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Abstract. In this paper, we introduced a class of expansive mappings on G-partial metric spaces and proved fixed

point and common fixed point theorems for a pair of those maps on G-partial metric spaces. We also establish a

coincidence point theorem for two expansive maps on G-partial metric spaces. The results generalize and extend

some results in literature.
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1. Introduction

In 1992, Matthew [1] introduced the concept of partial metric spaces which generalized the

notion of metric spaces in the sense that the distance from a point to itself need not be zero.

Partial metrics are useful in modelling partially defined information which often appears in

computer science. Mustafa and Sims [2] also generalized the concept of metric spaces to G-

metric spaces by assigning real numbers to each triplet of an arbirtary set. In 2013, Eke and
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Olaleru [3] generalized the notion of G-metric spaces to the context of partial metric spaces

and called it G-partial metric spaces. Olaleru et al. [4] proved the existence of fixed points for

generalized Ciric-type contractive mappings in ordered G-partial metric spaces. In this paper,

we prove some fixed point theorems in G-partial metric spaces.

2. Preliminaries

We now recall the following definition, as analogue of partial metric space, introduced in [3].

Definition 1.1. [3] Let X be a nonempty set, and let Gp : X × X × X → R+ be a function

satisfying the following:

(Gp1) Gp(x,y,z)≥ Gp(x,x,x)≥ 0 for all x,y,z ∈ X(small self distance),

(Gp2) Gp(x,y,z) = Gp(x,x,y) = Gp(y,y,z) = Gp(z,z,x) iff x = y = z, (equality),

(Gp3) Gp(x,y,z) = Gp(z,x,y) = Gp(y,z,x) (symmetry in all three variables),

(Gp4) Gp(x,y,z)≤ Gp(x,a,a)+Gp(a,y,z)−Gp(a,a,a) (rectangle inequality).

Then the function Gp is called a G- partial metric and the pair (X ,Gp) is called a G-partial

metric space

Definition 1.2. [3] A G-partial metric space is said to be symmetric if Gp(x,y,y) = Gp(y,x,x)

for all x,y ∈ X .

Let (X ,Gp) be a G-partial metric space, define dGp on X by

dGp(x,y) = Gp(x,y,y)+Gp(y,x,x)−Gp(y,y,y)−Gp(x,x,x).

Then (X ,dGp) is a metric space.

Example 1.3. [3] Let X = R+ and let Gp : X×X×X → R+ be the map defined by Gp(x,y,z) =

max{x,y,z}, then (X ,Gp) is a G-partial metric space.

We state the following definitions.

Definition 1.4. [3] A sequence {xn} of points in a G-partial metric space (X ,Gp) converges to

a point a ∈ X if

lim
n→∞

Gp(xn,xn,a) = lim
n→∞

Gp(xn,xn,xn) = Gp(a,a,a).
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Definition 1.5. [3] A sequence {xn} of points in a G-partial metric spaces (X ,Gp) is said to

be Cauchy if, for each ε > 0 there exists a positive integer N such that Gp(xn,xm,xl) < ε for

n,m, l > N; i.e Gp(xn,xm,xl)→ 0 as n,m, l→ ∞.

The proof of the following proposition easily follows from the definitions.

Proposition 1.6. [3] Let (X ,Gp) be a G-partial metric space. Then the following are equivalent:

Gp(xn,xm,xl)→ Gp(x,x,x) as n,m, l→ ∞

Gp(xn,xm,xm)→ Gp(x,x,x) as n,m→ ∞.

Definition 1.7. [3] A G-partial metric space (X ,Gp) is said to be complete if every Cauchy se-

quence in (X ,Gp) converges to an element in (X ,Gp). That is, Gp(x,x,x)= limn→∞Gp(xn,x,x)=

limn,m→∞Gp(xn,xm,xm).

Definition 1.8. [5] Let f and g be self-mappings on a set X . If w = f x = gx for some x ∈ X ,

then the point x is called a coincidence point of f and g and w is called a point of coincidence

of f and g.

Definition 1.9. [5] Let f and g be self-mappings on a set X . Then f and g are said to be weakly

compatible if they commute at each of their coincidence points.

The contraction mapping principle introduced by Banach in 1922 has wide range of applica-

tions in fixed point theory. Different authors generalized this mapping. In 1981, Gillespie and

Williams [6] introduced a new class of maps where the existing constant is greater than one.

Suppose (X ,d) is a metric space, T : X → X and there exists a constant h > 1 such that

d(T x,Ty)≥ hd(x,y), for all x,y ∈ X . Then T is called an expanding map.

