Energy Procedia

Volume 50, 2014, Pages 429-436

Technologies and Materials for Renewable Energy, Environment and Sustainability (TMREES14 – EUMISD)

Cover image Open Access

Rhizophora Mangle L. Effects on Steel-reinforced Concrete in 0.5 M H2SO4: Implications for Corrosion-degradation of Wind-energy Structures in Industrial Environments

Available online 24 July 2014

doi:10.1016/j.egypro.2014.06.052

Get rights and content

Under a Creative Commons license


References

  • [1] 

    Okeniyi JO, Moses IF, Okeniyi ET. Wind characteristics and energy potential assessment in Akure, South West Nigeria: econometrics and policy implications. Int J Ambient Energ 2013; http://dx.doi.org/10.1080/01430750.2013.864586.

  • [2] 

    Singh AK, Parida SK. Evaluation of current status and future directions of wind energy in India. Clean Technol Environ Policy 2013;15: 643-655.

  • [3] 

    Al-Badi AH. Wind power potential in Oman. Int J Sustain Energ 2011; 30:110-118.

  • [4] 

    Al-Soud MS, Hrayshat ES. Feasibility of wind energy for electrification of rural Jordanian sites. Clean Technol Environ Policy (2009) 11:215-237.

  • [5] 

    Masters GM. Renewable and efficient electric power system. New Jersey: John Wiley & Sons; 2004.

  • [6] 

    Singh AN. Concrete construction for wind energy towers. The Indian Concr J–Point of View 2007:43-49.

  • [7] 

    Berndt ML. Sustainable concrete for wind turbine foundations. Brookhaven National Laboratory–Energy Resources Division technical report; 2004.

  • [8] 

    LaNier MW. LWST Phase I project conceptual design study: Evaluation of design and construction approaches for economical hybrid steel/concrete wind turbine towers; June 28, 2002 – July 31, 2004. NREL Report No. SR-500-36777; 2005.

  • [9] 

    Ajayi OO, Fagbenle RO, Katende J, Aasa SA, Okeniyi JO. Wind profile characteristics and turbine performance analysis in Kano, North-Western Nigeria. Int J Energ Environ Eng 2013;4:1-15. doi:10.1186/2251-6832-4-27.

  • [10] 

    Tommaselli MAG, Mariano NA, Kuri SE. Effectiveness of corrosion inhibitors in saturated calcium hydroxide solutions acidified by acid rain components. Construct Build Mater 2009;23:328-333.

  • [11] 

    Vera R, Villarroel M, Carvajal AM, Vera E, Ortiz C. Corrosion products of reinforcement in concrete in marine and industrial environments. Mater Chem Phy 2009;114:467-474.

  • [12] 

    Okeniyi JO, Omoniyi OM, Okpala SO, Loto CA, Popoola API. Effect of ethylenediaminetetraacetic disodium dihydrate and sodium nitrite admixtures on steel-rebar corrosion in concrete. Euro J Environ Civ Eng 2013;17:398-416.

  • [13] 

    Omotosho OA, Loto CA, Ajayi OO, Okeniyi JO. Aniline effect on concrete steel rebar degradation in saline and sulfate media. Agric Eng Int: CIGR J 2011;13:1-17.

  • [14] 

    Hewayde E, Nehdi ML, Allouche E, Nakhla G. Using concrete admixtures for sulfuric acid resistance. Proc. Inst Civ Eng Construct Mater 2007;160:25-35.

  • [15] 

    Okeniyi JO, Omotosho OA, Ajayi OO, Loto CA. Effect of potassium-chromate and sodium-nitrite on concrete steel-rebar degradation in sulphate and saline media. Construct Build Mater 2014;50:448-456.

  • [16] 

    Okeniyi JO, Oladele IO, Ambrose IJ, Okpala SO, Omoniyi OM, Loto CA, Popoola API. Analysis of inhibition of concrete steel-rebar corrosion by Na2Cr2O7 concentrations: Implications for conflicting reports on inhibitor effectiveness. J Cent South Univ 2013;20:3697-3714.

  • [17] 

    Okeniyi JO, Omotosho OA, Ajayi OO, James OO, Loto CA. Modelling the performance of sodium nitrite and aniline as inhibitors in the corrosion of steel-reinforced concrete, Asian J Appl Sci 2012;5:132-143.

  • [18] 

    Fu J–J, Li S–N, Cao L–H, Wang Y, Yan L–H, Lu L–D. L-Tryptophan as green corrosion inhibitor for low carbon steel in hydrochloric acid solution, J Mater Sci 2010;45:979-986.

  • [19] 

    Mennucci MM, Banczek EP, Rodrigues PRP, Costa I. Evaluation of benzotriazole as corrosion inhibitor for carbon steel in simulated pore solution Cem Concr Compos 2009;31:418-424.

