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ABSTRACT 
Power system stabilizers and other controllers are employed to damp oscillations in 
power systems, thereby guaranteeing satisfactory dynamic performance following major 
network disturbances. However, the parameters of these controllers are often tuned based 
on the power system linearized model which generally is a function of the system 
operating point or state. These controllers suffer from poor performance when the system 
state changes. The aim of the research work reported in this Thesis is to develop 
nonlinear synchronous generator excitation control schemes with control laws for 
providing improved transient stability when the system is subjected to wide parameter 
variations due to network disturbances. The study employed fourth-and third-order 
models of a single-machine-connected-to-an-infinite-bus system to design two nonlinear 
sliding mode control laws (CLs) and one finite-time homogeneous control law (CL), 
which were constructed based on a well-chosen output function of the system.  The 
parameters of the control laws were properly selected and/or tuned to give desirable 
dynamic characteristics using well established linear control methods. Justifications for 
the selection of the fourth-and third-order synchronous generator models to design the 
aforesaid controllers are presented. Dynamic simulations of the system under the action 
of the control laws were carried out using MATLAB®/SIMULINK. In order to test the 
performance of the laws, several simulation studies were performed when the voltage 
magnitude (V) of the infinite bus and the transmission line reactance (XE) of the system 
changed due to an applied three-phase symmetrical fault at the infinite bus and generator 
terminals. Results obtained from these studies show that the dynamic characteristics of 
the system being investigated have improved significantly, in terms of the rotor angle and 
rotor speed first peak, damping of low-frequency mechanical oscillations in rotor angle 
following fault clearance, and settling times of key stability indicators (rotor angle and 
rotor speed). For instance, for application of each of 5-cycle, 7-cycle, and 9-cycle fault at 
the infinite bus, the system rotor angle settled to its stable steady values within 1 - 2.2s 
with minimal control effort that varied between -5pu and 5pu before settling at the pre-
fault value of 1.5603pu in 4.32s (CL1), in 1.92s (CL2), and in 3.32s (CL3). Whereas, 
CL3, which is a contribution to the improvement of the existing general higher-order 
sliding mode control structure for synchronous excitation control, was able to make the 
system withstand greater fault duration than CL1, CL2, which has a new positive 
parameter (called the dilation gain) incorporated into it, furnished the system with the 
greatest fault-retaining capability. In practice, the implementation of the three control 
laws can be carried out in a static exciter configuration with a very fast response. 
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CHAPTER ONE: INTRODUCTION 

1.0 Background of the Study 

Generally, a modern power system can be defined as a collection of a large number of 

generating electric power sources interconnected through complex networks of 

transmission lines for the sole purpose of meeting the power demands of a large number 

of domestic and industrial loads. Because each power plant has several controllable states 

and state-dependent outputs, it can be defined as “a high-order multivariable system 

whose dynamic response is influenced by a wide array of devices with different 

characteristics and response rates” (Kundur et al., 2004). In order to accommodate more 

load demands and provide a constant and reliable electric power supply, several power 

controllers are employed at the transmission and distribution levels to deliver electric 

power to the load centers efficiently. The uses of these controllers have forced power 

system engineers to develop many techniques and strategies to be used at planning, 

design and operation stages. Normally, power systems tend to suffer frequently from 

adverse events such as large generation and load variations, transmission line faults, etc., 

and these events tend to affect system signals and operational parameters. Therefore, 

keeping the system within its operational bounds is paramount to its safe and reliable 

operation. 

Practically, generating unit controllers such as the prime mover and excitation systems 

are being employed in the power systems, besides the power and voltage controllers at 

transmission and distribution levels, not only to realize safe operation of an electric 

power system, but also to enhance system dynamic performance (Mariani & Murthy, 

1997). Specifically, the generating unit excitation control system can play a pivotal role 
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in enhancing systems stability and dynamic response to major network disturbances. 

Conventionally, the combination of an automatic voltage regulator (AVR) and a power 

system stabilizer (PSS) are used to provide constant output voltage and damp low-

frequency oscillations in power systems (Colbia-Vega et al., 2008; Huerta et al., 2010). 

But, because their structures are linear, the AVR and PSS have limited dynamic 

responses (Ortega et al., 2005; Ping et al., 2014 ). As a result, their parameters should be 

changed when the operating condition of the system changes significantly. Hence, an 

alternative approach such as the use of nonlinear control schemes must be adopted, and 

this was explored in this study. Through the use of these schemes, the power system 

dynamic characteristics can be improved upon, leading to better and more robust stability 

performance independent of system operating conditions, including the conditions during 

network faults. 

1.1 Significance and Motivation for the Study 

In a deregulated large-scale power system environment, it is paramount that the power 

system has the ability to meet stringent performance requirements which arise as an 

upshot of, among other things, stressed operating conditions and uncertain power flow 

paths (Chow et al., 2005). Realizing the dynamic performance requirements of electric 

power systems is more desirable and imperative to the stable and reliable operation of the 

systems. However, the use of linear control design methods commonly being used for 

power system stability improvement is limited due to the highly nonlinear nature of the 

system (Chiang, 2011). This limitation has spawned extensive and focused research on 

alternative control strategies for better stabilization. High performance robustness against 

system faults, which is a significant feature any strategy must meet, has further led to 
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constant reassessment of well established old approaches and the development of new 

ones in order to, especially, keep with the ever-changing nature of the power systems. 

One major motivation for this study is to have better dynamic performance robustness 

using nonlinear algorithms. The significance of these nonlinear algorithms, as presented 

in this work, is that they are compact and universal, can be readily tuned to yield optimal 

performance, and can withstand long fault durations and remove system oscillations 

within the shortest possible time. The research impetus behind the design, development, 

investigation, and complete analysis of nonlinear control algorithms is the availability of 

powerful and low-cost computing resources, as is evident in many practical 

implementations (Nandam & Sen, 1995; Unsal & Kachroo, 1999; Yoerger et al., 1986), 

as well as versatile and efficient software tools, such as MATLAB/SIMULINK. 

Moreover, it is of note that technical reports are often being written to help provide 

information and materials that appropriately reflect current industry needs, experiences, 

and understanding so that new design and operating criteria can be tailored towards 

meeting the constant need for satisfactory system operation (IEEE PES Working Group 

Report, 1995; Kundur et al., 2004).  

1.2 Aim and Objectives 

The aim of this study is to develop nonlinear excitation controllers for improving the 

stability of power systems when subjected to large perturbations. 

The main objectives of the study are to:  

i. analyze and check for partial and exact linearization of representative power 

system models. 
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ii. derive various appropriate output signals for the power system models, and then 

compute the relative degrees of the models with respect to these signals. 

iii. design two nonlinear sliding mode control laws and one homogeneous stabilizing 

control law, and represent them in nonlinear feedback schemes. 

iv. examine the performance of the designed control schemes under network 

disturbances causing wide variations in system parameters. 

v. obtain the properties of the nonlinear control laws which pertain specifically to 

general power system behaviors. 

1.3 Problem Statement 

It has been known and established that reliable and secure operation of power systems 

hinges on the stability of the system both under normal operation and contingency 

situations. Conventionally, power system stabilizers have been used to provide 

complementary damping of system oscillations during an upset. Although the 

performance of these stabilizers has been somewhat satisfactory, limitations in their use 

have often been encountered, especially in terms of their robustness under major 

disturbances, and for a wide range of operating conditions (Handschin et al., 1994). 

Therefore, the problem of transient stability, i.e., the ability of power system to regain a 

state of operating equilibrium when subjected to a large fault from an initial operating 

point, has remained till date. Particularly, if not corrected, transient angular instability can 

pose a severe challenge to power systems, leading to loss of synchronism of various 

machines or group of machines in the systems. In addition to this loss of synchronism, 

irregular and aperiodic oscillations, which can destabilize the entire systems, may also 

arise. Several blackouts, caused by large faults in power networks, have been witnessed 
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across the world (Pouyan et al., September/October 2006). Power system controllers that 

will handle this nature of disturbance must have the ability to retain fault for long 

duration and damp out fault-induced oscillations as quickly as possible. But only 

nonlinear controllers designed based on the nonlinear model of the power network will be 

most appropriate for this type of system operating condition (Lu et al., 2001).  

So, the problem at hand is to develop new nonlinear excitation controller structures which 

are capable of providing good and robust damping of oscillations when systems are 

subjected to disturbances that lead to protracted large variations of parameters. 

This task can be reduced mathematically to a control system stabilization problem, which 

can be stated as follows. Under large perturbations and wide variations of parameters, 

consider the nonlinear dynamic model of a power system which can be expressed as 

( , , )x f x u t=ɺ               (1.1) 

where x is the state vector. Obtain a control law, u, that will ensure that a well-chosen 

output signal of the system approaches (or stays close to) zero when time, t, approaches 

an infinite value, thereby damping oscillations in the system. 

1.4 Methodology 

The methods employed for the work are as follows: 

i. Description and mathematical analysis of two power system models, which are 

described by a synchronous generator connected to an infinite bus. 

ii. Partial and exact feedback linearization of the power system models. 

iii. Establishment of three nonlinear excitation control schemes. 

iv. Simulation of the system under the influence of the designed control schemes 

using MATLAB/SIMULINK software package. 
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1.5 Scope and Limitation of the Study 

This study focuses on the development of three nonlinear control schemes or systems for 

the improvement of rotor angle stability of a synchronous generator. Since the excitation 

control is most effective in improving the dynamic performance and overall stability of 

electric power systems (Lu et al., 2001), the controllers developed in this work are 

applicable to the synchronous generator excitation systems. Besides, effects of parameter 

variations due to the application of only symmetrical faults are investigated, because 

other faults, such as asymmetrical faults, are less severe in effect. The study is limited to 

power system models which are based on the structure of a single machine connected to 

an infinite bus (SMIB)—a case of multi-machine systems is not treated. The SMIB and 

multi-machine structures are similar, except that the former considers the effect of one 

machine at a time in relation to the rest of the other machines in the power system. 

1.6 Thesis Organization 

Chapter one of this thesis presents introductory information, highlighting the 

significance, aim and objectives, and methodology of the work. A literature review 

together with some theoretical concepts (background) was discussed in Chapter two. The 

models of the power system adopted, and the design and analysis of the nonlinear 

excitation controllers are detailed in Chapter three. The simulation results under various 

test scenarios are presented in Chapter four. Chapter five gives the conclusions, stating 

achievements and contributions to knowledge, and recommendations for further study. In 

addition, references of materials used and appendices are provided at the end of Chapter 

five. 
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CHAPTER TWO: THEORETICAL FOUNDATION AND LITERATURE 

REVIEW 

2.0 Introduction 

This chapter discusses fundamental theoretical concepts which are critical for 

understanding of the work carried out in this Thesis. These include power system 

stability; power system components modeling in short-and long-term stability studies; 

excitation control systems; and a number of nonlinear control methods such as sliding 

mode control, adaptive control, feedback linearization, etc. Also, a comprehensive review 

of relevant existing works that have been done by numerous researchers from literature is 

carried out. 

2.1 Theoretical Foundation 

The study of power system stability and control is an extensive field of research which 

requires sufficient knowledge and understanding of vital components of power systems, 

most especially the performance characteristics of synchronous machines and the 

mathematical representations that govern their dynamic behaviour, as well as control 

system theory and techniques. This section provides a synoptic discussion of these 

theoretical underpinnings. 

2.1.1 Power System Stability 

An interconnected power system is considered to be stable following a perturbation if it 

returns to its previous steady state operating point or acquires a new stable operating 

condition (Nargsarkar & Sukhija, 2007), with system state variables kept within their 

permissible operating limits (Nagrath & Kothari, 2003). Such a system must have the 

ability to damp the oscillations following exposure to perturbation as quickly as possible, 
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so that the entire system can settle to a new steady-state operating condition within 

practically short time (Anderson & Fouad, 2003). Whether an interconnected power 

system, which is subjected to a disturbance, will regain its former stable operating state or 

return to a new state is dependent not only on the type of the disturbance, but also on the 

initial condition of the system (because of its non-linear nature). The operating condition 

of a power system can be described in terms of its behaviour around an equilibrium set or 

an attractor in the phase space. There are three types of attractor: a point attractor, which 

represents a single point; a limit circle attractor (Ravel et al., 2008), which gives a closed 

curve; and a chaotic (or aperiodic) attractor, which represents the divergence of the 

system from either a single point or a closed circle (Li & Caizares, 2009). Besides, the 

disturbance that may impact on power systems adversely can either be event-type or 

norm-type. The former category is used to describe outages of particular pieces of 

equipment, which may be due to a fault, or intentionally initiated by human operators, 

while the latter actually depicts the size of the disturbance. 

The various categories as well as subcategories of power system stability are shown in 

Fig. 2.1. The stability delineation reflected in the figure is a standard way to portray the 

relevant system variable in which an observation of instability is possible after an 

occurrence of a disturbance. Each category is discussed briefly as follows: 
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Rotor Angle 
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Frequency Stability Voltage Stability
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Short-Term

Short-Term and Long-Term

Short-Term and Long-Term

Small-Disturbance 
Voltage Stability

Large-Disturbance 
Voltage Stability

 

Fig. 2.1: Power System Stability Classification (Kundur et al., 2004) 

 

2.1.1.1 Rotor Angle Stability 

This is classified into small-disturbance and large-disturbance (or transient) stability. It 

indicates the ability of an interconnected power system to stay in a state of synchronism 

after being perturbed, and it’s usually carried out within a time frame of 10-20 seconds 

(Kundur et al., 2004) for small-disturbance type and 3-5 seconds for large-disturbance 

type.  Here, system synchronism implies that a state of equilibrium exists between the 

electromagnetic torque and the mechanical torque of each synchronous machine in the 

system. When a power system is subjected to a disturbance, deviations in the angular 

positions of the generator rotors result in two components of the electromagnetic torque, 

with one in phase with the rotor angle deviation (termed the synchronizing torque 

component) and the other in phase with the speed deviation (called the damping torque 

component). For the system to remain in synchronism after a perturbation, these two 

torque components must be sufficiently present. Lack of sufficient synchronizing torque 



10 

 

will lead to the so called aperiodic or non-oscillatory instability, while lack of sufficient 

damping torque will lead to periodic or oscillatory instability (Anderson & Fouad, 2003; 

Kundur, 1994). 

2.1.1.2 Frequency Stability 

Frequency Stability means that the system frequency remains unchanged or returns to its 

nominal value after a brief and small drift following disturbance. This implies that an 

interconnected power system is said to be frequency-stable if it retains a balance between 

generation and load after a system perturbation, i.e., if it results in zero accelerating 

power. Consequently, when system frequency abnormally deviates from the nominal 

value, it often results in loss of synchronism, thereby leading to loss of generations and/or 

loads. The duration of frequency instability generally may be short or long, depending on 

the response times of all the processes and devices involved. For instance, under-

frequency load shedding and generation controls and protections usually respond to 

frequency perturbation in the order of seconds, while energy supply systems and voltage 

regulators do in the order of several minutes (Kundur et al., 2004). 

2.1.1.3 Voltage Stability 

A power system is said to be voltage-stable if, after the system is subjected to a 

disturbance from a given initial operating condition, all system bus voltages remain 

steady or fixed within an acceptable range. An interconnected power system tends to 

experience serious voltage deviations during a system disturbance or upset when it fails 

to keep a reactive power balance between the load demand and supply. During voltage 

instability, some system bus voltages tend to increase or decrease gradually, thereby 

causing outages in major parts of the system. It is a general consent that voltage 
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instability is due to lack of sufficient provisions to meet the demand for reactive power. 

Conseil International des Grands Réseaux Électriques (CIGRE) Joint Task Force on 

Stability Terms and Definitions says that “The heart of the problem is usually the voltage 

drop that occurs when active power and reactive power flow through the inductive 

reactance associated with the transmission network” (Kundur et al., 2004). 

2.1.2 Power System Models 

Having good models for components of electric power systems that can be used for a 

wide range of system studies is increasingly important, because they facilitate important 

studies to be carried out at the design stage and during expansion of the power systems. 

In addition to their use in stability study, they facilitate determination of the regions of 

attraction of the system’s equilibrium, and are vital for the purpose of control design, 

which is necessary for improving the performance of the system by expanding these 

regions of attraction. Because electric power systems are highly nonlinear dynamic 

systems, their models are complicated. Therefore, careful and painstaking analysis and 

design tasks are geared towards enhancing and keeping their operation within a realizable 

region in the state space. 

At present, the majority of electric energy in power systems is being sourced from 

synchronous generators; thus, they play a major role in the overall dynamic performance 

of the power systems. As a result, various representative mathematical models are 

developed to describe their performance characteristics, depending on the degree of 

detailed representation needed for a given study. Generally, synchronous generators are 

described by seventh-order model, but reduced-order models that can capture their 
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detailed behaviours are often employed for control design. These models are presented in 

the following sections: 

2.1.2.1 Classical Model of a Synchronous Machine 

The basic model used to represent a synchronous machine is that which assumes a 

constant voltage behind transient reactance, and it is based on the basic assumption that 

the flux linkage in the main field windings does not change during an occurrence of a 

network perturbation. This assumption, however, is valid only for a power system whose 

size is relatively small, and the excitation control systems are simple and slow, making 

the period of oscillations resulting from a network change not “much greater than one 

second” (Anderson & Fouad, 2003). This representation is shown in Fig. 2.2. In this 

figure, V is the magnitude terminal voltage, E is the magnitude of the constant voltage of 

the source that represents generator internal EMF (electromotive force), ���  is the direct 

axis transient reactance, and δ, which together with E is derived from the initial system 

conditions, is the angle between the rotor position and V. 

 

Fig. 2.2: Classical model of a synchronous machine 
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2.1.2.2 Classical Model of a Power System 

The classical model of a power system represents synchronous machines by their 

classical model depicted in Fig. 2.2, and the entire power system can be collapsed and 

described by an equivalent single machine connected to an infinite bus (SMIB). The 

assumptions underlying this model are: the mechanical power input is constant during a 

transient; damping power is negligible; the electrical phase angle and synchronous 

machine load angle are equivalent; and the load fed at the terminals of the machine or 

infinite bus can be characterized by a constant impedance connected to ground. However, 

for the purpose of stability studies in wider context, this model can be extended to a 

system of many machines (multi-machine system) by adding an additional damping 

torque component to the inertia torque in the machine’s equation of motion, although 

stability studies of multi-machine systems using this approach are restricted to short-term 

transient stability studies lasting for about one second (Anderson & Fouad, 2003). 

Fig. 2.3 is an equivalent diagram of a single machine connected to an infinite bus through 

tie line, where VTerminal is the synchronous machine terminal voltage, ZLine is the 

transmission network series impedance, ZLoad is the equivalent shunt impedance at the 

terminal of the machine, and other parameters in the figure are as defined in Fig. 2.2. 

