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Abstract

We introduce the concept of generalized quasi-contraction mappings in G-partial metric spaces
and prove some fixed point results in ordered G-partial metric spaces. The results generalize and
extend some recent results in literature.
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1. Introduction and Preliminary Definitions

The Banach contraction principle has been generalized and extended in many directions for some decades. Of all
the generalizations, Ciric [1] [2] generalizations seem outstanding. Cho Song Wong [3] dealt with a pair of op-
erators in which the control functions in the generalized contraction maps are upper semi-continuous, while Cir-
ic considered a single operator and took the control function to be a constant. If the control function is an upper
semi-continuous, then the result of Ciric [1] is invalid. In Kiany and Amini-Harandi [4], a condition is imposed
on the control function and the mapping is termed a Ciric generalized quasi-contraction mapping. In this work,
we introduce the concept of generalized quasi-contraction mappings in the new framework of G-partial metric
spaces.

Rodriguez-Lopez and Nieto [5], Ran and Reuring [6] presented some new results for the existence of the
fixed point for some mappings in partially ordered metric spaces. The main idea in [5] [6] involves combing the
ideas of an iterative technique in the contraction mapping principle with those in the monotone technique. In this
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work, the existence of a unique fixed point for generalized contraction mappings in ordered G-partial metric
spaces is proved.

Matthew [7] generalized the notion of metric spaces by introducing the concept of nonzero self-distance and
thus, defined a generalized metric space known as partial metric space, as follows:

Definition 1.1. [7]. A partial metric space is a pair (X, p), where X is a nonempty setand p: XxX > R
such that:

(p1) 0<p(x,x)<p(xY)
(2)if p(xx)=p(xy)=p(y,y), then x=y
(P3) p(xy)=p(Y.x)
(P4 p(x2)<p(xy)+p(y.2)-p(Y.Y).
0

He was able to establish a relationship between partial metric spaces and the usual metric spaces when
dp(xy)=2p(%Y)=P(XX)=p(¥.Y)-

Mustafa and Sims [8] also extended the concepts of metric to G-metric by assigning a positive real number to
every triplet of an arbitrary set as follows:
Definition 1.2. [8]. Let X be a nonempty set, and let
G: X xXxX —> R, beafunction satisfying:
(G1) G(xy,z)=0if x=y=z,
(G2) 0<G(x,x,y)forall x,yeX with x=y,
(G3) G(x,x,¥)<G x,y,z) forallx,y,ze X withy = z,
(G4) G(xY,2)=G(x,2,y)=G(y,z,x) (symmetry in all three variables),
(G5) G(x,y,z)<G(x,a,a)+G(a,y,z) forall xy,z,aeX (rectangle inequality).
Then, the function G is called a generalized metric, or more specifically, a G-metric on X, and the pair
(X,G) isa G-metric space.
Mustafa [8] gave an example to show the relationship between G-metric spaces and ordinary metric spaces as:
For any G-metric G on X, if dg (X,y)=G(X,Y,y)+G(x,x,y) then (X,dg) isametric space.
In this work, the idea of the nonzero self-distance of partial metric spaces and the rectangle inequality of
G-metric spaces are combined to develop a new generalized metric space which is defined as the following:
Definition 1.3. Let X be a nonempty set, and let G, : X x X x X — R be a function satisfying the follow-
ing:
(Gpl) G
(Gp2) G

§x, y,2)2G, (X xXx)20,¥xy,ze X (small self-distance),

XY,2)=G,(xxYy)=G,(y,y.2)=G,(z,2,x) iff x=y=2z, (equality),

(Gp3) G,(%Y,2)=G,(z,X,y)=G,(y,z,x) (symmetry in all three variables),

(Gp4) Gp§x, y,z2)<G,(x,aa)+G,(ay,z)-G,(a,aa) (Rectangle inequality).

The function G, is called a G-partial metric and the pair (X,G, ) is called a G-partial metric space.

Definition 1.4. A G-partial metric space is said to be symmetric if G_(x,y,y)=G,(y,x,x) for all
X,yeX.

In this work, we will assume that (X ,Gp) is symmetric. The following proposition establishes the relation
between G-partial metric spaces and (partial) metric spaces.

Definition 1.5. Let (X ,Gp) be a G-partial metric space. Define the functions p: XxX —» R, and
d:XxX >R, by p(xy)=G,(xy,y)+G,(y,xx) and
d(xy)=G, (X Y,y)+G, (¥,x.x)=G,(y.¥,¥)-G, (x,x,x). Then

1) (X, p) is a partial metric space.

