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Modeling Productivity Index 
for Long Horizontal Well 

Fadairo A. SAdesina Horizontal wells have become a popular alternative for the development of hydrocarbon 
SPE fields around the world because of their high flow efficiency caused by a larger contact 

area made with the reservoir. Most of the analytical work done in the past on horizontal 
productivity either assumed that the well is infinitely conductive or the flow is uniform Ako Churchill 
along the entire well length. The infinite conductive assumption is good only when the 
pressure drop in the wellbore is very small compared to the drawdown in the reservoir 

SPE 

otherwise the pressure drop in the wellbore should be taken into account. In this paper, Falode OIugbenga 
an improved predictive model that takes into account the effect of all possible wellbore SPE 
pressure losses on productivity index of long horizontal well was developed. Results Energy and Environmental Research Group. 
show that the discrepancies in the predictions of the previous models and experimental Deparlmenl of Petroleum Engineering. 
results were not only due to effect offriction pressure losses as opined by Cho and Shah 
bur may also be due to all prominent pressure losses such as kinetic change and fluid 
accumulation experienced by the flowing fluid in a conduit. The effect is most pronounced 
at the early production time where initial lransience at the onset offlow is experienced. 
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4 Introduction 

. Horizontal well technology has become an important technique 
6 In oil and gas recovery because of the ability of horizontal weJ] to 
7 produce with a higher flow rate at a lower rescrvoir pressure draw
8 down. Survey throughout the past years have shown that horizontal 
9 drilling can be used in almost any reservoir setting and its success 

to rate reach up to 95%. There is convincing evidence that the imple
11 mentati?n of horizontal well technique in any reservoir setting 
12 would Increase the productivity index compared to vertical well 
13 technique. This technology has also proven to be excellent candi
14 date for thin reservoir by its ability to create a drainage pattern that 
15 s quite different from that of vertical well. Naturally, increase in 
16 drainage area of horizontal well with increase in horizontal well 
P length would promote the productivity index. (PI) of horizontal 
18 wells. Recent experience [1-4] with horizontal wells has revealed 
19 that there are factors limiting the useful length of a long horizontal 
20 well that is in many circumstances the inflow perfonnance of hori
21 zonta] wells does not match with the expected productivity and 
22 their deliverability may be reduced by various pressure losses 
23 along the long horizontal wellbore [4]. The effect has serious 
24 implications where the horizontal well section is very long because 
25 the productivity index is no longer directly proportional to the well 
26 length (4,5]. . 
27 As the length of a horizontal well is increased, its contact with 
2~ the reservoir increases. But at the same time, the resistance to 
29 flow in the weI! also increases, which has a direct negative effect 
30 on the productivity of the well. The overall performance of a hori
., I zonta] well depends on the balance of these two opposing factors. 
.12 No reliable tools are currently available that account for both 
,3 these factors in the evaluation of horizontal well performance. 
34 Most of the findings [1-12] for evaluating the productivity index 
35 for horizontal wells have been developed. Most of the researches 
36 have focused on finding the analytical solution which has led to the 
37 development of different models. However, there are remarkable 
38 differences among [heir results which do not allow us to clearly 
39 establish which one match closely to the actual values. Almost, all 
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these analytical predictive models assumed infinitely conductive or 41J 