-

ZLine

ZLoad

 

Fig. 2.3: Classical model of a power system 

VTerminal 
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The state-space model that describes system dynamics in classical representation of 

power system is 

( )2
11 11 12 12cos cos( )

2
R

m

R

d
P E Y EVY

dt H

d

dt

ω ω
θ θ δ

δ
ω ω

= − − −

= −
                         (2.1) 

where 

ω = angular velocity in electrical rad/s 

δ = electrical rotor angle in radians 

Pm = mechanical power on per unit 3-phase base 

H = inertia constant in seconds (= Wk/SB3; Wk is the kinetic energy of the 

rotating masses in MJ and SB3 is the rated 3-phase MVA of the system) 

ωR = rated angular velocity in electrical rad/s 

t = time in seconds 

V = voltage magnitude of the infinite bus 

E = voltage magnitude of the generator 

Y11, θ11 = magnitude and angle of the driving point admittance at the generator  

bus 

Y12, θ12 = magnitude and angle of the transfer admittance between the generator 

and the infinite bus 

For a multi-machine system, shown in Fig. 2.4, the state-space equations that describe 

system dynamics increase drastically, depending on the number of machines in the 

system.  
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Fig. 2.4: Classical representation of a multi-machine (or n-machine) power system 
(Anderson & Fouad, 2003) 

For example, in a two-machine system, the state-space equations are 
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∑

        

(2.2) 

In some occasions, equation (2.2) can be reduced to two equivalent equations if the 

concept of relative load angle and speed is adopted. When machine 1 is assumed as a 

reference, the relative load angle and speed can be described as δ21=δ2-δ1 and ω21=ω2-ω1. 

Thus, equation (2.2) can be reduced to: 
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(2.3) 

where Di = damping coefficient of the ith machine. 

2.1.2.3 Detailed Synchronous Machine Model 

In some situations, where system behaviors during sub-transient and transient periods are 

of great importance, more detailed representation of a synchronous machine that can 

capture more appropriately the dynamic characteristics of the machine is required. A 

detailed synchronous machine model takes into account three-phase stator windings, one 

field winding, and two amortisseur windings. Such a model gives a full description of the 

electromagnetic characteristics of the synchronous machine and it can be found in the 

open literature and widely used (Anderson & Fouad, 2003; IEEE Standard 1110, 2003; 

Kundur, 1994). And this detailed representation is available in two forms: the current 

model and the flux linkage model. 

The current model, in which currents, torque angle, and rotor speed are used as state 

variables, is given by (Anderson & Fouad, 2003) 

 X FX GU= +ɺ
                                                                                               (2.4) 

where 
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The parameters L, R, and N in the system function F, and the vector signal v in the input 

function GU are, respectively, given by  
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The variables and parameters in the above model are defined as follows: 

id, vd  = the stator d-axis current and voltage, respectively, in pu 

iF, vF  = the rotor field current and voltage, respectively, in pu 

iD  = the rotor d-axis damper winding current in pu 

iq, vq  = the stator q-axis current and voltage, respectively, in pu 
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iQ  = the rotor q-axis damper winding current pu 

ω = the rotor speed in pu 

δ = the torque angle in pu 

Tm = the mechanical torque in pu 

D = the damping coefficient 

Ld = d-axis inductance in pu 

LD = D damper circuit inductance in pu 

Lq = q-axis inductance in pu 

LQ = Q damper circuit inductance in pu 

MD = mutual inductance between the stator and D damper circuits in pu 

MF = mutual inductance between the stator and field circuits in pu 

MQ = mutual inductance between the stator and Q damper circuits in pu 

MR = mutual inductance between the field and D damper circuits in pu 

LF = field winding inductance in pu 

r = stator resistance in pu 

rF= field resistance in pu 

rD= D damper winding resistance in pu 

rQ= Q damper winding resistance in pu 

23k   and   2Hωτ Bj ==  

Similarly, the flux linkage model, in which flux linkages, torque angle, and rotor speed 

are used as state variables, is given by (Anderson & Fouad, 2003) 

 X AX BU= +ɺ
                                                                                               (2.5) 

where 
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The variables and parameters in the above model are defined as follows: 

λd= flux linkage in the d-axis in pu 

λF= flux linkage in the field winding in pu 

λD= flux linkage in the D circuit in pu 

λq= flux linkage in the q-axis in pu 

λF= flux linkage in the field winding in pu 

λQ= flux linkage in the Q circuit in pu 

ℓd = leakage inductance of the d-axis in pu 

ℓq = leakage inductance of the q-axis in pu 

ℓD = leakage inductance of the D circuit in pu 

ℓQ = leakage inductance of the Q circuit in pu 

ℓF = leakage inductance of the field circuit in pu 

1/LMD = 1/LAD + 1/ℓd + 1/ℓF + 1/ℓD  in pu 

1/LMQ = 1/LAQ + 1/ℓq + 1/ℓQ   in pu 
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LAD = common magnetizing inductance in the d-axis circuit in pu 

LAQ = common magnetizing inductance in the q-axis circuit in pu 

Other variables and parameters are as previously defined. 

In stability studies, simplified models are often used to ease the analysis, and the choice 

of model details is dependent on the purpose of the analysis and the system scenario to be 

investigated. In addition, for control system analysis and design, approximate system or 

plant models are commonly used to derive control laws for dynamic stabilization and 

improvement. In the following, well known simplified models of synchronous machines 

are briefly considered. 

1) The E′q model: This is a fifth-order model representation obtained from the 

assumption that the damper windings have negligible effects on the system transient 

being considered (and this is often the case for machines that are tightly 

interconnected). Another assumption is that, if a solid round rotor is assumed, the d-

axis damper winding can be ignored because the rotor inherently acts as a damper 

(which represents a q-axis damping winding). The model is given in per unit as 

(Anderson & Fouad, 2003) 
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where 
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Λd = d-axis stator equivalent flux linkage 

Λq= q-axis stator equivalent flux linkage 

Vd = d-axis stator equivalent voltage 

Vq = q-axis stator equivalent voltage 

E′q = d-axis stator EMF corresponding to the field flux linkage 

EFD = d-axis stator EMF corresponding to the field voltage 

τ′do= d-axis open-circuit transient time constant 

L′d = d-axis transient inductance 

2) The E′′ model: This is also a fifth-order model, and the assumption here is that the 

speed voltage terms are much greater than the transformer voltage terms in the stator 

voltage equations. It’s also assumed that the rotor speed is constant, and d-and q-axis 

subtransient inductances are equal. In this model, the stator EMF is produced by the 

subtransient flux linkage. 

The equations in per unit are (Anderson & Fouad, 2003) 
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where 

e′′d = stator d-axis subtransient voltage 

xq = q-axis synchronous reactance 



24 

 

x′′q = q-axis subtransient reactance 

x′d = d-axis transient reactance 

x′′d = d-axis subtransient reactance 

xℓ = leakage reactance 

τ′′qo= q-axis open-circuit subtransient time constant 

τ′′do= d-axis open-circuit subtransient time constant 

Other variables and parameters are as defined previously. 

3) The two-axis or fourth-order model: In this model, only the transient effects, which 

are dominated by the rotor circuits, i.e., the field winding and one q-axis winding, are 

considered; the subtransient effects are assumed negligible, and the transformer 

voltage terms in the stator equations are assumed to be appreciably small. (This last 

assumption is valid for a cylindrical rotor machine.) 

The model equations in per unit are (Anderson & Fouad, 2003) 
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                                                     (2.8) 

All the variables and parameters in this equation are defined before. 

4) The one-axis or third-order model: Here the effects of amortisseur windings and 

transformer voltage terms are ignored, thereby reducing the model to (Anderson & 

Fouad, 2003) 



25 

 

1 1
( ( ) )

1
( ( ) ) 

1

q FD q d d d

do do

m q q q d d q

j

E E E x x I

T D E I L L I I

τ τ

ω ω
τ

δ ω

′ ′ ′= − − −
′ ′

′ ′= − − − −

= −

ɺ

ɺ

ɺ

                                                     (2.9) 

The above discussions show that a number of assumptions have been made to derive 

different synchronous machine models presented in this chapter. However, the choice 

among these models is dependent on the objectives of the study to be conducted. For 

example, in short-term stability studies, where the system behaviors during sub-transient 

and transient periods are increasingly important, some of the above models in which 

damper windings and stator resistance are neglected may not be appropriate. Also, the 

type of synchronous machines must be taken into account as some of these models are 

valid only for round rotor machines. Generally, any of these models can be used for 

control system design. 

2.1.3 Synchronous Generator Excitation Control System  

As shown in Fig. 2.5, there are primarily three major control systems associated with 

synchronous generators. The firing control system ensures that the boiler produces the 

right amount of steam at the required pressure and temperature; the governor controls the 

speed of the turbine by opening and closing the steam valve (for a steam turbine) or 

controlling the water flow in a penstock (for a hydro-turbine); and the excitation system 

regulates the generator terminal voltage through the generator field winding.  
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Fig. 2.5: Control systems of a synchronous generator (Anderson & Fouad, 2003) 

Out of the three principal control systems of generators, it has been observed that 

excitation control offers the most effective means of enhancing the dynamic 

characteristics of power systems and stabilizing them (Lu et al., 2001). Early outstanding 

power system researchers and engineers (Concordia, 1951; Kimbark, 1956) pointed out 

the significance of field excitation of synchronous generators in enhancing the stability of 

power systems. The basic elements of an excitation control system are shown in Fig. 2.6. 

 

 

Fig. 2.6: Block diagram of a synchronous excitation control system (Kundur, 1994) 
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The voltage regulator in the system receives appropriate input signals and accordingly 

controls the output of the exciter, which supplies the required current to the field winding 

of the machine. To keep the terminal voltage of the generator constant after the 

occurrence of a fault, the regulator must be able to respond quickly and drive the field 

voltage to its ceiling so that the right amount of field flux can be provided. The exciter is 

a direct current source which is either dynamic, such as a DC generator and an AC 

generator coupled with a rectifying system, or static, such as a rectifier or thyristor 

system.  

Of particular significance, because of its very high speed of response, is a static self-shunt 

exciter upon which better and advanced excitation control strategies can be developed 

(Lu et al., 2001). Other blocks in the excitation system perform protective and 

compensating functions. 

During the early days of high-gain continuous-acting voltage regulators, large 

interconnected power systems experienced oscillations which were exacerbated by the 

action of the regulators. To avoid such situations, it became vital to introduce auxiliary 

signals for counteracting these oscillations.  This led to the introduction of the power 

system stabilizer, which was developed by F.D. Demello and C. Concordia (Demello & 

Concordia, 1969), for damping oscillations in power systems. A concise excitation 

control system configuration with automatic voltage regulator (AVR) and power system 

stabilizer (PSS) is shown in Fig. 2.7.  Limitations in the performance of the power system 

stabilizers, which have been severally modified and improved upon by a lot of 

researchers, led to the use of linear optimal excitation controllers (Yu et al., 1970; 

Anderson, 1971) and more advanced excitation control methodologies (Lu et al., 2000a; 
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Lu et al., 1989b; Colbia-Vega et al., 2008; Enrico et al., 2008; Venkatesh & Rao, 

October 2012).  
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Fig. 2.7: Excitation system control with AVR and PSS 

2.1.4 Nonlinear Control Systems 

Most practical control systems have benefited extensively from the applications and 

techniques of linear control theory, though they are inherently, to some degree, nonlinear. 

The use of linear control strategies to solve practical control problem is pervasive, as 

these offer a simplified approach to analysis and design issues, and there are well 

established, tested and proven analytical and computer tools available in the linear 

control domain. The indirect method of Lyapunov (Atherton, 1981; Mohler, 1994), which 

states that nonlinear systems can be equivalently treated as linear systems if the 

operations of the nonlinear systems are restricted to small regions around their operating 

equilibriums, serves well to provide a theoretical validation for this so-called ‘linear 

sense discipline’. 

Moreover, nonlinear control concepts and techniques have also been developed over the 

years, but the available tools in this domain are still limited. Nonetheless, the ubiquity of 
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inexpensive, low-power, powerful and fast computing facilities has necessitated and 

triggered off the intensive experimental simulations of nonlinear systems, and 

incorporation of nonlinear control algorithms into many practical systems— a great deal 

of algorithms that were difficult (and some impossible) to implement before can now be 

efficiently implemented. 

Several nonlinear control strategies have been applied to electric power systems and 

many other practical systems alike. These strategies are rooted in some of the well known 

nonlinear control paradigms and theories, which include adaptive control, feedback 

linearization-based control, sliding mode control, fuzzy logic, and neural networks. 

2.1.4.1 Adaptive Control Systems 

The structure of an adaptive control system is shown in Fig. 2.8. This system provides an 

on-line means of adjusting the parameters of the controller when the dynamics of the 

plant change due to disturbances or presence of some nonlinear actuators in the system 

(Nagrath & Gopal, 2007). 
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Controller 
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Fig. 2.8: Block diagram of an adaptive control system 
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There are four adaptive control schemes, viz., self-tuning regulator, model-reference 

adaptive control, gain scheduling and dual control. Their block diagrams are displayed in 

Fig. 2.9, Fig. 2.10, Fig. 2.11, and Fig. 2.12, respectively. 
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Fig. 2.9: Block diagram of a self-tuning regulator (Astrom & Wittenmark, 1995) 
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Fig. 2.10: Block diagram of a model-reference adaptive control system (Astrom & 
Wittenmark, 1995) 
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Fig. 2.11: Block diagram of a gain scheduling system (Astrom & Wittenmark, 1995) 
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Fig. 2.12: Block diagram of a dual control system (Astrom & Wittenmark, 1995) 

In the self-tuning regulators, the parameters of the controller are computed indirectly 

from the estimates of the parameters of the plant. Here the updates of the plant and the 

controller are done at each sampling time.  

For the model-reference adaptive control system, the controller parameters are adjusted 

using the popular Massachusetts Institute of Technology (MIT) rule 

 
d e

e
dt

θ
γ

θ

∂
= −

∂             
(2.10) 
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where e is the difference between the output, ym, of the reference model and the output, y, 

of the plant.  

Gain scheduling is a strategy which uses a number of linear controllers, designed in 

correspondence with a number of small semi-operating points into which the overall 

system operating point is divided, to improve the performance of a plant. Each controller 

is scheduled for action at an appropriate semi-operating point, while controller 

parameters are interpolated at intervals between two semi-operating points. This is a way 

of mapping parameters of a process that has predictable dynamics with the parameters of 

the controller. In other words, the knowledge of all operating conditions is known 

beforehand (Albertos & Mareels, 2010). The previous adaptive control methods are based 

on the certainty equivalence principle in which the parameters of the plant are assumed to 

be correctly estimated. But in most cases, this is not usually so. The fourth adaptive 

control scheme, called the dual control, uses the tool of nonlinear stochastic control 

theory to estimate the plant parameters with accuracy. 

2.1.4.2 Feedback Linearization 

In the application of linear control techniques, it is always assumed that the dynamics of 

the system being considered are linear or can be linearized about a given operating 

condition using the Taylor’s series method. Although this approach has been employed to 

solve many practical problems, it is not appropriate in problems where the system 

dynamics are subject to large disturbances and wide variations of parameters. One of the 

ways to avoid direct approximation of nonlinear system dynamics in control design is to 

transform the system state equations into another and equivalent state equations that are 

linear in form using a nonlinear state feedback control law. This results in exact or partly 
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exact linearization of the original nonlinear system. As long as the original states and the 

transformed states of the system are closely related by a coordinate transformation 

function called a diffeomorphism, the new state equations remain a ‘true’ linear 

representation of the original equations. Fig. 2.13 depicts a block diagram of an input-

state feedback linearization technique. 

0

-

v = -kT
z u = u(x, v) dx/dt = f(x, u)

 z = z(x)
State feedback controller loop

Intermediate 
variable block Controller block Plant

Linearization 
loop

Coordinate transformation block

Output

 

Fig. 2.13: Input-state feedback linearization control 

Two highly essential differential geometric tools to all control analysis and design based 

on feedback linearization are the Lie derivatives and Lie brackets. 

Definition 2.1 (Isidori, 1995): Consider a continuous scalar function β(x), where x = [x1 

x2 … xn]
T, and a function vector f(x) = [f1 f2 … fn]

T. The Lie derivative of β(x) along f(x) 

is given as 

 ( )
( )

( )
( )

1

( )
n

i

ii

L
β β

β
=

∂ ∂
= =

∂ ∂
∑f

x x
f f

x x
x x x                                                            (2.11) 

Definition 2.2 (Isidori, 1995): Consider two function vectors f(x) and g(x). The Lie 

bracket of g(x) along f(x) is given as 

 ( ) ( )
( )

( )
( )

( ),
∂ ∂

  = −  ∂ ∂

g x f x
f x g x f x g x

x x
                                                        (2.12) 
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where  
�����	� and 

�
���	�  are Jacobian matrices of functions g(x) and f(x), respectively.  

The Lie derivative is useful in finding the state variables of a transformed nonlinear 

dynamic system from a given output function, while the Lie bracket provides a compact 

way of determining its involutivity, a sufficient condition for its exact linearization. 

2.1.4.3 Sliding Mode Control (SMC) 

SMC is a variable-structure control system methodology, which has the property of 

guaranteeing constant system stability and overall good performance, even when there is 

uncertainty in the dynamics of system (such as parametric and non-parametric 

uncertainty). Because of its robustness and invariance features, SMC has been severally 

put to use in many applications (Hung et al., 1993; Nandam & Sen, 1995; Unsal & 

Kachroo, 1999; Yoerger et al., 1986). The power of SMC is derived from the ability to 

change the mode (or, as it is commonly called, structure) of the control law to account for 

various system operating conditions. This idea is not unfamiliar in the linear control 

domain. It is possible to change the control structure of a linear system in order to 

improve its performance during operation (Itkis, 1976)—for instance, equipping a system 

with a flexible PID controller (in which the structure can change from a standalone P to a 

standalone PI or PD) can make the system perform better. The gain scheduling described 

earlier is an example of this. 

The SMC problem can be solved using the theory of Lyapunov stability (based on the 

direct Lyapunov method) (Hahn, 1963; Khalil, 1996), though the analysis of the problem 

leads to systems with discontinuity which can be treated using the theory by Filippov 
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(Filippov, 1960; Utkin, 1992) for handling differential equations with a discontinuous 

right-hand side.  

Conventionally, sliding mode controller design involves two major steps: 1) selection of 

a sliding surface or manifold (for a second-order system, it is a line in the state-space, 

while for a higher-order system, it is a hyper surface), and 2) construction of a control 

law to make the states of the system reach and stay on the surface while moving along it 

towards a desired point in a motion that is termed sliding mode. For a second-order 

continuous-time system, the graphical representation of the SMC strategy is shown in 

Fig. 2.14. 

dx/dt

x

Chattering

Desired state

s = 0

 

Fig. 2.14: Graphical representation of SMC for a 2nd-order system (Emel'yanov, 1959; 
Slotine & Li, 1991) 

Generally, the surface s is selected based on the equation 

 
1

( )
n

d
s e t

dt
β

−
 

= + 
 

                                                                                          (2.13) 

where e(t) is an error signal which is the difference between the actual system state x and 

the desired system state xd; constant β is strictly positive; and n is the order of the system.  
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For instance, when n = 2, 3, and 4, s is defined, respectively, as 

 s e eβ= +ɺ ,                                                                                                        (2.14) 

 22s e e eβ β= + +ɺɺ ɺ ,                                                                                            (2.15) 

and 

 2 33 3s e e eβ β β= + + +ɺɺɺ ɺɺ ɺ .                                                                           (2.16) 

Furthermore, the control law is developed such that when the states are on either side of 

surface of s, they are constrained to move towards it and stay on it. That is, 

 s k≤ −ɺ if 0s >  

 s k≥ɺ if 0s <  

where the number k is positive. 

