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Abstract Geoelectrical resistivity techniques are increasingly
being applied in addressing a wide range of hydrological,
environmental, and geotechnical problems. This is due to their
effectiveness in near-surface characterization. In the present
study, a suite of vertical electrical soundings (VESs) was in-
tegrated with 2D geoelectrical resistivity and time-domain in-
duced polarization (IP) imaging to characterize the near-
surface and delineate the underlying aquifer in a sedimentary
terrain. The geophysical survey was conducted as part of pre-
liminary studies to evaluate the potential of groundwater re-
source in Iyana-Iyesi and Canaan Land area of Ota, south-
western Nigeria. A high-yield confined sandy aquifer overlain
by a low-yield aquitard was delineated; overlying the aquitard
is a very resistive and thick layer that is predominantly com-
posed of kaolinitic swelling clay intercalated with phosphate
mineral.

Keywords Groundwater investigation - Resistivity and IP
imaging - Near-surface geophysics - Subsurface
characterization

Introduction

Geophysical methods have been used for groundwater ex-
ploration and aquifer delineation; they are increasingly be-
coming more relevant in a wide variety of hydrological

>< Ahzegbobor P. Aizebeokhai
philips.aizebeokhai@covenantuniversity.edu.ng;
a.p.aizebeokhai@gmail.com

Physics Department, College of Science and Technology, Covenant
University, Ota, Nigeria

Published online: 02 June 2016

and hydrogeological investigations (e.g., Chandra et al.
2008; Massoud et al. 2010; Niwas and Celik 2012;
Hubbard et al. 1999, 2001; Rubin and Hubbard 2005;
Vereecken et al. 2006). Geophysical methods are generally
non-invasive or minimally invasive, fast, and cost effec-
tive, and provide information on the spatial distribution of
the physical properties of subsurface features. Thus, the
spatial distribution and temporal variability of the subsur-
face hydrological state can be inferred from the resulting
geophysical models. Also, estimates of the hydrological
and petro-physical parameters that influence flow and
transport processes within the subsurface porous media
can be made.

Geoelectrical resistivity technique is one of the most com-
monly used geophysical methods for hydrological investiga-
tions. The technique has been widely used in groundwater
exploration to determine depth-to-water table, delineate aqui-
fer geometry, assess groundwater quality, and delineate
freshwater-saline water interface (e.g., Wilson et al. 2006).
Usually, numerical inversion techniques are used to obtain
inverse models of the subsurface electrical resistivity distribu-
tion from the measured apparent resistivity data set. This is
achieved by solving the non-linear and mixed-determined in-
verse problem whose solution is inherently non-unique and
sometimes unstable. Typically, the resolution of the inverse
model differs spatially; some regions of the inverse model
may be well resolved while others may exhibit artifacts or
anomalies that are not representatives of the physical proper-
ties of the subsurface features and, therefore, constitute inter-
pretation errors (Day-Lewis et al. 2005; Loke et al. 2013). In
particular, the resolution of the inverse models for subsurface
electrical resistivity decreases with depth.

Conventional vertical electrical sounding (VES) has
been widely used in geoelectrical electrical resistivity ap-
plications for hydrologic, engineering, and environmental
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investigations. However, in areas where the subsurface
geology is relatively complex and subtle such that the
spatial distribution of the resistivity varies rapidly over
short lateral distances, the conventional resistivity sound-
ing is relatively inaccurate and unable to adequately ac-
count for the rapid lateral changes in the subsurface resis-
tivity distribution. Despite this inherent limitation of re-
sistivity sounding technique, VES has been very useful in
delineating depth-to-bedrocks and water-table/aquifer,
aquifer geometry, interface between freshwater, and saline
water, as well as in regional geological studies where the
one dimensional model of interpretation is approximately
true. Two-dimensional (2D) and/or three-dimensional
(3D) resistivity models, which provide more accurate
models of the subsurface resistivity distribution
(Aizebeokhai et al. 2010b; Loke et al. 2013), are alterna-
tives interpretation models. The 2D and/or 3D
geoelectrical resistivity surveys are used to construct reli-
able 2D and/or 3D models of subsurface resistivity distri-
bution; they are particularly useful in hydrological, envi-
ronmental, and engineering investigations where the geol-
ogy is usually more complex and subtle (e.g.,
Aizebeokhai et al. 2010b; Aizebeokhai and Oyeyemi
2014; Amidu and Olayinka 2006; Chambers et al. 2006,
2011; Dahlin et al. 2002; Dahlin and Loke 1998; Rucker
et al. 2010).