Several authors have recently proved some fixed points and common fixed points for expand-

ing maps on abstract spaces; see [7-11] and the references therein. In this work, we introduced

the class of expanding maps in G-partial metric spaces and proved some fixed point theorems

in the new setting. In 1999, Pant [12] introduced a new continuity condition known as recipro-

cal continuity and proved a common fixed point theorem by using the compatibility in metric

spaces. The notion of reciprocal continuity is weaker than the continuity of one of the mappings.
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Definition 1.10. [29] Two self-mappings T and S are called reciprocally continuous if limn→∞ T

Sxn =T z and limn→∞ ST xn = Sz, whenever {xn} is a sequence such that limn→∞ T xn = limn→∞ Sxn

= z for some z in X .

Han and Xu [7] proved the existence of common fixed point for a pair of expanding mappings

in cone metric spaces by assuming the surjectivity of the maps. Esakkiappan [13] later proved a

common fixed point theorem using compatible and reciprocal continuous map in a cone metric

space. Manro and Kumar [10] proved common fixed point theorems for expansion mapping

using the concept of compatible maps and weakly reciprocal continuity in both metric and G-

metric spaces. Huang et al. [8] proved the fixed point and common fixed point theorems for

expansion mappings and pairs of weakly compatible expansion maps respectively in partial

metric spaces. In this work, the existence of the fixed point of an expanding map and common

fixed point for a pair of expanding mappings on G-partial metric spaces using the concept of

compatible maps and reciprocal continuity are proved. Shatanawi and Awawdeh [14] prove

some results for fixed and coincidence points for some expansive mappings in cone metric

spaces in which the surjectivity of the two maps is not assumed in proving the coincidence point

theorem. Also we prove the coincidence point theorem for expanding maps without assuming

the surjectivity of the maps therein in G-partial metric spaces. Our results generalize the recent

results of Huang et al. [8], Manro and Kumar [10] and an analogue results to the results of Han

and Xu [7], Esakkiappan [13] and Shatanawi and Awawdeh [14] in the cone metric spaces.

3. Main results

Theorem 3.1. Let (X ,Gp) be a complete G-partial metric space and T : X→ X be a surjection.

Suppose that there exist a1, a2, a3, a4, a5 ≥ 0 with a1 +a2 +a3 > 1, a2 ≤ 1+a5, such that

Gp(T x,Ty,Ty) ≥ a1Gp(x,y,y)+a2Gp(x,T x,T x)+a3Gp(y,Ty,Ty)

+a4Gp(x,Ty,Ty)+a5Gp(y,T x,T x), (3.1)

for all x,y ∈ X, x 6= y. Then T has a fixed point in X.
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Proof. Let x0 ∈ X be chosen. Since T is surjective, choose x1 ∈ X such that T x1 = x0. Continu-

ing the process, we can define a sequence {xn} ∈ X such that xn−1 = T xn, n = 1,2, · · · . Without

loss of generality, we suppose that xn−1 6= xn for n≥ 1. From (3.1) we have

Gp(xn−1,xn,xn)≥ a1Gp(xn,xn+1,xn+1)+a2Gp(xn,T xn,T xn)

+a3Gp(xn+1,T xn+1,T xn+1)+a4Gp(xn,T xn+1,T xn+1)+a5Gp(xn+1,T xn,T xn)

= a1Gp(xn,xn+1,xn+1)+a2Gp(xn,xn−1,xn−1)+a3Gp(xn+1,xn,xn)

+a4Gp(xn,xn,xn)+a5Gp(xn+1,xn−1,xn−1),

From

Gp(xn+1,xn−1,xn−1)≥ Gp(xn+1,xn,xn)−Gp(xn−1,xn,xn)+Gp(xn−1,xn−1xn−1).

We have

Gp(xn−1,xn,xn)≥ a1Gp(xn,xn+1,xn+1)+a2Gp(xn,xn−1,xn−1)+a3Gp(xn+1,xn,xn)

+a5[Gp(xn+1,xn,xn)−Gp(xn−1,xn,xn)]

≥ (a1 +a3 +a5)Gp(xn+1,xn,xn)+(a2−a5)Gp(xn,xn−1,xn−1).

It follows that

(1−a2 +a5)Gp(xn−1,xn,xn)≥ (a1 +a3 +a5)Gp(xn,xn+1,xn+1).

Hence

Gp(xn,xn+1,xn+1)≤
1−a2 +a5

a1 +a3 +a5
Gp(xn−1,xn,xn).

