...2...2

2

1

10212 2  

jjC
qq

q

qq
q jj

q

2...2
)!2(

1
...

!

1
22 2121

, ,....4,3q  

Following Lambert [15], we say that the method has order p  if 

,0...
1210 CCCC p  

0
2C p

 

C p 2
is then the error constant and )(

)2(2

2 xyhC n

pp

p
the principal local truncation 

error at the point xn
. 

Combining Jain et al. [10], Lambert [15] and Lambert [16], we noticed that the block 

multistep method of (8) and (13) has order p, if 

0,0...
21210 CCCCC pp

. 
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Therefore, we concluded that the methods (8) and (13) have order p=5 and error 

constants given by the vectors, 

60

581
,

240

353
,

40

3
7

T

C and 

150

157
,

600

157
,

300

37
7

T

C  

4.2. Convergence 

Agreeing to Hairer et al. [8], Ken et al. [14] and Lambert [15], if the multistep method 

fhy
in

j

i
iin

j

i
i

0

2

0

 (17) 

is convergent, then it is necessarily 

(i) stable and 

(ii) consistent (i.e. of order 1: 

 

))1(2)1(),1()1(,0)1(
'''

 (18) 

 

4.3. Zero Stability 

Theorem 3 (First Root Condition) 

From Bruce [4] and Ken et al. [14], the multistep methods (8) and (13) are stable if all 

the roots r j
 of the characteristic polynomial )(r satisfy 1r i

 and 1r i
 if then 

r i
 must be a simple root. 

 

Definition 2. As in Hairer et al. [8] and Mohammed et al. [19], the multistep method 

(17) is called stable, if the generating polynomial 

Err A
)0(

det)(  (19) 

satisfies the first root condition, i.e., 

(i) The roots of )(r lie on or within the unit circle; 

(ii) The roots on the unit circle are simple. 

 

In order to analyze the methods for zero-stability, equation (8) and (13) are both 

normalize and written as a block method given by the matrix finite difference 

equations as discussed in Mohammed et al. [19] 

FBFBhYAYA

FBFBhYAYA

mmmm

mmmm

1

)1()0(2

1

)1()0(

1

)2()1(2

1

)1()0(

 (20) 

In addition, the zero stability is concerned with the stability of the difference system 

in the limit as h tends to zero. Thus, as 0h , 

1)( rr
z

r , (21) 
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where  is the order of the differential equation, z is the order of the matrix A
)0(
 and 

E , see Adetola et al. [2], Mohammed et al. [19] and Sani [20] for details. 

For our method 

0

430

320

210

100

010

001

)( rr  

Solving the matrix equation above, if 

ArAr
)1(2)0(

det)(  (22) 

gives 

1
2

)( rrr . (23) 

Hence, our method is zero stable according to [8, 14]. 

 

4.4 Consistency 

Theorem 4 

According to Bruce [4], Ken et al. [14] and Lambert [15], a linear multistep method is 

consistent if it has order greater than or equal to 1. Thus 

0

,0

00

0

k

i
i

k

i
i

j

i
i

bia

a
, (24) 

In terms of the characteristic polynomial, the method is consistent if and only if 

)1(2)1(),1()1(,0)1(
'''

. (25) 

 

Definition 3.The linear multistep method (17) is said to be consistent provided its 

error order p  satisfies 1p . It can be shown that this implies that the first and 

second characteristics polynomial are fulfilled as seen in (24). 

Since the block multistep methods (8) and (13) are consistent as it has order 1p . 

Adopting Hairer et al. [8] and Lambert [15], we can deduce the convergence of the 

block multistep methods (8) and (13). 

 

4.5. Region of Absolute Stability of the Method 

Theorem 5. (Second Root Condition) 

From Bruce [4], the linear multistep method (17) is absolutely stable if all the roots 

r j
 of the characteristic polynomial 

)()()( rzrr  (26) 

satisfy 1r j
. 
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Definition 4.From Adetola et al. [2], Ken et al. [2] and Lambert [15], the linear 

multistep method (17) is said to be absolutely stable for a given h  if, for that h , all 

the roots r s
 of (26) satisfy ,1r s

js ,...,2,1 ; where hh
22
and 

y

f
. 

