
P. Herrero et al. (Eds.): OTM 2012 Workshops, LNCS 7567, pp. 194–206, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Ontology-Based Support for Security Requirements
Specification Process

Olawande Daramola1,2, Guttorm Sindre2, and Thomas Moser3

1 Department of Computer and Information Sciences
 Covenant University, Ota, Nigeria

Olawande.daramola@covenantuniversity.edu.ng
2 Department of Computer and Information Science

Norwegian University of Science and Technology (NTNU), Norway
{wande,guttors}@idi.ntnu.no

3 Christian Doppler Laboratory for Software Engineering
Integration for Flexible Automation Systems

Vienna University of Technology, Austria
thomas.moser@tuwien.ac.at

Abstract. The security requirements specification (SRS) is an integral aspect of
the development of secured information systems and entails the formal docu-
mentation of the security needs of a system in a correct and consistent way.
However, in many cases there is lack of sufficiently experienced security ex-
perts or security requirements (SR) engineer within an organization, which lim-
its the quality of SR that are specified. This paper presents an approach that
leverages ontologies and requirements boilerplates in order to alleviate the ef-
fect of lack of highly experienced personnel for SRS. It also offers a credible
starting point for the SRS process. A preliminary evaluation of the tool proto-
type – ReqSec tool - was used to demonstrate the approach and to confirm its
usability to support the SRS process. The tool helps to reduce the amount of
effort required, stimulate discovery of latent security threats, and enables the
specification of good quality SR.

Keywords: security requirements, ontology, requirement boilerplates, informa-
tion extraction, security threats.

1 Introduction

The increasing opportunities for systems integration, remote access, and sharing of
resources across heterogeneous platforms by diverse software agents have made secu-
rity requirements engineering (SRE) a major aspect of software system development
in recent times. The Security requirements specification (SRS) process, which entails
the formal documentation of identified security needs of a system, is an integral as-
pect of SRE [1]. However, there is a lack of sufficiently experienced security experts
or security requirements engineers in many organizations, which limits the quality
of SRS. SR becomes too vague or too specific in many cases due to the absence of

 Ontology-Based Support for Security Requirements Specification Process 195

experienced SR personnel [2, 3]. This scenario implies the need for a tool-based
framework that is capable of supporting the SRS process. The framework will: 1)
assist the requirements engineer (REng) in the identification of security threats, which
is usually a manual procedure that depends largely on the expertise of human person-
nel; 2) stimulate the adoption of appropriate defence strategies to deal with the identi-
fied security threats; 3) enable the formulation of SR in a consistent way, eliminating
ambiguity, and ensuring correctness of SR; and 4) reduce the effort needed for SRS
by allowing the reuse of previously specified SR in subsequent instances. The aim is
to assist the REng in the process of SRS so that the quality of SRS can be enhanced
and effort reduced.

To achieve these objectives, we have integrated the use of ontologies and require-
ments boilerplates within a semantic framework-based tool to aid the REng personnel.
The use of ontologies provides the necessary background knowledge, and domain
knowledge that is required to identify security threats, and recommend appropriate
countermeasures, while the requirements boilerplates provide a reusable template for
writing SR in a consistent way in order to eliminate ambiguity. The uniqueness of our
approach stems from the provision of a more elaborate procedure for supporting
the SRS process relative to existing approaches because our approach: 1) enables
identification of security threats; 2) provides recommendation of defence actions as
countermeasure to identified security threats; and 3) enables pattern-based reuse of
boilerplates when writing SR. The evaluation experiment that we conducted, reveal
that our approach is usable to support SRS.

The rest of this paper is as follows. Section 2 gives an overview of background and
related work, while Section 3 presents a detailed overview of our approach. Section 4
discusses the evaluation, results, and threats to validity. The paper is concluded in
Section 5 with a discussion of further work.

2 Background and Related Work

In this section, we present an overview of ontology support for security requirements
engineering (SRE), boilerplates for security requirements. Additionally, we discuss
the related work.

