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Abstract—   The subject of control system design has evolved 

considerably over the years. Although several design techniques 

and strategies have been adopted to realize control systems that 

meet a predetermined set of performance criteria, the 

fundamental problem remains that of developing controllers to 
adjust the performance characteristics of a dynamic system in 

order to obtain a desired output behavior. The dynamic behavior 

of a magnetic levitation system (MLS) of a ferromagnetic ball is 

compensated in this paper. Consolidating the exposure of 

undergraduate students to the rudiments of control system 
design, the paper employs the classical root locus technique to 

stabilize the system. A combination of analytical and software -

based methods is used to design proportional-derivative and 

phase-lead compensators based on the linearized model of the 

system. Complete details of the design approach, from modeling 
and analysis of the plant to computing the values of the controller 

parameters, are shown. MATLAB scripts for plotting root loci 

and simulating the system are provided. 

 

Index Term—  compensators, magnetic levitation system, 

MATLAB® scripts, modeling, root-locus method, system stability 

 

I.    INTRODUCTION 

THE magnetic levitation system has attracted a great deal of 

attention both in the industry and academia. In the industry, 

significant applications, such as passenger train levitation, 

magnetic bearing, metal sheet levitation, protection of 

sensitive machinery, etc., have been recorded, while in the 

academia, authors of books on control systems theory [1], [2] 

have used similar versions of the system to educate 

undergraduate students on the subject of control systems, with 

laboratories having prototypes and experimental models of the 

system handy for instructional purposes [3], [4]. The magnetic 

levitation system of a ferromagnetic ball has a complex 

nonlinear dynamic equation, and its characteristic response 

inherently unstable [5]. Successful efforts have been made to 

design nonlinear controllers [6] just as well as linear  
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controllers [3], [4], [5] to stabilize the system. This latter type, 

which is further considered in this paper, is based on the 

linearized version of the system operating in a small range 

around an operating point. The aim of the paper is to shed 

more light on the use of a classical technique in stabilizing a 

magnetic levitation system. The rest of the paper is arranged 

as follows. Section 2.0 considers the complete modeling of a 

magnetic levitation system, with both nonlinear and linearized 

models treated in detail. Section 3.0 focuses on the magnetic 

levitation system design and simulation, and also, shows 

graphical displays to buttress design results. And finally, 

Section 4.0 presents the conclusion. All the MATLAB scripts 

used for the design and simulation are separately given in the 

appendix.  

 
II.     MAGNETIC LEVITATION SYSTEM  MODELLING 

A. Layout of the System 

The layout of a typical magnetic levitation system is 

illustrated in Fig. 1 [6]. This arrangement involves the 

adjustment of magnetic energy or force in order to balance or 

counteract the gravitational pull exerted on an object (a small 

light ferromagnetic ball in this case). 

Restricted to the vertical direction only, the motion of the ball 

is monitored by a properly arranged pair of a light emitter and 

a light detector so that the instantaneous position of the ball 

can be fed back for the purpose of control computation. This 

control effort (generated by an electromagnetic circuit) is to 

ensure that the ball is brought to, and kept at, a desired 

position. As the ball‘s position deviates, due to an external 

disturbance, from the set point, the sensor output changes 

accordingly so that the right amount of control effort is 

computed and used to bring the ball back to the set point and 

keep it there. 

Fig. 2 is the representation of the electric circuit subsystem of 

the magnetic levitation system. It is a series combination of a 

linear resistor, with resistance R, and a non-linear inductor, 

with inductance L(y).  
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The inductance is non-linear due to the variable reluctance of 

the magnetic circuit—the reluctance is directly proportional to 

the distance between the electromagnet and the ball, implying 

that as this distance decreases (i.e., ball‘s approaching the 

magnet), the inductance increases, and vice versa.  

 

B. Non-linear Model of the System 

To determine the complete model of this system, two 

important dynamic equations, one representing the variations 

of the magnetic flux with time (based on Fig. 2) and the other 

the Newtonian equation of motion of the ball based on forces 

acting on it as shown in Fig. 3, are required.  

 

 

 

 

 

 

 

 

 

 

 

From Fig. 2, it can be written that 

  
i

v)t(Ri
dt

)y,t(d



            (1)  

                      
where Ф(t, y) is the magnetic flux in webers, i(t) is the current 

in amperes, R is the resistance in ohms, v i is the source voltage 

in volts, and t is time in second. 

Since the magnetic flux around a coil is directly proportional 

to the current flow in the coil, with the coil inductance being a 

factor of proportionality, thus, 

 )t(i)y(L)y,t(             
(2) 

Differentiating (2) with respect to time and substituting the 

result into (1) yield 
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(3)  

where y(t) is the distance between the electromagnet and the 

ball, and L(y) is the total inductance of the circuit in henry. 

