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Background
Attempts to generalize the Exponential distribution have led to the developement of 
Beta Exponential distribution (Nadarajah and Kotz 2006), Kumaraswamy Exponen-
tial distribution (Cordeiro and de Castro 2011), Generalized Exponential distribution 
(Gupta and Kundu 1999, 2007) and Exponentiated Exponential distribution (Gupta 
2001). These distributions have been found to be more flexibly than the Exponential dis-
tribution when applied to real life data sets.

Let X denotes a random variable, the probability density function (pdf) and the cumu-
lative density function (cdf ) of an Exponential distribution with parameter θ can be 
defined using an alternative parameterization as;

and

respectively.
where; θ is the scale parameter
Several generalized families of distributions have been proposed in the literature, 

for instance, the β-G; (Eugene et al. 2002), Kumaraswamy-G; (Cordeiro and de Castro 
2011), Transmuted family of distributions; (Shaw and Buckley 2007), Gamma-G (type 
1); (Zografos and Balakrishnan 2009), McDonald-G; (Alexander et  al. 2012), Gamma-
G (type 2); (Ristic et  al. 2012), Gamma-G (type 3); (Torabi and Montazari 2012), 

(1)g(x) = 1

θ
e−(

x
θ ); x ≥, θ > 0

(2)G(x) = 1−1

θ
e−(

x
θ ); x ≥ 0, θ > 0

Abstract 

In this article, the so called Transmuted Exponential (TE) distribution was applied to 
two real life datasets to assess its potential flexibility over some other generalized 
models. Various statistical properties of the TE distribution were also identified while 
the method of maximum likelihood estimation was used to estimate the model 
parameters.
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Log-gamma-G; Amini et al. (2012), Exponentiated T-X; Alzaghal et al. (2013), Exponen-
tiated-G (EG); (Cordeiro et al. 2013), Logistic-G; Torabi and Montazari (2014), Gamma-
X; (Alzaatreh et  al. 2013), Logistic-X; (Tahir et  al. 2015), Weibull-X; (Alzaatreh et  al. 
2013), Weibull-G; (Bourguignon et al. 2014) and Beta Marshall-Olkin family of distribu-
tions; (Alizadeh et al. 2015) and many others are available in the literature.

Of interest to us in this article is the Transmuted family of distribution which was 
obtained using the quadratic rank transmutation map. The transmuted family of dis-
tributions has been adopted by several notable authors to generalize known theoreti-
cal models, the Transmuted Weibull distribution; Aryal and Tsokos (2011), Transmuted 
Rayleigh distribution; (Merovci 2013), Transmuted Exponentiated Modified Weibull 
distribution; (Ashour and Eltehiwy 2013a), Transmuted Modified Weibull distribution; 
Khan and King (2013), Transmuted Lomax distribution; (Ashour and Eltehiwy 2013b), 
Transmuted Exponentiated Gamma distribution; Hussian (2014), Transmuted Inverse 
Rayleigh distribution; Ahmad et  al. (2014), Transmuted Pareto distribution; (Merovci 
and Puka 2014), Transmuted Inverse Weibull distribution; (Khan et  al. 2014), Trans-
muted Modified Inverse Weibull Distribution; (Elbatal 2013), Transmuted Additive 
Weibull distribution; (Elbatal and Aryal 2013), Transmuted Complementary Weibull 
Geometric Distribution; (Afify et  al. 2014), Transmuted Inverse Exponential distribu-
tion; (Oguntunde and Adejumo 2015), Transmuted Size-Biased Exponential distribu-
tion; Ahmad et al. (2015) and Transmuted Gompertz distribution; (Abdul-Moniem and 
Seham 2015); are some known examples in the literature.

The aim of this article is to obtain the Transmuted Exponential (TE) distribution as a 
special case of Transmuted Weibull distribution following the content of Aryal and Tsokos 
(2011) and to assess its flexibility over some other generalized models using real life data sets.

The rest of this article is organized as follows; in "The Transmuted Exponential (TE) 
distribution: existing and more results", the TE distribution, its properties and various 
statistical properties are discussed, real life applications with respect to some other well-
known generalized models shall be discussed in "Application", followed by concluding 
remark. The R-code for the analysis is provided as “Appendix”.