2.1 Ontology Support for Security Requirements Engineering (SRE)

There is a lack of systematic processes for attaining software security [1], hence SRE
attempts to add security considerations into software requirements engineering. SRE
aims to integrate the security needs of a system particularly from the attacker’s pers-
pective into the software development process as early as possible. According to [3],
SR objectives can be categorized as authentication, authorization, integrity, intrusion
detection, non-repudiation, confidentiality, and auditing. Some well-known SRE ap-
proaches include Comprehensive, Lightweight Application Security Process (CLASP)
[4], System Quality Requirements Engineering (SQUARE) [5], Common Criteria [6],
Secure Tropos [7], and Misuse Case [8].

196 O. Daramola, G. Sindre, and T. Moser

Ontologies as the semantic representation of the conceptualization of a domain
have an important role to play in SRE. Research efforts on security ontologies such as
[9, 10, 11] attest to this. In [12] the use of ontology was suggested as the solution to
the problem of vaguely defined vocabularies among security practitioners.

According to [13], specific applications of ontologies to SRE include security tax-
onomies, general security Ontologies, specific security ontologies, security ontologies
for Semantic Web, security ontologies for risk analysis, and ontologies for security
requirements.

Generally, a good ontology will facilitate more effective reporting of incidents,
sharing of information, and interoperable security collaborations among different
organizations. Our proposed framework uses ontology to ensure the standardization of
vocabulary in SRS, threat identification, and the recommendation of appropriate
countermeasure to identified threats.

2.2 Boilerplates for Security Requirements

The notion of requirements boilerplates (RB) which stems originally from the work of
[14], and subsequently applied in [15] enables the writing of requirements in a consis-
tent manner. A requirement boilerplate is a pre-defined structural template for writing
requirement statements. It imposes a uniform structure on the way requirements are
written, by affording a level of expressivity akin to using of natural language, yet
minimising ambiguity in requirement statements. The fixed parts of requirement boi-
lerplate are reused when writing requirements, while the REng can fill in the parame-
ter parts manually.

An example of a boilerplate taken from the webpage1 is:

“BP2: The <system> shall be able to <action> <entity>”

Here, BP2 is the label of this particular boilerplate. The terms in < > brackets are
parameters where something must be filled in when the boilerplate is instantiated to a
concrete requirement. The words that are outside brackets are the fixed syntax ele-
ments (FSE) that will be kept as-is when the boilerplate is instantiated. An example of
an instantiation of this particular boilerplate, would be "The payroll system shall be
able to display login details of all its users". In this case <action> has been replaced
by “display login details” and <entity> by “all its users”. In some cases, several boi-
lerplates may be combined to make precise and testable requirements, e.g. combining
BP2 with BP37 ...at least <percentage> of the time will yield the requirement "The
payroll system shall be able to display login details of all users at least 100% of the
time".

Thus, the use of boilerplate will ensure that a unified structure and style of writing
is used for requirements that pertain to specific classes of system function, capability,
goals, or constraints. The FSE in each boilerplate will remain the same for all re-
quirements that used a certain boilerplate. For instance, all who used BP2 + BP37 to
specify that the system should be able to do something with some specific frequency,

1 http://www.requirementsboilerplates.org

 Ontology-Based Support for Security Requirements Specification Process 197

will now use phrases "shall be able to", "at least", "times per", rather than various
other phrases that could have more or less the same meaning, e.g., "have the ability
to", "be capable of", "a minimum of", "more than", "shots per", etc.

Firesmith in [16] identified four different types of defence against security threats,
which can be used to assign specific security threats to the types of defence actions to
counter them. These are:

(i) Prevention of malicious harm, security incident, security threats and security
risks.

(ii) Detection of malicious attack, security incidents, security threats, and security
risks.

(iii) Reaction to detected malicious attack.
(iv) Adaptation of system to avoid or minimize the negative consequences of the

malicious harm, security incidents, security threats and security risks. This
could also be in terms of recovery of system from attacks.

For each of the defence types, Firesmith also gave specific examples.
The examples in [16], could be the basis for some generic SR boilerplates, e.g.

SecBP1: The <system> should [prevent | detect] at least <percentage> of <harm |
incident | threat | risk>

SecBP2: Upon detection of <harm | incident | threat | risk> the system shall <ac-
tion>

SecBP11: ...of attacks with maximum duration <time unit>
SecBP12: ...made by attackers with profile <attacker profile>
SecBP21: ...at least <percentage> of the time

Here, SecBP11, SecBP12, and SecBP21 are parts that could be optionally concate-
nated with SecBP1 or SecBP2 respectively.