The control law constructed, however, requires switching from one mode to the other 

with an infinite speed which is not practically feasible. The delay associated with 

switching results in chattering, a phenomenon that may excite high-frequency unmodeled 

dynamics. There are methods available, such as replacement of a sliding surface with a 

sliding vector (Furuta & Pan, 1999), equipping the system with an asymptotic observer 

(Utkin, 1993), etc., to reduce this undesirable phenomenon. 

2.1.4.4 Fuzzy Logic Control 

All fuzzy logic systems are based on the notion that information or knowledge about the 

plant or process is imprecise, incomplete, or approximate (Albertos & Mareels, 2010). 

The underlying concept, called fuzzy set theory, of fuzzy logic was developed by Lofti 

Zadeh based on the principle of incompatibility, which states that “As the complexity of a 

system increases, our ability to make precise and yet significant statements about its 

behavior diminishes until a threshold is reached beyond which precision and significance 
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(or relevance) become almost mutually exclusive characteristics” (Zadeh, 1973). Fuzzy 

logic employs heuristic information, sourced from expert and experienced personnel who 

have complete understanding and working knowledge of the operation of the plant, to 

modify and improve the performance characteristics of the plant. In other words, the 

plant model is represented in a linguistic rule-based manner unlike conventional crisp 

control where the plant is described by mathematical equations.  

A typical block diagram of fuzzy logic control system is shown in Fig. 2.15. 
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Fig. 2.15: Block diagram of a fuzzy logic control system (Ying, 2000) 

As depicted in the diagram, the input (there may be more than one input, depending on 

the required system performance) to the fuzzy logic controller is first fuzzified, and this 

involves computing membership values (normally between 0 and 1) for all the fuzzy sets 

used to capture the universe of discourse of the input. The results of this are fuzzy input 

windows which go into the inference engine. The inference uses the rule base to derive 

corresponding output windows which are then defuzzified to obtain the input control 

signal. Two types of fuzzy rules are available (Takagi & Sugeno, 1985): Mamdani fuzzy 

rules and Takagi-Sugeno fuzzy rules.  

The Mamdani rule for a fuzzy controller is stated as 

IF e1 is A1 AND e2 is A2 . . . AND en is An THEN u1 is B1, …, un is Bn                    (2.17) 
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where e1, e2, . . ., en are input variables; u1, u2, . . ., un are output variables; A1, A2, … An 

and B1, B2, …, Bn are fuzzy sets; and AND is a fuzzy logic AND operator. 

The Takagi-Sugeno rule for a fuzzy controller is similarly defined as 

IF e1 is A1 . . . AND en is An THEN u1 = f(e1, …, en), …,un = g(e1, …, en)       (2.18) 

where f(), . . ., g() are real functions. 

Defuzzification is a process of generating continuous-time control signals from the output 

variables u1, u2, . . ., un given in equations (2.17) and (2.18). The generalized defuzzifier 

is given as (Ying, 2000) 
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∑

                                                                                                  (2.19) 

where u is the fuzzy controller output variable, µis are the output fuzzy set membership 

values generated by the fuzzy inference, and βis are the nonzero values of the output 

fuzzy sets. 

2.1.4.5 Artificial Neural Network-Based Control 

Artificial neural networks were developed by McCulloch and Pitts (McCulloch & Pitts, 

1943) after the pattern of the biological neural networks to equip engineered systems with 

some level of intelligence, i.e., ability to reason, learn, remember, and respond to 

unfamiliar inputs. The general model of an artificial neuron is shown in Fig. 2.16. The 

inputs to the neuron are x1, x2, . . .,xn; bi is a bias; fi is the neuron’s activation function; 

and yi is its output. The neuron produces an output if the weighted sum of all its inputs is 

above a threshold value. 
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Fig. 2.16: Model of an artificial neuron 

Two commonly used ANN networks are the feed forward and recurrent networks, and 

they can be trained in a supervised and an unsupervised manner depending on the 

application. Fig. 2.17 depicts how a neural network controller can be trained to emulate 

the behavior of an existing controller (Burns, 2001).  
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Fig. 2.17: Neural network controller training (Burns, 2001) 

Nonlinear control strategies as well as techniques have continued to witness development 

in many fields of learning, even though “it is well known that there is no general 

nonlinear control or modeling theory because general nonlinear system theory has not 

been, and most likely will not be, established” (Ying, 2000). 
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Applications of some of these strategies to electric power systems are detailed in related 

literature, although many are based on the approximate (linearized) models of the 

systems. A review of the relevant literature is provided in the following subsection:  

2.2 General Review of Relevant Works 

Oscillations such as local plant and inter-area occur in power systems, and pose major 

challenges to power system control engineers. These oscillations are usually caused by 

lack of sufficient generator rotor damping torque (and this phenomenon characterized the 

earliest exciter/AVR due to the increase in bandwidth associated with the AVR loop) 

(Dandeno et al., 1987; Hajagos, 2003). The challenges become more stringent as power 

systems undergo changes due to network alterations (caused by faults or switching 

events) and/or variations in loads. 

Conventionally, power system stabilizers (PSSs), which may be single-or double-input, 

have been employed to handle these oscillation problems. They are complementary 

excitation controllers which provide positive damping torque to improve the overall 

generator rotor damping (Demello et al., 1978; Ghandakly & Farhoud, 1992; Irvin et al., 

1979; Kasturi & Doraraju, 1970; Kundur et al., 1989; Larsen & Swann, 1981; Lim & 

Elangovan, 1985; Yu & Moussa, 1972; Kumar et al., 2012 ). To some degree, they have 

performed satisfactorily well, but it has been noted that in the same way that a power 

system stabilizer can improve stability if tuned properly, it also has the ability to 

destabilize a generator’s operation if incorrectly tuned” (Hajagos, 2003). So, serious 

outstanding issues regarding the tuning of the conventional power system stabilizers and 

its performance for a wide range of operating conditions still remain (Huerta et al., 2011). 

Fig. 2.18 shows a single-input PSS. 
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Fig. 2.18: Single-input PSS controller with a washout and two lead-lag stages(Li-Jun & 

Erlich, 2005) 

 

However, many control techniques have been developed to enhance the performance of 

the conventional PSSs; they range from adaptive, robust, feedback linearization, to 

intelligent control strategies, with combinations of these strategies or their modifications  

having been implemented. Adaptive control strategies, such as model reference adaptive 

control (MRAC) and self-tuning control (STC), have been offered as solutions for 

providing adjustment of controller parameters as systems undergo changes due to 

parameter variations—they adjust their parameters on-line in response to changing 

operating conditions (Pierre, 1987). More commonly used is the self-tuning adaptive 

control, which comprises an approximator for on-line parameter identification, and a 

controller structure for guaranteeing good stability and dynamic response. Ghandakly & 

Farhoud (1992) proposed a self-tuning regulator for power system stabilizers using a 

recursive least squares identification technique, and a parameter optimization approach 

which employed a quadratic performance criterion. This regulator was shown to 

outperform the previously designed regulators based on minimum variance, generalized 

minimum variance, PID, and deadbeat control strategies (Ghandakly & Kronegger, 1987; 

Gu & Bollinger, 1989; Kanniah et al., 1984; Wu & Hsu, 1988), but the machine 
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considered was represented by the classical swing-equation model with a first-order 

exciter, and subjected to a three-phase fault of duration not more than 0.1s. The speed 

response, it was shown, settled within 2-3s. Also, by employing a pole-shifting factor to 

make all closed-loop poles remain within the unit circle, Ghandakly & Dai (1992) 

demonstrated the effectiveness and robustness of a generalized multivariable self-tuning 

controller. The controller was shown to settle the system response in about 2s after 

subjecting the model power system used to a series of fault conditions. 

Moreover, a set of power system stabilizer schemes, using various control strategies, was 

considered by Falkner & Hech (1995), and, although the authors raised some pertinent 

issues (i.e., limited controller sophistication; set point tracking) which suggested further 

investigations into the controllers discussed, it was inferred by them that linear robust and 

fuzzy controllers performed best in comparison to linear power system stabilizer, and 

nonlinear robust and sliding mode controllers. Criteria based on unmodeled dynamics, 

parameter variations, measurement noise, and input disturbance were used to draw the 

inferences. 

Meanwhile, Abdel-Magid et al. (1999) proposed a new method of tuning the 

conventional power system stabilizers using the genetic algorithm (GA) approach. In the 

study, the problem of stabilizing a set of plants, representing various operating 

conditions, was converted into a GA-based optimization problem in which the considered 

power system stabilizer’s parameters (only three of them) were optimally tuned to 

stabilize the set of plants. However, the objective function used was formulated based on 

the eigenvalues that needed to be shifted / placed, thereby making accurate tracking of 

eigenvalues a necessary condition for the success of the parameter tuning. Besides, the 
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settling time of the speed variations was as much as 2.4s in some disturbance cases 

considered. 

Another significant area of applications of control techniques for power system 

stabilization is feedback linearization control (FBLC), which involves complete or partial 

transformation of nonlinear systems into equivalent linear ones that are amenable to 

linear control design techniques (Khalil, 2015; Lin, 1964).  Several versions of FBLC 

have been applied to the design of power system excitation control (Chapman et al., 

1993; Mielczarski & Zajaczkowjki, 1994; Nambu & Ohsawa, 1996; Sun & Lu, 1996). 

But Gan. et al. (2000) set out to address some major design issues associated with FBLC, 

such as knowledge of the equilibrium point of the power system, dependence on the 

topology of the power system, and lack of guarantee that terminal voltages would remain 

within their operating limits. The authors proposed an improved FBLC using a linear 

optimal state-space feedback and saturation-type nonlinear robust control strategies, 

although a single-axis model was employed and the rotor angle oscillations were damped 

out in a long duration of about 15s (after perturbing system under the action of the 

proposed controller). Associated with FBLC is the method of zero dynamics which 

allows the output function of any nonlinear system to be kept very close to zero using a 

nonlinear state feedback control. Mahmud et al. (November 2011) used this method of 

zero dynamics for feedback linearizing excitation control for power systems. A 

disturbance in form of change in the rotor angle operating point was applied, and it was 

observed that the speed deviation steadied to zero in 2.6s.  

Other control principles and design techniques that have gained prominence in realizing 

control laws for power system stabilization are Lyapunov stability theory, passivity 
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theory, optimal control theory, and variable structure control; they have been implicitly or 

explicitly used in designing control systems that led to good performance and reliable 

system behavior (Espinosa-Perez et al., 1997; Falkner & Heck, 2000; Katende & 

Awelewa, 2007; Lu & Xu, 1996; Mukhopadhyay & Malik, 1972; Pogromsky et al., 1996; 

Roberts & Ian, 1997; Samarasinghe & Pahalawatha, 1994). Lyapunov-based control 

design involves searching for, or constructing, a candidate energy function that would 

guarantee asymptotic stability and acceptable response of a closed-loop system (Ogata, 

1997). Passivity theory is a method of constructing a Lyapunov function for a 

combination of systems of subsystems with known individual Lyapunov functions; it 

provides procedures for generating physically meaningful Lyapunov functions for 

dynamical systems as long as certain properties are satisfied (Lin, 1964). This method of 

Lyapunov function was employed by Rui et al. (2010) to design a novel excitation 

controller using the adaptive backstepping technique. The controller worked well by 

removing oscillations within 2.5s from the system after the system was subjected to an 8-

cycle fault. One general drawback with this approach is how to determine the Lyapunov 

function whose existence is not certain. In the case of optimal control, the thrust of the 

design is to maximize the performance of a dynamic system at a minimum cost; it 

consists of designing a control law that will give an optimal state trajectory such that a 

cost function, known as a performance index, is minimized. Variable structure control 

strategies have been known to offer robustness in the face of system uncertainty (Juan & 

Gerald, 2010; Huerta et al., 2011), and sliding mode control is highly useful in this 

regard.  Using sliding mode control, Colbia-Vega et al. (2008) designed robust excitation 

controller for power systems. The controller caused system variables to converge to the 
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equilibrium point in 2.5s after the removal of a 5-cycle fault to which the system was 

subjected. Also, Huerta et al. (2010) proposed a sliding mode speed stabilizer (SMSS)-

sliding mode voltage regulator (SMVR) scheme which is similar to the classical AVR-

PSS scheme. Although the performance of the proposed scheme depended on the proper 

coordination of the SMSS and SMVR blocks, the scheme offered better damping of 

oscillations than the AVR-PSS scheme. In the work, oscillations caused by a three-phase 

symmetrical fault lasting for 8 cycles were damped out in 1.5s to 2.5s. Another 

application of sliding mode control to a single-machine infinite-bus power system was 

carried out by Atabak and Saeed (2012). Their proposed controller was shown to 

outperform the conventional PSS, though, it was pointed out by the authors, determining 

the controller gain involved a trial-and-error process. The theory of synergetic control, 

which is similar to sliding mode control, has also been applied to design excitation 

controllers—for example, Ping et al. (2014) proposed an improved synergetic excitation 

controller for improving transient stability of power systems and voltage regulation 

performance. This work used a synergetic control signal to move the system variables to 

a manifold defined as ψ = 0 and then cause them to remain on this manifold at all times, 

thereby removing oscillations due to system faults. A 6-cycle three-phase fault to which 

the system was subjected led to oscillations that were damped out in 2s. 

Recently, there has been a resurgence of research interest in the application of fuzzy logic 

and neural networks, or their combinations, to damping oscillations in power systems. 

For instance, in (Chaturvedi & Malik, 2005), an adaptive power system stabilizer based 

on a generalized neuron artificial neural network (GNANN) was presented, and shown to 

outperform the structures put forward in (Zhang et al., 1995, Zhang et al., March 1993, 
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Zhang et al., May 1993) which have 20 input layers, 20 hidden layers, and 1 output layer; 

35 input layers and 1 output layer; and 30 input layers, 10 hidden layers, and 1 output 

layer, respectively. In the paper, the system, whose identifier and controller were GN-

based, was able to dampen out oscillations due to, among others, a three-phase fault in 

about 2-3s. The authors used only a single neuron to realize the system. Meanwhile, Yee 

& Milanovic (2008) offered a new intelligent approach, i.e., a fuzzy logic controller that 

uses a systematic analytical procedure in place of a priori expert knowledge/information, 

to stabilize both the power output and terminal voltage of a synchronous generator. But 

the effectiveness of the approach was demonstrated using only the swing-equation model 

of a synchronous generator, and hinged on the premise that the loads must be static or 

that their dynamic responses are negligibly small compared to that of the generator. 

Likewise, a fuzzy logic-based power system stabilizer (FLPSS) was developed by 

Venkatesh & Rao (October 2012) to replace the classical power system stabilizer for a 

single machine connected to an infinite bus. In the work, the FLPSS was shown to damp 

out system oscillations faster than the classical PSS, though for the application of a three-

phase fault that lasted for 5 cycles, the FLPSS could only make system variables settle in 

about 20s. This settling time is clearly too long. 

More recently, an alternative approach to damping rotor angle oscillations in power 

systems was proposed by Garima et al. (2014). Using high power semiconductor devices, 

the authors developed a hybrid power flow controller (HPFC) to be located at an 

appropriate point in the transmission system. The performance of the controller was 

tested with a three-phase fault of 0.02 (1.2cycles), 0.04 (2.4cycles), 0.1 (6 cycles), and 

0.2s (12 cycles) durations. It was observed by the authors that the HPFC damped out 
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oscillations and ensured system stability in 3.53, 3.7, 3.6, and 2.6s, respectively, for the 

above-given fault durations. 

It has been pointed out that the critical clearing time, which is the maximum fault cycle 

that a system can withstand without losing stability, is an important aspect of transient 

stability (Shuji et al., 2014).  Therefore, it is still desirable to have controllers that can 

furnish the system with greater ability to withstand longer fault cycles and damp out 

system oscillations in much shorter time. Besides, many of the available power system 

controllers have complicated structures which are not amenable to easy implementation. 

So, a more compact nonlinear controller, which is universal and can be easily tuned for 

excellent system dynamic performance, is highly required—this universal controller is 

informed by the popular universal linear PID controller structure which has become the 

de facto controller for many industrial control applications (Yun et al., 2006). In this 

work, two schemes are developed to meet these aforesaid requirements.  

2.3 Summary 

This chapter has presented a brief review drawn from the open literature of the 

fundamental theory and concepts, which are relevant to the work being carried out in this 

Thesis. These include different synchronous machine models and control methods, which 

will be further explored in the next chapter, with emphasis on control design. 
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CHAPTER THREE: SYSTEM MODEL ANALYSIS AND CONSTRUCTION 

OF CONTROL LAWS 

3.0 Introduction 

Generally, in any control system design, the plant model to be controlled constitutes a 

crucial part of the overall control problem solutions. Therefore, it is important that the 

plant model must be able to accurately represent state variables with significant influence 

on the dynamic behavior of the physical system being modeled. Besides, vital plant 

parameters must be represented. If reduced-order models of a physical plant are able to 

capture their typical low-frequency behaviors accurately, then they will be sufficient to 

be used for the purpose of control design, especially when the task of the controller is to 

improve stability and overall dynamic performance in spite of the plant’s model 

imprecision (Slotine & Li, 1991). Considering sixth-, fourth-, and third-order models of a 

single machine connected to an infinite bus (SMIB) system as examples, this chapter 

presents three nonlinear excitation control laws. While two of these are higher order 

sliding mode laws, the third is based on the concept of dynamic system homogeneity. The 

construction of these laws leads to the overall development of control schemes for 

stabilizing power systems. Importantly, novel MATLAB tools are developed for testing 

any affine nonlinear dynamic system for exact linearization. This concept is fundamental 

to many nonlinear control system design problems. 

3.1 Research Design 

The stages involved in solving the research problem are: modeling of power systems, 

derivation of output signals, construction of control laws, implementation of control laws, 
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and realization of control schemes. These coherent and logical steps are presented 

pictorially in Fig. 3.1. 

 

 

Fig. 3.1: Diagrammatical representation of the research design 

 

As shown in the diagram, the final stage of the research is to realize control schemes that 

can handle large system disturbances and quickly damp out oscillations. In order to 

ensure that these schemes have this capability, the construction and implementation 
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stages are iterative. This means that the control laws are made to undergo software-based 

evaluation and the results of this are used to adjust the parameters of the control laws. 

This process of evaluation and adjustment is repeated until desirable optimal performance 

is obtained.  