The Transmuted Exponential (TE) distribution: existing and more results
A random variable X is said to have a transmuted distribution function if its pdf and cdf 
are respectively given by;

where; x > 0, and |�| ≤ 1 is the transmuted parameter
G(x) is the cdf of the baseline distribution.
f(x) and g(x) are the associated pdf of F(x) and G(x), respectively.
When λ = 0; Eqs. (3) and (4) reduces to the baseline distribution.
If the parameter η = 1 in Eqs. (4) and (5) of Aryal and Tsokos (2011), we have the pdf 

and the cdf of the TE distribution as;

(3)f (x) = g(x)[1+ �− 2�G(x)]

(4)F(x) = (1+ �)G(x)− �[G(x)]2

(5)f (x) = 1

θ
e−(

x
θ )
[

1− �+ 2�e−(
x
θ )
]
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and;

Respectively.
For x > 0, θ > 0, |� ≤ 1|
where;
θ is the scale parameter
λ is the transmuted parameter

Special case

For λ = 0, Eq. (5) reduces to give the pdf of the Exponential distribution. Some possible 
plots for the pdf of the TE distribution at some selected parameter values are shown in 
Figs. 1, 2, 3 4, 5 and 6;

Depending on the parameter values, it can be observed from the figures above that 
the shape of the TE distribution could be decreasing, or inverted bathtub (unimodal). It 
should also be noted that |�| ≤ 1.

Moments of the Transmuted Exponential distribution

Let X denote a continuous random variable, the rth moment is given by;

Therefore, the rth moment of the TE distribution can be derived from;

This can be obtained directly from Eq. (6) of 8 when η = 1 as;

This can further be expressed as;

(6)F(x) =
[
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x
θ )
][
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x
θ )
]
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Fig. 1  Plot for the pdf of TE distribution at (θ = 0.5, λ = 0.5)
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Fig. 2  Plot for the pdf of TE distribution at (θ = 2, λ = 0.9)

Fig. 3  Plot for the pdf of TE distribution at (θ = 2, λ = −0.9)

Fig. 4  Plot for the pdf of TE distribution at (θ = 3, λ = −0.9)

Fig. 5  Plot for the pdf of TE distribution at (θ = 2, λ = − 0.5)
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It is obvious that for r = 1;

Other higher order moments can be derived at r > 1 from Eq. (9). The table of values 
(at selected values) for the mean of TE distribution is provided in Table 1.

Quantile function and median of the Transmuted Exponential distribution

The quantile function xq of the TE distribution can be obtained as the inverse of Eq. (6) 
and in particular, when η = 1 in Eq. (7) of (Aryal and Tsokos (2011)) as;

The median of the TE distribution can be obtained from Eq. (11) at q = 0.5 as;

The lower quartile and upper quartile can also be derived from Eq. (11) when q = 0.25 
and q = 0.75 respectively.

(10)E(X) = θ

(

2− �

2

)

(11)xq = θ



− ln




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�
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
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


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(12)x0.5 = θ

[
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(
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√
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)]

Fig. 6  Plot for the pdf of TE distribution at (θ = 0.5, λ = − 0.5)

Table 1  Table of means for the Transmuted Exponential distribution

λ = −0.1 λ = −0.4 λ = −0.7 λ = −1.0 λ = 0 λ = 0.1 λ = 0.4 λ = 0.7 λ = 1.0

θ = 1 1.05 1.20 1.35 1.50 1.00 0.95 0.80 0.65 0.50

θ = 2 2.10 2.40 2.70 3.00 2.00 1.90 1.60 1.30 1.00

θ = 3 3.15 3.60 4.05 4.50 3.00 2.85 2.40 1.95 1.50

θ = 4 4.20 4.80 5.40 6.00 4.00 3.80 3.20 2.60 2.00

θ = 5 5.25 6.00 6.75 7.50 5.00 4.75 4.00 3.25 2.50

θ = 6 6.30 7.20 8.10 9.00 6.00 5.70 4.80 3.90 3.00

θ = 7 7.35 8.40 9.45 10.50 7.00 6.65 5.60 4.55 3.50

θ = 8 8.40 9.60 10.80 12.00 8.00 7.60 6.40 5.20 4.00

θ = 9 9.45 10.80 12.15 13.50 9.00 8.55 7.20 5.85 4.50

θ = 10 10.50 12.00 13.50 15.00 10.00 9.50 8.00 6.50 5.00
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Random numbers from the TE distribution can be generated using the method of 
inversion;

where; u ∼ U(0, 1).