To use boilerplates for SRS in practical terms will entail the formulation of
requirement boilerplates for the different aspects of security such as authentication,
authorization, integrity, intrusion detection, non-repudiation, confidentiality, and au-
diting. Therefore, more boilerplates could be formulated, both as core parts and as
attachments, but since boilerplates for security will vary for different domains, we
cannot go into more detail here. However, experienced personnel must create the
boilerplates prior to SRS as an upfront investment, while it should be updated period-
ically as new types of requirements emerge. By so doing, the boilerplate repository
becomes an organisational asset for SRS that can be useful when there is paucity of
experienced security REng personnel.

2.3 Related Work

We shall classify tool support for SRE into two broad categories – front-end tools and
back-end tools. Front-end tools and approaches are those that facilitate the elicitation,
modelling, and analysis of security threats in order to derive SR, while the back-end
tools are those that help with the specification and validation of SR, and their integra-
tion with other requirements. Notable examples of front-end tools include: SecTro
[17], - a CASE tool that supports automated modelling and analysis of security re-
quirements based on Secure Tropos approach. The ST-Tool [18] supports the Secure

198 O. Daramola, G. Sindre, and T. Moser

Tropos methodology. Its main goals are to support the translation of Secure Tropos
models into formal specifications, and serve as a front-end tool for formal analysis of
Secure Tropos models. The jMUCMNav (Java Use Case Map Navigator, [19]) editor
is a modelling tool for Misuse Case Maps (MUCMs) in designing secure architectures
for business processes. jUCMNav simply focuses on modelling for use case maps
(UCM) and supports all UCM notations. Other front-end SRE tool that are worth
mentioning are: SeaMonster [20, 21], and Surakasha security workbench [22].

Currently, there are more front-end tools than back-end tools for SRE. The
SQUARE tool [5] is a back-end managerial tool that is designed to increase the quali-
ty of SRE process for the adopters of the SQUARE methodology. It support core SRE
aspects such as definitions, searching, and addition of new terms, identification of
security goals, assets and privacy goals, performing risk assessment, identifying
threats, prioritizing requirements, traceability, and exporting of requirements to other
requirements management tool. Similarly, the prototype tool - ReqSec tool – that we
have developed is an eclipse-based back-end tool that supports SRS, and enables the
integration of SR with other types of requirements. The unique feature of the ReqSec
tool compared to other SRE back-end tools stems from its capability to facilitate au-
tomatic analysis of natural language requirements in order to assist the REng during
SRS. It represents a first attempt to use semantic-based procedures for supporting
both security threat identification and SRS. In the wider requirements engineering
context, approaches such as [23] – ambiguity detection-, [24, 25] – requirement
quality assessment-, are also based on natural language (NL) text analysis but did not
use ontologies. The DODT [26] tool does not have a focus for SRE, but it bears simi-
larity with our approach, because it combines the use of ontologies and boilerplates to
enable semi-automatic transformation of NL requirements into boilerplate require-
ments. However, it can only ensure the correctness of requirements based on the un-
derlying domain ontology, and the writing of boilerplate requirements. Our approach
does more, in that it entails the discovery of latent security threats contained in NL
descriptions, and the recommendation of probable defence actions that aids the for-
mulation of semi-formal boilerplate SR. Hence, the novelty of our approach is the
provision of a backend tool for SRE that will minimize effort needed for SRS, and
offer a credible starting point for SRS, particularly in cases where there is paucity of
experienced personnel.

3 Approach Overview

A high-level schematic overview of our approach is presented in Fig. 1. The process
starts with input of description of the security threat scenario, which should be
represented as a textual Misuse Case (TMUC) [8]. This is followed by identification
of type of attack and required defence action through semantic text analysis of the
TMUC, thereafter suggestion of boilerplates to be used to the REng, and finally speci-
fication of SR by the REng.

 Ontology-Based Support for Security Requirements Specification Process 199

Fig. 1. Activity Workflow of the tool-supported SR Specification Process

3.1 Database Tampering - Example

In order to demonstrate how our tool-supported framework can be applied, we hereby
consider the example of a security threat description of database tampering scenario.
The detail of the scenario is presented in Table 1 using a TMUC template.