uniform flow along the entire long horizontal well length [6-9]. 41 

The assumption of uniform flow was made purely for mathemati- 47 

cal convenience. It has been argued in the literatures that the infi- 43 

nite conductivity weIJbore assumption is adequate for horizontal 44 

wells. Although, this may be a good assumption in situations 45 

where the pressure drop along the horizontal section of the well- 46 

bore is negligible compared to that in the reservoir, it is reasonable 47 

to expect the frictional pressure losses to cause noticeable pressure 4X 

gradients in long horizontal well bores which are defined as being 49 

longer than 1000 m [6]. Nonlaminar flow that may develop at rea- 50 

sonably high production rates further increases the wellbore pres- 51 

sure losses. Rigorous analysis of horizontal well responses and, 52 

therefore, requires the use of a model that takes into account the 53 

effect of frictional losses in the horizontal section of the well. 54 

Among other authors, Dik.ken (4] (1990) discussed the effect of 55 

only frictional pressure losses of high flow rate in the long hori- 56 

zontal well bore and analytically shows t.he solution for an infinite 57 

horizontal well length. Novy [2] (1995) generalised Dikken's 5S 

work [4] by developing equation that lumped both single phase oil 59 

and gas flow. The results provided the criteria for the selection of 6G 

reasonable horizontal well length at the point at which friction 6 i 

reduces productivity by 10% or more. Recently, Cho and Shah 62 

[13,14] (2000, 2001) developed a semi-analytical model which 63 

analyse quantitatively the effect of friction losses of liquid hydro- M 

carbon flow on productivity index under inflow conditions. 65 

In the present study, the effect of all possible well bore pressure 66 

losses on productivity index. of a long horizontal well is investi- 67 

gated and a new model that incorporated these pressure losses as 6S 

developed and compared with existing models. Robust model cap- 69 

tures effect of different losses in well bore. The key operational, 70 

fluid, and reservoir-wellbore parameters which influence the mag- 71 

nitude of productivity index have been identified through the 72 

formulation. 73 

Horizontal Well Productivity Under Steady-State Flow 74 

The steady-state analytical solution is the simplest solution to 75 

various horizontal well problems. The steady-state solution 76 

requires that the pressure at any point in the reservoir does not 77 

change with time. The flow rate equation in a steady-state condi- 78 

tion is represented by [I] 79 
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(1) Joshi's Method 113 

Joshi (1991) presented the following expression for estimating ! 14 
RO where QIJ' = Horizontal well flow rate, STB/day, Jh = Pro the productivity index of a horizontal well in isotropic reservoirs 115 
~ I ductivity index of the horizontal well, STB/day/psi, /", PT [6,7] il6 
82 = Pressure drop from the drainage boundary to wellbore, psi. O.0078hkh 

h (8)X3 The productivity index. of the horizontal well .Jh can always be 
X4 obtained by dividing the flow rate QIP by the pressure drop, M or J = ~oBo[ln(R) + G) InC~J] 

(2) with Ii 7 

85 There are several methods that are designed to predict the produc a + Ja2 - (L/2)2 
86 tivity index. from the fluid and reservoir properties. Some of these (9)R = (L/2)
87 methods include: 

8X • Borisov's method and a is half the major axis of drainage ellipse and given by 1i8 
~9 • The Giger-Reiss-Jourdan method 
90 • Joshi's method 
91 • The Renard-Dupuy method a = (L/2) [0.5 + JO.25 + (21'eh/ L)4] 05 (10) 

92 Borisov's Method 

93 Borisov (1984) proposed the following expression for predict Joshi accounted for the influence of the reservoir anisotropy by 119 

94 ing the productivity index. of a horizontal well in an isotropic rcs introducing the vertical permeability Kv via Equation (7) 120 

95 ervoir, i.e., kv = k" [15] 

(11) 
(3) 

where the parameters Band R are defined above. 121 

96 where 

97 h = thickness, ft The Renard-Dupuy Method m 
98 kh = horizontal penneability, md For an isotropic reservoir, Renard and Dupuy (1990) proposed 123 
~<) kv = vertical permeability, md the following expression [I]: 124 

100 L = length of the horizontal well, ft 
101 Teh = drainage radius of the horizontal well, ft 0.0078hkh 
102 r", = wellborc radius, ft (12) 

103 = .h = [ (2a) (h) (h)]Jh productivity index, STB/day/psi I
).loBo cosh- L + L In 21'•.
 

104 The Giger-Reiss-Jourdan Method
 

illS For an isotropic reservoir where the vertical permeability kv , where, a is half the major axis of drainage ellipse. 125 

100 equals the horizontal permeability kh , Giger et aJ. (1984) proposed For anisotropic reservoirs, the authors proposed the following 126 

107 the following expression for detennining.Jh [5]: relationship: 127 

0.0078hkh 
h (13)

(4) J = [ '2a) (Bh) (h)]}loBo cosh-! (-T + L ln 2< 

where 128 

(1 + B) 1'.,1 + 1 + (_L_)2 r~, = (14)
21'.h 2B

X = ---'-----,-,........ -- (5)

L/(21'<h)
 

Model Formulation 

108 To account for the reservoir anisotropy, the authors proposed the Considering the specific productivity index of long horizontal 129 