Let k = 1−a2+a5
a1+a3+a5

. By a1 + a2 + a3 > 1, a2 ≤ 1+ a5, we have a1 + a3 + a5 > 1− a2 + a5 ≥

0. Thus k ∈ [0,1). It follows that Gp(xn,xn+1,xn+1) ≤ kGp(xn−1,xn,xn), and consequently
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Gp(xn,xn+1,xn+1)≤ knGp(x0,x1,x1). For n > m, we get

Gp(xm,xn,xn)≤ Gp(xm,xm+1,xm+1)+Gp(xm+1,xm+2,xm+2)

+ · · ·+Gp(xn−1,xn,xn)−Gp(xm+1,xm+1,xm+1)

−Gp(xm+2,xm+2,xm+2)− ...−Gp(xn−1,xn−1,xn−1)

≤ (km + km+1 + ...+Kn−1)Gp(x0,x1,x1)

≤ (km + km+1 + · · ·)Gp(x0,x1,x1)

≤ km(1+ k+ · · ·)Gp(x0,x1,x1)

≤ km

1− k
Gp(x0,x1,x1).

Therefore {xn} is a Cauchy sequence. Since X is complete, there exists p∈X such that T xn+1 =

xn→ p as n→∞. Therefore limn→∞ Gp(xn, p, p)= limn→∞ Gp(xn,xn,xn)= limn,m→∞ Gp(xm,xn,xn)=

Gp(p, p, p). Since T is a surjection, we find q ∈ X such that p = T q. Now we prove that p = q

is the fixed point of T . Using (3.1) we obtain

Gp(p,xn,xn) = Gp(T q,T xn+1,T xn+1)

≥ a1Gp(q,xn+1,xn+1)+a2Gp(q,T q,T q)+a3Gp(xn+1,T xn+1,T xn+1)

+a4Gp(q,T xn+1,T xn+1)+a5Gp(xn+1,T q,T q),

(3.2)

Gp(q, p, p)≥ Gp(q,xn+1,xn+1)−Gp(p,xn+1,xn+1)+Gp(p, p, p), (3.3)

Gp(q,xn,xn)≥ Gp(q,xn+1,xn+1)−Gp(xn,xn+1,xn+1)+Gp(xn,xn,xn) (3.4)

and

Gp(p,xn,xn)≤ Gp(p,xn+1,xn+1)+Gp(xn+1,xn,xn)−Gp(xn+1,xn+1,xn+1) (3.5)
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Using (3.3), (3.4) and (3.5) in (3.2), we find that

Gp(p,xn+1,xn+1)+Gp(xn+1,xn,xn)−Gp(xn+1,xn+1,xn+1)

≥ a1Gp(q,xn+1,xn+1)+a2Gp(q,xn+1,xn+1)−a2Gp(p,xn+1,xn+1)

+a2Gp(p, p, p)+a3Gp(xn+1,xn,xn)+a4Gp(q,xn+1,xn+1)

−a4Gp(xn,xn+1,xn+1)+a4Gp(xn,xn,xn)+a5Gp(xn+1, p, p)

≥ (a1 +a2 +a4)Gp(q,xn+1,xn+1)+(a5−a2)Gp(xn+1, p, p)

+(a3−a4)Gp(xn+1,xn,xn).

Taking the limit as n→∞ yields (a1+a2+a4)Gp(q, p, p)≤ 0. Since a1+a2+a4 ≥ 0, we have

Gp(q, p, p)≤ 0. But Gp(q, p, p)≥ 0. Hence q = p. That is q = p = T q. This gives that p is the

fixed point of T . This completes the proof.

Corollary 3.2. Let (X ,Gp) be a complete G-partial metric space and T : X→X be a surjection.

Suppose that there exists a1, a2, a3 ≥ 0 with a1 +a2 +a3 > 1≥ a2 such that

Gp(T x,Ty,Ty)≥ a1Gp(x,y,y)+a2Gp(x,T x,T x)+a3Gp(y,Ty,Ty),x,y ∈ X ,x 6= y. (3.6)

Then T has a fixed point in X.

Remarks 3.3. Corollary 2.2 is an analogue of the results of [8] which they proved in the

context of partial metric spaces. In [7], Han and Xu proved a parallel result of Theorem 2.1 in

the context of cone metric spaces.

3. Common fixed point theorems

We prove a theorem on the coincidence point of two expansive type mappings in the G-partial

metric spaces in which the surjectivity condition of the maps is not assumed.

Theorem 3.4. Let (X ,Gp) be a G-partial metric space. Let T,S : X→X be mappings satisfying:

Gp(T x,Ty,Ty)≥ a1Gp(Sx,Sy,Sy)+a2Gp(Sx,T x,T x)+a3Gp(Sy,Ty,Ty)

+a4Gp(Sx,Ty,Ty)+a5Gp(Sy,T x,T x).
(3.7)
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for all x,y∈X where a1, a2, a3, a4, a5≥ 0 with a1+a2+a3+a4+a5 > 1. Suppose the following

hypotheses are also satisfy: (1) a2−a5 < 1 or a3−a4 < 1; (2) S(X)⊆ T (X) and (3) T (X) is a

complete subspace of X. Then T and S have a coincidence point.