2) (X, d) is a metric space.

Proof

1) From (Gp1), we have that for all x,y e X,

P(XY)=Gp(X ¥, ¥)+Gp(y, %, x)=Gp(x X,X)+Gp(X,x X)= p(x,x) =0,
hence (p1) is satisfied.
If p(x.x)=p(y.y)=p(y.y), then
Gp(X, % X)+Gp(X,X,X)=Gp(X,y,y)+Gp(y, %, X)=Gp(Y,y,Y)+Gp(Y.y.y).
By (Gpl), it must follow that Gp(x,y,y)=Gp(y, % X)=Gp(Y,Y,y)=Gp(x X X).

h=]

p
p
p
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From the symmetry of G, and by (Gp2), x =y, hence (p2) is satisfied.
(p3) follows from (Gp3) and the triangle inequality (p4) is easily verifiable using (Gp4).
2) Since (X, p) is a partial metric space, then

p*=2p(xy)—-p(x %)= p(¥,¥)=2[Gp(X¥,¥)+Gp(¥. X, X)=Gp(Y,y,y)-Gp(X X, X)]

defines a metricon X and so d(x,y) =% p°(x,y) also defines a metric on X.

Example 1.6. Let X =R, and define the function Gp:XxXxX —R,as Gp(x, y, z)=max{x, y, z}.
Then (X,G,) isa G-partial metric space.
We state the following definitions and motivations.

Definition 1.7. A sequence {x,} of points in a G-partial metric space (X ,Gp) converges to some ae X

if limGp(x,,x,,a)=1limGp(x,,x,,x,)=Gp(a,a,a).

n'n?

Definition 1.8. A sequence {xn} of points in a G-partial metric spaces (X,Gp) is Cauchy if the numbers
G, (xn,xm,x,) converges to some ae X asn, m, | approach infinity.

The proof of the following result follows from the above definitions:

Proposition 1.9. Let {x,} be a sequence in G-partial metric space X and ae X . If {x,} converges to
ae X then {x,} isa Cauchy sequence.

Definition 1.10. A G-partial metric space (X,Gp) is said to be complete if every Cauchy sequence in
(X,Gp) converges to an element in (X,Gp).

Definition 1.11. [6]. If (X ,<) is a partially ordered set and T: X — X, then T is monotone non-decreasing if
forevery x,ye X, x=<y implies Tx<Ty.

Definition 1.12. Let (X,<) be a partially ordered set. Then two elements X,y € X are said to be totally
ordered or ordered if they are comparable, i.e. x <y or y<x.

Gordji et al. [9] proved the existence of a unique fixed point for contraction type maps in partially ordered
metric spaces using a control function. Kiany and Amini-Harandi [4] proved the existence of a unique fixed
point for a generalized Ciric quasi-contraction mapping in what they tagged a generalized metric space. The map
they considered extend that of Gordji et al., albeit the space they considered was not endowed with an order.
Saadati et al. [10] considered the concept of Omega-distances on a complete partially ordered G-metric space
and proved some fixed point theorems. Turkoglu et al. [11] and Sastry et al. [12] proved some fixed point theo-
rems for generalized contraction mappings in cone metric spaces and metric spaces respectively.

In this work, the existence of unique fixed points of the two generalized contraction mappings below is
proved in ordered G-partial metric spaces, extending thus the results in [2] [4] [9] [11].

Definition 1.13. Let (X ,Gp) be a G-partial metric space. The self-map T: X— X is said to be a generalized
Ciric quasi-contraction if

G, (Tx,Ty,Ty)<a(x,y, y)max{Gp (%,¥,¥),G, (xTxTx),G, (y,Ty,Ty).G, (x,Ty,Ty),G, (y,Tx,Tx)} )

forany x,ye X, where «:[0,00)—[0,1) isa mapping.
Definition 1.14. Let (X ,Gp) be a G-partial metric space. The self-map T: X— X is said to be a generalized
G-contraction if for all x,y e X,

G, (TxTy, Ty)<a(x,y,Y)G, (X, ¥,y)+ B(X Y,¥)G, (X Tx,Tx)

+7(% ¥, Y)G, (¥, Ty, Ty)+5(x. Y, y)[Gp(x,Ty,Ty)+Gp(y,Tx,Tx)],
where a,f3,7,6: X xX —[0,1) are functions such that

A=sup{a(xy.y)+B(%Y.Y)+7(x Y. ¥)+25 (X y,y): X,y X} <1.