Often, geoelectrical resistivity technique is unable to dis-
criminate between saturated sandy and clayey formations as
both are characterized with low resistivity anomaly. The resis-
tivity technique is often combined with other geophysical
methods such as induced polarization (IP) that is capable of
distinguishing clay mineralization from sandy formations. In
this study, geoelectrical resistivity soundings were integrated
with 2D geoelectrical resistivity and time-domain IP imaging
to characterize the subsurface and delineate the aquifer layer.
The survey was conducted as part of preliminary investiga-
tions for assessing the potential of groundwater resource in
Iyana-lyesi and Canaan Land area of Ota, southwestern
Nigeria (Figs. 1 and 2). This assessment is required for
groundwater resource development planning as well as
monitoring.

Description and geological setting

The study area (Figs. 1 and 2) is located in Ado-Odo/Ota
Local Government Area of Ogun State, southwestern
Nigeria. The topography is gentle sloping with elevation av-
eraging about 75 m above mean sea level; the regional climate
is tropical humid characterized by two major climatic sea-
sons—dry and rainy seasons. Usually, the dry season spans
from November to early March while the rainy season is be-
tween late March and October and is dominated by heavy
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rainfall. Occasional rainfall is often witnessed in the area dur-
ing the dry season because of its proximity to the Atlantic
Ocean. Rainfall forms the major source of groundwater re-
charge in the area as in most tropical humid regions; mean
annual rainfall exceeds 2000 mm. The average monthly tem-
perature ranges from a minimum of 23° C in July to a maxi-
mum of 32° C in February; mean annual temperature is 27° C.

Geologically, the study area is within the eastern part of
Dahomey Basin (Fig. 1); Dahomey Basin is an extensive ba-
sin that stretches along the continental margin of the Gulf of
Guinea from southern Ghana through Togo and Benin
Republic on the west side. The basin is separated from the
Niger Delta in the eastern section by the Benin Hinge Line
and Okitipupa Ridge; it marks the continental extension of the
chain fractured zone (Onuoha 1999; Wilson and Williams
1979). The sedimentary formations of the basin outcrop in
an arcuate belt are roughly parallel to the ancient coastline.
Sedimentation in the basin was largely controlled by basement
fracturing and subsidence associated with the rifting of the
South American and African plates. The rocks in the basin
are generally Late Cretaceous to Early Tertiary in age
(Billman 1992; Ogbe 1970; Okosun 1990; Olabode 2006;
Omatsola and Adegoke 1981). The stratigraphy of the basin
(Fig. 3) has been grouped into six lithostratigraphic forma-
tions. These formations, from the oldest to the youngest, in-
clude Abeokuta, Ewekoro, Akinbo, Oshosun, Ilaro, and Benin
Formations. However, some of the early researchers described
the Cretaceous Abeokuta Formation as Abeokuta Group
consisting of Ise, Afowo, and Araromi Formations.

The Cretaceous Abeokuta Formation, which overlies the
basement, is predominantly composed of poorly sorted se-
quence of continental grits and pebbly sands over the entire
basin. Occasional siltstones, mudstones, and shale-clay with
thin limestone beds due to marine transgression are often ob-
served in the formation. The Abeokuta Formation is overlain
by the Ewekoro Formation which is mainly composed of
shallow marine limestone due to the contamination of the
marine transgression. The limestone-dominated Ewekoro
Formation is Palacocene in age. Overlying the Ewekoro
Formation is the shale-dominated Akinbo Formation of Late
Palacocene to Early Eocene (Ogbe 1970; Okosun 1990). The
shale and clayey sequence of the Akinbo Formation is con-
cretionary, predominantly kaolinitic and passes gradationally
into massive mud/mudstone. The Akinbo Formation is over-
lain by the Oshosun Formation composed of thickly laminat-
ed, glauconitic, and phosphate-bearing Eocene shale with
sandstone inter-beds. The Oshosun Formation is overlain by
the Ilaro Formation, a predominant sequence of coarse sandy
estuarine, deltaic and continental beds with occasional thin
bands of phosphate. The Ilaro Formation displays rapid lateral
facies changes and is Eocene in age. The Ilaro Formation is
overlain by the Benin Formation which is predominantly
Coastal Plain Sands and Tertiary alluvium deposits.