Reliability analysis of the Transmuted Exponential distribution

Mathematically, the survival function is given by;

Therefore, the survival function for the TE distribution can be simplified to give;

The hazard function is mathematically given by;

Therefore, the expression for the hazard function (or failure rate) of the TE distribu-
tion is given by;

Some possible plots for the failure rate of the TE distribution at some selected param-
eter values are shown in Figs. 7, 8, 9 and 10;

Parameter estimation and inference for the Transmuted Exponential distribution

We make use of the method of maximum likelihood estimation (MLE) to estimate the 
parameters of the TE distribution. Let X1, X2, …, Xn be a sample of size ‘n’ from the TE 
distribution, the likelihood function is given by;

(13)X = θ
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θ
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Fig. 7  Plot for the hazard function of TE distribution at (θ = 0.5, λ = 0.5)
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Let l = log L;

L(X1,X2, . . . ,Xn|θ , �) =
(

1

θ

)n

e
−

n
∑

i-1

(

xi
θ

)

n
∏

i=1

[

1−� + 2�e
−
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θ

)]

l = n log

(

1

θ

)

−
n

∑

i=1

(xi

θ

)

+
n

∑

i=1

log

[

1− �+ 2�e
−
(

xi
θ

)]

Fig. 8  Plot for the hazard function of TE distribution at (θ = 0.5, λ = − 0.5)

Fig. 9  Plot for the hazard function of TE distribution at (θ = 2, λ = 0.9)

Fig. 10  Plot for the hazard function of TE distribution at (θ = 2, λ = −0.9)
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Therefore;

Differentiating l with respect to θ and λ respectively gives;

Equating Eqs. (18) and (19) to zero and solving the resulting nonlinear system of equa-
tions gives the maximum likelihood estimates of parameters θ and λ.

We obtain the 2 × 2 observed information matrix through;

where;

The solution of the inverse matrix of the observed information matrix in Eq. (20) gives 
the asymptotic variance and co-variance of the maximum likelihood estimators θ̂ and �̂. 
The approximate 100 (1 − α) % asymptotic confidence interval (CI) for θ and λ are given 
by;

where; Zα/2 is the α-th percentile of the standard normal distribution.

Application
The models to be compared in this section include the TE distribution, Beta Exponential 
distribution, Generalized Exponential Distribution and the Exponentiated Exponential 
distribution. The analyses were performed with the aid of R software.

Data Set I. The first data represents the life of fatigue fracture of Kevlar 373/epoxy sub-
jected to constant pressure at 90 % stress level until all had failed. The data was extracted 
from (Abdul-Moniem and Seham 2015) and it has previously been used by Barlow et al. 
(1984). The data is as follows;

l = −n log θ −
n

∑
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(xi

θ

)

+
n

∑
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log

[
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[
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0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748, 
0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836, 
1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595, 
1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503, 
1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100, 
2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045, 
3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960.

The summary of the data is provided in Table 2;
The performance of the Transmuted Exponential distribution with respect to the Beta 

Exponential, Generalized Exponential and Exponentiated Exponential distributions 
using the data on fatigue fracture is given in Table 3.

Data Set II. The second data set represents the monthly actual taxes revenue (in 1000 
million Egyptian pounds) in Egypt between January 2006 and November 2010. The data 
was extracted from Nassar and Nada (2011). The data is as follows;

5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1, 6.7, 17, 8.6, 9.7, 
39.2, 35.7, 15.7, 9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 
20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7, 8.6, 12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 
7.1, 10.8.