Proof. Let x0 ∈ X be chosen. We chose x1 = Sx0 and x2 = T x1. Since S(X) ⊆ T (X) then

there exists a sequence {xn} such that Sxn = T xn+1. Without loss of generality, we claim that

xn−1 6= xn for n≥ 1. From (3.7) with x = xn and y = xn+1 we have the following. Case (i)

Gp(Sxn−1,Sxn,Sxn)

= Gp(T xn,T xn+1,T xn+1)

≥ a1Gp(Sxn,Sxn+1,Sxn+1)+a2Gp(Sxn,Sxn−1,Sxn−1)+a3Gp(Sxn+1,Sxn,Sxn)

+a4Gp(Sxn,Sxn,Sxn)+a5Gp(Sxn+1,Sxn−1,Sxn−1)

≥ a1Gp(Sxn,Sxn+1,Sxn+1)+a2Gp(Sxn,Sxn−1,Sxn−1)+a3Gp(Sxn+1,Sxn,Sxn)

+a4Gp(Sxn,Sxn,Sxn)+a5Gp(Sxn+1,Sxn,Sxn)−a5Gp(Sxn−1,Sxn,Sxn)

+a5Gp(Sxn−1,Sxn−1,Sxn−1)

≥ a1Gp(Sxn,Sxn+1,Sxn+1)+a2Gp(Sxn,Sxn−1,Sxn−1)

+a3Gp(Sxn+1,Sxn,Sxn)+a5Gp(Sxn+1,Sxn,Sxn)−a5Gp(Sxn−1,Sxn,Sxn)

≥ (a1 +a3 +a5)Gp(Sxn,Sxn+1,Sxn+1)+(a2−a5)Gp(Sxn,Sxn−1,Sxn−1).

(3.8)

If a2−a5 < 1, then (3.8) becomes

(1−a2 +a5)Gp(Sxn,Sxn−1,Sxn−1)≥ (a1 +a3 +a5)Gp(Sxn,Sxn+1,Sxn+1),

Gp(Sxn,Sxn+1,Sxn+1)≤
1−a2 +a5

a1 +a3 +a5
Gp(Sxn,Sxn−1,Sxn−1). (3.9)
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Case (ii)

Gp(Sxn,Sxn−1,Sxn−1)

= Gp(T xn+1,T xn,T xn)

≥ a1Gp(Sxn+1,Sxn,Sxn)+a2Gp(Sxn+1,T xn+1,T xn+1)+a3Gp(Sxn,T xn,T xn)

+a4Gp(Sxn+1,T xn,T xn)+a5Gp(Sxn,T xn+1,T xn+1)

= a1Gp(Sxn+1,Sxn,Sxn)+a2Gp(Sxn+1,Sxn,Sxn)+a3Gp(Sxn,Sxn−1,Sxn−1)

+a4Gp(Sxn+1,Sxn−1,Sxn−1)+a5Gp(Sxn,Sxn,Sxn)

≥ a1Gp(Sxn+1,Sxn,Sxn)+a2Gp(Sxn+1,Sxn,Sxn)+a3Gp(Sxn,Sxn−1,Sxn−1)

+a4Gp(Sxn+1,Sxn,Sxn)−a4Gp(Sxn−1,Sxn,Sxn)+a4Gp(Sxn−1,Sxn−1,Sxn−1)

+a5Gp(Sxn,Sxn,Sxn)

≥ a1Gp(Sxn+1,Sxn,Sxn)+a2Gp(Sxn+1,Sxn,Sxn)+a3Gp(Sxn,Sxn−1,Sxn−1)

+a4Gp(Sxn+1,Sxn,Sxn)−a4Gp(Sxn−1,Sxn,Sxn)

= (a1 +a2 +a4)Gp(Sxn+1,Sxn,Sxn)+(a3−a4)Gp(Sxn−1,Sxn,Sxn).

If a3−a4 < 1, then the above inequality becomes

(1−a3 +a4)Gp(Sxn−1,Sxn,Sxn)≥ (a1 +a2 +a4)Gp(Sxn+1,Sxn,Sxn),

Gp(Sxn+1,Sxn,Sxn)≤
1−a3 +a4

a1 +a2 +a4
Gp(Sxn−1,Sxn,Sxn) (3.10)

Put k = 1−a2+a5
a1+a3+a5

in (3.9) and k = 1−a3+a4
a1+a2+a4

in (3.10) Thus in (3.9) and (3.10), we have k < 1.