109 following relationships: well without neglecting any of the pressure drop terms in the fun- 130 

damental governing differential fluid flow equation for horizontal 131 

well. The equation can be simply represented as 132 

[ to With the parameter B as defined by 
where Q,p: flow rate is obtained by considering total pressure dif- 133 

ference between wellbore cnd and heel point due to inflow 134 
(7) conditions. 13S 

/",POuid : Pressure drop due to fluid flow via horizontal conduit. 136 
111 where K v = vertical permeability, md /",Pdam : Pressure drop due to formation damage near the hori- 137 
j 12 L = length of the horizontal section, ft zontal well. J3S 

000000-2 I Vol. 00, MONTH 2011 Transactions of the ASME 

10: rajeshp Time: 15:39 1 Path: Q:/3b2/JRG#/VoIOOOOOI110017/APPFile/AI·JRG#110017 



L J_ID: JRG 001: 10.1115/1.4004887 Date: 24-Augusl-l1 Stage: Page: 3 Total Pages: 9 

PROOF COpy [JERT-09-1071] 005103 

M rrie : Pressure drop due to frictional losses in the horizontal The reduction of one-phase flow problem in an anisotropic porous i6'i1.19 
medium to flow in "an equivalent isotropic medium" uses the 170140 portion of the well. 
transformation dictated by dimensional analysis. in this transfor- i71141 M ,ee: Pressure drop due to accumulation of fluid flow in the 
mation, the well becomes elliptical and its radius: Tw has to be 172 

143 t;,p KK Pressure drop due to convective acceleration or kinetic changed to Tw(! + (3)/2f3 to have the same section [14]. Several m 
J 44 energy change. 

14" horizontal well. 

solutions are available in the literature [1,4-6,13]. After reflecting 174 

anisotropy of formation, Eq. 20 becomes j 75 
145 Pressure Profile 
146 Giger [5] and Joshi [6] presented pressure profile drainage of 
147 horizontal wells. Once the pressure distribution is known, oil pro
148 duction rates can be calculated by Darcy's law. The pressure dis
149 tribution caused by steady-state flow to the horizontal well is 
150 approximated by subdividing the 3D flow problem into two 2D, where 176 

151 according to Joshi's [6] simplification. This will approximate the 
(22)152 pressure loss problem into two categories: (I) oil flow into a hori


153 zontal well in a horizontal plane and (2) oil flow into a horizontal
 
154 well in a vertical plane.
 

Introducing the skin factor into Eq. 21, Giger [5] expressed the l77 

pressure drop due to fluid flow through horizontal well as 178 
Pc - PH Pc - PF PF - PH Mfric t;,PK .E--'-----'c..:..:... = + + + _ 
3D - xyz 2D - xy 2D - yz 2D - x)' 2D - xy 

t;,Pace Q'p.Bo [ 1 h ( h ) ] (23)+-- (16) t;,POuid = 2nKIlh cosh- (X) + f3 L 2n<e
2D -.ry 

155 In this first zone (2D-xy), flow is slUdied in horizontal plane as if where 179 

J 56 it were a venical fracture of the same length as the horizontal frac
157 lUre of the well. The pressure drop in this 2D-xy flow has been (24) 
158 determined by Giger [5] and Joshi [6] from potential-fluid-flow
 
159 theory as shown in Eq. (17)
 

Q'f-IBo h-1(X) Specific Productivity Index With Flow Restriction 
P,- PF = --cos (17) 

. 2nKhh Cho and Shah [14] rep011ed that inflow performance of the well 180 

in terms of the productivity index per unit length of producing 181 
160 where, X is a parameter, which depends on shape and dimensions horizontal section and drawdown at each position along the sec- 182 
!61 of area drained by well. tion provides the following equation [13,14]: 183 
162 For ellipsoidal drainage area 

qs(x) = j,-(x)[Pe - Pw(x)] (25) 
X = 2alL 

where, Pc is the constant pressure at the outer boundary condition j 84 
163 whereas for horizontal drainage area and Pw (x) is the pressure varying along the wellbore due to all j85 

possible pressure losses. -'s (x) is the specific productivity index 186 

a+ ja2 
- (LI2) 1 per unit length of the wellbore. It depends on geometry of well. 187X I 1= COS1 n LI2[ formation characteristics (permeability), and flow patterns (spheri- 188 