O]

2. Main Results

Theorem 2.1. Let (X,«) be a partially ordered set and suppose there exists a G-partial metric G, in X such
that (X,Gp) is a complete G-partial metric space. Let T: X — X be a self-mapping in X such that for each
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X,y e X satisfying x <y,
G, (T Ty, Ty)<a(x.y,y)G, (XY, Y)+B(XY.,Y)G, (X TX,Tx)
+7(x,¥,Y)G, (y,Ty,Ty)+5(x,y,y)[Gp(x,Ty,Ty)+Gp (y,Tx,Tx)},
where a,,7,8: X x X —[0,1) are functions such that
A=sup{a(xy.y)+B(XY.Y)+7 (%Y. y)+25(x y,y): X,y e X} <1. 4)

Suppose T is a non-decreasing map such that there exists an X, € X with x, <Tx, . Also suppose that X is
such that for any non-decreasing sequence {xn} convergingtox, x, <X, vneN. x <x forall neN.

Then T has a fixed point. Moreover, if for each u,ve X , there exists z e X which is comparable to u and v,
then T has a unique fixed point.

Proof. Fix x,eX Let {x,} be defined by x =Tx,, X, =Tx, -+, X, =T%,.Since X, <Tx, and T is
non-decreasing, then x, <Tx, <Tx, <Tx, <+ <Tx, <--

This implies that x, <Tx, foreach n>1.

Since x, <Xx,,,; foreach neN then by (3) we have

G, (Xys X1 Xpi1 ) = Gy (X, TX,, TX, )
<a(xn % %0 ) G (Xoigs X X )+ B (X X0 %0 ) G (Xoig s TXo g Ty )+ 7 (Xogs X0 X, ) Gy (%0, TX,, TX,)
o0 %o %o ) [G (X2 TX T, )+ Gy (X, Txnfl,Txnfl)J
<a(xn X X )Gy (X X X, )+ ﬂ( n1 %0 %0 )G (%o Xo X0 )+ 7 (X1 X0 X ) G (X0 Xogs Xt )
X1 %o Xo ) [G Xo11 X1 Xni1 )+ G, (xn,xn,xn)]
<a(xn %01 % )Gy (Xog s X n)+,6’( 110 X2 X0 )G (X X0 X0 )+ 7 (X1 X0 X0 ) Gy (Ko g Xy )
X, 10 %0 [G Xo10 X0 X0 )+ Gy (X0 Xo,10 X001 ) =Gy (X, X0, %, )+ G, (xn,xn,xn)]
<a(xn % % )Gy (X X n)+,B( n1 %0 %0 )G (Xoo Xo X0 )+ 7 (X1 X0 X ) G (%o Xogs Xt )
X1 %o %o ) [G Xo10 %0 X0 )+ Gy (X, M,xml)]
Thus, with o, B,7,6 evaluated at (X,_,,X,,X,), we have
G, (X Xop10 Xoi1 ) S @Gy (Xg: X0 X, )+ BG, (Xogs X0 X, )+ 7G, (X X X1
+5[G X X )+ Gy (%, n+1,Xn+1)]
_(a+,8+y)max{Gp(xn %%, ),G (xn,xml,xml)}
+25max{Gp(xn_l,xn,xn) G (xn,xm,xm)}
s(a+ﬂ+7+25)max{Gp( h1 X X, ), G (xn,xml,xml)}
s/lmax{G (Xootr %o %0 )G (Xo s X0 X )}

©)

®)

n+1? n+l

Since A <1, then (5) becomes G, (X,, X1, X1 ) < AG, (X1y. X, %, )-
Consequently, G, (X, %,., n+1)</1" o (%01 %0, X))
For m>n we get

G, (Xns Xes X ) S G (X X X1 ) + G (Xt X X ) = G (Xpgs Xopgs Xy )
SG ( n?’ m2' m2)+G ( mZ’Xm—l’x—l)_Gp(Xm Z’Xm 21 m2)+G ( ml'Xm’Xm) Gp(xm—lixm—l’xm—l)
<G ( n’ n+1' n+1)+G ( n+1? n+2’Xn+2) Gp(xn+l’xn+llxn+1) (6)