 

3.2 Power System Model (PSM) Description and Analysis 

The general representation of a single generator connected to an infinite bus is shown in 

Fig. 3.2. A typical configuration is given in Fig. 3.3, with its simplified representation 

depicted in Fig. 3.4. ZE in Fig. 3.3 is the equivalent impedance between the transformer 

terminal and the infinite bus, and is expressed as 

 Z� = R� + jX�                                                                                                                �3.1� 

where RE and XE are the equivalent transmission line resistance and reactance, 

respectively. The values of parameters RE and XE are lumped together with that of the 

generator and transformer. In other words, RE is added to the generator armature 

resistance to form the overall resistance, while the sum of XE and XT (transformer 

reactance) is added to each generator reactance to get the appropriate overall reactance.  

G
Z1

Z2 Z3

Z4

Z5

Z6

Z7 Large 
system

 

Fig. 3.2: General representation of a SMIB (Kundur, 1994) 
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Fig. 3.3: Simplified representation of a SMIB (Mahmud et al., September 2011) 

G

Vt

ZE

V

 

Fig. 3.4: Equivalent representation of a SMIB 

Using the synchronous generator model given in the previous chapter, the dynamic 

equations describing this SMIB model is given in equations (3.2)-(3.7) (Anderson & 

Fouad, 2003; Kokotovic & Sauer, 1989) below. 

 
���� = ω − ω�                                                                                                                    �3.2� 

 
���� = �� + ! "#$% &#' − "#(% &#') *(*$ + ! "#$% &#') *(�(% +  ! "#(% &#') *$�$%                  �3.3�  

 
��$%�� = − �#(&#'��(+% ,#(% &#'- E/� + ,#(0#(% -�(+% ,#(% &#'- ψ� + "�(+% E2                                                     �3.4� 

 
�*(�� = − 45�6,#(% &#'- ψ� + 45�6,#(% &#'- E/� + ωψ/ + ω�Vsinδ                                            �3.5� 

 
�*$�� = − 45�6,#$% &#'- ψ/ − 45�6,#$% &#'- E�� − ωψ� + ω�Vcosδ                                           �3.6� 

 T/A� ��(%�� = − ,#$&#'-,#$% &#'- E�� − ,#$0#$% -,#$% &#'- ψ/                                                                         �3.7� 

This is a sixth-order model having only one amortisseur winding in the quadrature axis. 

ψd and ψq are the flux linkages in the d-axis and q-axis, respectively, E/�  is the q-axis 

voltage which is proportional to the field winding flux linkage, E��  is the d-axis voltage 

which is proportional to the amortisseur winding flux linkage, δ is the rotor or torque 

angle in radians, and ω is the rotor speed in radians/s. Also, Tm is the input torque, Rt is 
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the sum of the generator armature and transmission line resistances, V is the magnitude 

of the voltage of the infinite bus, ωs is the synchronous speed of the generator, and Ef 

represents the excitation coil voltage. M = 2H/ωs, is the moment of inertia, where H is the 

generator inertia constant in seconds. All the parameters in the model, which have been 

defined previously, are in per unit. 

In a more compact form and introducing some slight rearrangement, equations (3.2)-(3.7) 

can be rewritten as  

 
���� = ω − ω�                                                                                                                    �3.8� 

 
���� = A" + AEψ�ψ/ + AFψ�E�� +  AGψ/E/�                                                             �3.9�  

 
��$%�� = −B"E/� + BEψ� + "�(+% E2                                                                                 �3.10� 

 
�*(�� = −Cψ� + CE/� + ωψ/ + V�sinδ                                                                     �3.11� 

 
�*$�� = −Dψ/ − DE�� − ωψ� + V�cosδ                                                                   �3.12� 

 T/A� ��(%�� = −E"E�� − EEψ/                                                                                          �3.13� 

The parameters A1-A4, B1, B2, C, D, E1, and E2 are defined as follows: 

 A" = ��  ; AE = ! "#$% &#' − "#(% &#') "  ; AF = ! "#$% &#') "  ; AG =  ! "#(% &#') "  

 B" = �#(&#'��(+% ,#(% &#'- ; BE = ,#(0#(% -�(+% ,#(% &#'- 
 C = 45�6,#(% &#'- 
 D = 45�6,#$% &#'- 
            E" = ,#$&#'-,#$% &#'- ; EE = ,#$0#$% -,#$% &#'- 
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 V� = ω�V 

The two-axis and one-axis models can be derived from the sixth-order model described 

above by introducing relevant assumptions as carried out in the previous chapter. But to 

reveal some fundamental issues regarding these reduced-order models and gain proper 

mathematical insights about their structure, the concept of integral manifold is employed 

to derive them. Sauer, et al. (1988) forms the basis for this derivation, though some 

extensions to this are included here. 

3.2.1 Two-Axis Model (PSM1) 

This is a reduced-order model which assumes that the stator transients are restricted to an 

integral manifold in the state space. This manifold represents the solutions of the stator 

differential equations (3.11) and (3.12) when the resistance Rt is zero.  

With these solutions given as (Sauer et al., 1988) 

 ψ� = Vcosδ                                                                                                                   �3.14� 

 ψ/ = −Vsinδ,                                                                                                               �3.15� 

the manifold facilitates the reduction of the sixth-order model described by equations 

(3.8)-(3.13) to the following fourth-order model (Fitzgerald et al., 1983; Kundur & 

Dandeno, 1983):  

 
���� = ω − ω�                                                                                                                 �3.16� 

 
���� = A" − "E AEVEsin2δ + AFVE�� cosδ −  AGVE/� sinδ                                       �3.17� 

 
��$%�� = −B"E/� + BEVcosδ + "�(+% E2                                                                           �3.18� 

 T/A� ��(%�� = −E"E�� + EEVsinδ                                                                                     �3.19� 
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when the initial conditions N�0�, O��0�, and OP�0� are on the manifold, i.e., when the 

initial conditions of the stator transients are on the manifold. As demonstrated in (Sauer 

et al., 1988), this two-axis model approximates the sixth-order model very well, although, 

when the stator transient initial conditions are off the manifold, the model yields (Sauer et 

al., 1988) the following: 

 
���� = ω − ω�                                                                                                                 �3.20� 

 
���� = A" − "E AEVEsin2δ + AFVE�� cosδ −  AGVE/� sinδ + T��                             �3.21� 

 
��$%�� = −B"E/� + BE�Vcosδ + d�� + "�(+% E2                                                             �3.22� 

 T/A� ��(%�� = −E"E�� + EE,Vsinδ − d/-                                                                      �3.23� 

where Tst (a component of torque associated with the initial conditions of the stator 

transients) is given as 

 T�� = " RAE,d�d/ − d�Vsinδ + d/Vcosδ- + AFd�E�� + AGd/E/� S                   �3.24� 

with 

 d� = Td�E�0� + d/E�0�cos Uω�t + δ − δ�0� − Tan0" X�$�Y��(�Y�Z[                         �3.25� 

 d/ = Td�E�0� + d/E�0�sin Uω�t + δ − δ�0� − Tan0" X�$�Y��(�Y�Z[                          �3.26� 

3.2.2 One-Axis Model (PSM2) 

This reduced-order model is obtained by eliminating the influence of the damper winding 

or, in other words, assuming that T/A�  is a very small number α. This requires that E��  be 

solved for in terms of δ, ω, and E/�  from equation (3.19) and then substituted into 
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equation (3.17). For better accuracy, a third-order approximation is considered here. (A 

case of second-order approximation is treated by Sauer et al. (1988)) 

Let the solution of E��  be given by the function 

 E�� = G,δ, ω, E/� , α-.                                                                                                    �3.27� 

Substituting this last equation into equation (3.19) yields 

 α ��̂� = −E"G + EEVsinδ                                                                                            �3.28� 

where 

 α ��̂� = α 	^	� ���� + α 	^	� ���� + α 	^	�$%
��$%��                                                                       �3.29� 

Since α is small, equation (3.27) can be expanded using Taylor’s series to give  

 E�� = G�α� + G��α�α + ^%%�_�E! αE + ^�a��_�F! αF + ⋯ 

or, ignoring higher-order powers of α,  

 E�� = GY + G"α + GEαE                                                                                              �3.30� 

with 

 GY = G�α� 

 G" = G′�α� 

 GE = ^%%�_�E! . 

Again, equating equation (3.28) and equation (3.29) after the substitution of equation 

(3.30) gives 

 α 	,^d&^e_&^f_f-	� ���� + α 	,^d&^e_&^f_f-	� ���� + α 	,^d&^e_&^f_f-	�$%
��$%��  

      = −E"�GY + G"α + GEαE� + EEVsinδ                                                  �3.31� 
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Equation (3.31) is now manipulated by equating corresponding coefficients of various 

powers of α on both sides to yield G0, G1, and G2. 

For α2 approximation, G0 and G1 form the component of E�� , and are given as 

 GY = F"Vsinδ                                                                                                               �3.32� 

 G" = − he�e V�ω − ω��cosδ                                                                                        �3.33� 

where F" = �f�e . 

Likewise, for α3 approximation, G0, G1, and G2 form the components of E�� , with G2 given 

as 

 GE = − he�ef �ω − ω��EVsinδ + 

                          
he�ef VcosδRT" + AFF"VEsinδcosδ − AGVE/� sinδS                                   �3.34� 

where T" = �A" − AEVEsinδcosδ�. 

(The full derivations of equations (3.32), (3.33), and (3.34) are provided in Appendix A.) 

From equation (3.30), based on these two approximations, E��  is given respectively in 

equations (3.35) and (3.36) as follows: 

 E�� = F"Vsinδ − α he�e V�ω − ω��cosδ                                                                     �3.35� 

 E�� = F"Vsinδ − α he�e V�ω − ω��cosδ − αE he�ef �ω − ω��EVsinδ + 

                    αE he�ef VcosδRT" + AFF"VEsinδcosδ − AGVE/� sinδS                                     �3.36� 

Therefore, substituting equation (3.35) into equation (3.17) and combining the result with 

equations (3.16) and (3.18) yields the following third-order model 

 
���� = ω − ω�                                                                                                                 �3.37� 
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���� = A" + hfifE sin2δ −  AGVE/� sinδ − T/Y� hahe VEcosEδjkkkklkkkkm �ω − ωn�               �3.38� 

 
��$%�� = −B"E/� + BEVcosδ + "�(+% E2                                                                           �3.39� 

with FE = ! "#(% &#' − "#$&#') "  and FF = ! "#$&#'). 

The last term in equation (3.38) actually denotes the torque component associated with 

the damper winding. The accented part of this term is often represented in the literature 

(Anderson & Fouad, 2003; Fusco & Russo, 2012; Arjona et al., 2009) as D/M, where D 

is called the damping constant, and M is as defined previously. Hence, the popular flux 

decay model is  

 
���� = ω − ω�                                                                                                                 �3.40� 

 
���� = A" − o �ω − ωn� + hfifE sin2δ −  AGVE/� sinδ                                           �3.41� 

 
��$%�� = −B"E/� + BEVcosδ + "�(+% E2                                                                           �3.42� 

The third-order model can be improved upon if equation (3.36) is substituted into 

equations (3.16)-(3.18) with one more additional term (due to the damper winding) 

added. This improved model is reflected in the rotor speed differential equation: 

 
���� = A" + hfifE sin2δ −  AGVE/� sinδ − T/Y� hahe VEcosEδjkkkklkkkkm �ω − ωn� −

                       ,�$d% -fpaheE�ef VEsin2δjkkkkklkkkkkm �ω − ωn�E                                                                         �3.43� 

The complete derivation is shown in Appendix A. In a similar fashion to equations 

(3.40)-(3.42), the improved flux decay model is given as 

 
���� = ω − ω�                                                                                                                 �3.44� 
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���� = A" − oe��0�q� − of��0�q�f + hfifE sin2δ −  AGVE/� sinδ                         �3.45� 

 
��$%�� = −B"E/� + BEVcosδ + "�(+% E2                                                                           �3.46� 

It is instructive that when T/A�  is significantly small, the flux decay model in equations 

(3.40)-(3.42) will sufficiently approximate the higher-order models. Otherwise, equations 

(3.44)-(3.46) are a better approximation. 

To investigate the accuracy of the reduced-order models discussed so far, a disturbance, 

which is a short-circuit fault at the infinite bus, is applied for the duration of 0.1second 

(5-cycle fault), 0.14second (7-cycle fault) and 0.18second (9-cycle fault) after the system 

has reached a steady state. Fig. 3.5 to Fig. 3.13 show the response waveforms of the three 

models (equations (3.8)-(3.13), equations (3.16)-(3.19) and equations (3.37)-(3.39)) 

under the three different fault cycles for the initial conditions x0 = [0.6836, 317.43, 

1.1413], x0 = [0.6836, 317.43, 0.2956], and x0 = [0.6836, 317.43, 1.1413, 0.7874, -

0.6326, 0.2956]. (These initial conditions represent small deviations of the system states 

from their equilibrium values as obtained in Chapter 4, Section 4.1.) The system 

parameters used in this study are given in Table 3.1. The main stability indicators used in 

this chapter to validate the 3rd- and 4th-order synchronous machine models against their 

6th-order counterpart are rotor load angle, rotor speed, and quadrature-axis EMF (E/� ). 

 

 

 

 

 



59 

 

Table 3.1: Typical system parameters for a SMIB (Anderson & Fouad, 2003; Sauer et al., 

1988) 

System Parameter Value 

Synchronous reactance Xd = 0.9 p.u.; Xq = 0.7 p.u. 

Transient reactance X’d= 0.2 p.u.; X’q= 0.2 p.u. 

Open-circuit transient time constant T’do= 5.00 s; T’qo = 0.13 s 

Inertial constant H = 5.00 s 

Input torque Tm = 0.8413 

Transmission line reactance XE = 0.24 p.u. 

Transformer reactance XT = 0.13 p.u. 

Infinite-bus voltage magnitude V = 1.0 p.u. 

 

From the simulation waveforms displayed in Fig. 3.5 to Fig. 3.13, the general observation 

is that as the fault duration increases, the peak overshoots of the system variables being 

used as main stability indicators (δ, ω and E/� ) also increase. It is seen that the fourth-

order model is able to approximate or reproduce the outputs of the sixth-order model with 

high degree of accuracy, while the third-order model deviates slightly from that of the 

sixth-order model. Particularly, the rotor angle ‘δ’ and the Q-axis voltage ‘E/� ’ obtained 

from the third-order model show noticeable deviations from those of the sixth-order 

model, especially during the first peak and subsequent oscillations from the fault 

clearance instances. For the rotor angle, the estimated first peak (swing) error is between 

5o and 6o as the fault clearance time is varied from 5 to 9 cycles, while the error in the Q-

axis voltage is minimal and ranges from 0.005pu to 0.01pu. Also, the error in E/�  between 

the two models being compared steadily decreases as the system approaches the steady 

state. Based on this investigation, it can be concluded that the third-order model state 

variables correctly match their corresponding variables from the 4th-and 6th-order models, 
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with negligible error during the first peak. Hence, it can be said that the fourth-and third-

order models are good representations of the sixth-order model. 

 

 

Fig. 3.5: Rotor angle waveforms for a 5-cycle fault 
 

 

Fig. 3.6: Rotor speed waveforms for a 5-cycle fault 

 



61 

 

 

Fig. 3.7: Q-axis voltage waveforms for a 5-cycle fault 

 

 

  

 

Fig. 3.8: Rotor angle waveforms for a 7-cycle fault 
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Fig. 3.9: Rotor speed waveforms for a 7-cycle fault 

 

 

Fig. 3.10: Q-axis voltage waveforms for a 7-cycle fault 
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Fig. 3.11: Rotor angle waveforms for a 9-cycle fault 

 

 

Fig. 3.12: Rotor speed waveforms for a 9-cycle fault 
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Fig. 3.13: Q-axis voltage waveforms for a 9-cycle fault 

3.3 Control Law Construction 

Consider an affine nonlinear power system represented by the model 

 �r = f��, t� + g���u                                                                                                     �3.47� 

where � ∈ ℝxis the system state vector, f ∈ ℝx and g ∈ ℝx  are continuously 

differentiable function vectors, and u is the control signal. The control design problem 

involves construction of a nonlinear control law, u, that will ensure that the output signal 

becomes zero in finite time and remains so (with minimum control effort) thereafter, 

including under both normal and disturbance-induced conditions. This task requires a 

pre-selection or derivation of an output signal or function that naturally goes to zero when 

the system reaches its steady operating condition. In this regard, the relative degree of the 

system with respect to the chosen output is vital.  

Notice that the control laws constructed in this chapter are based on the fourth-order and 

third-order models which were presented and validated earlier on. For the purpose of easy 

reference, the third-order model will be termed ‘power system model 1’ (PSM1), while 
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the fourth-order model will be termed ‘power system model 2’ (PSM2). Similarly, the 

control laws will be referenced accordingly—that is, ‘control law 1’ (CL1), ‘control law 

2’ (CL2), etc. 

3.3.1 Determination of System Outputs for Control Design 

Generally, the chosen system output is such that the system relative degree (denoted as r) 

with respect to it is greater than or equal to the order of the system (denoted as n) i.e., r ≤ 

n. In cases where r < n, then the system internal dynamics must be stable. In a broad term, 

the relative degree of any nonlinear system given by equation (3.47) is the number of 

times its output function will be time-differentiated to yield most immediately an 

expression which is a function of the control signal.  

Definition 3.1: Consider the nonlinear system in equation (3.47). The relative degree, r, 

of the system equals the order, n, of the system if the matrix  

 P = zg��� ad2g��� ad2Eg��� ⋯ ad2{0"g���|                                             �3.48� 

has rank n near the system operating point, x0, and the matrix  

 D = zg��� ad2g��� ad2Eg��� ⋯ ad2{0Eg���|                                             �3.49� 

involutes at x = x0. The involutivity condition is that matrix D and any of its variant  

 D� = Rg��� ad2g��� ⋯ ad2{0Eg��� Rad2}g���, ad2~g���SS                        �3.50� 

have rank n-2, where i = 1, 2, …, n-2, j = 1, 2, …, n-2, and i ≠ j. The symbol adfg(x) or 

[f(x), g(x)] is called the Lie bracket of g(x) along f(x), and ad2}g��� = ad2 Xad2}0"g���Z. 

When the conditions in Definition 3.1 are satisfied, then the output function that makes r 

to be equal to n can be derived by either solving the system of partial differential 

equations 
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������� zg��� ad2g��� ⋯ ad2{0Eg���| = 0                                                        �3.51� 

where y(x) is the unknown output function, or using the general algorithm given in 

Appendix B. 
�������  is the gradient of y(x) along x = [x1 x2 x3 … xn]. However, when the 

conditions in Definition 3.1 fail, it means the system relative degree is less than n, and the 

output function can be obtained only through equation (3.51).  

Definition 3.2: Consider again the nonlinear system in equation (3.47). The relative 

degree of this system with respect to an intuitively pre-selected output function y(x) is the 

value of k such that  

 L�y��� = L�L2y��� = L�L2Ey��� = ⋯ = L�L2�0Ey��� = 0                                 �3.52� 

but 

 L�L2�0"y��� ≠ 0                                                                                                           �3.53� 

within a region of x = x0, where ����� ���� represents the Lie derivative of ��� ���� along 

the function g(x). Various output functions (measurable and/or convenient) can be chosen 

and then tested using equations (3.42) and (3.43). Two MATLAB programs—one for 

computing the relative degree of a nonlinear system and the other for verifying whether 

an output function that yields r = n exists—have been developed and are given in 

Appendix C. These MATLAB tools are general for any affine nonlinear system. The 

flowcharts for the programs are shown in Fig. 3.14 and Fig. 3.15.  