J calor radial flow). It is assumed that the specified productivity 189 

index per unit length of the well bore is constant. 190 

Mass balance linking the change in well rate, q., (x) at x along I'll 

the well gives the following equation: 192 

164 Therefore, the pressure drop in horizontal plane is given in Eq. (18) -q..(x) = -qs(x) (26)
dx 

Q'J1B o [2a 2a) 2 Combining Eqs. 25 and 26 givesvID1
d 

Pe-PF=--)n -+ --1 (18)
2nKIlh L L 

(27) 

165 The additional pressure drop term (2D-yz), PF - PH, in the vicin

166 ity of the well is derived by Giger [5] and given as
 Differentiating Eq. 27 with constant -'s(x) and Pe results in 19J 

d2qw(x) _ () dP,,(x) , Q' f-IBo [h] (28)PF-PH =--In-- (19) dx2 - -'s x dx
2nK/lL 2nTw 

The following boundary conditions are applied on the differential \95 
167 The approximate solmion for the pressure drop of both inflows by 

equation: 196 
168 combining Eqs. (17) and (18) becomes 

(29)[d1rwL=o= -'s(x)[Pe - P.. (O)] = -',(x)Mt;,POuid = Pc - PF + PF - P~ 

Q'pBo [ h (h) ] (20)= -2h cosh-' (X) +-In - 
nKh L 2nTw [q.,(x)],=L = 0 (30) 
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10 ..,---~---.,.--------""T'"---~--""lY7 Dikken [4] represented that the semi-experimental relationship 
198 between pressure gradient inside the well and the actual well rate 
199 at each point as "Vi 8 

0

~ 
(31) III ..

GO 
"0 

2(~J where, K is the flow resistance incorporating friction and !J. is the 
.E 

:WI experimental constant for effective roughness in the wellbore. 
.~ 
.~ 

202 Solving Eq. 31 numerically with the boundary conditions, U
::I 

203 Dik.lcen [4] suggested the following expressions for the flow rate: -g 2 

0: 

II 

::u t • • 

B Pt without well bore pressure losses 
e PI with frictional loss 
... PI with frictional loss· other possible losses 

(32) O+-------.,.--------""T'"---~--_l 
50 100 150 

Production time, days 

Fig. 1 Productivity Index versus time 
(33) 

Specific Productivity Index With Pressure Losses in Siens 222 

204 Horizontal Wellbore 
f = 0.25{1.8 * log[6.9/NRE + (£/3.7D)lO/9j}-2 (37)205 The conventional productivity is calculated by the flow (Q'), 

206 which is not considered the pressure differences between wellbore 
207 and heel point of the well, to the reservoir drawdown pressure. In Jain 223 

208 this calculation, a main assumption is that there is no pressure dif
209 fcrence in well bore end and heel point. For relatively short hori- f = O.25{ 1.14 - 210g(£/D + 21.25Nii~9n-2 (38) 
210 zontal weI! length (less than 2000-3000 ft), the assumption is 
211 applicable. But for the longer horizontal wells (over 3000 ft), the The pressure drop due 10 friction in a well can be expressed in 224 
212 pressure between wellbore end and heel point should be taken into terms of traditional Fanning friction factor,J[16] 225 
213 account in calculation of the flow rate. 
21~ The flow rate (Q,,,) is estimated using the consent proposed by 2fpV; 
215 Cho and Shah [14].	 M rrie = --elL (39)

gcD
216 The friction factor is a function of Reynolds number and effec
217 tive roughness (I:c). Reynolds number is defined as [14} 

The pressure drop due to accumulation can be written as [17] 226 

(34)	 'p _ 2pVx elL 
Ll. ace - _ (40) 

g" dt 

218 For laminar flow, fanning friction factor is defined as [14} 
The pressure drop due to convective acceleration or kinetic energy 227 

change can be written as [17] 228 

(35) 

(41)
 
219 For turbulent flow, the following correlations are reported by vari

220 ous researchers [13-16]:
 