+G ( n+21 n+3’Xn+3) Gp(Xn+2'Xn+2'Xn+2)+”'+Gp( ml’Xm'Xm) Gp(xm—bxm—llxm—l)

n

A7 (1 At A7) Gy (2 %) S A (1 2 4) G,y (02, %) S

1-4

GP(XO'Xl’XiL)'
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n!m? 'm

Take the limit as n— o in (6) yields lim Gp(x Xy X )=0 which implies that {xn} is a Cauchy se-
quence. Since X is a complete space then therg"exists x e X such that {xn} convergesto x and

lmGp(X“’X’X):n,IrinTwGP(X X x):Gp(x,x,x):nylrierGp(x Xeys X ) = 0.

n'n?n n' m? *m

Next we prove that x is the fixed point of T. From (3) and (4), since x, < x,forall neN,
G, (X TXTX) <G, (X X, X, )+ G, (X, T}, TX) =G, (%, %, X, ) S G (X, %, %, )+ G, (TX, 1, TX, TX)

1 n n’“*n?’n 1 n

<G, (X%, %, )+ Gy (%40 % X) + BG, (X1, TX 1, X,y ) +7G, (X, TX,Tx)

11 %

+3[ Gy (X1, T TX)+ G, (X, %, 1, T%, ) ],

where a,f,7,6 areevaluated at (X, X, ;, X, ;).
Take limitas n— oo yields

G, (X, Tx,TX) <G, (X, TX,Tx)+ G, (X, TX, Tx) < (¥ + )G, (X, Tx, Tx) < AG, (X, Tx,Tx).

Since <1, then G, (x,Tx,Tx)=0. Hence x=Tx.

For uniqueness, suppose u,ve X and u=v are two fixed points of T, and there exists ze X which is
comparable to u and v. Monotonicity of T implies that Tz, is comparable to T"u=u and T"v=v for
n=0,12,---.

Moreover

GP<T”Z,T”u,T”u)SaGp(T”’lz,u,u)+ﬂGp(T”’lz,T”z,T”z)+7Gp(u,T”u,T"u)
+5[Gp(T”’lz,T“u,T”u)+Gp(u,T“z,T”z)J
saGp(T”’lz,u,u)+ﬁGp(T”’lz,T”z,T”z)ﬂ/Gp(u,T”u,T”u)
+8[G, (T2,T"0, T )+ G, (u T2 T 2)+G, (T2, T"2,T"2) -G, (T2, T2, T2
where «a,f,7,8 are evaluated at (T”‘lz,T”‘lu,T”‘lu).
Taking the limitas n— o and by symmetry we get,
G, (T"z,u,u)<aG, (T"'z,u,u)+26G, (T"'z,u,u) < (a+25)G, (T"'z,u,u) < AG,(T"'zuu)  (7)

Consequently, GrF(T”z,u,u)sl”Gp(Tzo,u,u).
Similarly, Gp(T Z,V,V) < A"G, (Tz,,V,V).

Finally forall ne N with n>7 where e N we have,
Gp(u,v,v)st(u,T”’lz,T”’lz)+Gp(T”’lz,v,v)—Gp(T”’lz,T“’lz,T”’lz)
<G, (U, T 2, T2 )+ A" "G, (T 25,V,V).

Letting n— oo yields G, (u,v,v)=0. Hence u=v.

Theorem 2.1 can be viewed as an extension of results of Turkoglu et al. ([11], Theorem 2.1) to the setting of
G-partial metric spaces endowed with an order. The following corollary can be obtained:

Corollary 2.2. Let (X,=<) be a partially ordered set and let there exist a G-partial metric G, in X such that
(X,Gp) is a complete G-partial metric space. Let T: X — X be a self-mapping in X such that for each
X,y e X satisfying x <y,

1
G, (Tx,Ty,Ty)<k max{Gp (%.¥,¥),G, (xTx,Tx),G, (y,Ty,Ty),E[Gp (x.Ty,Ty)+G, (y,Tx,Tx)}},
where k e[0,1).
Suppose T is a non-decreasing map such that there exists an x, € X with x, <Tx,. Also suppose that X is

such that for any non-decreasing sequence {xn} convergingto x, x,<x forall neN. Then T has a fixed
point. Moreover, if for each u,ve X, there exists ze X which is comparable to u and v, then T has a

unique fixed point.
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Proof: Observe that

k malx{Gp (%,y,Y),G, (x,Tx,Tx),G, (y,Ty,Ty),%[Gp (x, Ty, Ty)+G, (y,Tx,Tx)J}

=a(XY,Y)G, (X, ¥, ¥)+B(x¥,Y)G, (X Tx,Tx)+7(x,y,y)G, (.Ty,Ty)
+8(x,Y, y)[Gp (x,Ty,Ty)+Gp (y,Tx,Tx)J

where a,B,7: XxX > {0,k} and 6:XxX - {0;} are chosen such that forany (x,y)e X x X, oneand

onlyone of a(x,y,y),B8(x.y,y).7(X,y,y),8(xy,y) isnon-null. In such case,

a(% Y, y)+B(X% Y, Y)+7(% Y, y)+25(x y, y) =k <L.