However, we choose and follow the boundary locus method to determine the region 

of absolute stability of the block methods and to obtain the roots of absolute stability, 

we substitute the test equation yy
2''

 into the block formula to obtain 

0)()()()0(det)(
22

1

)1(22)0(

1

)1(

)( hFBhFBYArYA rrr
m

r
mmm

 (27) 

Substituting 0h  in (27), we obtain all the roots of the derived equation to be equal 

to 1; hence, according to [4] defined on theorem 5, the block method is absolutely 

stable. 

Therefore, the boundary of the region of absolute stability is given by 

12

1

3

1

12

5

6

7

12

)(

)(
)(

23

2

r

r

r

r
rh

rr

r  (28) 

Let sincos ier
i

, therefore (1.4.13) becomes 

200

9
2cos

240

199
4cos

20

59
5cos

75

71
6cos

80

17

2cos33cos
)(h  (29)

 (4.3) 

Evaluating (1.4.14) at 120
0
 within ],0[ 180

0
, which gives the interval of absolute 

stability to be 0,96.3  after evaluation at interval of )(h . The stability region is 

shown in Figure 1and the enclosed region inside the boundary in Figure 1 

demonstrate the region of absolute stability of the proposed method. 
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Fig. 1 showing the region of absolute stability of the block predictor-corrector 

mode, since the root of the stability polynomial is 1≤r . 

 

Note: Figure 1 is a freehand drawing. 

 

4.6. Implementation of the Variable Step-Size Technique 

Adopting Faires and Burden [7] and Lambert [15]: 

(i) Predictor-Corrector techniques always generate two approximations at each 

step, so they are natural candidates for error-control adaptation. 

(ii) To demonstrate the error-control procedure, a variable step-size predictor-

corrector methods using 5-step explicit Adams-Bashforth method as predictor 

while the 4-step implicit Adams-Moulton method as corrector methods are 

constructed. 

 

Firstly, the 5-step predictor Local Truncation Error (LTE) is 

hyC
wt

p

p

ii

h

y 67

2

11
)(

 (30) 
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Secondly, the 4-step corrector Local Truncation Error (LTE) is 

hyC
wt

p

c

ii

h

y 67

2

11
)(

 (31) 

Where the 5-step predictor and 4-step corrector methods use this assumption such that 

the approximations www i
...,,

10
 are all exact, w

p

i 1
and w

c

i 1
represents the predicted 

and corrected approximations given by the 5-step predictor and 4-step corrected 

methods. 

To proceed further, we must make the assumption that for small valuesof h, we have 

uyuy ii

77

 (32) 

The effectiveness of the error-control technique depends directly onthis assumption. 

On subtracting (30) from (31) and combining the local truncation error estimates, we 

have 

hyC
ww

p

p

i

c

i

h

67

2

11  (33) 

Therefore, eliminating term involving hy
67

 in (31) yields finally the following 

approximation to the 4-step corrector local truncation error: 

h
h

ww
C

p

i

c

i

pi

11

21
)(  (32) 

Equation (32) is Adam’s estimate for correcting to convergence which is bounded by 

a prescribed tolerance . 

In addition, the error estimate (32) is used to decide whether to accept the results of 

the current step or to redo the step with a smaller step size. The step is accepted based 

on a test as described by (32) as seen in Uri and Linda [21]. 

As in Uri and Linda [21] and Zarina et al. [25], varying the step size is crucial for the 

effective performance of a discretization method. Step size adjustment for 5-step 

predictor and 4-step corrector block multistep methods using variable step has been 

stated earlier. On the given step, the user will provide a prescribed tolerance. In the 

block multistep, variable step-size strategy codes, the block solutions are accepted if 

the local truncation error, LTE is less than the prescribed tolerance. If the error 

estimate is greater than the accepted prescribed tolerance, the value of 
1i
 is rejected, 

the step is repeated with halving the current step size or otherwise, the step is multiply 

by 2. The error controls for the code was at the first point in the block because in 

general it had given us better results according to the new method. 

Furthermore, equation (32) guarantees the convergence criterion of the method during 

the test evaluation. 

Finally, a number of approximation assumptions have been made in thisdevelopment, 

so in practice a new step size (qh) is chosen conservatively, often as 
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ww
p
i

c
i

qh

112

4

1

 (33) 

Equation (33) is used in deciding a new step size for the method. 