221	 Dikkens The detailed of the fundamental equations governing flow In hori- 229 

zontal pipes is expressed in the Appendix A. 230 

f = 0.079NiiE (36) Once all the pressure drop terms are obtained, the new specific 231 

productivity index which takes into consideration the friction 232 

Table 1 Fluid and reservoir parameters used In this study at 
12reservoir condition 

Boundary pressure p. = 3000 psia 
Oil viscosity, /10 = i cp 
Effective roughness L/D = 01 
FOImation volume factor 8 0 = 1.2 rbl/stb 
Horizontal permeability Kh = 20 md 
Vel1ical drainage aArea 32 (acre) 
Drainage type elliptical 
Drawdown pressure 150 psi 
Well length L=4000 ft 
Fluid density 53.1 Ibm/ft3 

Vertical permeability Kv = 2 md 
Fonnation thickness H=50ft 
Time period 10 days 
Skin factor 5 
Empirical coefficient (j, = 0.25 Fig. 2 

1000 2000 3000 4000 5000 6000 7000 

-B- Joshi model 
-e- Cho & Shah mode 
- ...- Present model 

1000 2000 3000 4000 5000 6000 7000 

Horizontal Well Length, rt 

Productivity index versus horizontal well length at 
diameter = 0.25 ft 
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Fig. 3 Productivity index versus horizontal well length at Fig. 5 Productivity Index versus Horizontal Well Length at 
diameter =0.50 ft diameter = 1.35 ft 

233 pressure effect, pressure loss due to fluid accumulation and pres significant at the later time of production. Thus, it is evident that 252 
234 sure loss due to kinetic energy is defined as there exists an initial transience at the onset of flow which later 253 

stabilizes with time. 254 

Figure 2 shows the effects of increasing horizontal well length 255 

on productivity index profile as predicted by the modified and 256 

existing models (Joshi and Cho). It is observed that as the well 257 
D5 The detailed application of this modei has been demonstrated in	 length increases, an increasing deviation of the modified models 258 
236 Appendix B.	 from the existing one was obtained with a larger deviation from 259 

Joshi model. The large deviation from Joshi model implIes that 260 

Joshi model over-predicts the productivity index more due to its 261 m Model Analysis 
failure in considering pressure losses due to friction, kinetic 262 

238 Using the same data (Table 1) provided by Cho and Shah [14] change and fluid accumulation while the smaller deviation 263 

219 in their paper, MS EXCEL software was used to calculate productiv·· observed in Cho mode; was due to inconsideration of pressure 264 

240 ity index for long horizontal well considering all possible forms of losses due to kinetic change and fluid accumulation. 265 

2~1 losses such as kinetic energy change and fluid accumulation Also, However, to illustrate the effects of diameter on this deviation, 266 

242 the optimum ratio of well diameters to well length that could com	 the effects of increase in diameter from was investigated as shown 267 
243 pensate for pressure losses in horizontal wellbore was estimated.	 in Figs. 3-5. It is observed from these figures that as the length 268 

increases, the diameter must increase to compensate for the pres- 269 

sure losses that caused deviation among the models until an opti- 270 
244 Discussion of Results mum diameter and length combinations are achieved. Therefore, 271 

245 Figure I shows the variation of productivity index with time the effects of variation of diameter and horizontal well lengih on 272 

2~6 for long horizontal well bore using various models. The figure productivity index was investigated to obtain the optimum combi- 273 

247 depicts that the flow rate increases from 0 to 50 days and then nations of diameter to well length and it was found to be as shown 274 

248 stabilizes above 50 days of production time. The difference in in Fig. 6. The PI is maximum at the corresponding well length and 275 

249 productivity with frictional loss only and productivity with all diameter when the pressure losses due to friction, kinetic change, 276 

250 possible losses is the amount of flow restrioted by both kinetic and fluid accumulation have been compensated for and all the 277 

251 energy change and fluid accumulation. This difference is less models agree. 
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279 Conclusion	 moral supporr and all members of Energy and Environmental 347 

Research Group, Nigeria for their technical suppon in carrying 348 
280 An analytical model that takes into account pressure losses due 

out this research work.	 349 
281 to friction, kinetic change, and fluid accumulation was developed
 
282 to estimate productivity index of long horizontal wellbore. The
 
283 model was compared with existing models that did not take into
 Appendix A	 350 
284 account the additional pressure losses and found that the existing 
285 models over-estimate well productivity_ However, as wellbore di Considering fluid flow in a pipe with uniform cross-sectional 351 