The summary of the data is provided in Table 4.
The performance of the Transmuted Exponential distribution with respect to the Beta 

Exponential distribution, Generalized Exponential distribution and the Exponentiated 
Exponential distribution is as shown in Table 5.

Table 2  Summary of data on fatigue fracture of Kevlar 373/epoxy at 90 % stress level (to 
four decimal places)

Min. Q1 Q2 Q3 Mean Max. Variance Skewness Kurtosis

0.0251 0.9048 1.7360 2.2960 1.9590 9.0960 2.4774 1.9406 8.1608

Table 4  Summary of data on tax revenue (to two decimal places)

Min. Q1 Q2 Q3 Mean Max. Variance Skewness Kurtosis

4.10 8.45 10.60 16.85 13.49 39.20 64.83 1.57 5.26

Table 3  Performance rating of selected models

Distributions Estimates Log-likelihood AIC

Transmuted Exponential (θ, λ) θ = 1.3763, λ = −0.8487 −121.5166 247.0331

Beta Exponential (a, b, θ) a = 1.6797, b = 1.5085, θ = 0.4849 −122.2275 250.4551

Generalized Exponential (a, θ) a = 1.70949, θ = 0.70279 −122.2436 248.4872

Exponentiated Exponential (a, θ) a = 39.969318, θ = 0.012770 −127.1143 258.2287
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Discussion
The model corresponding to the lowest Akaike Information Criteria (AIC) or the high-
est Log-likelihood value is regarded as the ‘best’ model. In this case, the TE distribution 
has the lowest AIC value with 247.0331 and 170.8899 respectively. Also, it has the high-
est value of Log-likelihood of −121.5166 and −83.44494 respectively. Hence, it can be 
regarded as a better model for the data used.

Conclusion
This article studies the performance of the TE distribution with respect to some other 
generalized models. The shape of the TE distribution could be decreasing or unimodal 
(depending on the value of the parameters). The TE distribution appeared to be better 
than the Beta Exponential distribution, Generalized Exponential distribution and the 
Exponentiated Exponential distribution in terms of flexibility when applied two real life 
data. The criteria used are the Log-likelihood value and the AIC.
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Table 5  Performance rating of selected models

Distributions Estimates Log-likelihood AIC

Transmuted Exponential (θ, λ) θ = 3.862 × 105, λ = 9.389 × 10−4 −83.44494 170.8899

Beta Exponential (a, b, θ) a = 63.52239, b = 0.16957, θ = 0.76882 −187.9398 381.8795

Generalized Exponential (a, θ) a = 5.53040, θ = 0.17867 −191.2235 386.4471

Exponentiated Exponential (a, θ) a = 11.755728, θ = 0.006307 −212.5068 429.0136
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Appendix

R-Code for the analysis of DATA I 

FATIGUE<-
c(0.0251,0.0886,0.0891,0.2501,0.3113,0.3451,0.4763,0.5650,0.5671,0.6566,0.6748,0.6751,0.6753,0.769
6,0.8375,0.8391,0.8425,0.8645,0.8851,0.9113,0.9120,0.9836,1.0483,1.0596,1.0773,1.1733,1.2570,1.276
6,1.2985,1.3211,1.3503,1.3551,1.4595,1.4880,1.5728,1.5733,1.7083,1.7263,1.7460,1.7630,1.7746,1.827
5,1.8375,1.8503,1.8808,1.8878,1.8881,1.9316,1.9558,2.0048,2.0408,2.0903,2.1093,2.1330,2.2100,2.246
0,2.2878,2.3203,2.3470,2.3513,2.4951,2.5260,2.9911,3.0256,3.2678,3.4045,3.4846,3.7433,3.7455,3.914
3,4.8073,5.4005,5.4435,5.5295,6.5541,9.0960) 

> n=length(FATIGUE) 

> n 

[1] 76 

local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE) 

+ if(nchar(pkg)) library(pkg, character.only=TRUE)}) 

> local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE) 

+ if(nchar(pkg)) library(pkg, character.only=TRUE)}) 

local({pkg <- select.list(sort(.packages(all.available = TRUE)),graphics=TRUE) 