Hence Gp(Sxn,Sxn+1,Sxn+1)≤ kGp(Sxn,Sxn−1,Sxn−1). Consequently, we have

Gp(Sxn,Sxn+1,Sxn+1)≤ knGp(Sxn,Sxn−1,Sxn−1).
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For n > m, we obtain

Gp(Sxm,Sxn,Sxn)≤ Gp(Sxm,Sxm+1,Sxm+1)+Gp(Sxm+1,Sxm+2,Sxm+2)

+ · · ·+Gp(Sxn−1,Sxn,Sxn)−Gp(Sxm+1,Sxm+1,Sxm+1)

−Gp(Sxm+2,Sxm+2,Sxm+2)−·· ·−Gp(Sxn−1,Sxn,Sxn)

≤ kmGp(Sx0,Sx1,Sx1)+ km+1Gp(Sx0,Sx1,Sx1)

+ · · ·+ kn−1Gp(Sx0,Sx1,Sx1)

≤ (km + km+1 + · · ·+ kn−1)Gp(Sx0,Sx1,Sx1)

≤ (km + km+1 + · · ·)Gp(Sx0,Sx1,Sx1)

≤ km

1− k
Gp(Sx0,Sx1,Sx1).

Thus {T xn} is a Cauchy sequence. Since T (X) is a complete subspace of X , there exists a point

z ∈ X such that T xn → T z as n→ ∞. Likewise, Sxn → T z as n→ ∞. Also Gp(T z,T z,T z) =

limn→∞Gp(T xn,T z,T z) = limn,m→∞Gp(T xm,T xn,T xn) = 0. Since a1 + a2 + a3 + a4 + a5 > 1

we have a1, a2, a3, a4, a5 are not all zero. So we obtain the following cases.

Case (a) If a1 6= 0, then we have

Gp(T xn,T z,T z)≥ a1Gp(Sxn,Sz,Sz)+a2Gp(Sxn,T xn,T xn)

+a3Gp(Sz,T z,T z)+a4Gp(Sxn,T z,T z)+a5Gp(Sz,T xn,T xn).

Hence, Gp(T xn,T z,T z)≥ a1Gp(Sxn,Sz,Sz). As n→∞, we have Gp(T z,T z,T z)≥ a1Gp(T z,Sz,Sz).

Thus Gp(T z,Sz,Sz) ≤ 0. But Gp(T z,Sz,Sz) ≥ 0. Therefore Gp(T z,Sz,Sz) = 0, which implies

that T z = Sz.

Case (b) If a2 6= 0, then we have

Gp(T z,T xn,T xn)≥ a1Gp(Sz,Sxn,Sxn)+a2Gp(Sz,T z,T z)

+a3Gp(Sxn,T xn,T xn)+a4Gp(Sz,T xn,T xn)+a5Gp(Sxn,T z,T z)

Hence, Gp(T z,T xn,T xn)≥ a2Gp(Sz,T z,T z). Similar to Case (a) we have Sz = T z.

Case(c) If a3 6= 0, then we have

Gp(T xn,T z,T z)≥ a1Gp(Sxn,Sz,Sz)+a2Gp(Sxn,T xn,T xn)

+a3Gp(Sz,T z,T z)+a4Gp(Sxn,T z,T z)+a5Gp(Sz,T xn,T xn).
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Hence, Gp(T xn,T z,T z)≥ a3Gp(Sz,T z,T z). Similar to Case (a) we have Sz = T z.

Case (d) If a4 6= 0, then we have

Gp(T z,T xn,T xn)≥ a1Gp(Sz,Sxn,Sxn)+a2Gp(Sz,T z,T z)

+a3Gp(Sxn,T xn,T xn)+a4Gp(Sz,T xn,T xn)+a5Gp(Sxn,T z,T z).

Hence, Gp(T z,T xn,T xn)≥ a4Gp(Sz,T xn,T xn). Similar to Case (a) we have Sz = T z.

Case (e) If a5 6= 0, then we have

Gp(T xn,T z,T z)≥ a1Gp(Sxn,Sz,Sz)+a2Gp(Sxn,T xn,T xn)

+a3Gp(Sz,T z,T z)+a4Gp(Sxn,T z,T z)+a5Gp(Sz,T xn,T xn).

Hence, Gp(T xn,T z,T z) ≥ a5Gp(Sz,T xn,T xn). Similar to Case (a) we have Sz = T z. Thus S

and T have coincidence point which is z.

Corollary 3.5. Let (X ,Gp) be a G-partial metric space. Let T,S : X → X be mappings satisfy-

ing:

Gp(T x,Ty,Ty)≥ a1Gp(Sx,Sy,Sy)+a2Gp(Sx,T x,T x)+a3Gp(Sy,Ty,Ty) (3.11)

for all x,y ∈ X where a1, a2, a3 ≥ 0 with a1 + a2 + a3 > 1. Suppose the following hypotheses

are also satisfy: (1) a2 < 1 or a3 < 1, (2) S(X)⊆ T (X) and (3) T (X) is a complete subspace of

X. Then T and S have a coincidence point.

Remark 3.6. Corollary 2.5 is an analogue of the result proved by Shatanawi and Awaedeh [14]

in the setting of cone metric spaces.