286 ameter increased, an effective diameter at which the productivity area using the mass conservation principle, conservation for a 352 

287 index response predicted by the modified model approaches that control system that includes mechanical energy and fluid dynamic 353 

2HS predicted by the existing models. forces can be expressed as following: 354 

289 It can be concluded that the effects of wellbore pressure losses (Momentum of entering flow on at control surface) 355 

290 due to increase in horizontal well length can be compensated for - (momentum of exiting flow at control surface) + (fluid normal 356 

291 by an optimum wellbore diameter to length ratio. force control surface) + (fluid tangent force on control surface) 357 

+ (gravitational on control volume) + (mechanical forces force .>58 

on control volume) = (rate of change of momentum in the control 359 

volume), 360
293 Nomenclature 

The momentum equation governing the flow in wellbore or 361
29-1 a = half major axis of drainage ellipse, ft 

pipe is obtained	 362
295 Bo = Formation volume factor
 
296 D = Inner diameter of well bore, ft
 
297 j = Fanning friction factor PA - PA _!!.- (PA)dL - T nDdL - pgAdL(di 1


dL 0 dL)298 gc = Conversion factor, 32.17 Ib m ft/lb f S2 

299 h = formation thickness, ft du du 
- pAdLu dL = pAdL dt (43)

31){) is = Areal productivity index (PI), stb/day/psi 
30/ fix) = Productivity index per unit length, stb/day/psi/ft 
302 K = Isotropic formation permeability, md The parameter To is the shear stress between the fluid and the pipe 363 
303 Kc = Effective reservoir permeability, md wall, This wall shear stress can be evaluated from a force balance 164 
.lIN Kh = Horizontal penneability, md between pressure forces and viscous forces defined by: 365 
305 Kv = Verrical permeability, md 
306 L = Horizontal well length, ft 
307 NRe = Reynolds number, dimensionless D (dP) (44)