Table 1. TMUC for Database Tampering Case

Code: QC1

Misuse Case
Title

Tamper with database by web query manipulation

Name of System Web Query System

Summary A crook manipulates the web query, submitted from a search form, to
update or delete information, or to reveal confidential information;

Basic Path The crook provides some values on a product search form and sub-
mits. The system displays the product(s) matching the query. The
crook alters the submitted URL, introducing a query error, and re-
submits. The query fails and the system displays the database error
message to the crook, revealing more about the database structure.
The crook alters the query further, for instance adding a nested query
to reveal secret data or update or delete data, and submits. The sys-
tem executes the altered query, changing the database or revealing
content that should have been secret.

Alternative Path The crook does not alter the URL in the address window, but intro-
duces errors or nested queries directly into form input fields.

Input TMC Details
The TMUC template [8] has two core aspects namely the basic path, and the alterna-
tive path. The basic path describes the security threat scenario that could be used by
an attacker to cause harm to a system, while the alternative path specifies the other

200 O. Daramola, G. Sindre, and T. Moser

options that may be explored by an attacker or user with malicious intent. These two
aspects together with the TMUC summary provide the key inputs used to identify the
type of attack, and required defence for the system.

Identify Type of Attack
We used information extraction technique to identify the type of attack described by a
TMUC template. The textual input are semantically analysed in order to identify and
extract the most important (theme) words that have security implications. The basic
threat ontology (BTO) (see Fig. 2), WordNet ontology, and the domain ontology
(DO) are used to do this. A theme word can be the subject of a sentence (noun), or an
action word (verbs) or a word collocation that connote a security threat to a system
when it has been analysed. Core natural language processing algorithms for tokeniza-
tion, parts-of-speech tagging, syntax parsing, morphological analysis, and ontology-
based inferencing were used to achieve this task.

Determine the Type of Defence Using the Basic Threat Ontology (BTO)
The BTO contains a mapping of different kinds of security threats to specific defence
actions based on information that was gathered from the literature and a number of
existing security ontologies. The BTO is a major investment and a core knowledge
infrastructure of the framework. The defence actions are the ones proposed by Fire-
smith in [16]. We reused all the essential aspects of the threat description in Security
Ontology [11] as foundation for developing the BTO, which included some additional
concepts. The BTO has a total of 98 classes, 46 restrictions and 9 object properties.
The key object properties include hasDefense – which associates a threat with a spe-
cific defensive action, hasThreat – which associate a threat with an asset, isThreathe-
nedBy – inverse of hasThreat, isThreatTo, isSameAs, - which describes equivalent
concepts. Each security threat in the BTO was mapped to one or more defence actions
(viz. detect, prevent, adapt, react, recover) using the hasDefense object property. Fig-
ure 2, presents a view of the BTO illustrating how specific types of attacks have been
mapped to corresponding defence actions. The knowledge contained in the BTO is
used for automatic recommendation of appropriate defence actions when a particular
type of attack has been identified from the TMUC input details. The Pellet OWL De-
scriptive Logics (DL) reasoner was used as the ontology reasoning engine for the
BTO.

Suggestion of Relevant Boilerplates
The information extraction process generates a set of recommendations comprising a
pair of defence-action and attack-type. Fig. 3 shows the recommended pairs for the
Database Tampering example. The recommended pairs are extracted directly from the
BTO after the semantic analysis of the TMUC. Ontology reasoning and other seman-
tic capability were facilitated using Stanford NLP toolkit2, Word Net java API, and
the Jena semantic framework3. Per-time, the REng will have to select a specific <de-
fence-action, attack-type> pair from the list of recommendations, and appropriate

2 http://nlp.stanford.edu/software/lex-parser.shtml
3 http://jena.sourceforge.net/

 Ontology-Based Support for Security Requirements Specification Process 201

Fig. 2. A view of the description of Malformed Input threat in the BTO using OntoViz

boilerplate, prefix and suffix, from the boilerplate repository to formulate a security
requirement automatically. However, the tool is able to learn by keeping track of the
combinations of <defence-action, attack-type> pairs and boilerplate patterns that tend
to go together based on user’s preferences. Subsequently, once a <defence-action,
attack-type> pair is selected, the tool automatically displays a list of fully formulated
boilerplate SR for the user to select from. This way, the fixed syntax elements (FSE)
of the selected boilerplate are reused, while the selected <defence-action, attack-type>
substitutes the <action> placeholder in the selected boilerplate. The REng can then fill
in the remaining part of the boilerplate requirements that require specific data to com-
plete the formulation of the SR (see Fig. 3).