  Also, from Fig. 3,  

Fa + Fe = Fg             (4) 
where Fa is the accelerating force due to the mass of the ball, 

Fe is the magnetic force, and Fg is the gravitational force. 

Since  

2dt

y2d
m

a
F   and mg

g
F  , 

therefore, (4) can be rewritten as   

e
Fmg

2dt

y2d
m 

     
or 

e
Fmg

dt

dv
m 

 
In (5), m is the mass of the ball in kg, v( = dtdy ) is the 

velocity of the ball in m/s, and g is the acceleration due to 

gravity in m/s
2
. 

Equations (3) and (5), which constitute the mathematical 

representation of the system, can be developed further by 

redefining L(y) and Fe and finding appropriate expressions for 

them, respectively, as shown by the following derivations. 

L(y) represents the sum of two inductances, Lc and Lb, i.e., 

L(y) = Lc + Lb             (6)  
Lc, which is fixed, is the inductance due to the electromagnet 

coil; Lb is the inductance due to the ball. Because Lb is 

inversely proportional to the distance between the 

electromagnet and the ball, it implies that if Lo is the 

inductance that corresponds to a set-point position, yo, then the 

inductance, Lb, that corresponds to an instantaneous position, 

y, is expressed as 

 
y

oyoL
bL 

            

(7) 

Therefore, putting (7) in (6) gives  

y
oyoL

cL)y(L                (8)                        

Further, the magnetic force, Fe, is defined as the rate of change 

of work done with distance as the ball is moved from one 

position to the other by the force, and is given as  

Fig. 1.  Schematic of a magnetic levitation system. 
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Fig. 2.  Electric circuit subsystem of the maglev system. 
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dy
dW

eF             (9)               

where, W (the energy stored in the magnetic field) is 

2i)y(L
2
1W    

Hence, (9) gives 

 
2y

2i
oyoL

2
1

eF 

                     

(10) 

which, with Lo and yo fixed, can further be reduced to 

2y

2iKeF             (11)  

where K (called the magnetic force constant) = oyoL
2
1

 

Now, substituting (8) into (3), and (11) into (5), we have 
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and 

2y

2iKmg
dt
dvm           (13)                  

The final non-linear equations are  
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Let state variables and the input be defined as: 

ivu  ; i3 ; vdtdy2;y1  xx  x
 

The equivalent nonlinear state-space dynamic model of the 

system is:  
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C. Linearized Model of the System 

As can be seen in the model just developed, the maglev 

system is non-linear. As mentioned earlier, several non-linear 

controllers have been designed for this system in the literature. 

But the focus here is on how to improve the system 

performance for small-range operation. Therefore, the above 

non-linear model is linearized about a nominal operating 
point, xo(t), which corresponds to a nominal input, uo, using a 

Taylor series [7]. 

First, the model in (16) is rewritten as 

             (17) 

Then expanding (17) into a Taylor series about xo(t) = [xo1, xo2, 

xo3] and ignoring terms of order higher than first result in 
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where i = 1, 2, 3. 

Hence, 
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Noting that  
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The complete linearized state-space model in matrix notation, 

defining the output as  

        1y x  

yields  
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(21) 
Now, the nominal operating point of the system can be 

deduced by considering the behavior of the system at an 

equilibrium point. 

At an equilibrium point, and referring back to (16), 
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which implies that, given an equilibrium position, xo1, of the 

ball, 

1oK
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By substituting xo2 = 0 into (21), a simplified linearized state-

space model  
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(23)

 

results, where  I = xo3 ; yo = xo1. 

Note that the incremental symbol, Δ, has been dropped in (23). 

While this makes the model appear more compact, however, it 

does not change the meaning and interpretation of the model. 

Also in the same equation, L has been assumed to be 

equivalent to Lc since Lc >> Lo, and, under a properly tuned 

compensator, y = yo . 

 

III. MAGNETIC LEVITATION DESIGN AND SIMULATION 

  For system design, typical parameters values used are [8]: 

R = 31.1Ω; Lc = 0.109H; g = 9.81m/s
2
;  

K = 0.0006590Nm
2
/A

2
;  

m = 0.01058kg; I = 0.125A; y0 = 0.01m; 

The transfer function of the system can be determined from 

(23) as  

 

   5518301946.5s2283.50s3s

1419.6
U(s)

Y(s)



         (24) 

(The MATLAB script for finding this transfer function is 

shown in the appendix.) 