+ if(nchar(pkg)) library(pkg, character.only=TRUE)}) 

Loading required package: miscTools 

> summary(FATIGUE) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

 0.0251  0.9048  1.7360  1.9590  2.2960  9.0960  

> skewness(FATIGUE) 

[1] 1.940616 

a�r(,"method") 

[1] "moment" 

> kurtosis(FATIGUE) 

[1] 8.160792 
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> var(FATIGUE) 

[1] 2.477415 

loglikte<-func�on(p) n*log(1/p[1])-sum(FATIGUE/p[1])+sum(log(1-p[2]+2*p[2]*exp(-(FATIGUE/p[1])))) 

> d<-maxLik(loglikte,start=c(20,1)) 

There were 50 or more warnings (use warnings() to see the first 50) 

> summary(d) 

-------------------------------------------- 

Maximum Likelihood es�ma�on 

Newton-Raphson maximisa�on, 7 itera�ons 

Return code 1: gradient close to zero 

Log-Likelihood: -121.5166  

2  free parameters 

Es�mates: 

     Es�mate Std. error t value  Pr(> t)     

[1,]   1.3763     0.1373  10.022  < 2e-16 *** 

[2,]  -0.8487     0.1384  -6.132 8.67e-10 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

-------------------------------------------- 

> AIC(d) 

[1] 247.0331 

loglikge<-func�on(p) n*log(p[1])+n*log(p[2])-(p[2])*sum(FATIGUE)+(p[1]-1)*sum(log(1-exp(-
(p[2]*FATIGUE)))) 

> e<-maxLik(loglikge,start=c(20,1)) 
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There were 50 or more warnings (use warnings() to see the first 50) 

> summary(e) 

-------------------------------------------- 

Maximum Likelihood es�ma�on 

Newton-Raphson maximisa�on, 7 itera�ons 

Return code 1: gradient close to zero 

Log-Likelihood: -122.2436  

2  free parameters 

Es�mates: 

     Es�mate Std. error t value  Pr(> t)     

[1,]  1.70949    0.28282   6.044 1.50e-09 *** 

[2,]  0.70279    0.09215   7.626 2.41e-14 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

-------------------------------------------- 

> AIC(e) 

[1] 248.4872 

> loglikee<-func�on(p) n*log(p[1])+n*log(p[2])-(p[1]*p[2]*sum(FATIGUE)) 

> f<-maxLik(loglikee,start=c(20,1)) 

There were 50 or more warnings (use warnings() to see the first 50) 

> summary(f) 

-------------------------------------------- 

Maximum Likelihood es�ma�on 

Newton-Raphson maximisa�on, 10 itera�ons 
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Return code 2: successive func�on values within tolerance limit 

Log-Likelihood: -127.1143  

2  free parameters 

Es�mates: 

      Es�mate Std. error t value  Pr(> t)     

[1,] 39.969318  10.384756   3.849 0.000119 *** 

[2,]  0.012770   0.003627   3.521 0.000430 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

-------------------------------------------- 

> AIC(f) 

[1] 258.2287 

> loglikbe<-func�on(p) n*log(1/beta(p[1],p[2]))+n*log(p[3])-(p[2]*p[3]*sum(FATIGUE))+(p[1]-
1)*sum(log(1-exp(-p[3]*(FATIGUE)))) 

> g<-maxLik(loglikbe,start=c(20,1,1)) 

There were 50 or more warnings (use warnings() to see the first 50) 

> summary(g) 

-------------------------------------------- 

Maximum Likelihood es�ma�on 

Newton-Raphson maximisa�on, 24 itera�ons 

Return code 2: successive func�on values within tolerance limit 

Log-Likelihood: -122.2275  

3  free parameters 

Es�mates: 

     Es�mate Std. error t value  Pr(> t)     

[1,]   1.6797     0.3130   5.366 8.06e-08 *** 

[2,]   1.5085     4.6439   0.325    0.745     

[3,]   0.4849     1.3582   0.357    0.721     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

> AIC(g) 

[1] 250.4551 
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