Thus, the proof of the corollary follows from Theorem 2.1.

Theorem 2.3. Let (X : <) be a partially ordered set and suppose there exists a G-partial metric G, in X such
that (X,Gp) is a complete G-partial metric space. Let T: X — X be a generalized Ciric quasi-contraction
map such that o satisfies limsupa(t)<1 foreach ae[0,), forany x,ye X with x<y.

Assume that there exists & x, € X with the bounded orbit, that is the sequence {xn}, defined by
X,,; =TX, for all n, is bounded. Furthermore, if T is an increasing map such that there exists an x, € X with
X, < TX,, and if any non-decreasing sequence x, — X satisfies x, < x for all n, then T has a fixed point.
Moreover, if for each X,y e X, there exists ze X which is comparable to x and y, then T has a unique
fixed point.

Proof. Starting with x; € X such that x, <Tx,, and with T non-decreasing, we have

Xo <Xy <T%%, < T3, < <T"%, <.
We prove that there exists 0 < ¢ < 1 such that
a(G, (X, X1 Xy, )) < G, for each n > 0. ®)

n! n+lr Tntl

On the contrary, assume that
Ema(Gp (xnk Dy Xnk+1)) =1

for some subsequence {a(Gp(x X 1% ))} of {a(Gp(x X ., X ))} Since by our assumption the se-

ng ! g +10 P +1 n* Sn+l Pn+l

quence {Gp(xn,xml,xml)} is bounded, then the subsequence {Gp(x X 111 X )} is bounded too. Since the

ng ! e+ oy +1
sequence is monotonic and bounded then it converges. Let a= l!im G, (xnk X qs X ) From our assumption,
—0

P+ P+l

limsupe(t)=1, acontradiction. Thus (8) holds.

t—a
Now, we show that {xn} is a Cauchy sequence. To prove the claim, we show by induction that for each
n=2,

G, (X Xy %, ) < K, )
where K is a bound for the bounded sequence {Gp(xo,xn,xn)}. When n=2,
G, (T, T?%, T2%, ) S (G, (%0, T, TX, ) ) Max {G, (%5, T%, Ty ), Gy (X5, T, T ).
Gp(Txo,szo,szo),Gp(xO,szo,szo),Gp(TxO,Txo,Txo)}.
From the axiom (Gp1), G, (T, TX,, TX)) <G, (%, T%,,TX,). Thus
Gp(xl,xz,xz)ga(Gp(xo,xl,xl))max{Gp(xO,xl,xl),Gp(xl,xz,xz),Gp(xo,xz,xz)}

<a(G, (%, %% ))max{G, (X, %, % ), G, (X9, %, %, )} < Kc.
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Thus (9) holds for n=2.
Suppose that (9) holds for each k < n; let us show that it holds for k = n. Since T is a generalized Ciric quasi-
contraction map,

Gp (Xn 1’Xn’xn) (Gp (Xn—Z'Xn—ll Xn—l))maX{Gp (Xn—Z'Xn—ll Xn—l)'Gp (Xn—Z'Xn—ll Xn—l)!

(10)
G, (Xog %01 %0 )2 Gy (X020 %0, %, ), G (xnfl,xnfl,xnfl)}.
From axiom (Gp1), G, (X,_;:X,1.%,1) <G, (X, 42 X0 %, )
Hence (10) becomes
Gy (Xo10 %0 %0 ) S @(Gy (o0 %, 10 %, 1)) ax{ o (X020 % 1%, ):Gy (Xt %00 % )1 Gy (X0 X0 X, )}
<a(Gy (o % 10 %01))MAX{G, (X, 50 X1 X, 1), Gy (Xy 20 %0 X, )}
<cmax{G, (X, 5%, 1, 7)G ( n2 %0 %))
From the induction hypothesis, G, (X,_,.X,_1,%, ;)< Kc"?. Thus,
G, (x, l,xn,xn)<(:max{Kc”’2,Gp(xn 2,xn,xn)}ﬁ max{Kc”’l,po(xn 2,xn,xn)} (11)
We also have from the definition of T and the induction hypothesis,
G, (Xypr Xgi X, ) < (Gp(xn 20 X1 X g ))max{G (Xo-gs X010 %021 )2 Gp (X3 X000 X2 ).
G, (X %01 %, )2 Gy (X3 %, %, ), G (xnfl,xnfz,xnfz)}
<emax{G, (X, 3% 1% 1), KE", G, (X1 %0, %, ), Gy (X, 5%, %, ), Ke™ }
<cemax{Ke"*,G, (X, 5% 1. %51 ):Gp (X 30 %00 %0 ), Gy (X1 %0 %, )}
<max{Ke"?,G, (X, 5% 1% 1):€8y (X, 5. %1%, ), €G (X 1. %0, %, )} -
The inequality (11) becomes
G, (%, 1,xn,xn)<max{ ¢""G, (Xogr X1 X0t )1 €7Gp (Xy_gs X0 X, ), € Gp(xn_l,xn,xn)} w2