Example 3.7. Let X = [0,1] and Gp(x,y,y) = max{x,y,y}. Then (X ,Gp) is a complete G-

partial metric space. Define T,S : X → X by T x = x
3 and Sx = x

9 for all x ∈ X. Then for every

x,y ∈ X we have Gp(T x,Ty,Ty)≥ 3Gp(Sx,Sy,Sy) i.e. the condition (2.7) holds for a1 = 3,a2 =

a3 = a4 = a5 = 0. Therefore we have all the hypothese of Theorem 2.4 satisfied and o is the

coincidence point of T and S.

In the next theorem, we prove the existence of the common fixed point for a pair of weakly

compatible maps satisfying certain conditions in G-partial metric spaces in which the surjectiv-

ity of the two maps is assumed.
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Theorem 3.8. Let T and S be two weakly compatible and surjective selfmappings of a complete

G-partial metric space (X ,Gp) satisfying the following conditions: for any x,y ∈ X and a1 +

a2 +a3 > 1, a2 ≤ 1+a5, a3 ≤ 1+a4 we have that

Gp(T x,Sy,Sy)≥ a1Gp(x,y,y)+a2Gp(x,T x,T x)+a3Gp(y,Sy,Sy)

+a4Gp(x,Sy,Sy)+a5Gp(y,T x,T x).
(3.12)

If S and T are compatible pair of reciprocal continuous maps, then S and T have a unique

common fixed point in X.

Proof. Let x0 ∈ X be chosen. Since T and S are surjective then there exist x1,x2 ∈ X such that

x0 = T x1 and x1 = Sx2. Continuing the process, we can define a sequence {xn} ∈ X such that

x2n = T x2n+1, x2n+1 = Sx2n+2. Using (3.12), we have

Gp(x2n,x2n+1,x2n+1) = Gp(T x2n+1,Sx2n+2,Sx2n+2)

≥ a1Gp(x2n+1,x2n+2,x2n+2)+a2Gp(x2n+1,T x2n+1,T x2n+1)

+a3Gp(x2n+2,Sx2n+2,Sx2n+2)+a4Gp(x2n+1,Sx2n+2,Sx2n+2)

+a5Gp(x2n+2,T x2n+1,T x2n+1)

= a1Gp(x2n+1,x2n+2,x2n+2)+a2Gp(x2n+1,x2n,x2n)

+a3Gp(x2n+2,x2n+1,x2n+1)

+a4Gp(x2n+1,x2n+1,x2n+1)+a5Gp(x2n+2,x2n,x2n).

By rectangle inequality, the above inequality becomes

Gp(x2n,x2n+1,x2n+1)

≥ a1Gp(x2n+1,x2n+2,x2n+2)+a2Gp(x2n+1,x2n,x2n)+a3Gp(x2n+2,x2n+1,x2n+1)

+a4Gp(x2n+1,x2n+1,x2n+1)+a5Gp(x2n+2,x2n+1,x2n+1)−a5Gp(x2n,x2n+1,x2n+1)

+a5Gp(x2n,x2n,x2n)

≥ a1Gp(x2n+1,x2n+2,x2n+2)+a2Gp(x2n+1,x2n,x2n)+a3Gp(x2n+2,x2n+1,x2n+1)

+a5Gp(x2n+2,x2n+1,x2n+1)−a5Gp(x2n,x2n+1,x2n+1)

≥ (a1 +a3 +a5)Gp(x2n+1,x2n+2,x2n+2)+(a2−a5)Gp(x2n+1,x2n,x2n).
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Therefore, we have (1−a2+a5)Gp(x2n+1,x2n,x2n)≥ (a1+a3+a5)Gp(x2n+1,x2n+2,x2n+2) and

Gp(x2n+1,x2n+2,x2n+2)≤
1−a2 +a5

a1 +a3 +a5
Gp(x2n,x2n+1,x2n+1).

Let M = 1−a2+a5
a1+a3+a5

. Since a2 ≤ 1+a5 and a1+a2+a3 > 1, we have a1+a3+a5 > 1−a2+a5≥

0. Thus M ∈ [0,1), and

Gp(x2n+1,x2n+2,x2n+2)≤MGp(x2n,x2n+1,x2n+1) (3.13)

Similarly, we have

Gp(x2n−1,x2n,x2n) = Gp(T x2n+1,Sx2n,Sx2n)

≥ a1Gp(x2n+1,x2n,x2n)+a2Gp(x2n+1,T x2n+1,T x2n+1)

+a3Gp(x2n,Sx2n,Sx2n)+a4Gp(x2n+1,Sx2n,Sx2n)

+a5Gp(x2n,T x2n+1,T x2n+1)

= a1Gp(x2n+1,x2n,x2n)+a2Gp(x2n+1,x2n,x2n)

+a3Gp(x2n,x2n−1,x2n−1)+a4Gp(x2n+1,x2n−1,x2n−1)

+a5Gp(x2n,x2n,x2n).