 

 

5.0. Test Problems  

The performance of the 5-step block predictor and 4-step corrector methods was 

carried out on non-stiff problems. For problem 1 and 2 the following tolerances 10
6
, 

10
8
 , 10

10
 , 10

12
, and 10

14
was used to compare the performance of the newly 

proposed method with other existing methods as in [22]. 

 

Problem 1: Oscillation problem 

The first problem to be considered is nonlinear and was extracted from Vigo and 

Ramos [22]. This was solved with idea of Adam’s (block multistep, predictor-

corrector) methods using variable step size technique. Falkner methods in predictor-

corrector mode (PEC) using variable step size was a multistep scheme. Table 1 

displays results of the comparisons for the code of variable-order, variable-step 

(VOVS), the variable step size Stormer method with orders n=6, 8, Falkner’s method 

and Adam’s method in predictor-corrector mode with the same order, variable step 

size. This problem is represented in the form 

0sinh
''

yy , 0)0(y , 1)0(
'

y  

 

Problem 2: Van der Pol oscillator 

Problem 2 was extracted from Vigo and Ramos [22]. However, Falkner method of 

order eight was designed and executed on k-step predictor-corrector methods using 

variable step size represented in multistep form. The newly proposed block multistep, 

predictor-corrector methods belongs to the family of Adams and was created to solve 

general second order ODEs using variable step size technique. Nevertheless, the well-

known Vander Pol oscillator is given by 

,0)1(2
'2''

yyyy ,0)0(y  ,5.0
'

y
 

]400,0[x , 

where 025.0  was solved without the damping term. 

The computer codes are written in Mathematica and implemented on windows 

operating system using Mathematica 9 kernel. The computational results for problem 

1-2 in Tables 1-2 are computed using the proposed method as well as the method in 

Vigo and Ramos [22]. 
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5.1. Numerical Results 

Notations 

TOL: Tolerance Level 

MTD: Method Employed 

MAXE: Magnitude of the Maximum Error of the Computed Solution 

ABMPC: Adam’s Block Multistep Predictor-Corrector Methods 

 

Table 1. Numerical results of Vigo and Ramos [22] and ABMPC for solving 

problem 1. 

 

MTH TOL Maximum Errors 

VOVS 10
6
 10

3
.23.15  

STOR(6) 10
6
 10

5
.91.2  

FALK(6) 10
6
 10

5
.16.2  

ABMPC(5) 10
6
 10

6
.95847.2  

VOVS 10
8
 10

4
.25.5  

STOR(8) 10
8
 10

6
.92.6  

FALK(8) 10
8
 10

7
.48.1  

ABMPC(5) 10
8
 10

8
.83832.4  

 

Table 2. Numerical results of Vigo and Ramos [22] and ABMPC for solving 

problem 2 

 

MAXE TOL MAXE 

10
4

.0685.1  10
6
 10

6
.16446.4  

10
6

.7739..1  10
8
 10

8
.67599.8  

10
8

.6132.2  10
10

 10
10

.41385.6  

10
9

.1526.1  10
12

 10
12

.27726.6  

10
12

.0986.2  10
14

 10
13

.30875.1  

 

 

6.0. Discussions and Conclusion 

From Table 1, Vigo and Ramos [22] was implemented using Falkner’s method of 

variable step size technique which is a multistep scheme. The implementation of an 

explicit and implicit multistep (predictor-corrector) method as a single numerical 

solution cannot be compared to a block predictor-corrector methods whose solution 

points runs simultaneously in generating the required results. Hence, the newly 
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proposed 5-step predictor and 4-step corrector methods are preferable applying 

variable step size technique introduced by Adam’s. Again, from Table 2, Vigo and 

Ramos [22] executed Falkner’s method of explicit and implicit methods employing 

variable step size technique. Moreover, this cannot be compared with the result of the 

newly proposed block multistep, 5-step predictor and 4-step corrector methods which 

yields better accuracy in terms of the maximum error at all tested tolerance levels, 

since it was implemented using variable step size technique. In addition, this gives a 

better result at all tested tolerance levels. 

Finally, the implementation of the Adam’s method of variable step size technique 

comes with a huge task especially deciding on a suitable new step size for executing 

the problem. Although, this is the price of variable step size technique, but 

nevertheless, this yields the desired result with better accuracy. 
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