To ="4 dL !308 Pe = External boundary pressure, psi
 
30Y PF = Intermediate arbitrary pressure in weHbore, psi
 

where	 366
110 !'J.p! = Pressure drop due to frictional losses in the horizontal 

(dP/dLl! is the pressure gradient due to viscous shear or fric- 36731l portion of the well, psi 
tional losses 368312 M KE = Pressure drop due to kinetic energy change, psi 
~~~~u	 ~ 

31] !'J.p.cc = Pressure drop due to fluid accumulation, psi
 
314 Pj = Pressure at the heel without friction loss, psi
 
3/5 PI! = Pressure at the heel with friction loss, psi dP) = 21' pulul
 (45)
316 p., = Pressure in the wellbore ( dL! D
 
317 Q = Oil production rate with friction loss, stb/day
 
3/8 Q' = Oil production rate without friction loss, stb/day
 Equation 45 is the Fanning equation andj' is the Fanning friction 370 
3/9 qs= Inflow into the well unit length, rbi/day /ft factor. In terms of the Moody friction factor,j = 41' 371 
320 qw = Flow rate in the wellbore, rb/day
 
321 RF = Recovery factor
 21'pulul jpulul
322 R, = Flow resistance of the well, Dimensionless	 (46)

D 2D
32' r e = Radius of drainage area, ft
 
324 rs = Radius of a invaded zone around wellbore, ft
 

Recognizing that dy/ dL = sin ex, Eq. 43 reduces to 372 
325 r w = Wellbore radius, ft
 
326 r" e = Effective wellbore radius, ft
 

dP	 du du
327 r".c = Effective wellbore radius in anisotropic, ft -A- - T nD - pgAsina - pAu- = pA- (47)

dL 0 dL dtJ28 Sf! = Horizontal skin factor, dimensionless 
329 Sv = Verrical skin factor, dimensionless 

and 373J30 t = Production lasting time, year
 
33/ Vx = Superficial oil velocity, ft/sec jpu2
 

W = --reD	 (48) 
J32 x = Distance along the well coordinator, ft 8
 
333 X = Drainage configuration parameter specified in Eq. ii,
 
3'4 dimensionless
 du du dP w . 

P dt + pu dL + dL = - A- pg SIO ex (49)
1:15 ex = Empirical coefficient for flow resistance 
'36 f3 = Anisotropy (Kh/KI'), dimensionless 
317 M 0 = Drawdown at the heel of the well, psi Introducing field units Eq. 49 becomes 374 

338 G = Absolute roughness, ft 
.i39 Gc = Effective roughness, dimensionless 

P du pudu dP ju2 p pg.
341) p = Oil density, Ibm/cuft	 --+--+-= -----sma (50) 

gc dt gc dL dL 2gcD gc341 J1 = Fluid viscosity, cp 

3-12 The 1D form of the energy equation for gas flow can be written as 375 
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370 The total pressure gradient is made up of four distinct 
377 components: 

dP 
(52)

dL (~~) pI- - (~~) ke - (~~) f - (~~) ace 

378	 where 

37'1 (rJ![) I- = JL Psin ex is the component due to elevation or poten

380 tial ~neriy change.
 
381 (rJ![)k=.Pj;'!It is the component due to convective acceleration

382 

or kinetic energy change.
38, 

384 (rJ![)f= 5 is the component due to frictional losses. 

(!i....':) = I!!!.!i...." is the component due to accumulation.
dL	 ace Xc d t 

For horizontal pipelines 

IdP u du fu 2 U du 
--------- (53)

pdL ge dL 2gcD gc dt 

Appendix ll: Sample Calculation 
386 Objeclive: To calculate the actual productivity index that 

387 includes all possible losses in horizontal wellbore lising equations 

388 derived with the given conditions below as shown in Table 1. 

38'1	 Solution Procedure 

390 Step I: Horizontal drainage area 

Rev = VAv" 43560/n = 666.06fl 

A" =	 n(L/2 + Rev )(Rev )/43560 = 128.1 (acre) 

L [ lO.5 
a = 2' 0.5 + VO.25 + (2R e,,/L)4J = 21621 ft 

391 Step 2: Basic calculation 

f3 = VK,,/Kv = 3.16 

a + va2 - (L/2)2]1
cosh- (X) = In L/2 = 0040 

[ 

392 Step 3: Calculation of flow rate (without friction effect) 

= 0.007078 " K"hM / J1.Q' . ph (h = 1393(stb/d) 
cosh-' (X) + -In - 

L 2rrr'we 

393	 Step 4: calculation of flow resistance 

R = 2 921 * 1O-15L186(ji.D)a_p_ = 4 I" 10-6 
s • p nU5 D5 . 

394	 Step 5: calculation of flow rate with flow resistance 

Js(x) = r;:;~ = 2.78 * 1O-3(rbl/psi/day/ft) 

Qx~o = Js(x)M(L - X) = 1668 = 1551(rbl/d) 
cosh(LVJs(x)R,) 1.075 

1551 
Q = - = 1293(stb/d)

12 

395Step 6: calculation of Reynolds's number 

4Q
 
Vx = rrD2 = 0.76(Jt/s)
 

pVxD Qp 
NRE = -- = 0.1231- = 24278 

J1. flD 

Q = bbl/d,p = lbm/fe,fl = cp,D = ft 

Step 7: calculation of friction pressure 

f = 0.25[114 - 210g(e/D + 21.25Nii2,9W2= 0.026 

dPw = 2fpV; = 0.132(lbjIff1ft)
 
dx Dgc
 

Mf(x)x;L = 0.132 * 4000/144 = 3.67(psi) 

Step 8: calculation of pressure drop due to fluid accumulation 397 

2pV~dL .
t1Pacc = --' - = 5.157 

g,. dt 

Step 9: calculation of pressure drop due to kinetic energy change 398 

2pV2 

t1PK.E = __x = 1.856 
gc 

Step 10: calculation of the PI	 399 

PE -	 PH = Pe - PF + PF - P~ + t1Pf (L) + MKE + t1p.cc 

J~ = P P (j pi = 9.28(stb/psi/d) 
e -	 F + PF - H 

(Conventional PI with friction loss effect, pressure drop due fluid 400 

accumulation and pressure drop due to kinetic energy) 401 

Q 
Js = -=---=---=---=--==-:~--:-::----:-=---

Pe - PF + PF - P~ + t1Pf (L) + M KE + t1Pan 

= 7.94(stb/psi/d) 
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