By rectangle inequality, the above inequality becomes

Gp(x2n−1,x2n,x2n)≥ a1Gp(x2n+1,x2n,x2n)+a2Gp(x2n+1,x2n,x2n)

+a3Gp(x2n,x2n−1,x2n−1)

+a4Gp(x2n+1,x2n,x2n)−a4Gp(x2n−1,x2n,x2n)

+a4Gp(x2n−1,x2n−1,x2n−1)+a5Gp(x2n,x2n,x2n)

≥ a1Gp(x2n+1,x2n,x2n)+a2Gp(x2n+1,x2n,x2n)

+a3Gp(x2n,x2n−1,x2n−1)+a4Gp(x2n+1,x2n,x2n)

−a4Gp(x2n−1,x2n,x2n)

≥ (a1 +a2 +a4)Gp(x2n+1,x2n,x2n)+(a3−a4)Gp(x2n,x2n−1,x2n−1).



382 KANAYO STELLA EKE

Therefore, (1−a3 +a4)Gp(x2n,x2n−1,x2n−1)≥ (a1 +a2 +a4)Gp(x2n+1,x2n,x2n) and

Gp(x2n+1,x2n,x2n)≤
1−a3 +a4

a1 +a2 +a4
Gp(x2n,x2n−1,x2n−1).

By symmetry, we have Gp(x2n,x2n+1,x2n+1)≤ 1−a3+a4
a1+a2+a4

Gp(x2n−1,x2n,x2n)

Let N = 1−a3+a4
a1+a2+a4

. Since a3 ≤ 1+a4 and a1+a2+a3 > 1, we have that a1+a2+a4 > 1−a3+

a4 ≥ 0. Thus N ∈ [0,1) and

Gp(x2n,x2n+1,x2n+1)≤ NGp(x2n−1,x2n,x2n). (3.14)

Let h = MN ∈ [0,1). Then by induction we have

Gp(x2n+1,x2n+2,x2n+2)≤MGp(x2n,x2n+1,x2n+1)

≤MNGp(x2n−1,x2n,x2n)

≤M2NGp(x2n−2,x2n−1,x2n−1)

...

≤MhnGp(x0,x1,x1)

and

Gp(x2n,x2n+1,x2n+1)≤ NGp(x2n−1,x2n,x2n)

≤ kNGp(x2n−2,x2n−1,x2n−1)

...

≤ hnGp(x0,x1,x1).
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For n > m, we get

Gp(x2m+1,x2n+1,x2n+1)≤ Gp(x2m+1,x2m+2,x2m+2)+Gp(x2m+2,x2m+3,x2m+3)

+ ...+Gp(x2n,x2n+1,x2n+1)−Gp(x2m+2,x2m+2,x2m+2)

−Gp(xm+3,xm+3,xm+3)− ...−Gp(x2n,x2n,x2n)

≤ Gp(x2m+1,x2m+2,x2m+2)+Gp(x2m+2,x2m+3,x2m+3)

+ ...+Gp(x2n,x2n+1,x2n+1)

≤ (
n

∑
i=m+1

hi +M
n−1

∑
i=m

hi)Gp(x0,x1,x1)

≤ (N +1)
Mhm

1−h
)Gp(x0,x1,x1).

Similarly, we have

Gp(x2m,x2n+1,x2n+1)≤ Gp(x2m,x2m+1,x2m+1)+Gp(x2m+1,x2m+2,x2m+2)

+ ...+Gp(x2n,x2n+1,x2n+1)−Gp(x2m+1,x2m+1,x2m+1)

−Gp(xm+2,xm+2,xm+2)− ...−Gp(x2n,x2n,x2n)

≤ Gp(x2m,x2m+1,x2m+1)+Gp(x2m+1,x2m+2,x2m+2)

+ ...+Gp(x2n,x2n+1,x2n+1)

≤ (M
n

∑
i=m

hi +
n+1

∑
i=m+1

hi)Gp(x0,x1,x1)

≤ (
Mhm

1−h
+

hm+1

1−h
)Gp(x0,x1,x1)

≤ (N +1)
Mhm

1−h
)Gp(x0,x1,x1).

Therefore {xn} is a Cauchy sequence. Since X is complete, there exists a point z ∈ X such that

xn → z as n→ ∞. It is equivalent to x2n = T x2n+1 → z, x2n+1 = Sx2n+2 → z as n→ ∞. Also

Gp(z,z,z) = limn→∞ Gp(xn,z,z) = limn,m→∞ Gp(xn,xm,xm) = 0. Suppose T and S are compat-

ible and reciprocal continuous. By reciprocal continuity of T and S, limn→∞ T Sxn = T z and

limn→∞ ST xn = Sz. By compatibility of T and S, T z = Sz. Since T and S are weakly compati-

ble, T z = Sz implies T T z = T Sz = ST z = SSz.