Fig. 3. A snapshot of suggestions for database tampering from the tool

202 O. Daramola, G. Sindre, and T. Moser

4 Evaluation

We conducted a preliminary evaluation of our approach by using a controlled experi-
ment with seven subjects. The subjects were Master degree students of software engi-
neering of NTNU, Norway, who volunteered to participate in the experiment. The aim
was to assess the usability of the tool for supporting SRS. The participants were paid
for taking part in the experiment.

Background of Participants
The response to a pre-experiment questionnaire revealed that the participants had
good background knowledge in the specific areas such as system security, require-
ments engineering, ontology, and boilerplates that pertain to the experiment. They
have all taken two relevant courses – software security and requirements engineering
and testing – in the department – IDI / NTNU. In addition, the majority of the subjects
also claim to have some industrial work experience.

Evaluation Procedure
The participants were asked to use the Reqsec tool3 during a controlled experiment
that lasted for 1.5 hours. They were presented with four security threat scenarios, and
asked to formulate SR for each case by using the tool. All the participants performed
the same task at any given time during the experiment. The participants were given a
five minutes tutorial on the use of the tool4 before they commenced the experiment.
They were required to assess the tool along six dimensions - perceived usefulness
(PU), perceived ease of use (PEOU), intention to use (ITU), reuse (reu), accuracy
(acc), and serendipity (sere) - through a post-experiment questionnaire. The mean
score out of a maximum of 5.0 for each of the six dimensions are shown in Table 1.

4.1 Results

The analysis of the results from the post-experiment questionnaire revealed that the
tool had its highest mean rating in the aspects of perceived ease of use (PU), and se-
rendipity (sere) – the users acknowledged that the tool offered suggestions that they
had not thought about originally. The tool also had good rating in other aspects such
as reuse, accuracy, and intention to use. All the participants stated emphatically that
they would use the tool.

In the free comments feedback section of the questionnaire, the participants re-
vealed a positive general perception of the tool as potentially viable to support SRS,
and admitted their willingness to use it. Most agreed that the tool is easy to use, and
capable of assisting a REng. A few of them were particularly impressed that the tool
enabled them to write security requirements that they did not think about initially until
when they saw the suggestions from the tool. They all agreed that although the tool
offers useful support for SRS, it cannot be solely relied upon. This is because there
were occasions when the tool failed to suggest certain expected options. Some
of them advised that the tool would perform better if the quality of the underlining

3 https://www.idi.ntnu.no/~wande
4 https://www.idi.ntnu.no/~wande/Guide_for_Reqsec_Tool.htm

 Ontology-Based Support for Security Requirements Specification Process 203

ontology is improved. They also mentioned a number of areas that should to be im-
proved in the tool. This includes the fact that 1) the tool’s interface did not scale well
on the MacOs systems compared to Windows; and 2) the need to be able to save the
requirements that pertain to a TMUC all at once in the repository and not one at a
time. We agree with the observations of the participants and would seek to revise the
subsequent version of the tool based on the observations by participants.

Generally, the result of the evaluation demonstrates the potential of the tool to first,
simplify, and significantly aid the REng during the SRS process, particularly when
the REng is not highly experienced. Second, facilitate a reduction in the effort ex-
pended on SRS, particularly as the process progresses. Third, ensure that correct
terms are used when formulating SR, and in a consistent way without ambiguity.
However, our inspection of the specified security requirements revealed consistency
in the use of language and pattern of expression in formulated SR that pertain to same
security threat scenario by different individuals, which is mainly due to the use of
boilerplates and ontologies.