Thus, for each of the models being considered, the system relative degree with respect to 

a number of output functions is computed using the MATLAB tools mentioned 

previously. Table 3.2 and Table 3.3 depict the results for the fourth-order and third-order 

models, respectively. The manual calculations are given in Sections 3.2.1.1 and 3.2.1.2. 
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Table 3.2: System relative degree for the fourth-order model 

System output Relative degree 

E’d∆ 4 

δ∆ 3 

ω∆ 2 

E’q∆ 1 

 
 

 

 

Table 3.3: System relative degree for the third-order model 

System output Relative degree 

δ∆ 3 

ω∆ 2 

E’q∆ 1 
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Fig. 3.14: Flowchart for testing the exact linearization condition 
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Fig. 3.15: Flowchart for computing the relative degree of a nonlinear system 
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3.3.1.1 Exact and Inexact Linearization of PSM1 

PSM1, from equations (3.37)-(3.39), can be rewritten in a more compact form as 

 �r = f��� + g���u                                                                                                        �3.54� 

where 

 � = ��"�E�F� = � δωE/� �,  

 f��� = �f"fEfF� 

         = � ω − ω�A" + hfifE sin2δ −  AGVE/� sinδ − T/Y� hahe VEcosEδ�ω − ωn�−B"E/� + BEVcosδ � 

 g��� = �g"gEgF� = � 001 ����� �, and u = E2. 

Linearization of PSM1 for output function δ∆ = δ – δ0 

For δ∆ = δ – δ0, equations (3.42) and (3.43) give  

 Term 1: L�δ∆ = �δ∆�� g��� = z1 0 0| � 001 ���′� � = 0. 

 Term 2: L�L2δ∆ = ����δ∆��� g��� 

L2δ∆ = dδ∆d� f��� = z1 0 0| ��"�E�F� = �" = � − �� 

L�L2δ∆ = ���0����� g��� = z0 1 0| � 001 ���′� � = 0. 
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 Term 3: L�L2Eδ∆ = �,��fδ∆-�� g��� 

  L2Eδ∆ = ����δ∆��� f��� = z0 1 0| ��"�E�F� = �E 

  L�L2Eδ∆ = �,��fδ∆-�� g��� = 

                                [FEVEcos2δ − AGVE/� cosδ + T/Y� hahe VE�� − ���sin2δ 

  −T/Y� hahe VEcosEδ −  AGVsinδ| � 001 ���′� � = − p i¡¢£′ sinδ 

Since the third term, i.e., L�L2Eδ∆, is not equal to zero (for δ ≠ 0 or ±mπ, where m is a 

positive integer), then the relative degree of PSM1 with respect to δ∆ is 3. This also 

implies that PSM1 can be exactly linearized in the Bruvnosky normal form as follows: 

 
�¤e�� = zE                                                                                                                          �3.55� 

 
�¤f�� = zF                                                                                                                          �3.56� 

 
�¤a�� = v                                                                                                                           �3.57� 

where z" = δ∆, zE = L2δ∆, §F = L2Eδ∆, and v = L2Fδ∆ + L�L2Eδ∆¨. 

Linearization of PSM1 for output function ω∆ = ω – ω0 

Similarly, for ω∆ = ω – ω0, equations (3.42) and (3.43) give  

 Term 1: L�ω∆ = ��∆�� g��� = z0 1 0| � 001 ���′� � = 0. 

 Term 2: LgLfω∆ = d�Lfω∆�d� g��� 
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L2ω∆ = dω∆d� f��� = z0 1 0| ��"�E�F� = �E 

L�L2ω∆ = �2f�� g��� = − p i¡¢£′ sinδ. 

Here L�L2ω∆ is not equal to zero, and therefore, the relative degree of PSM1 with respect 

to ω∆ is 2. This system can be partly linearized as follows: 

 
�¤e�� = zE                                                                                                                          �3.58� 

 
�¤f�� = v                                                                                                                            �3.59� 

 
�¤a�� = L2θ                                                                                                                        �3.60� 

such that L�θ = 0, where z" = ω∆, zE = L2ω∆, §F = ª, and v = L2Eω∆ + L�L2ω∆¨. 

Equations (3.58)-(3.60) indicate that at a steady operating condition, the external 

dynamics, i.e., equations (3.58) and (3.59), vanish, while the internal dynamics, called 

zero dynamics, determine the state (and therefore, stability) of the system. 

By solving  

 L�θ = 0, 

it can be deduced that  

 θ = �" = N. 

Therefore, the internal dynamics 

 
�¤a�� = L2θ = �«�� f��� = ω∆ 

also vanish, keeping the system stable. 

Linearization of PSM1 for output function ¬­∆� = ¬­� − ¬­®�  

For this output function, the first term in equation (3.42) is not zero. That is, 
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 Term 1: L�E/∆� = ��$∆%�� g��� = z0 0 B"| � 001 ���′� � = ¯e¡¢£′ . 

So, the relative degree is 1. And the system is partly linearized thus:  

 
�¤e�� = v                                                                                                                            �3.61� 

 
�¤f�� = L2θE                                                                                                                      �3.62� 

 
�¤a�� = L2θF                                                                                                                      �3.63� 

with L�θE = 0 and L�θF = 0, where z" = E/∆� , zE = θE, §F = ªF, and v = L2E/∆� +
L�E/∆� ¨. Since θE = δ, and θF = ω, the internal dynamics of this system become 

 
�¤f�� = zF − ω� 

 
�¤a�� = A" + hfifE sin2zE −  AGVE/Y� sinzE − T/Y� hahe VEcosEzE�zF − ω�� 

These internal dynamic equations are very interesting and significant, as they represent 

the system swing equations. The import of this in terms of system dynamic performance 

is that any controller that drives E/∆�  to zero and stabilizes the system will implicitly have 

stabilized its electromechanical dynamics.  

3.3.1.2 Exact and Inexact Linearization of PSM2 

Again, with PSM2, equations (3.16)-(3.19), expressed in the general form of equation 

(3.54), x, f(x), and g(x) are defined as follows: 

 � = °�"�E�F�G
± = ° δωE/�E��

±;  
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 f��� = °f"fEfFfG
± =

²
³³́

ω − ω�A" − "E AEVEsin2δ −  AGVE/� sinδ + AFVE�� cosδ−B"E/� + BEVcosδ− �e�$+% E�� + �f�$+% Vsinδ µ
¶¶·; 

 g��� = °g"gEgFgG
± = ° 001 ����⁄0 ±; u = E2. 

Linearization of PSM2 for output function ¬¹∆� = ¬¹� − ¬¹®�  

Employing equations (3.42) and (3.43) to find the relative degree with respect to this 

output gives 

 Term 1: L�E�∆� = ��(∆%�� g��� = z0 0 0 1| º 001 ����⁄0 » = 0. 

 Term 2: L�L2E�∆� = �,���(∆% -�� g��� 

L2E�∆� = dE�∆�d� f��� = z0 0 0 1| ºf"fEfFfG
» 

                                     = f4 

L�L2E�∆� = ¼∂�L2E�∆� �∂�"
∂�L2E�∆� �∂�E

∂�L2E�∆� �∂�F
∂�L2E�∆� �∂�G ¾ ¿ÀÀ

ÀÁ 001 ���′�0 ÂÃÃ
ÃÄ 

= "¡¢£′
	,���(∆% -	�a = "¡¢£′ . 0 = 0. 

 Term 3: L�L2EE�∆� = �,��f�(∆% -�� g��� 
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  L2EE�∆� = U	,���(∆% -	�e 	,���(∆% -	�f 	,���(∆% -	�a 	,���(∆% -	�  [ ºf"fEfFfG
» 

 = f" 	,���(∆% -	�e + fG 	,���(∆% -	�   

   = V �f�$d% �� − ���cosδ − �e�$+% �− �e�$+% E�� + �f�$+% Vsinδ�  

 L�L2EE�∆� = U	,��f�(∆% -	�e 	,��f�(∆% -	�f 	,��f�(∆% -	�a 	,��f�(∆% -	�  [ ¿ÀÀ
ÀÁ 001 ���′�0 ÂÃÃ

ÃÄ 
   = "¡¢£′

	,��f�(∆% -	�a = "¡¢£′ . 0 = 0. 

 Term 4: L�L2FE�∆� = �,��a�(∆% -�� g��� 

  L2FEd∆′ = Å	X��fEd∆′ Z	�e
	X��fEd∆′ Z	�f

	X��fEd∆′ Z	�a
	X��fEd∆′ Z	�  Æ ºf"fEfFfG

» 

 = f" !− �f�e¡Ç£%f Ècosδ − �f�$d% V�� − ���sinδ) + 

    fE�ÉÊf�$d% cosδ� + fG� �ef�$+%f � 

L�L2FE�∆� = ¼∂,L2FE�∆� -∂�"
∂,L2FE�∆� -∂�E

∂,L2FE�∆� -∂�F
∂,L2FE�∆� -∂�G ¾ ¿ÀÀ

ÀÁ 001 ���′�0 ÂÃÃ
ÃÄ 

   = "¡¢£′
	,��a�(∆% -	�a  

= 1���′ ¼− EET/A� AGVEsinδcosδ¾ = − EE2���′ T/A� AGVEsin2δ ≠ 0. 
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The last term holds true for δ ≠ 0 or ±0.5mπ, where m is a positive integer. Thus, this 

translates to a relative degree of 4. 

Therefore, the system can be exactly linearized as given by 

 
�¤e�� = zE                                                                                                                          �3.64� 

 
�¤f�� = zF                                                                                                                          �3.65� 

 
�¤a�� = zG                                                                                                                          �3.66� 

 
�¤ �� = v                                                                                                                            �3.67� 

where z" = E�∆′ , zE = L2E�∆′ , §F = L2EE�∆′ , §G = L2FE�∆′ , and v = L2Gδ∆ + L�L2Fδ∆¨. 

Linearization of PSM2 for output function Ë∆ = Ì − Ì® 

The relative degree with respect to this output is determined as follows: 

 Term 1: L�δ∆ = ��∆�� g��� = z1 0 0 0| º 001 ����⁄0 » = 0. 

 Term 2: L�L2δ∆ = �����∆��� g��� 

L2δ∆ = dδ∆d� f��� = z1 0 0 0| ºf"fEfFfG
» = f" 

L�L2δ∆ = Å∂�L2δ∆�∂�"
∂�L2δ∆�∂�E

∂�L2δ∆�∂�F
∂�L2δ∆�∂�G Æ ¿ÀÀ

ÀÁ 001 ���′�0 ÂÃÃ
ÃÄ 

= "¡¢£′
	����∆�	�a = "¡¢£′ . 0 = 0. 

 Term 3: L�L2Eδ∆ = �,��f�∆-�� g��� 
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  L2Eδ∆ = U	����∆�	�e 	����∆�	�f 	����∆�	�a 	����∆�	�  [ ºf"fEfFfG
» = fE 

  L�L2Eδ∆ = U	,��f�∆-	�e 	,��f�∆-	�f 	,��f�∆-	�a 	,��f�∆-	�  [ ¿ÀÀ
ÀÁ 001 ���′�0 ÂÃÃ

ÃÄ 
   = "¡¢£′

	,��f�∆-	�a = − p i¡¢£′ sinδ ≠ 0. 

The relative degree is 3. And the linearization of the system is as follows:  

 
�¤e�� = zE                                                                                                                          �3.68� 

 
�¤f�� = zF                                                                                                                          �3.69� 

 
�¤a�� = v                                                                                                                            �3.70� 

 
�¤ �� = L2θ                                                                                                                        �3.71� 

where L�θ = 0, z" = δ∆, zE = L2δ∆, §F = L2Eδ∆, zG = θ, and v = L2Fδ∆ + L�L2Eδ∆¨.   

From 

 L�θ = 0, 

it can be suitably deduced that θ = �G = E�� . Hence, the internal dynamics of the system 

become 

 
�¤ �� = − �e�$+% zG + �f�$+% VsinδY. 

It is obvious that this dynamic equation is stable.  

Linearization of PSM2 for output function Í∆ = Î − Î® 

For this output, the following holds: 
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 Term 1: L�ω∆ = ��∆�� g��� = z0 1 0 0| º 001 ����⁄0 » = 0. 

 Term 2: L�L2ω∆ = �����∆��� g��� 

L2ω∆ = dω∆d� f��� = z0 1 0 0| ºf"fEfFfG
» = fE 

L�L2ω∆ = Å∂�L2ω∆�∂�"
∂�L2ω∆�∂�E

∂�L2ω∆�∂�F
∂�L2ω∆�∂�G Æ ¿ÀÀ

ÀÁ 001 ���′�0 ÂÃÃ
ÃÄ 

= "¡¢£′
	����∆�	�a = − p i¡¢£′ sinδ ≠ 0. 

Here the relative degree is 2, and the system transformation becomes:  

 
�¤e�� = zE                                                                                                                          �3.72� 

 
�¤f�� = v                                                                                                                            �3.73� 

 
�¤a�� = L2θF                                                                                                                      �3.74� 

 
�¤ �� = L2θG                                                                                                                      �3.75� 

where L�θF = 0, L�θG = 0, z" = ω∆, zE = L2ω∆, §F = θF, zG = θG, and v = L2Eω∆ +
L�L2ω∆¨.   

After solving 

 L�θF = 0, and L�θG = 0 

to give suitably θF = �", and θG = �G, the internal dynamics reduce to 

 
�¤ �� = − �e�$+% zG. 
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This dynamic equation is stable.  

Linearization of PSM2 for output function ¬­∆� = ¬­� − ¬­®�  

Similarly, the relative degree here is 1, because 

 Term 1: L�E/∆� = ��$∆%�� g��� = z0 0 1 0| º 001 ����⁄0 » ≠ 0. 

And the internal dynamic equations, which are also stable, are 

 
�¤f�� = zF − ω� 

 
�¤a�� = BEVcoszE − B"E/Y�  

 
�¤ �� = − �e�$+% zG + �f�$+% VsinzE, 

resulting from transforming the system to 

 
�¤e�� = L2E/∆� + L�E/∆�                                                                                                    �3.76� 

 
�¤f�� = L2θE                                                                                                                      �3.77� 

 
�¤a�� = L2θF                                                                                                                     �3.78� 

 
�¤ �� = L2θG                                                                                                                     �3.79� 

such that L�θE = 0, L�θF = 0, and L�θG = 0. 

3.3.2 Control Law 1 

This section presents a control law which is derived from the general higher-order SMC 

structure that can be tuned to achieve a desirable dynamic performance. Enjoying the  

feature of a variable structure control system such as insensitivity to model inaccuracy 

and robustness against system disturbances, it can guarantee finite-time stabilization of 
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uncertain differentiable dynamic systems by ensuring that a set of system output-based 

constraints is met.  

Given the potential uncertainty in the nonlinear system in (3.47), the thrust of the control 

design involves subjecting system states to the following r constraints: 

 h��� = 0, 

 hr ��� = 0,  

 hÐ ��� = 0, 

 ⋮ 
 h�Ò0"���� = 0, 

A discontinuous feedback law is employed in order to keep the system dynamic 

performance intact, where r is the relative degree (which is also called the sliding order) 

and h(x) is the output of the system. This means that the convergence of these constraints 

in finite time translates to stabilizing the states of the system. The only requirements are 

that the relative degree must be known, the zero dynamics must be stable, and the control 

signal must be finite and bounded. 

The structure of the universal controller is given by (Levant, 2001, 2005) 

 u = −KφÒ0",Ò,h, hr , hÐ , … , h�Ò0"�-,                                                                             �3.80� 

where 

 φ~,Ò = sat !Ö�×�&_× ×,ØÙ×Úe,Ø Ø , ε~), 

 φY,Ò = sat X Ö|Ö| , εYZ, 

and 

 M~,Ò = �|h|$Ø + Þhr Þ $�ØÚe� + ⋯ + Þh�~0"�Þ $�ØÚ×ße���ØÚ×�$ , 



81 

 

 MÒ = �|h|$Ø + Þhr Þ $�ØÚe� + ⋯ + Þh�Ò0"�Þ/�e$, 

for j = 1, 2, …, r-1, εj > 0, and q = r!. K and αj are the parameters of the controller. 

3.3.3 Control Law 2 

The second control law is designed based on the concept of geometric homogeneity. 

Homogeneity is the feature of functions and vector fields associated with dynamic 

systems, which guarantees their transformation (dilation) from one point to another in the 

state space (Bhat & Bernstein, 2005). 

Generally, system dilation is in the form 

 Δá�z� = �vâez", vâf zE, ⋯ , vâãz{�,                                                                        �3.81� 

which is an extension of the standard dilation 

 Δá�z� = �vz", vzE, ⋯ , vz{�.                                                                                       �3.82� 

If a nonlinear dynamic system can be represented as a set of integrator chains (exact 

linearization into the Bruvnosky normal form)  

 
�¤e�� = zE                                                                                                                          �3.83� 

 
�¤f�� = zF                                                                                                                          �3.84� 

 ⋮ 
 

�¤ã�� = ��ä h + ,����ä0"h-u = uå/                                                                               �3.85� 

with ueq given by  

 uå/ = f�z�, 

then it can be dilated to result in ueq given by 

 uå/ = f�vâz� or uå/ = f�vz�.                                                                                   �3.86� 
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This concept is employed to upgrade the finite-time stabilizing feedback controller 

presented in (Bhat & Bernstein, 2005) (Proposition 8.1), and given as follows: Consider 

the system defined in equations (3.37)-(3.39). There exists a feedback control law  

 uå/�z� = −k"sign�z"�|z"|áe − ⋯ − kÒsign�zÒ�|zÒ|áØ                                         
which ensures that the origin is globally finite-stable. The positive numbers k1, k2,. . ., kr 

are appropriately selected such that the polynomial  

 pÒ + kÒpÒ0" + kÒ0"pÒ0E + k" 

is Hurwitz. 

v1, v2, …,vr are found from 

 v}0" = áèáèßeEáèße0áè ,        i = 2, 3, ⋯ r 

with 

 vÒ&" = 1; vÒ ∈ �1 − ε, 1�; ε ∈ �0,1�. 
The overall control law u is now given by 

 u = êë$0ìíî ÖìïìíîÚe .                                                                                                      �3.87� 

3.3.4 Control Law 3 

Using a saturation function for the switching in equation (3.80), this law is a modified 

form of CL1, and is adopted to reduce the severity of switching in u. It is given by  

 u = −Ksat,ΓÒ0",Ò,h, hr , hÐ , … , h�Ò0"�-, ε-,                                                                �3.88� 

where 

 Γ~,Ò = h�~� + α~M~,Òsat X,Γ~0",Ò-, εZ, 

 Γ",Ò = hr + α"M",Òsign,ΓY,Ò- 
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 ΓY,Ò = h, 

and 

 M~,Ò = �|h|$Ø + Þhr Þ $�ØÚe� + ⋯ + Þh�~0"�Þ $�ØÚ×ße���ØÚ×�$ , 

for j = 1, 2, …, r-1, ε > 0, and q = r!. K, αj are the parameters of the controller. 