384 KANAYO STELLA EKE

Next we show that z is a common fixed point of S and T . From (3.12) we have

Gp(T z,Sx2n+2,Sx2n+2)≥ a1Gp(z,x2n+2,x2n+2)+a2Gp(z,T z,T z)

+a3Gp(xn+2,Sx2n+2,Sx2n+2)+a4Gp(z,Sx2n+2,Sx2n+2)

+a5Gp(xn+2,T z,T z).

From the following three inequalities, we have

Gp(z,T z,T z)≥ Gp(z,x2n+2,x2n+2)−Gp(T z,x2n+2,x2n+2)+Gp(T z,T z,T z),

Gp(z,x2n+1,x2n+1)≥ Gp(z,x2n+2,x2n+2)−Gp(x2n+1,x2n+2,x2n+2)+Gp(x2n+1,x2n+1,x2n+1)

and

Gp(T z,x2n+1,x2n+1)≤ Gp(T z,x2n+2,x2n+2)+Gp(xn+2,x2n+1,x2n+1)−Gp(xn+2,x2n+2,x2n+2),

we obtain

Gp(T z,x2n+2,x2n+2)+Gp(xn+2,x2n+1,x2n+1)−Gp(xn+2,x2n+2,x2n+2)

≥ a1Gp(z,x2n+2,x2n+2)+a2Gp(z,x2n+2,x2n+2)

−a2Gp(T z,x2n+2,x2n+2)+a2Gp(T z,T z,T z)

+a3Gp(xn+2,x2n+1,x2n+1)+a4Gp(z,x2n+2,x2n+2)

−a4Gp(x2n+1,x2n+2,x2n+2)+a4Gp(x2n+1,x2n+1,x2n+1)+a5Gp(x2n+2,T z,T z)

≥ (a1 +a2 +a4)Gp(z,xn+2,x2n+2)

+(a3−a4)Gp(xn+2,x2n+1,x2n+1)+(a5−a2)Gp(T z,x2n+2,x2n+2).

Therefore, we have

(a5−a2−1)Gp(T z,x2n+2,x2n+2)

≤ (1−a3 +a4)Gp(xn+2,x2n+1,x2n+1)

− (a1 +a2 +a4)Gp(z,x2n+2,x2n+2)Gp(T z,x2n+2,x2n+2)

≤ 1−a3 +a4

a5−a2−1
Gp(xn+2,x2n+1,x2n+1)−

a1 +a2 +a4

a5−a2−1
Gp(z,x2n+2,x2n+2).
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As n→ ∞, we get Gp(T z,z,z) ≤ 0. Gp(T z,z,z) ≥ 0 implies that Gp(T z,z,z) = 0. Therefore

T z = Sz = z. Suppose there exists u ∈ X such that u is another common fixed point of T and S

then we show that u = z. On the contrary, letting u 6= z and using (3.12) we have

Gp(u,z,z) = Gp(Tu,Sz,Sz)

≥ a1Gp(u,z,z)+a2Gp(u,Tu,Tu)+a3Gp(z,Sz,Sz)+a4Gp(u,Sz,Sz)a5Gp(z,Tu,Tu)

= a1Gp(u,z,z)+a4Gp(u,z,z)+a5Gp(z,u,u)

= (a1 +a4 +a5)Gp(u,z,z).

Since a1 +a4 +a5 > 1, then we have u = z. The uniqueness proved.

Corollary 3.9. Let (X ,Gp) be a complete G-partial metric space. Suppose mappings T,S : X→

X are onto, compatible, reciprocally continuous, and satisfy

Gp(T x,Sy,Sy)≥ a1Gp(x,y,y)+a2Gp(x,T x,T x)+a3Gp(y,Sy,Sy) (3.15)

for all x,y ∈ X, with a1 +a2 +a3 > 1. Then S and T have a common fixed point.

Remark 3.10. Theorem 2.4 is an analogue result of [13 Theorems 3.1 and 3.2] from cone

metric spaces to the setting of G-partial metric spaces.

Example 3.11. Let X = R+ and Gp(x,y,y) = max{x,y,y}; then (X ,Gp) is a complete G-partial

metric space. Let T,S : R→ R be defined by T x = 2x and Sx = 3x. T and S are surjective,

reciprocally continuous, compatible, and satisfy the inequality of Theorem 2.4 with a1 = 2 and

a2 = a3 = a4 = a5 = 0. Then T and S have a unique common fixed point 0 in X.
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