Arab J Geosci (2016) 9:496

Page 3 of 15 496

Fig. 1 Geological sketch map of
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The local geology of the study area, generally consistent
with the regional geology of eastern part of the Dahomey
Basin, is predominantly Coastal Plain Sands and Recent sed-
iments. The Coastal Plain Sands consist of poorly sorted clay-
ey sands, reddish mud/mudstone, clay and sand lenses, and
sandy clay with lignite of Miocene to Recent. These sediments
are underlain by a sequence of coarse sandy estuarine, deltaic,
and continental beds of the Ilaro Formation which are largely
characterized by rapid changes in facies.

Geophysical survey
Data measurements and field procedure

The geophysical survey consists of VES and 2D geoelectrical
resistivity and time-domain IP imaging. Manual data measure-
ment was adopted; an ABEM Terrameter (SAS 1000 series)
was used for the data measurements for both the resistivity
soundings and the 2D geoelectrical resistivity and time-
domain IP measurements. The survey was designed such that
the VESs and traverses cover the entire area of interest;

however, it was largely controlled by accessibility and road
network (Fig. 2). The survey was conducted during the
months of January and February (dry season), although occa-
sional rainfall was witnessed mainly during the nights. A total
of 32 VESs were conducted within the area with the aim of
delineating the subsurface layering, depth-to-aquifer, and
aquifer geometry. Schlumberger array with maximum half-
current electrode separation (AB/2) ranging between 240
and 420 m (but mostly 320 m) was used for data measure-
ments of the resistivity soundings. The number of soundings
conducted in the area and electrode spread for each sounding
were largely determined by availability of space and accessi-
bility. The electrode spread used for the soundings was con-
sidered sufficient for the effective depth of investigation
anticipated.

The 2D geoelectrical resistivity and time-domain IP survey
was conducted along seven traverses (Fig. 2); Wenner array
was used for the data measurements. Each of the traverses was
500 m in length; however, traverse 6 was 450 m long due to
space limitation. The electrode separation used for the mea-
surements ranges from 10.0 to 160.0 m in an interval of
10.0 m (10.0 m to 120.0 m electrode spacing was used for
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the data measurements in traverses 1, 2, and 6). The 2D ap-
parent resistivity and chargeability (time-domain IP effect)
were measured concurrently in all the traverses except for
traverses 4 and 5 where only apparent resistivity was mea-
sured. The chargeability of the IP effect was measured by
integrating the area under the IP decay curve according to
the relation

1 h
M :Vo/tl V(t)dt, (1)

where V) is the voltage measured while the current is turned
on, t; and £, is the start and stop time interval, respectively, and
V(#) is the decaying voltage.

To ensure data quality, the electrode positions were clearly
marked and pegged before the commencement of the data
measurements for each traverse as well as the resistivity
soundings. This ensured that electrode positioning error com-
monly associated with manual multi-electrode data measure-
ments was minimized. The earth resistivity meter was set for
repeat measurements with minimum data stacking of 3 and
maximum of 6. Good connectivity between the electrodes and
the connecting cables was ensured, while maintaining effec-
tive contact between the ground and the electrodes. The root-
mean-squares error in the measurements was generally less
than 0.3 %; however, isolated cases in which the root-mean-
squares error was up to 0.5 % were repeated after ensuring the
electrodes were maintaining good contact with the ground.
The injected current was automatically selected from a mini-
mum of 1.0 m4 to a maximum of 200.0 mA4 by the resistivity
meter based on the subsurface conductivity.