It is noted that “sign” (shown in Fig. 3.16) is the signum function, while “sat” (shown in 

Fig. 3.17) represents the saturation function. 

sign(y)

+1

-1

0

sign(y) = +1(if y > 0) or -1(if y < 0)
 

Fig. 3.16: Representation of sign(y) 

sat(y, ε )

y

+1

-1

0

sat(y, ε ) = min(1, max(-1, y/ε))

ε-ε

 
Fig. 3.17: Representation of sat(y, ε) 

 

3.4 Control Signals and Schemes for PSM1 

With h1 representing the output function, the following equations are the respective 

control signals for PSM1: 

 ∎h" = δ∆: r = n = 3. 

 u" = −KφE,F,h", hr ", hÐ "- 

 = −Ksat XÖÐ e&_f f,aÙe,a a , εEZ                                                                                     �3.89� 

 φ",F = sat XÖr e&_e e,aÙd,a a , ε"Z 
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 φY,F = sat X Öe|Öe| , εYZ 

 ME,F = X|h"|E + Þhr "ÞFZ" ò⁄
 

 M",F = �|h"|E�" F⁄  

 MF = X|h"|E + Þhr "ÞF + ÞhÐ "ÞòZ" ò⁄
 

 uE = êë$0ìíî ÖìïìíîÚe                                                                                                                 �3.90�  
 uå/ = −k"sign�vz"�|vz"|áe − kEsign�vzE�|vzE|áf − kFsign�vzF�|vzF|áa 

 = −k"sign�z"�|vz"|áe − kEsign�zE�|vzE|áf − kFsign�zF�|vzF|áa                    
 pF + kFpE + kEp + k" = �p + a"��p + aE��p + aF� = 0 

 z" = h";  zE = L2h";  zF = L2Eh" 

 uF = −Ksat !XΓE,F,h", hr ", hÐ "-Z , epsi) 

 = −Ksat !XhÐ " + αEME,Fsat,Γ",F, epsi-Z , epsi)                                                    �3.91� 

 Γ",F = hr " + α"M",Fsign,ΓY,F- 

 ΓY,F = h"  

For each of the control signals u1 and u3, the controller gain K and parameters αi are 

properly tuned to give satisfactory system performance. For control signal u2, parameters 

ki are preselected based on the placement of ai in the complex frequency plane, and v > 0 

is the dilation gain. 

Thus, the resulting control scheme for PSM1 is shown in Fig. 3.18. 
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Fig. 3.18: Control scheme for PSM1 

 

3.5 Control Signals and Schemes for PSM2 

The control signals here are similar to the ones derived for PSM1. This is a good way to 

evaluate the above control signals under the influence of unmodeled dynamics—the 

design intent is to assess the performance of the three control laws when the dynamics of 

the system changes. The system output function is h2, and the control signals are u4, u5, 

and u6.  

 ∎hE = δ∆: r = n − 1 = 3. 

 uG = −KφE,F,hE, hr E, hÐ E- 

 = −Ksat XÖÐ f&_f f,aÙe,a a , εEZ                                                                                     �3.92� 

 φ",F = sat XÖr f&_e e,aÙd,a a , ε"Z 

 φY,F = sat X Öf|Öf| , εYZ 

 ME,F = X|hE|E + Þhr EÞFZ" ò⁄
 

 M",F = �|hE|E�" F⁄  

 MF = X|hE|E + Þhr EÞF + ÞhÐ EÞòZ" ò⁄
 



86 

 

 uó = êë$0ìíî ÖìïìíîÚe                                                                                                                 �3.93�  

 uå/ = −k"sign�vz"�|vz"|áe − kEsign�vzE�|vzE|áf − kFsign�vzF�|vzF|áa 

 = −k"sign�z"�|vz"|áe − kEsign�zE�|vzE|áf − kFsign�zF�|vzF|áa                    
 pF + kFpE + kEp + k" = �p + a"��p + aE��p + aF� = 0 

 z" = hE;  zE = L2hE;  zF = L2EhE 

 uò = −Ksat !XΓE,F,hE, hr E, hÐ E-Z , epsi) 

 = −Ksat !XhÐ E + αEME,Fsat,Γ",F, epsi-Z , epsi)                                                    �3.94� 

 Γ",F = hr E + α"M",Fsign,ΓY,F- 

 ΓY,F = hE  

The expressions for hr ", hÐ ", hr E, and hÐ E are given in Sections 3.2.1.1 and 3.2.1.2. 

Likewise, the resulting control scheme for PSM2 is shown in Fig. 3.19. 

 

 

Fig. 3.19: Control scheme for PSM2 
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3.6 Summary 

This chapter discusses several modeling methods of the synchronous generator in 

stability studies, and a number of nonlinear control schemes. It has been shown that the 

fourth-and third-order models of SMIB can approximate a sixth-order model correctly, 

and this supports the underlying system representations used for the construction of the 

control laws. Moreover, this chapter presented detailed construction of three sets of 

control signals, including the important concepts of exact and inexact linearization of 

affine nonlinear systems. It has presented a number of MATLAB tools for verification of 

the exact and inexact linearizations of nonlinear systems, and for calculating their relative 

degrees. Besides, to inspire orderly flow of material and enhance intuitive mathematical 

connection, this chapter has clearly laid out all the control signals as related to each 

model considered. The next chapter will consider the effect of all the control signals and 

how the parameters of some of these signals are tuned.   
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CHAPTER FOUR: CONTROL LAWS’ TESTING AND PERFORMANCE 

EVALUATION  

4.0 Introduction  

The main purpose of any control system design is to achieve a desirable dynamic 

characteristic of the system being controlled. For some nonlinear dynamic systems such 

as power systems, a good performance entails that a number of important system 

variables must settle quickly (within 2-3s) with minimal oscillations. To maintain 

synchronism of power system, rotor angles and speeds of all synchronous machines must 

be stable following perturbation. Besides determination of equilibrium points for PSM1 

and PSM2, this chapter focuses on the performance assessment of each of the control 

laws presented in Chapter 3 when synchronous machines were modeled using PSM1 and 

PSM2. Moreover, an approximate tuning method for CL1 and CL3 is provided. 

4.1 Equilibrium Points for PSM1 and PSM2  

Determination of equilibrium or singular points for nonlinear control system is very 

important for analysis and design purpose because it allows a small-signal operation of 

nonlinear systems to be studied and understood using linear control theory methods. On 

the other hand, feedback controllers for general performance improvement can be 

designed based on the deviations of the state variables from their steady-state values.  

Let (x10, x20, x30) and (x10, x20, x30, x40) represent the equilibrium points of PSM1 and 

PSM2, respectively. These are described by equations (4.1) and (4.2) as follows: 
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 ��r"�rE�rF� =
      � �E − ω�A" + "E FEVEsin2�" −  AGV�Fsin�" − �$+% hahe vE��E − ω��cosE�"−B"�F + BEVcos�"

� + � 00"¡¢£% � ¨  �4.1� 

 °�r"�rE�rF�rG± =
²³́

�E − ω�A" − "E AEVEsin2�" −  AGV�Fsin�" + AFV�Gcos�"−B"�F + BEVcos�"− �e�$+% �G + �f�$+% Vsin�" µ¶
· +

²³́
00"�(+%0 µ¶

· u  �4.2� 

At equilibrium, all derivative terms in equation (4.1) are set to zero, i.e., 

 ∎    �EY − ω� = 0 

 ⇒ �EY = ω�.                                                                                                                    �4.3� 

∎    A" + 12 FEVEsin2�"Y −  AGV�FYsin�"Y = 0                                                   
           ⇒ �FY = pe&efhfif�}{E�edp i�}{�ed .                                                                                             (4.4) 

 ∎    − B"�FY + BEVcos�"Y + "�(+% uY = 0 

 ⇒ �FY = ¯fiõA��ed& eö(+% êd¯e .                                                                                            �4.5� 

Combining equations (4.4) and (4.5), and using the identity sin�"Ycos�"Y ≡ "E sin2�"Y, 

gives 

!12 BEVEAG − 12 B"VEFE) sin2�"Y + 1T�A� AGVuYsin�"Y = A"B".                                      �4.6� 

Equation (4.6) is solved numerically to obtain x10 (see Appendix D), and from either 

equation (4.4) or (4.5), x30 can be found. Hence,  

 ��"Y, �EY, �FY� = ,NY, �Y, E/Y� - = �0.6768, 314.29, 1.1300�. 
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Similarly, the equilibrium point of equation (4.2) is determined as follows: 

 ∎    �EY − ω� = 0 

 ⇒ �EY = ω�.                                                                                                                    �4.7� 

            ∎    A" − "E AEVEsin2�"Y −  AGV�FYsin�"Y + AFV�GYcos�"Y = 0                      �4.8� 

 ∎    − B"�FY + BEVcos�"Y + "�(+% uY = 0 

 ⇒ �FY = ¯fiõA��ed& eö(+% êd¯e .                                                                                             �4.9� 

 ∎    − �e�$+% �GY + �f�$+% Vsin�"Y = 0 

 ⇒ �GY = �fi�}{�ed�e .                                                                                                      �4.10� 

Substituting equations (4.9) and (4.10) into equation (4.8) leads to (4.11), which can be 

solved for x10 as before to give 

X"E BEVEAG + "E B"VEAE − ¯e�fifpaE�e Z sin2�"Y +  "�(+% AGVuYsin�"Y = A"B",                 �4.11�  

Thus, the equilibrium set for PSM2 is  

 ��"Y, �EY, �FY, �GY� = ,NY, �Y, E/Y� , E�Y� - = �0.6768, 314.29, 1.1300, 0.2927�. 

These two equilibrium sets are stable in the sense of Lyapunov (see Appendix D for 

further details on how to compute the Jacobian matrix for equations (4.1) and (4.2) and 

their corresponding eigenvalues). 

4.2 System Simulations and Results 

This section examines the performances of the three control laws (CL1, CL2, and CL3) 

proposed in Chapter three when employed to control a single machine connected to an 

infinite bus. To highlight the improvements that can be achieved with the proposed 

control laws, closed loop results are compared against the open-loop equivalents 
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(constant excitation). In this comparison, system operating conditions remain the same; 

both 3rd- and 4th-order synchronous machine models were employed. A solid symmetrical 

three-phase fault, which is simulated by a sudden reduction of the infinite bus voltage to 

zero, was applied to create a temporary mismatch between electromagnetic torque (Te) 

and input mechanical torque (Tm); and post-fault and pre-fault conditions were assumed 

to be the same. Two fault locations were examined: one at the infinite bus (V∞ = 0 and XE 

= 0.24pu), and the other at the generator terminals (V∞ = 0 and XE = 0). Also, the fault 

clearance time was varied to show the effectiveness of the proposed control laws in 

retaining system stability and improving damping; especially as some of these control 

laws include speed deviation terms. All the system simulations were carried out using 

MATLAB R2012a on an Intel Celeron CPU530 @ 1.73GHz speed with 1.00GB RAM 

and 32-bit Windows 7 Ultimate operating system. 

4.2.1 Responses of PSM1 under the Action of the Control Laws 

A) Fault at infinite bus: V = 0; XE = 0.24; and fault clearance time tc = 5, 7, and 9 

cycles: Fig. 4.1 to Fig. 4.3 show the sets of waveforms of the rotor angle, rotor speed and 

quadrature axis induced EMF of a synchronous generator for this case. It was observed 

that, when  tc was 5 cycles, power oscillations in load angles and rotor speeds were 

damped quickly (within 2seconds), with CL1 yielding highest first peaks. Oscillations 

due to constant excitation were large. For the 7-cycle clearance time, although the load 

angles and rotor speeds produced from CL1, CL2, and open loop have similar first peak, 

CL1 and CL2 exhibit better damping of power oscillations. Likewise, in the case of 9-

cycle clearance time, oscillations in load angles and rotor speeds for CL1 and CL2 are 

well damped, but CL1 exhibits better performance as it has lower first peak in the load 
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angle than that of CL2 and open loop (which means that CL1 improves transient stability 

margin more than CL2). In all the cases of clearance time considered, it is important to 

note that øP�  due to CL1 and CL2 reflects the adjustment required to realize the desirable 

damping in load angles and rotor speeds.  

 

 

 

 

(a) PSM1 rotor angle waveforms for a fault at the infinite bus when closed-loop results 

for CL1 and CL2 are superimposed on their corresponding open-loop (constant 

excitation) result 
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(b) PSM1 rotor speed waveforms for a fault at the infinite bus when closed-loop results 

obtained with CL1 and CL2 are superimposed on their corresponding open-loop 

(constant excitation) result 

 

(c) PSM1 Quadrature EMF (E’q) waveforms for a fault at the infinite bus when closed- 

loop results obtained with CL1 and CL2 are superimposed on their corresponding 

open-loop (constant excitation) result 

Fig. 4.1: PSM1 waveforms comparing the performances of the control laws CL1 and CL2 

with the open-loop case when fault (XE = 0.24 and V = 0) is cleared after 5 cycles  
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(a) PSM1 rotor angle waveforms for a fault at the infinite bus when closed-loop 

results for CL1 and CL2 are superimposed on the open-loop (constant excitation) 

result 

 

(b) PSM1 rotor speed waveforms for a fault at the infinite bus when closed-loop 

results obtained with CL1 and CL2 are superimposed on their corresponding 

open-loop (constant excitation) result 
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(c) PSM1 Quadrature EMF (E’q) waveforms for a fault at the infinite bus when 

closed-loop results obtained with CL1 and CL2 are superimposed on their 

corresponding open-loop (constant excitation) result  

Fig. 4.2: PSM1 waveforms comparing the performances of the control laws CL1 and CL2 

with the open-loop case when fault (XE = 0.24 and V = 0) is cleared after 7 cycles  

 

(a) PSM1 rotor angle waveforms for a fault at the infinite bus when closed-loop 

results for CL1 and CL2 are superimposed on the open-loop (constant excitation) 

result 
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(b) PSM1 rotor speed waveforms for a fault at the infinite bus when closed-loop 

results obtained with CL1 and CL2 are superimposed on their corresponding 

open-loop (constant excitation) result  

 

(c) PSM1 Quadrature EMF (E’q) waveforms for a fault at the infinite bus when 

closed-loop results obtained with CL1 and CL2 are superimposed on their 

corresponding open-loop (constant excitation) result 

Fig. 4.3: PSM1 waveforms comparing the performances of the control laws CL1 and CL2 

with the open-loop case when fault (XE = 0.24 and V = 0) is cleared after 9 cycles  
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B) Fault at generator terminals: V =0; XE=0 and fault clearance time tc=5, 7, and 9 

cycles: The waveforms of the system responses are shown in Fig. 4.4 to Fig. 4.6. The 

observations here are similar to the ones previously presented.  

 

(a) PSM1 rotor angle waveforms for a fault  placed at the machine terminals  

 

 

 

(b) PSM1 rotor speed waveforms for a fault  placed at the machine terminals 
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(c) PSM1 Quadrature EMF (E’q) waveforms for a fault  placed at the machine 
terminals  

Fig. 4.4: PSM1 waveforms comparing the performances of the control laws CL1 and CL2 

with the open-loop case when fault (XE = 0 and V = 0) is cleared after 5 cycles 

 

 

 

(a)  PSM1 rotor angle waveforms for a fault placed at the machine terminals  
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(b) PSM1 rotor speed waveforms for a fault placed at the machine terminals 

 

(c) PSM1 Quadrature EMF (E’q) waveforms for a fault placed at the machine 
terminals 

Fig. 4.5: PSM1 waveforms comparing the performances of the control laws CL1 and CL2 

with the open-loop case when fault (XE = 0 and V = 0) is cleared after 7 cycles 
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(a)  PSM1 rotor angle waveforms for a fault placed at the machine terminals  

 

 

(b) PSM1 rotor speed waveforms for a fault placed at the machine terminals 
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(c) PSM1 Quadrature EMF (E’q) waveforms for a fault placed at the machine 
terminals 

Fig. 4.6: PSM1 waveforms comparing the performances of the control laws CL1 and CL2 

with the open-loop case when fault (XE = 0 and V = 0) is cleared after 9 cycles 

4.2.2 Responses of PSM2 under the Action of the Control Laws 

The responses of PSM2 are principally to assess the performance of the control laws 

when the relative degree of the system with respect to the output function changes. This 

means assessing the performance of the system when its dynamic behavior changes from 

a third-order representation to a fourth-order representation. In this case, the fourth-order 

model (PSM2) was subjected to the same fault considered in Section 4.2.1 under the 

influence of the control laws. The waveforms of system responses are displayed in this 

subsection. 

Fault at infinite bus: V = 0; XE = 0.24 and fault clearance time tc = 5, 7, and 9 cycles: 

The corresponding system responses are depicted in the waveforms of Fig. 4.7 to Fig. 

4.9. The results obtained here are similar to those obtained for PSM1. The only difference 

is in minor variations in first peaks and settling times of rotor angles and speeds. 
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(a)  PSM2 rotor angle waveforms for a fault at the infinite bus  

 

(b) PSM2 rotor speed waveforms for a fault at the infinite bus 
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(c) PSM2 internal EMF ( ' 2 ' 2
d qE= (E ) +(E ) ) waveforms for a fault at the infinite bus 

Fig. 4.7: PSM2 waveforms comparing the performances of the control laws CL1 and CL2 

with the open-loop case when fault (XE=0.24 and V=0) is cleared after 5 cycles 

 

 

(a)  PSM2 rotor angle waveforms for a fault at the infinite bus  
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(b) PSM2 rotor speed waveforms for a fault at the infinite bus 

 

(c) PSM2 internal EMF ( ' 2 ' 2
d qE= (E ) +(E ) ) waveforms for a fault at the infinite bus 

Fig. 4.8: PSM2 waveforms comparing the performances of the control laws CL1 and CL2 

with the open-loop case when fault (XE=0.24 and V=0) is cleared after 7 cycles 
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(a)  PSM2 rotor angle waveforms for a fault at the infinite bus 

 

 

(b) PSM2 rotor speed waveforms for a fault at the infinite bus 
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(c) PSM2 internal EMF ( ' 2 ' 2
d qE= (E ) +(E ) ) waveforms for a fault at the infinite bus 

Fig. 4.9: PSM2 waveforms comparing the performances of the control laws CL1 and CL2 

with open-loop case when fault (XE=0.24 and V=0) is cleared after 9 cycles 

Fault at generator terminals: V = 0; XE = 0; and fault clearance time tc = 5, 7, and 9 

cycles: In this case, the waveforms of the system responses are shown in Fig. 4.10 to Fig. 