  • [20] 

    Perera LMS, Escobar A, Souccar C, Ma Remigio A, Mancebo B. Pharmacological and toxicological evaluation of Rhizophora mangle L, as a potential antiulcerogenic drug: Chemical composition of active extract. J Pharmacogn Phytother 2010;2:56-63.

  • [21] 

    Muralidharan S, Saraswathy V, Merlin Nima SP, Palaniswamy N. Evaluation of a composite corrosion inhibiting admixtures and its performance in Portland pozzolana cement. Mater Chem Phy 2004;86:298-306.

  • [22] 

    Ormellese M, Berra M, Bolzoni F, Pastore T. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures, Cem Concr Res 2006;36:536-547.

  • [23] 

    ASTM G109-99a. Standard test method for determining the effects of chemical admixtures on the corrosion of embedded steel reinforcement in concrete exposed to chloride environments. ASTM International, West Conshohocken, PA.

  • [24] 

    ASTM C192/192M-02. Standard practice for making and curing concrete test specimens in the laboratory. ASTM International, West Conshohocken, PA.

  • [25] 

    Okeniyi JO, Ambrose IJ, Oladele IO, Loto CA, Popoola PAI. Electrochemical performance of sodium dichromate partial replacement models by triethanolamine admixtures on steel-rebar corrosion in concretes. Int J Electrochem Sci 2013;8:10758-10771.

  • [26] 

    Song, H–W, Saraswathy V. Corrosion monitoring of reinforced concrete structures: A review. Int J Electrochem Sci 2007; 2:1-28.

  • [27] 

    Broomfield JP . Corrosion of steel in concrete: Understanding, investigation and repair. New York: Taylor & Francis; 2003.

  • [28] 

    ASTM C876-91 R99. Standard test method for half-cell potentials of uncoated reinforcing steel in concrete. ASTM International, West Conshohocken, PA.

  • [29] 

    Sastri VS. Green corrosion inhibitors: theory and practice. Hoboken, New Jersey: John Wiley & Sons, Inc; 2011.

  • [30] 

    Abosrra L, Ashour AF, Youseffi M. Corrosion of steel reinforcement in concrete of different compressive strengths. Construct Build Mater 2011;25: 3915-3925.

  • [31] 

    ASTM C39/C39M–03. Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken, PA.

  • [32] 

    Yao Y, Gong JK, Cui Z. Anti-corrosion performance and microstructure analysis on a marine concrete utilizing coal combustion byproducts and blast furnace slag. Clean Technol Environ Policy 2013. doi:10.1007/s10098-013-0654-y.

  • [33] 

    ASTM C267-01. Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes. ASTM International, West Conshohocken, PA.

  • [34] 

    Izquierdo D, Alonso C, Andrade C, Castellote M. Potentiostatic determination of chloride threshold values for rebar depassivation Experimental and statistical study. Electrochim Acta 2004;49:2731-2739.

  • [35] 

    Roberge PR. Statistical interpretation of corrosion test results. In: Cramer SD, Covino Jr BS, editors. ASM handbook, Vol 13A – Corrosion: fundamentals, testing, and protection. Materials Park, OH: ASM International; 2003. p. 425-429.

  • [36] 

    Okeniyi JO, Obiajulu UE, Ogunsanwo AO, Odiase NW, Okeniyi ET. CH4 emission model from the waste of Sus domesticus and Gallus domesticus in Nigerian local farms: Environmental implications and prospects. Mitig Adapt Strateg Glob Chang 2013;18:325-335.

  • [37] 

    Okeniyi JO, Okeniyi ET. Implementation of Kolmogorov-Smirnov p-value computation in Visual Basic®: implication for Microsoft Excel® library function. J Stat Comput Simul 2012;82:1727-1741.

  • [38] 

    ASTM G16-95 R04. Standard guide for applying statistics to analysis of corrosion data. ASTM International, West Conshohocken PA.

  • [39] 

    Söylev TA, Richardson MG. Corrosion inhibitors for steel in concrete: State-of-the-art report. Construct Build Mater 2008;22:609-622.

  • [40] 

    Bungey JH, Millard SG, Grantham MG. Testing of concrete in structures. 4th ed. New York: Taylor & Francis; 2006.

  • [41] 

    Coffey R, Dorai-Raj S, O’Flaherty V, Cormican M, Cummins E. Modeling of pathogen indicator organisms in a small-scale agricultural catchment using SWAT. Hum Ecol Risk Assess: An Int J 2013;19:232-253.

open in overlay

Selection and peer-review under responsibility of the Euro-Mediterranean Institute for Sustainable Development (EUMISD).
Corresponding author. Tel.: +234-806-9836-502.

Copyright © 2014 Elsevier Ltd.