As can be seen from (24), this system is unstable—the Routh-

Hurwitz stability criterion is clearly not met. Therefore, a 

compensating network is required to stabilize it. The overall 

block diagram of the system is shown in Fig. 4. Here G(s) is 

the gain (or transfer function) of the plant, Gc(s) is the 

compensator gain, Gs(s) is the gain of the sensor (156V/m) [8], 

V1(s) is the output voltage of the desired position transducer, 

V2(s) is the output voltage of the sensor, E(s) is the error 

signal, U(s) is the compensator output, and R(s) and Y(s) are 

the desired and actual positions of the maglev system, 

respectively.   
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To verify whether simple gain adjustment will stabilize the 

system, a constant-gain compensator is used as shown in Fig. 

5. The root locus for this situation is depicted in Fig. 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

The root locus shows that no amount of increase in gain will 

result in system stability, as two of the system closed-loop 

poles always fall in the right-half s-plane. This is further 

supported by the Bode plot of the uncompensated system 

(shown in Fig. 7), which clearly reveals that for any value of 

the system gain, both the gain margin and the phase margin 

remain negative. (See the appendix for a MATLAB script to 

create these plots.) Therefore, the most important design 

challenge here reduces to that of stabilizing the magnetic 

levitation system.  

 

A. Proportional-Derivative Compensator 

A general cascade proportional-derivative controller is 

described by the transfer function [9] 

  

     (25) 

 

  

where Kp and KD are the proportional and derivative constants 

of the controller, respectively.  

Combining this with the maglev system transfer function 

results in the open-loop transfer function   

 

 

        (26) 

 

 

To determine the ranges of values of Kp and KD that will 

ensure system stability, the popular Routh-Hurwitz criterion 

[2] is used.  

The system is stable if the condition 

 

             (27) 

 

is met. The information given in (27) is used to generate root 

loci for the system in (26) in order to obtain an appropriate 

combination of values of Kp and KD that guarantees stability 

and gives good response. This is carried out by sweeping 

through various values for the ratio KP/KD and determining 

proper corresponding values for Kp. The resulting loci are 

displayed in Fig. 8. 

For the values of Kp/KD considered, Table I shows the 

corresponding pairs of values of Kp and KD as well as the 

closed-loop poles. The closed-loop responses are also shown 

in Fig. 9. From the responses, it is clear that the system can be 

stabilized by an appropriately designed PD compensator, 

although the system steady-state error is a bit high.  It is 

important also to point out that the use of a proportional-

derivative controller is limited in practice because of its 

inherent ability to amplify noise signals.  

 

 

 

 

 

 

 

 

 

 

 

 

Sensor 

Compensator 

 
Y R V1 

+ - 
E U 

V2 
Gs 

Gs G Gc + - 

Maglev 

system 

Fig. 4. Overall closed-loop representation of the maglev system. 
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Fig. 5. Block diagram of a constant gain-compensated maglev system. 
 

Fig. 7. The bode plot of an uncompensated maglev system. 

Fig. 6. The  root -locus of a constant -gain compensated maglev 

system. 
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Kp/KD Kp KD Pole s1 Poles s1, s2 

150 22.2 0.148

0 

-231.74 -25.88+134.77j,  

-25.88-134.77j  

100 16.8 0.168

0 

-185.51 -48.99+121.16j, 

 -48.99-121.16j 

80 14.3 0.178

8 

-148.64 -67.43+114.22j,  

-67.43-114.22j 

60 8.66 0.144

3 

-137.38 -73.06+67.86j,  

-73.06-67.86j 

50 5.85 0.117

0 

-166.28 -58.61+32.21j,  

-58.61-32.21j 

35 10 0.285

7 

-31.09 -126.20+193.78j, 

 -126.20-193.78j 

30 13.1 0.436

7 

-26.73 -128.39+267.23j,  

-128.39-267.23j 

20 9.14 0.457

0 

-15.48 -134.01+277.76j,  

-134.01-277.76j 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

B. Phase-Lead Compensator 

As can be seen from the uncompensated maglev system root 

locus, a pair of a zero (located between s = 0 and s = - 

44.1190) and a pole (located elsewhere in the right-half s-

plane, but farther away to the left of the zero) can be used to 

augment the uncompensated open-loop transfer function of the 

maglev system in order to stabilize it. This gives rise to a 

phase-lead compensator. And a typical representation of a 

phase-lead compensator is given by [10]  

ba    ;
bs
as

cK)s(cG 

           (28) 

where Kc, a, and b are the compensator gain, zero, and pole, 

respectively. 