4.12. Likewise, the results obtained here are similar to those obtained for PSM1.  

 

(a)  PSM2 rotor angle waveforms for a fault at the generator terminals  
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(b) PSM2 rotor speed waveforms for a fault at the generator terminals 

 

 

(c) PSM2 internal EMF ( ' 2 ' 2
d qE= (E ) +(E ) ) waveforms for a fault at the generator 

terminals 

Fig. 4.10: PSM2 waveforms comparing the performances of the control laws CL1 and 

CL2 with the open-loop case when fault (XE=0 and V=0) is cleared after 5 cycles 
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(a)  PSM2 rotor angle waveforms for a fault at the generator terminals  

 

(b) PSM2 rotor speed waveforms for a fault at the generator terminals 
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(c) PSM2 internal EMF ( ' 2 ' 2
d qE= (E ) +(E ) ) waveforms for a fault at the generator 

terminals 

Fig. 4.11: PSM2 waveforms comparing the performances of the control laws CL1 and 

CL2 with the open-loop case when fault (XE=0 and V=0) is cleared after 7 cycles 

 

 

(a)  PSM2 rotor angle waveforms for a fault at the generator terminals 
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(b) PSM2 rotor speed waveforms for a fault at the generator terminals 

 

(c) PSM2 internal EMF ( ' 2 ' 2
d qE= (E ) +(E ) ) waveforms for a fault at the generator 

terminals 

Fig. 4.12: PSM2 waveforms comparing the performances of the control laws CL1 and 

CL2 with open-loop case when fault (XE=0 and V=0) is cleared after 9 cycles 

4.2.3 Evaluation of Control Law 3   

Because control law 3 (CL3) is an improvement of the control law 1 (CL1), which was 

discussed earlier, the studies conducted with CL1 and CL2 will not be repeated with CL3. 
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Instead, this subsection will assess the performance of CL3 with reference to open loop 

(constant excitation), CL1 and CL2, with emphasis on the following aspects: extension of 

critical clearance time, and reduction of first swing and subsequent power oscillations. In 

an attempt to reduce the number of plots that will be presented in this section, a limited 

number of selected waveforms obtained using PSM1 and PSM2 will be presented.  

A) Fault at infinite bus: V = 0; XE = 0.24; and fault clearance time tc=9 cycles: Fig. 

4.13 (a), Fig. 4.13 (b), and Fig. 4.13 (c) present respectively the synchronous generator 

rotor angle, rotor speed and quadrature axis induced EMF obtained when the system 

being studied was subjected to a three-phase fault at an infinite bus, with fault duration of 

9 cycles.  In this case, a third-order model (PSM1) was used, and open-loop results were 

compared with those obtained using CL1, CL2 and CL3. It was observed that the load 

angles and rotor speeds produced from these three control laws and open loop have 

similar first peak, with CL2 exhibiting better performance from power oscillation point of 

view, followed by CL3. Fig. 4.13 (c) shows that the improved performance of CL2 is 

achieved with minimum adjustment of E/�  (adjustment needed in the generator EMF 

through manipulation of the excitation system to counter the demagnetization effect of 

the armature reaction during fault) 

.  
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(a) Load angle  

 

(b) Rotor speed 
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(c) Quadrature EMF (E’q) 

Fig. 4.13: PSM1 waveforms comparing the performances of control laws (CL1, CL2 and 

CL3) with the open-loop case when fault (XE=0.24 and V = 0) is cleared after 9 cycles 

B) Fault at infinite bus: V = 0; XE = 0.24; and fault clearance time tc=14.5 cycles: 

This case repeats case A), but for fault clearance time of 14.5 cycles. Observe that the 

open-loop case has lost synchronism, while the system that is being controlled using 

CL1, CL2 and CL3 remains operational, with CL3 exhibiting better damping in load 

angle, but higher first peak than CL2 (see Fig. 4.14 (a)). Fig. 4.14 (b) shows that the rotor 

speeds for the open-loop and those for CL1, CL2 and CL3 have similar peaks, despite 

that the open-loop case has fallen out of slip. Fig. 4.14 (c) indicates that the quadrature 

axis EMF for the open-loop case has collapsed, while those for CL1, CL2 and CL3 regain 

their previous steady state equilibrium points. Clearing times were increased 

progressively till 14.5 cycles and 14.7cycles which represent the limits for CL1 and CL3, 

respectively. 
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(a) Load angle  

 

 

(b) Rotor speed 
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(c) Quadrature EMF (E’q) 

Fig. 4.14: PSM1 waveforms comparing the performances of control laws (CL1, CL2 and 

CL3) with the open-loop case when fault (XE=0.24 and V = 0) is cleared after 14.5 

cycles 

C) Fault at infinite bus: V = 0; XE = 0.24; and fault clearance time tc=14.7 cycles: In 

an attempt to establish which control law can maintain system stability for an extended 

period of time, the cases A) and B)  are repeated, but this time for fault clearance time of 

14.7 cycles. Observe that the cases for the open loop and CL1 have lost their 

synchronisms, while the system that is being controlled using CL2 and CL3 remains 

operational, with CL2 exhibiting lower first peak and faster deceleration compared to 

CL3 (see Fig. 4.15 (a)). The plots for the rotor speeds in Fig. 4.15 (b) support the 

observations drawn from the results in Fig. 4.15 (a). Fig. 4.15 (c) indicates that the 

quadrature axis EMF for the open-loop and CL1 cases have collapsed, while those for 

CL2 and CL3 regain their previous steady state equilibrium points.  
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(a) Load angle  

 

 

(b) Rotor speed 
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(c) Quadrature EMF (E’q) 

Fig. 4.15: PSM1 waveforms comparing the performances of control laws (CL1, CL2 and 

CL3) with the open-loop case when fault (XE=0.24 and V = 0) is cleared after 14.7 

cycles 

D) Fault at infinite bus: V = 0; XE = 0.24; and fault clearance time tc=15 cycles: To 

further establish which of the control laws CL2 and CL3 can maintain system stability for 

a more extended period of time beyond that established in cases A), B) and C), an 

additional case that increases the fault clearance time to 15 cycles is presented. It is clear 

from Fig. 4.16 that the cases for the open loop, CL1, and CL3 have lost their 

synchronisms, while the system that is being controlled using CL2 remains operational. 

Based on this result and those presented in A) through C), it can be concluded that the 

control law CL2 performs better than CL1 and CL3 in extending the critical clearance 

time of a single machine connected to an infinite bus system being studied. Although this 

conclusion is drawn when the system is modelled using reduced order model PSM1, the 

use of PSM2 will not affect the validity of this conclusion.  To corroborate this point of 
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view, additional results obtained when PSM1 is replaced by PSM2 are presented in Fig. 

4.17 and Fig. 4.18 for fault clearance time of 9 cycles and 14.8 cycles. Fig. 4.18 confirms 

the superiority of the control law CL2 in ensuring system stability beyond that achievable 

with CL1 and CL2 as previously suggested above. Fig. 4.19 and Fig. 4.20 are given to 

reveal the extent to which CL2 can retain fault. As shown in Fig. 4.20, CL2 can withstand 

fault for a maximum duration of 15.30 cycles.  

 

(a) Load angle  

 

(b) Rotor speed 
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(c) Quadrature EMF (E’q) 

Fig. 4.16: PSM1 waveforms comparing the performances of control laws (CL1, CL2 and 

CL3) with the open-loop case when fault (XE=0.24 and V = 0) is cleared after 15 cycles 

 

(a) Load angle  
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(b) Rotor speed 

 

 

(c) Internal EMF ( ' 2 ' 2
d qE= (E ) +(E ) ) 

Fig. 4.17: PSM2 waveforms comparing the performances of control laws (CL1, CL2 and 

CL3) with the open-loop case when fault (XE=0.24 and V = 0) is cleared after 9 cycles 
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(a) Load angle  

 

 

(b) Rotor speed 
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(c) Internal EMF ( ' 2 ' 2
d qE= (E ) +(E ) ) 

Fig. 4.18: PSM2 waveforms comparing the performances of control laws (CL1, CL2 and 

CL3) with the open-loop case when fault (XE=0.24 and V = 0) is cleared after 14.8 

cycles 

 

Fig. 4.19: PSM1 load angle waveform comparing the performances of control laws (CL1, 

CL2 and CL3) with the open-loop case when fault (XE=0.24 and V = 0) is cleared after 

15.3 cycles 
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Fig. 4.20: PSM1 load angle waveform comparing the performances of control laws (CL1, 

CL2 and CL3) with the open-loop case when fault (XE=0.24 and V = 0) is cleared after 

15.31 cycles 

Sample waveforms that depict the general nature of the control efforts exerted by control 

laws CL1, CL2, and CL3, respectively (selected from the cases where overall system 

dynamic characteristics are stabilized) are given in Fig. 4.21 to Fig. 4.23. In these cases 

and throughout the study, control effort u(t) = EF is limited to ±5pu. 
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Fig. 4.21: Control effort waveform (CL1) 

 

 

 

Fig. 4.22: Control effort waveform (CL2) 

 



125 

 

 

Fig. 4.23: Control effort waveform (CL3) 

4.3 General Discussion 

The system simulations were performed by considering various degrees of perturbation 

as highlighted previously. To be able to evaluate the control laws effectively, the system 

was assumed to be operating close to its initial steady-state operating point before it was 

disturbed. For both fault locations considered, the oscillations in the load angle following 

fault clearance under constant excitation (open loop) subsided slowly and took up to 8s 

for the system to regain its steady state, with high first peak when the fault was at the 

generator terminal. Furthermore, for most effective performance of the control laws, all 

the disturbance scenarios were employed to tune their parameters. First, an approximate 

method of tuning the parameters of CL1 and CL3, which are α1, α2, and K, was 

determined after several simulation runs (see Deduction 4.1 below).  

Deduction 4.1: Consider a third-order affine power system model given in equation 

(4.1). The parameters K, α1 and α2 of the sliding mode control law (equations (3.80) and 

(3.88)) for stabilizing the system are assumed to form the structure of a second-order 
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linear time-invariant (LTI) system model as depicted in Fig. 4.24. For α2 = 3α1, where α1 

is a value chosen from a range of 3 and 5, employing the root-locus strategy (Awelewa et 

al., 2013) to determine K (that will give a closed-loop response with a damping factor of 

about 0.8) yields K = 16, α1 = 3, and α2 = 9 for CL1 and CL3.   

 

R(s) K 1/(s+α1)(s+α2) Y(s)
-

+

 

Fig. 4.24: Unity feedback system for finding parameter K 

Secondly, the parameters k1, k2, and k3 of CL2 given in equation (3.87) were found using 

the pole-placement method from 

 pF + kFpE + kEp + k" = �p + a"��p + aE��p + aF� = 0 

where a1 = 9, a2 = 5, a3 = 2. Thus, k1 = 90, k2 = 73, and k3 = 16. The value of parameter v3, 

from which v1 = 1/2, and v2 = 3/5 were obtained (see Section 3.2.3), is 3/4. The value of 

the dilation constant v is 2.  

Generally, it can be inferred that the responses of PSM1 and PSM2 under all control 

actions closely correspond, signifying that any uncertainty in the dynamics of the system 

does not have any appreciable effect on the dynamic characteristics of the system. The 

only difference is in the small variations of the overshoots of the transient periods and of 

the settling times. And generally, the longer the fault duration, the higher the peak 

overshoots of the transients (see Table 4.1 to Table 4.4), and, under this condition, the 

system is more stressed due to the protracted effect of the fault disturbance. 
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The control laws, however, have their merits and demerits. As is clear from the 

waveforms of the system response characteristics, the system rotor angle and speed settle 

to steady-state values in less than 2.2s or much less under all control laws. CL2 performs 

better than CL1 and CL3 in terms of damping system oscillations. Under CL2, the rotor 

angle and speed oscillations died out quickly in less than 1.8s, although their initial peak 

values are slightly higher. Likewise, the performance of CL3 is better than that of CL1, 

because it facilitates quicker damping of oscillations. Besides, the performance 

waveforms of the control laws show CL2 to be faster in reaching a steady constant value 

(the value under constant excitation) than CL1 and CL3—it settles in about 1.92s, while 

CL1 and CL3 settle in about 4.32s and 3.32s respectively. 

Table 4.1: Peak values and settling times of PSM1 rotor angle and speed closed-loop 
waveforms for V = 0; XE = 0.24 

Fault 

cycle 

CL1 CL2 

δ ω δ ω 

Peak 
value(o) 

Settling 
time(s) 

Peak 
value(o) 

Settling 
time(s) 

Peak 
value(o) 

Settling 
time(s) 

Peak 
value(o) 

Settling 
time(s) 

5 64 1.9 316.8 1.9 62 0.9 317 0.9 
7 74 1.76 318 1.76 75 0.86 318 0.86 
9 87 1.92 318.9 1.82 88 1.72 319 1.12 

 

Table 4.2: Peak values and settling times of PSM2 rotor angle and speed closed-loop 
waveforms for V= 0; XE = 0.24 

Fault 

cycle 

CL1 CL2 

δ ω δ ω 

Peak 
value(o) 

Settling 
time(s) 

Peak 
value(o) 

Settling 
time(s) 

Peak 
value(o) 

Settling 
time(s) 

Peak 
value(o) 

Settling 
time(s) 

5 60 1.7 316.8 1.1 57 0.9 316.9 0.7 
7 69 1.36 317.8 1.06 68 0.86 318 0.86 
9 81 1.82 318 1.92 82 1.72 319 1.72 
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Table 4.3: Peak values and settling times of PSM1 rotor angle and speed closed-loop 
waveforms for V= 0; XE = 0 

Fault 

cycle 

CL1 CL2 

δ ω δ ω 

Peak 
value(o) 

Settling 
time(s) 

Peak 
value(o) 

Settling 
time(s) 

Peak 
value(o) 

Settling 
time(s) 

Peak 
value(o) 

Settling 
time(s) 

5 65 2.1 317 2.1 62 1 317 1.1 
7 76 1.86 318 1.86 75 1.06 318 1.06 
9 88 2.06 319 1.82 89 1.76 319 1.12 

 

Table 4.4: Peak values and settling times of PSM2 rotor angle and speed closed-loop 
waveforms for V= 0; XE = 0 

Fault 

cycle 

CL1 CL2 

δ ω δ ω 

Peak 
value(o) 

Settling 
time(s) 

Peak 
value(o) 

Settling 
time(s) 

Peak 
value(o) 

Settling 
time(s) 

Peak 
value(o) 

Settling 
time(s) 

5 61 1.8 316.8 1.9 57 0.9 316.9 0.9 
7 71 1.76 317.9 1.86 69 0.86 318 0.86 
9 81 1.82 318 1.82 82 1.72 319 1.72 

 

4.4 Summary 

The dynamic simulation of PSM1 and PSM2 as representative models of a SMIB system 

under the action of three different control laws (as presented in Chapter three) has been 

considered in this chapter. Various rotor angle, rotor speed, and quadrature-axis EMF 

waveforms are presented when system was subjected to various durations of a short-

circuit fault at the infinite bus and the generator terminal. Also, the methods of computing 

the parameters of the control laws are given. And under the disturbance scenarios 

provided in the chapter, all the control laws have been shown to perform well, except for 

fault durations of 14.7 cycles, 15 cycles, and 15.31 cycles in which CL1, CL3, and CL2, 

respectively, failed to stabilize the system. 
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CHAPTER FIVE: CONCLUSION 

5.0 Summary 

Development of three nonlinear control laws for synchronous generator excitation has 

been carried out in this work, considering illustrative models of a single machine 

connected to an infinite bus system. Two of these laws are higher-order sliding mode 

control laws and the third one is a homogeneous finite-time stabilizing control law. 

All the three control laws studied in this Thesis show clear improvement in the transient 

stability of the system being considered, including in damping of oscillations following 

fault clearance.  

The three proposed controllers employ rotor angle and rotor speed deviations obtained 

from the plant models as manipulative variables to construct a number of control signals, 

which are tested using dynamic simulations, considering major perturbation (fault) with 

different durations (fault clearance times).  

Furthermore, under these control signals, the low-frequency oscillations in load angle and 

rotor speed are damped quickly, with all state variables converging to stable steady-state 

operating points within approximately 1 to 2.2s. The exception here is where control laws 

CL1 and CL3 fail to stabilize the system as from the fault durations of 14.7 and 15 

cycles, respectively.  

The studies conducted in this Thesis show that the proposed controllers extend fault 

critical time of the system being studied, with CL2 offering the longest extension of this 

time. 

5.1 Achievements and Contributions to Knowledge 

This section summarizes the main contributions of this study as follows: 
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i. Improvement of the existing general higher-order sliding mode control 

structure for synchronous excitation control. 

ii. Development of an approximate method of tuning a general higher-order 

sliding mode control law for synchronous generator excitation control. 

iii. Introduction of a new gain parameter, called dilation constant, to the 

existing homogeneity-based control structure for synchronous generator 

excitation control. 

iv. Establishment of the property that an affine nonlinear excitation control-

based power system model exhibits inherent internal dynamics stability—

at least marginally. 

v. Development of MATLAB tools for calculating the relative degree of any 

affine nonlinear system and also for testing its exact linearization 

condition. 

vi. Extension of the third-order SMIB model to include an additional term in 

the rotor speed dynamics. This could offer more accurate representation 

for power system stability analysis. 

5.2 Recommendations for Future Work 

i. For practical implementation of the control signals constructed in this Thesis, it is 

important to adopt a good and stable state-estimating algorithm for obtaining the 

output function.  

ii. Calculation of output function time derivatives required for the complete 

computation of the control signals should be carried out online using an accurate 

and very effective differentiator. 
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iii. Dynamic interactions between the controls developed in this Thesis and other 

generation unit controls should be investigated. 

iv. Investigation of transient stability of larger power systems, especially the 

Nigerian Power Network, using the control schemes developed in this Thesis 

should be carried out. For the Nigerian Power Network, this investigation can be 

conducted if complete manufacturers’ data of all generating units are available. 
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Appendix A: Damper Winding Manifold Approximation 

A.1 α
2
 Approximation  

To find G0 and G1 in equations (3.32) and (3.33), equation (3.31) is modified as  

 α 	�^d&^e_�	� ���� + α 	�^d&^e_�	� ���� + α 	�^d&^e_�	�$%
��$%��  

      = −E"�GY + G"α� + EEVsinδ.                                                                 �A. 1� 

The corresponding coefficients of α0 and α1on both sides of equation (A.1) are equated 

respectively as follows: 

 αY:    0 = −E"GY + EEVsinδ                                                                                      �A. 2� 

 ∴ GY = �f�e Vsinδ. 