Data processing and inversion

The observed apparent resistivity dataset for the resistivity
soundings was plotted against half-current electrode spacing
(AB/2) on bi-logarithmic graph sheets. The field curves ob-
tained were then curve-matched with Schlumberger master
curves to delineate the number of layers and estimate of the
corresponding resistivity and thickness of the delineated
layers. The estimated geoelectric parameters were then used
as initial models for computer iteration on a Win-Resist pro-
gram to obtain model geoelectric parameters for the delineated
layers.

Similarly, the observed 2D apparent resistivity and
chargeability dataset for each traverse were processed and
inverted concurrently using RES2DINV inversion code
(Loke and Barker 1996). The RES2DINV program uses a
non-linear optimization technique that automatically deter-
mines the inverse model of the 2D resistivity and chargeability
distribution of the subsurface for the measured apparent resis-
tivity and chargeability data set (Griffiths and Barker 1993;
Loke and Barker 1996). The RES2DINV program subdivides

the subsurface into a number of rectangular blocks according
to the spread and density of the observed data. The size and
number of the blocks is determined by the survey parameters
(electrode configuration, electrode separations and positions,
and data level) used for the data measurements. Least-squares
inversion technique with standard least-squares constraint (-
norm or smoothness), which minimizes the square of the dif-
ference between the observed and the computed apparent re-
sistivity and chargeability values, was used for the data inver-
sion. The least-squares equation for the inversion was solved
using the standard Gauss-Newton optimization technique.
Smoothness constraint was applied to both data and model
perturbation vectors; appropriate damping factor for the inver-
sion was selected based on the estimated noise level on the
measured data.

Results and discussions

Representative inverse model curves for the geoelectric pa-
rameters obtained from the computer iteration of the resistivity
soundings are shown in Figs. 4 and 5. The summary of the
geoelectric parameters obtained from the inverse model
curves are presented in Table 1. In general, nine geoelectric
layers were delineated from the sounding curves. The
geoelectric parameters of the delineated layers show consis-
tency among the sounding curves, particularly in the deeper
sections where the model resistivities and thicknesses are rel-
atively uniform (Table 1). The lithology of the delineated
geoelectric layers was established by integrating available in-
formation from lithologic samples collected from boreholes
and hand-dug wells, known local geology and previous stud-
ies (Aizebeokhai et al. 2010a; Aizebeokhai and Oyebanjo
2013; Aizebeokhai and Oyeyemi 2014). The delineated
geoelectric layers (from top to bottom) are characterized as
top soil, sandy mud/mud stone, sandy/silty clay lens, consol-
idated lateritic clay, sand lens, lateritic/kaolinitic clay, clayey
sand, unconsolidated sand and clay/shale. The geoelectric pa-
rameters of some resistivity soundings (selected based on
proximity and linearity) were used to construct representative
geoelectric cross-sections of the area (Fig. 6).

The top soil is mainly composed of unconsolidated
sandy clay and is characterized with low resistivity rang-
ing from 39.7—313.20Om. The thickness of the top soil
varies between 0.5 and 2.3 m. The top soil is underlain
by a relatively high resistive layer that is laterally con-
tinuous across the study area; this layer is described as
sandy mud/sandy mudstone. The inverse model resistiv-
ity and thickness of this layer vary largely and ranges
from 202.9-1167.6 dm and 0.9-16.6 m, respectively.
The large variation observed in the model resistivity of
this layer is attributed to differences in the degree of
compaction of the unit coupled with lateral changes in
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Fig. 4 Representative vertical electrical sounding curves: a VES 5, b VES 7, ¢ VES 9, d VES 24, e VES 27, and f VES 29

mineralogy. Underlying the second geoelectric layer is a

laterally discontinuous in the study area; it appears as a
low resistivity sandy/silty clay unit observed to be

lens with varying model resistivity ranging from 56.4
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Fig. 5 Representative vertical electrical sounding curves: a VES 10, b VES 12, ¢ VES 16, d VES 19, e VES 20, and f VES 22