If (28) is used to compensate the maglev system, the resulting 

open-loop transfer function becomes   

 

  

  )551830s5.19462s50.2833(sbs

ascK6.221457
)s(GH




  (29) 

The root-contour approach can be employed to find the 

appropriate values of Kc, a, and b, or since an approximate 

range of values of ‗b‘ is known, and the value of ‗a‘ can be 

deduced based on the reasoning that the farther ‗a‘ is from the 

imaginary axis (but not too close to the system open-loop pole 

at s = -44.1190) the better the stability,  then the compensator 

parameters can be determined from root loci generated for 

varying values of Kc. The latter approach is used here. 

Fig. 10 shows root loci for values of b between 44.119 and 

490, and a = 35. From this fig., it is apparent that the greater 

the value of ‗b‘ the farther to the left the branches of the locus 

between s = -44.119 and s = -283.50 (or -b) are. And for a 

Fig. 8. Root loci for pd-compensated maglev system various values of 

KP/KD. 

T ABLE I 

SELECTED PAIRS OF VALUES OF KP AND KD AND 

CORRESPONDING CLOSED-LOOP POLES 

Fig. 9. Closed-responses for the pd-compensated maglev system. 
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typical pair of a = 35 and b = 290, the range of values of Kc 

that guarantees system stability is 24 < Kc < 212. For these 

values of a and b, and a selected set of values of Kc, the 

closed-loop poles are given in Table II while the closed-loop 

responses are displayed in Fig. 11.  

 
 

 

Kc Poles s1, s2, s3, s4 

30 -408.98;         -71.17 -68.99j;             
 -71.17 +68.99j;                 -22.17 

40 -425.34;         -59.37 - 101.15j;             

-59.37 +101.15j                -29.42 

50 -439.38;         -50.98 -124.34j;           
-50.98 +124.34j;               -32.16     

60 -451.79;         -44.09 -142.77j;             

-44.09 +142.77j;               -33.53   

70 -463.00;         -38.08 - 158.24j;            
-38.08 +158.24j;               -34.35   

80 -473.25;         -32.68 - 171.69j;          

-32.68 +171.69j;               -34.89        

90 -482.74;         -27.74 - 183.65j;          
-27.74 +183.65j;               -35.27  

100 -491.59;         -23.17 -194.47j;           
-23.17 +194.47j;               -35.56     

120 -507.77;         -14.89 - 213.54j;            
-14.89 +213.54j;               -35.95   

130 -515.23;         -11.09 - 222.09j;            
-11.09 +222.09j;               -36.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

T ABLE II 

Selected values of Kc and the corresponding closed-loop poles for 
a = 35; b=290 

CORRESPONDING CLOSED-LOOP POLES 

Fig. 10. Root loci for a = 35 at various values of b. 

Fig. 11.Closed-loop step responses for a phase-lead compensated 

maglev system. 
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IV.      CONCLUSION 

Stabilization of a magnetic levitation system has been the 

focus of this paper. Although the system is an unstable 

nonlinear one, it is clear that a linear compensator can be 

designed to stabilize it if its operation is limited to a small 

range (although this greatly limits the robustness of the 

compensator). We develop a complete nonlinear model of the 

system, and then form an approximate linearized equivalent 

from it. Based on this linearized model, we consider two linear 

compensators—proportional-derivative and phase lead—and 

show that the magnetic levitation system can be stabilized by 

an appropriate selection of the parameters of the compensators 

using a classical design approach aided by a computer 

software tool. We compute and present the closed-loop poles 

of each design and the corresponding step responses, and also 

show the system stability limits. This approach proves quite 

useful and effective, as several simulation runs can be 

performed quickly to expedite the design. However, for a 

large-range operation, a more robust controller will be 

required to effectively bring the system into a region of 

stability. And for this latter type of controllers, several 

strategies, such as sliding mode control, adaptive control, etc., 

have been employed and are available in the literature, while 

the maglev system continues to attract more research attention. 

 

APPENDIX 

The various MATLAB scripts used in this tutorial are 

highlighted below. 

A. Computation of the maglev system transfer function  

% This script computes the transfer function of a maglev 

system using 

% Y/U=C((SI-A)^-1)B. 

syms s 

% Define the parameters of the model. 

R = 31.1; Lc = 0.1097; g = 9.81; K = 0.00065906;m = 

0.01058;I = 0.125;  

y0 = 0.01; 

% Compute the values of A, B, and C. 

A=[0 1 0;(2*K*I^2)/(m*y0^3) 0 -(2*K*I)/(m*y0^2);0 0 -

R/Lc];B=[0 0 1/Lc]'; 

C=[1 0 0];  

% Find the transfer function, Y/U. 

id=eye(3,3); 

disp('The transfer function is:') 

Tfunction=C*(inv(s*id-A))*B 

% Find the simplified transfer function, Y/U. 