 α" :    	�^d�	� ���� + 	�^d�	� ���� + 	�^d�	�$%
��$%�� = −E"G"                                                       �A. 3� 

 X�f�e VcosδZ �ω − ω�� + �0� ���� + �0� ��$%�� = −E"G" 

           ∴ G" = − X�f�ef VcosδZ �ω − ω�� 

A.2 α
3
 Approximation  

To find H2, equation (A.1) is rewritten as  

 α 	,^d&^e_&^f_f-	� ���� + α 	,^d&^e_&^f_f-	� ���� + α 	,^d&^e_&^f_f-	�$%
��$%��  

      = −E"�GY + G"α + GEαE� + EEVsinδ                                                  �A. 4� 

or 

 
	,_^d&^e_f&^f_a-	� ���� + 	,^e_f&^f_a-	� ���� + 	,^f_a-	�$%

��$%��  

     = −E"GY + EEVsinδ − E"G"α − E"GEαE                                                           �A. 5� 

since 
	�^d�	� = 	�^d�	�$% = 	�^e�	�$% = 0. 
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The second term in equation (A.5) can be expanded to give 

 
	,^e_f&^f_a-	� ���� = 	,^e_f&^f_a-	� �A" − "E AEVEsin2δ + AFVE�� cosδ −

             AGVE/� sinδ�  
or 

 
	,^e_f&^f_a-	� ���� = 	,^e_f&^f_a-	� XA" − "E AEVEsin2δ + AFVcosδ�GY +

            G"α + GEαE� − AGVE/� sinδZ                                                                                     �A. 6� 

Substituting equation (A.6) into equation (A.5) and comparing coefficients of α2on both 

sides of the resulting equation leads to 

 
	�^e�	� �ω − ωE� + 	�^e�	� XA" − "E AEVEsin2δ−AGVE/� sinδ + GYAFVcosδZ =

           −E"GE.                                                                                                                              �A. 7� 

Hence, 

 GE = − "�e 	�^e�	� �ω − ωE� − "�e 	�^e�	� XA" − "E AEVEsin2δ−AGVE/� sinδ +
                         GYAFVcosδZ = GE" +  GEE.                                                                               �A. 8� 

where 

 GE" = − "�e X�f�ef VsinδZ �ω − ω��E 

 GEE = "�e �f�ef Vcosδ XA" − "E AEVEsin2δ−AGVE/� sinδ +   AFF"VEsinδcosδZ 

The expression for E��  is now obtained from equation (A.9), and is given in equation 

(3.36). 

 E�� = GY + G"α + GEαE                                                                                              �A. 9� 

Also, the expression in equation (3.43) can be obtained by substituting equation (3.36) 

into equation (3.17) as follows: 



148 

 

 
���� = A" − "E AEVEsin2δ −  AGVE/� sinδ + AFVcosδ úF"Vsinδ − α he�e V�ω −

ω��cosδ − αE he�ef �ω − ω��EVsinδ +
αE he�ef VcosδRT" +  AFF"VEsinδcosδ −
AGVE/� sinδSû                                                                                                                       �A. 10� 

By ignoring all terms in α2 except those that are proportional to �� − ���E, equation 

(A.10) can be rearranged to give equation (3.43). 
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Appendix B: Algorithm for Output Function Derivation 

The algorithm for deriving the output function that guarantees r = n for a SISO nonlinear 

system is as follows: 

Consider a general nonlinear SISO system defined as 

 �r = f��� + g���u.                                                                                                         �B. 1� 

The following are the steps for finding an output function that makes r equal to n. 

Step 1: Create the set 

S = ýg���, ad2g���, ad2Eg���, ⋯ , ad2{0"g���þ,                                                               �B. 2� 

and establish the subsets S1, S2, …, Sn, where Si is composed of the first i elements of S. 

That is,  

 S" = �g����, 
 SE = �g���, ad2g����, 
SF = ýg���, ad2g���, ad2Eg���þ,  
 ⋮ 
S{ = ýg���, ad2g���, ad2Eg���, ⋯ , ad2{0"g���þ.                                                             �B. 3� 

The elements of S in equation (B.2) are determined appropriately. 

Step 2: Find the vectors S�", S�E, ⋯ , S�{. S�} and all the elements of Si are linearly dependent. 

In other words, S�} represents a linear combination of the elements of Si. This can be 

mathematically expressed as 

 S�" + α""���g��� = 0, 
 S�E + αE"g��� + αEEad2g��� = 0, 
S�F + αF"g��� + αFEad2g��� + αFFad2Eg��� = 0,  

 ⋮ 



150 

 

S�{ + α{"g��� + α{Ead2g��� + ⋯ + α{{ad2{0"g��� = 0.                                           �B. 4� 

Step 3: Obtain the transformation function X = P(V) by finding the integral curve 

P�v", vE, ⋯ , v{� = Φáen�e ∘ Φáfn�f ∘ ⋯ ∘ Φáãn�ã�XY�.                                                               �B. 5� 

This is done by computing sequentially 

Φáãn�ã�XY� ⇒ ��áã °�"�E⋮�{
± = S�{ :      °�"�0��E�0�⋮�{�0�± = XY,  

       ΦáãÚen�ãÚe ∘ Φáãn�ã�XY� ⇒ ��áãÚe °�"�E⋮�{
± = S�{0" :      °�"�0��E�0�⋮�{�0�± = Φáãn�ã�XY�,  

⋮ 
       Φáen�e ∘ Φáfn�f ∘⋯ ∘ Φáãn�ã�XY� ⇒ ��áe °�"�E⋮�{

± = S�" : °�"�0��E�0�⋮�{�0�± = Φáfn�f ∘⋯ ∘ Φáãn�ã�XY�. 

The result of Step 3 gives 

°�"�E⋮�{
± = °P"�v", vE, ⋯ , v{�PE�v", vE, ⋯ , v{�⋮P{�v", vE, ⋯ , v{�±,  

from which the inverse function  

°v"vE⋮v{
± = °P"0"��", �E, ⋯ , �{�PE0"��", �E, ⋯ , �{�⋮P{0"��", �E, ⋯ , �{�± 

could be found. vn is actually the function being sought for. The procedure in Step 4 

validates this function. 

Step 4: Determine new function vectors f���� and g����: 
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         f���� = J�ãÚef��� = ²
´f�"���f�E���⋮f�{���µ

·                                                                                        �B. 6� 

        g���� = J�ãÚeg��� = °g�"���0⋮0 ± =                                                                                   �B. 7� 

where Tn-1 denotes the transformation 

 z"�{0"� = 	fE�{0E�
i��Úe�#� 
 zE�{0"� = 	fF�{0E�
i��Úe�#� 
 ⋮ 
 z{�{0"� = 	v{|i��Úe�#� 
and 

f �{0"��v� = J�ãÚff �{0"��v�. 

  T1, T2, …, Tn-2 and f0, f1, …, fn-2 are required to obtain the transformation Tn-1. The 

starting point is the calculation of the pair (f0, T1) given by 

f �Y��v� = 	J�Úef���|#���i� =
²³́

f"�Y��v�fE�Y��v�⋮f{�Y��v�µ¶
·

;  

 T": 
 z"�"� = fE�Y��v� 

 zE�"� = fF�Y��v� 

 ⋮ 
 z{�"� = v{ 
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The form of equation (B.7) is very important, as it determines whether these steps indeed 

produce exact linearization results—or whether this algorithm has ‘converged’ (so to 

speak). 

Application of this algorithm to the fourth-order model, rewritten as equation (B.8), is 

given below. 

 °�r"�rE�rF�rG±jlm�r
=

²³́
− �e�$+% �" + �f�$+% Vsin�G−B"�E + BEVcos�GA" − "E AEVEsin2�G −  AGV�Esin�G + AFV�"cos�G�F − ω� µ¶

·
jkkkkkkkkkkkkkkkklkkkkkkkkkkkkkkkkm����

+                            ²
´ 0"¡¢£%00 µ

·
jlm����

        �B. 8� 

Step 1: 
S = ýg���, ad2g���, ad2Eg���, ad2Fg���þ. 
Therefore, 

S" = �g����; 
SE = �g���, ad2g����; 
SF = ýg���, ad2g���, ad2Eg���þ; 
SG = ýg���, ad2g���, ad2Eg���, ad2Fg���þ.  

All elements of S are found in the following. 

 g��� = ²
´ 0"¡¢£%00 µ

·; 
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 ad2g��� =
²³́

0̄e¡¢£%p i¡¢£% sin�G0 µ¶
·

; 

 ad2Eg��� =
²
³³³́

0

ef¡¢£%p i¡¢£% cos�G��F − ω�� + ¯e¡¢£% AGVsin�G− p i¡¢£% sin�G µ

¶¶¶
·

; 

 ad2Fg��� =
²
³³³́

�fp ifE¡Ç£% ¡¢£% sin2�G

ea¡¢£% − ¯fp if¡¢£% sinE�GS�3,4�−2 p i¡¢£% cos�G��F − ω�� − ¯ep i¡¢£% sin�Gµ

¶¶¶
·

; 

where 

S�3,4� = AGV���� zA"cos�G + �"Esin�G + AFV�"cos2�G − AGV�Esin2�G − 

 
pfifG sin2�G − AEVEcos2�Gsin�G − sin�G��F − ω��E +

                              B"cos�G��F − ω��|. 
Step 2: 

 S�" + α"" ²
´ 0"¡¢£%00 µ

· = °0000±, 

 S�E + αE" ²
´ 0"¡¢£%00 µ

· + αEE
²³́

0̄e¡¢£%p i¡¢£% sin�G0 µ¶
· = °0000±, 
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S�F + αF" ²
´ 0"¡¢£%00 µ

· + αFE
²³́

0̄e¡¢£%p i¡¢£% sin�G0 µ¶
· +

          αFF
²
³³³́

0

ef¡¢£%p i¡¢£% cos�G��F − ω�� + ¯e¡¢£% AGVsin�G− p i¡¢£% sin�G µ

¶¶¶
· = °0000±,  

 S�G + αG" ²
´ 0"¡¢£%00 µ

· + αGE
²³́

0̄e¡¢£%p i¡¢£% sin�G0 µ¶
· + 

     αGF
²
³³³́

0

ef¡¢£%p i¡¢£% cos�G��F − ω�� + ¯e¡¢£% AGVsin�G− p i¡¢£% sin�G µ

¶¶¶
· + 

αGG

²
³³
³³́

EEAGVE2�P�� ���� sin2�G
�"F���� − BEAGVE���� sinE�GS�3,4�−2 AGV���� cos�G��F − ω�� − B"AGV���� sin�Gµ

¶¶
¶¶
·

= °0000± 

The values of vectors S�", S�E, S�F, S�Gare found without much difficulty from the above 

expressions, and are given as 

S�" = °0100±; S�E = °0010±; S�F = °0001±; S�G = °1000±. 
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Step 4: 

 P�v", vE, ⋯ , v{� = Φáen�e ∘ Φáfn�f ∘ Φáan�a ∘ Φá n� �XY�.                                                    
 Φá n� �XY� ⇒ ��á  °�"�E�F�G

± = °1000±:      °�"�0��E�0��F�0��G�0�± = °E�Y�E/Y��YNY
± 

∴  °�"�E�F�G
± = °E�Y� + vGE/Y��YNY

±.  

 Φáan�a ∘ Φá n� �XY� ⇒ ��áa °�"�E�F�G
± = °0001±:      °�"�0��E�0��F�0��G�0�± = °E�Y� + vGE/Y��YNY

± 

∴  °�"�E�F�G
± = °E�Y� + vGE/Y��YNY + vF

±. 

 Φáfn�f ∘ Φáan�a ∘ Φá n� �XY� ⇒ ��áf °�"�E�F�G
± = °0010±: °�"�0��E�0��F�0��G�0�± = °E�Y� + vGE/Y��YNY + vF

± 

∴  °�"�E�F�G
± = ²́

E�Y� + vGE/Y��Y + vENY + vF µ·.  

 Φáen�e ∘ Φáfn�f ∘ Φáan�a ∘ Φá n� �XY� ⇒ ��áe °�"�E�F�G
± = °0100±: °�"�0��E�0��F�0��G�0�± = ²́

E�Y� + vGE/Y��Y + vENY + vF µ· 

∴  °�"�E�F�G
± = ²́

E�Y� + vGE/Y� + v"�Y + vENY + vF µ·. 
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Thus,   

°�"�E�F�G
± = ²́

P"�v", vE, vF, vG�PE�v", vE, vF, vG�PF�v", vE, vF, vG�PG�v", vE, vF, vG�µ· = ²́
E�Y� + vGE/Y� + v"�Y + vENY + vF µ·,  

and 

°v"vEvFvG
± =

²³́
P"0"��", �E, �F, �G�PE0"��", �E, �F, �G�PF0"��", �E, �F, �G�PG0"��", �E, �F, �G�µ¶

· = °�E − E/Y��F − �Y�G − NY�" − E�Y� ±.  

The output function is vG = �" − E�Y� = E�� − E�Y� . 
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Appendix C: Novel MATLAB Tools for General Affine Systems 

C.1 MATLAB Code for Testing the Exact Linearization Condition for a General  

            Affine Nonlinear System 

% This function OutputResult=ELCOND(F,G,S)is used to determine the exact 

%linearization conditions for any given affine nonlinear SISO system dX/dt=f(X) + 

%g(X)u, where X represents the states (x1, x2,...,xn) of the system. F,G, and S are 

%symbolic expressions for f(x),g(x), and the states, respectively.OutputResult is a vector 

%of string elements stating whether the system can be exactly linearized or not. Note that 

%the order of the system must be at least 2.ALSO,NOTE THAT THE STATES IN F 

%AND G APPEAR AS x1, x2, x3,..., xn, WITH THESE , OF COURSE, HAVING 

%BEEN DEFINED AS SYMBOLIC VARIABLES. For example, the system 

%dx(1)/dt=x(1)sin x(2)+20x(1)-2u and dx(2)/dt=cos x(1)+ 10u having steady-state values 

%x0(1)=0.5 and x0(2)=2 is created as: syms x1 x2 f g 

% f=[x1*sin(x2)+ 20*x1 cos(x1)+10]';g=[-2 10]';x=[x1 x2]'; 

functionOutputResult=elcond(f,g,x) 

sysorder=length(f);d=sysorder-1; 

m=zeros(sysorder,sysorder);dd=zeros(sysorder,d); 

M= sym(m);D=sym(dd); 

f_diff=jacobian(f,x); 

M(:,1)=g; 

% Compute the elements of M 

for k=2:sysorder 

    M(:,k)=(jacobian(M(:,k-1),x)*f)-(f_diff*M(:,k-1)); 
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end 

% Compute the elements of D and De 

if d==1; 

D(:,d)=g; 

else 

fori=2:d; 

D(:,i)=M(:,i); 

end 

D(:,1)=g; 

    De=D; 

    De(:,sysorder)=jacobian(D(:,2),x)*D(:,1)-jacobian(D(:,1),x)*D(:,2); 

end 

% Check for the exact linearization conditions 

input('Enter all the n steady-state values as : x1 =  ; x2 = ; x3 =  ; ... ; xn =  ;   ') 

input('Enter all the system parameters if any or press the return key       ') 

M_comp=subs(M);D_comp=subs(D);De_comp=subs(De); 

M_rank=rank(M_comp);D_rank=rank(D_comp);De_rank=rank(De_comp); 

if d==1; 

ifM_rank==sysorder; 

OutputResult='The system can be exactly linearized, i.e., there is an output function 

that makes the system relative equal to the system order '; 

else 

OutputResult='The system cannot be exactly linearized, i.e.,an output function does 
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not exist to make the system relative equal to the system order '; 

end 

else 

ifM_rank==sysorder&&D_rank==De_rank; 

OutputResult='The system can be exactly linearized, i.e., there is an output function 

that makes the system relative degree equal to the system order'; 

else 

OutputResult='The system cannot be exactly linearized, i.e.,an output function does 

not exist to make the system relative degree equal to the system order'; 

end 

end 

C.2 MATLAB Code for Finding the Relative Degree of a General  

            Affine Nonlinear System 

% This function RelativeDegree=RELDEG(F,G,H,S) is used to determine the relative 

%degree of any given affine nonlinear SISO system dX/dt=f(X) + g(X)u, y=h(X), where 

%X represents the states (x1, x2,...,xn) of the system. F, G, H and S are symbolic 

%expressions for f(x), g(x), h(x) and the states, respectively; f and g vector functions, 

% and h is a scalar function. RelativeDegree is a positive integer between 1 and the order 

%(i.e., n) of the system. Note that the order of the system must be at least 2. 

% ALSO,NOTE THAT THE STATES IN F, G AND H APPEAR AS x1, x2, x3,..., xn, 

%WITH  THESE , OF COURSE, HAVING BEEN DEFINED AS SYMBOLIC 

%VARIABLES. For example,the system dx(1)/dt=x(1)sin x(2)+20x(1)-2u, dx(2)/dt=cos 
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%x(1)+ 10u and y=x(1) + x(2) having steady-state values x0(1)=0.5 and x0(2)=2 is 

%created as: syms x1 x2 f g h 

% f=[x1*sin(x2)+ 20*x1 cos(x1)+10]';g=[-2 10]';h=x1+x2;x=[x1 x2]'; 

functionreldegResult=reldeg(f,g,h,x) 

sysorder=length(f); 

m=zeros(1,sysorder);d=zeros(1,sysorder); 

LfHx= sym(m);LgLfHx=sym(d); 

LfHx(1)=h; % the first element of LfHx 

% Compute the other elements of LfHx 

ifsysorder==2 

LfHx(sysorder)=jacobian(LfHx(sysorder-1),x)*f; 

else 

for k=2:sysorder 

LfHx(k)=jacobian(LfHx(k-1),x)*f; 

end 

end 

% Compute the elements of LgLfHx 

for k=1:sysorder 

LgLfHx(k)=jacobian(LfHx(k),x)*g; 

end 

% Find the relative degree of the system 

input('Enter all the n steady-state values as : x1 =  ; x2 = ; x3 =  ; ... ; xn =  ;   ') 

input('Enter the values for all the system parameters if any or press the return key    ') 
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LgLfHx_comp=subs(LgLfHx); 

p=find(LgLfHx_comp); 

RelativeDegree=p(1); 

% Output the result 

reldegResult=['the relative degree of the system is: ' num2str(RelativeDegree)]; 

 

  



162 

 

Appendix D: Equilibrium Point Computation of PSM1 and PSM2 

D.1 Using MATLAB Function ‘fsolve’ to Solve Equations (4.6) and (4.11) 

% %This function file creates equation (4.6).  

functionaweresult = awefun(x) 

system_parameters; 

aweresult=((b2*v*v*a4/2)-(b1*f2*v*v/2))*sin(2*x(1))+(a4*v/tdop)*x(2)*sin(x(1))-

x(3)*b1/M; 

%This script file solves equation (4.6) by calling function file ‘awefun’ 

options=optimset('Algorithm','Levenberg-Marquardt'); 

x_steadystate=fsolve(@awefun, X0, options) 

D.2 Computing the Jacobian Matrix of f(x) of PSM1 and PSM2 

% This script computes the jacobian matrix of function vector f(x) of PSM1 and can be 

%modified for PSM2 as well. 

syms x1 x2 x3; 

system_parameters; 

 j1=x2-ws; 

 j2=(0.8413/M)+0.5*f2*v*v*sin(2*x1)-a4*v*x3*sin(x1)-(1/M)*tqop*f3*f1*v*v*(x2-

ws)*cos(x1)*cos(x1); 

 j3=-b1*x3+b2*v*cos(x1)+(1/tdop)*1.5603; 

syspsm1=jacobian([j1;j2;j3],[x1 x2 x3]); 

 

 

 