Table 2. Mean score rating for Tool Assessment

Metric Mean Std

PU 3 0.433013

PEOU 3.714286 0.698638

ITU 3.357143 0.481039

Reu 3.214286 0.393398

Acc 3.285714 0.95119

Sere 4 0.816497

4.2 Lessons Learned

Our experience from the evaluation emphasised the need for high quality underlying
ontologies – BTO, DO - and the boilerplate repository. Hence, an upfront and crucial
investment is to ensure that good quality BTO, DO and a rich boilerplate repository are
available at the onset of the tool. In order to cater to this, the tool comes pre-loaded
with the BTO and the boilerplate repository as basic artefacts, while a DO can be im-
ported into the tool. Also, provision was made to ensure the evolution of the BTO, DO,
and boilerplate repository with time. To do this, we have made it possible to continual-
ly revise the ontologies BTO, DO, and boilerplate repository from within the tool’s
environment. The tool includes an ontology management module that allows the addi-
tion of new concepts, properties, and axioms to an existing ontology, while the boiler-
plate management module allows the boilerplate repository to be updated. Thus, the
tool can be customised, and adapted to cater for future emerging requirements.

4.3 Evaluation Threats

Ordinarily, an industrial case study would give a different perspective to the evalua-
tion of the tool and the quality of tool support. However, the subjects used for the

204 O. Daramola, G. Sindre, and T. Moser

experiment are sufficiently knowledgeable in the relevant areas such as requirements
engineering, system security, ontologies, and requirements boilerplates having taken
taught courses in these areas. This makes them suitable as reasonable substitutes for
real experts in a preliminary evaluation. Also, the evaluation was performed with
only seven users, but although the statistical significance is reduced, the results are
indicative of the acceptance of the approach evaluated. Moreover, our objective is to
assess the potential usability of the tool to support SRS. Evidence in literature sug-
gests that a minimum of 5 subjects are sufficient to get a valid opinion on the usability
of a tool [27].

Another perspective to the evaluation could be to evaluate the tool alongside other
tools or to compare its performance with humans, either of, which could also lead to a
different result compared to what we have reported. However, comparative evaluation
with other tools is not attractive as at now because, hardly could we find any other
tool that have the same focus, and is set out to do exactly a similar thing as we envi-
sioned. The option to compare the tool capacity with human is a possibility for the
future, after this preliminary evaluation.

5 Conclusion

In this paper, we have presented the notion of ontology-support for security require-
ments specification. Our approach employs a tool-based framework that uses a com-
bination of ontologies and boilerplates to aid a requirements engineer in the process of
security threat identification and eventual formulation of quality SR. It provides the
attendant benefits of reducing the effort need for the SRS process, and offers a good
starting point in cases when sufficiently experienced REng may not be available. The
preliminary evaluation of the approach confirms that it is viable and usable for sup-
porting SRS. In future work, we will conduct a more elaborate evaluation by using
industrial case studies to further validate the approach. Also, we shall seek means to
further improve the performance of the tool, and extend the concepts to the aspect of
safety.

Acknowledgment. The Norwegian Research Council through the ReqSec project,
Norway, has supported this work while the first author of this paper was a Research
Scientist at NTNU, Norway. This work has been supported by the Christian Doppler
Forschungsgesellschaft and the BMWFJ, Austria.

References

1. Rushby, J.: Security Requirements Specifications: How and What? Symposium on Re-
quirements Engineering for Information Security (SREIS), Indianapolis (2001)

2. Firesmith, D.: Specifying Reusable Security Requirements. Journal of Object Technolo-
gy 3(1), 61–75 (2004)

3. Chandrabrose, A.: Alagarsami: Security Requirements Engineering – A Strategic Ap-
proach. International Journal of Computer Applications 13(3), 25–32 (2011)

 Ontology-Based Support for Security Requirements Specification Process 205

4. Viega, J.: The CLASP Application Security Process. Training Manual, vol. 1(1). Secure
Software Inc. (2005)

5. Mead, N., Stehney, T.: Security quality requirements engineering (SQUARE) methodolo-
gy. In: Proceedings of International Conference on Software Engineering for Secure Sys-
tems (SESS 2005), pp. 1–5 (2005)

6. Common Criteria Implementation Board. Common Criteria for Information Technology
Security Evaluation, Part 2: Security Functional Requirements (1999)

7. Mouratidis, H., Giorgini, P.: Secure Tropos: A security-oriented extension of the Tropos
methodology. International Journal of Software Engineering and Knowledge Engineer-
ing 17(2), 285–309 (2004)