n!n

Smax{K ", E%G, (Xogr Xog: Xog )1 €°G (X g0 Xy X )}
Repeating the same process,
G, (X, l,xn,xn)<max{Kc”‘l,c3Gp(xn74,xn72,xn72),c3Gp(Xn 4 %010 %01 ), €°Gy (X4 n,Xn)}
<< max{Kc”’l,c”’le(xo,xl,xl),-n,c“’le(xo,xn, X, )} < Ke"™.

Thus (9) holds for each n>2. From (9) we deduce that {xn} is a Cauchy sequence.
Since X is complete then there exists qe X suchthat limx =q and

I|m G o (X X0 X ) = liM G (x,,0,9) = lim G, (x,,%,,%,)=G,(9,0,q9) =0.

Now we prove that g is the fixed point of T. To show that, we claim that there exists 0 < b < 1 such that
(G, (0.%,.%,)) <b.

On the contrary, we assume ﬂiﬂa( (q Xo + X, ))=1 for some subsequences {xnk}. Since
limG, (q, - nk) 0, then Iirpjoupa(t)zl, a contradiction.
Since T is a generalized quasi-contraction mapping we have
G, (Ta,T%,,Tx,) < (G, (a,%,,%,))max{G, (d,%,.x,),G, (4,Tq,Tq),
G, (Xpr %10 %011): Gy (0 %10 %41 ), G p(xn,Tq,Tq)}.



J. O. Olaleru et al.

Letting n— oo, wehave, G,(Tq,q,9)<bG,(q,Tq,Tq).

Also G,(0,Tq,Tq)<hG,(Tq,q,q). Hence G,(Tq.q,q)<b’G,(Tq,q,q). Sinceb<1,q=Ta.

The uniqueness of the fixed point follows from the quasicontractive condition.

Theorem 2.3 is an extension of Theorem 2.3 of Gordji et al. [4] to G-partial metric space in the sense that, if

max{Gp(x, ¥,¥).G, (xTx, Tx),G, (v, Ty, Ty),G, (x,Ty,Ty),G, (v.Tx, Tx)}=Gp(x, y.Y),
in (1), then we get
G, (TxTy,Ty)<a (G, (x.Y.¥))G, (x.y.¥),

which is the G-partial metric version of the map of Gordji [9].

The proof of Corollary 2.4 follows from Theorem 2.3.

Corollary 2.4. Let (X ,<) be a partially ordered set such that there exists a G-partial metric on X such that
(X ,Gp) is a complete G-partial metric space. Let T : X — X be an increasing mapping such that there exists
X, € X with X, <Tx,. Suppose that there exists o :R* —[0,1) such that

G, (Tx,Ty,Ty)< a(Gp (XY, y))Gp (x,v.y),

for all comparable x,ye X. If T is continuous and if for each X,y e X, there exists z e X which is compara-
ble to x and y. Then T has a unique fixed point.

Example 2.5. Let X =R" and a G-partial metric defined by G, (x,y,z)=max{x,y,z} forall x,y,zeR.
On the set X, we consider the usual ordering <. Clearly, (X,Gp)p is a complete G-partial metric space and

(X ,s) is a partially ordered set. Define a function T:R" — R" as follows: Tx =§ for all xeR. Define

a:[0,0)—>[0,1) by a(t)=1+t_2t for each te[0,0). Then we have,

G,(xy.y)< amax{Gp (% ¥,¥),G, (x.Tx,Tx),G, (y,Ty,Ty).G, (x, Ty, Ty),G, (y,Tx,Tx)}

for each x,ye X. Thus, all of the hypotheses of Theorem 2.3 are satisfied and so T has a unique fixed point (0
is the unique fixed point of T).
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