[numTfunc,denTfunc]=numden(Tfunction);numTfunc=sy

m2poly(numTfunc); 

denTfunc=sym2poly(denTfunc);numTfunction=numTfun

c/denTfunc(1); 

denTfunction=denTfunc/denTfunc(1); 

disp('While the simplified transfer function is now') 

tf(numTfunction,denTfunction) 

 

 

B. The Root locus and bode plots of the uncompensated 

maglev system 

% This script plots the root locus and the bode diagram of 

the maglev  

% system when compensated by a constant gain. 

fnum=1419.6*156;fden=[1 283.50 -1946.55 -551830]; 

sys1=tf(fnum,fden); 

fig.(1) 

rlocus(sys1) 

fig.(2) 

bode(sys1) 

C. The root loci for simulating the pd-compensated 

maglev system 

% Script for simulating the root locus-based pd-

compensated design  

kp_kd=[150 100 80 60 50 35 30 20]; 

L=length(kp_kd); 

sysden=[1 283.50 -1946.5 -551830]; 

i=1; 

while(i<=L) 

    f=kp_kd(i); 

    sysnum=221457.6*[0 0 1/f 1]; 

    subplot(4,2,i) 

    rlocus(sysnum, sysden) 

    str=['The root locus for kp / kD = ' num2str(f)]; 

    title(str) 

    axis([-150 50 -200 200]); 

    i=i+1; 

end  

D. Closed-loop poles and step responses of the pd-

compensated maglev system 

% Script for generating the closed-loop poles as well as 

the responses of  

% the pd-compensated maglev system. 

kp_kd=[150 100 80 60 50 35 30 20]; 

kp=[22.2 16.8 14.3 8.66 5.85 10 13.1 9.14]; 

kd=kp./kp_kd; 

L=length(kp_kd); 

sysden=[1 283.50 -1946.5 -551830]; 

sys2=1;syspoles=zeros(8,3); 

i=1; 

while(i<=L) 

    f1=kp_kd(i);f2=kp(i); 

    sysnum=f2*221457.6*[0 0 1/f1 1]; 

    sys1=tf(sysnum,sysden); 

    sysfun=feedback(sys1,sys2); 

    syspole=eig(ss(sysfun))'; 

    syspoles(i,1:3)=syspole; 

    subplot(4,2,i) 

    step(sysfun)     

    str=['The step response for kp = ' num2str(f2) ' and kd 

='... 

    num2str(f1)]; 

    title(str) 

    i=i+1; 

end 

disp('The closed-loop poles are:') 

syspoles; 

E. The root loci for simulating the phase lead-

compensated maglev system 

% Script for simulating the root locus-based phase lead-

compensated design. 

a=35; 
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sysnum=221457.6*[0 0 0 1 a]; 

sysden1=[1 283.50 -1946.5 -551830]; 

b=[50 100 150 200 250 290 340 390 440 490]; 

Lb=length(b); 

i=1;clf; 

while(i<=Lb) 

    f1=b(i); 

    sysden=conv([1 f1],sysden1); 

    fig.(3) 

    subplot(5,2,i) 

    rlocus(sysnum, sysden)  

    str=['The root locus for a = ' num2str(a) ' and b = ' 

num2str(f1)]; 

    title(str) 

    axis([-200 100 -200 200]) 

    i=i+1; 

end  

F. Closed-loop poles and step responses of the phase lead-

compensated maglev system 

% Script for generating the closed-loop poles as well as 

the responses of  

% the pase lead-compensated maglev system when b = 

290. 

a=37.5; 

b=290; 

kc=[30 40 50 60 70 80 90 100 120 130]; 

L=length(kc); 

sys2=1;syspoles=zeros(10,4); 

i=1; 

while(i<=L) 

    f1=kc(i); 

    sysnum=f1*221457.6*[0 0 0 1 a]; 

    sysden=conv([1 b],[1 283.50 -1946.5 -551830]); 

    sys1=tf(sysnum,sysden); 

    sysfun=feedback(sys1,sys2); 

    syspole=eig(ss(sysfun))'; 

    syspoles(i,1:4)=syspole; 

    fig.(5) 

    subplot(5,2,i) 

    step(sysfun)     

    str=['The step response for a = ' num2str(a)' , b = ' 

num2str(b)',...  

    and kc = ' num2str(f1)]; 

    title(str) 

    i=i+1; 

end 

disp('The closed-loop poles are:') 

syspoles 
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