8. Sindre, G., Opdahl, A.: Eliciting Security Requirements with Misuse Cases. Requirements
Engineering 10(1), 34–44 (2005)

9. Fenz, S., Ekelhart, A.: Formalizing information security knowledge. In: 4th International
Symposium on Information, Computer, and Communications Security (ASIACCS 2009),
pp. 183–194 (2009)

10. Kim, A., Luo, J., Kang, M.: Security Ontology for Annotating Resources. In: 4th Interna-
tional Conference on Ontologies, Databases, and Applications of Semantics, ODBASE
2005 (2005)

11. Herzog, A., Shahmehri, N., Duma, C.: An Ontology of Information Security. International
Journal of Information Security 1(4), 1–23 (2007)

12. Donner, M.: Toward a Security Ontology. IEEE Security and Privacy (2003)
13. Souag, A., Salinesi, C., Wattiau, I.: Ontologies for Security Requirements: A Literature

Survey and Classification. In: WISSE 2012 in Conjunction with 24th International Confe-
rence on Advanced Information Systems Engineering (CAiSE 2012), pp. 8 pages (June
2012)

14. Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer (2004)
15. Daramola, O., Stålhane, T., Sindre, G., Omoronyia, I.: Enabling Hazard Identification

from Requirements and Reuse-Oriented HAZOP Analysis. In: Proceeding of 4th Interna-
tional Workshop on Managing Requirements Knowledge, pp. 3–11. IEEE Press (2011)

16. Firesmith, D.: A Taxonomy of Security-Related Requirements. In: Proceedings of the In-
ternational Workshop on High Assurance Systems (RHAS 2005), Paris, France (2005)

17. Pavlidis, M., Islam, S., Mouratidis, H.: A CASE Tool to Support Automated Modelling
and Analysis of Security Requirements, Based on Secure Tropos. In: Nurcan, S. (ed.)
CAiSE Forum 2011. LNBIP, vol. 107, pp. 95–109. Springer, Heidelberg (2012)

18. Giorgini, P., Massacci, F., Mylopoulos, J., Siena, A., Zannone, N.: ST-Tool: A CASE Tool
for Modeling and Analyzing Trust Requirements. In: Herrmann, P., Issarny, V., Shiu,
S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 415–419. Springer, Heidelberg (2005)

19. Bizhanzadeh, Y., Karpati, P.: jMUCMNav: an Editor for Misuse Case Maps. In: First Int.
Workshop on Alignment of Business Process and Security Modelling (ABPSM 2011), Ri-
ga, Latvia (2011)

20. Tøndel, I.A., Jensen, J., Røstad, L.: Combining misuse cases with attack trees and security
activity models. In: Proc. ARES 2010, pp. 438–445 (2010)

21. http://sourceforge.net/apps/mediawiki/seamonster/
22. Maurya, S., Jangam, E., Talukder, M., Pais, A.R.S.: A security designers’ work-bench. In:

Proc. Hack. in 2009, pp. 59–66 (2009)
23. Gleich, B., Creighton, O., Kof, L.: Ambiguity Detection: Towards a Tool Explaining Am-

biguity Sources. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp.
218–232. Springer, Heidelberg (2010)

206 O. Daramola, G. Sindre, and T. Moser

24. Wilson, W., Rosenberg, L., Hyatt, L.: Automated Analysis of Requirement Specifications.
In: Proceedings of the International Conference on Software Engineering (ICSE 1997),
pp. 161–171 (1997)

25. Fabrini, F., Fussani, M., Gnesi, S., Lami, G.: An Automatic Quality Evaluation for Natural
Language Requirements. In: Proceeding of the Seventh International Workshop on Re-
quirements Engineering Foundation for Software REFSQ 2001, Interlaken, Switzerland,
pp. 150–164 (2001)

26. Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Zojer, H., Panis, C.: DODT: Increasing
Requirements Formalism using Domain Ontologies for Improved Embedded Systems De-
velopment. In: Proceedings of 14th IEEE Symposium on Design and Diagnostics of Elec-
tronic Circuits and Systems (DDECS 2011), pp. 1–4 (2011)

27. Nielsen, J., Landauer, T.: A mathematical model of the finding of usability problems. In:
Proceedings of ACM INTERCHI 1993 Conference, pp. 206–213 (1993)