—618.80m and thickness ranging between 2.4 and
22.9 m. The fourth layer delineated is a high resistive
unit that is laterally continuous across the study area; it

is underlain by a sand lens in some parts of the study
area and merges with the sixth layer in areas where the
sand lens is absent.
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Top Soil (Sandy Clay unit)
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(Confining Bed)
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VES 13 VES 14 VES 15 VES 16 VES 17
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Fig. 6 Representative geoelectric cross-sections constructed from the geoelectric parameters of the delineated layers for selected resistivity soundings

The sixth layer is equally a very resistive unit; it is relative-
ly thick and laterally continuous across the study area. The
model resistivity and thickness of this layer is largely uniform
across the sounding curves. The high resistive unit is under-
lain by a relatively low resistive clayey sand unit with largely
uniform model resistivity ranging from 278.7—415.3 Qm and
an appreciable thickness ranging from 10.1-16.2 m, respec-
tively. Underlying the clayey sand is an unconsolidated sand
unit characterized with low resistivity that ranges from 58.8
—228.30m and a thickness that is largely uniform ranging
between 11.8 and 13.3 m, except in VES 6 where the thick-
ness delineated is 19.2 m; it is thought that the underlying unit

Model resistivity with topography
Iteration 5 RHS error = 8.5

6.0 160.0
A

at this VES point could not be distinguished (no resistivity
contrast) from this sand unit and this possibly accounts for
the large thickness delineated. The last layer delineated is
thought to be a clayey/shale unit due to its very low resistivity;
however, this layer was not penetrated or distinguished from
the overlying unit in some of the VES locations.

In general, the geoelectric layers delineated from the resis-
tivity soundings (Table 1 and Fig. 6) are laterally continuous
across the entire study area and correlate well in terms of
geoelectric-lithology as expected in a sedimentary terrain. In
particular, the thicknesses and resistivities of the layers in the
deeper section are largely uniform across the study area.
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Last electrode is located at 508.8 m. Unit Electrode Spacing = 16.8 m.

Fig. 7 2D inverse model resistivity and chargeability for traverse 1
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Fig. 8 2D inverse model resistivity and chargeability for traverse 2

Layers 3 and 5 are not observed in some of the VESs points
and are thought to be sandy/silty clay and sand lenses, respec-
tively. In particular, layer 5 may have been masked in some of
the VESs locations due to the high resistivity values of layers
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Fig. 9 2D inverse model resistivity and chargeability for traverse 3
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4 and 6; also, it may have thin-out completely in some cases as
observed in VESs 1, 6, 11, 18, 22, and 23 locations. The
observed clay and sand lenses together with large variations
in the model resistivity of the upper section depict rapid lateral
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Model resistivity with topography
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Fig. 10 2D inverse model resistivity for: a traverse 4 and b traverse 5

facies changes and near-surface heterogeneities that common-
ly characterized the Ilaro Formation (Ogbe 1970; Okosun
1990). Samples from drilled and hand-dug wells indicate that
the high resistive unit (layer 6 in Table 1 and Fig. 6) is highly
consolidated and predominantly composed of swelling clay
rich in kaolin and intercalated with phosphate minerals. The
kaolin and phosphate minerals are thought to account for the
high resistivity values observed for this relatively thick clayey
unit.

The 2D model resistivity and chargeability images of the
subsurface obtained from the inversion of the observed appar-
ent resistivity and chargeability data are presented in Figs. 7,8,
9,10,11and 12). The inverse models of the 2D resistivity and
chargeability images of the subsurface show a general
geoelectric-lithology trend very similar to that observed in
the resistivity soundings. Reasonable correlation exists be-
tween the 2D inverse models and the geoelectric layered pa-
rameters obtained from the soundings. The lateral continuities
of geoelectric layers (geoelectric-lithology) and near-surface
heterogeneity observed in the resistivity soundings are clearly
depicted in the inverted 2D resistivity images. The top soil

@ Springer
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Traverse 4

Delineated aquifer

delineated in the resistivity soundings is not distinctly ob-
served in the 2D images due to its small thickness (0.5—
2.3 m averaging 1.18 m) relative to the minimum electrode
spacing of 10.0 m used for the 2D survey. Evidence of the clay
and sand lenses delineated in the resistivity soundings is ob-
served traverse 6 (Fig. 11), where a sand lens overlies a clay
lens. The sand lenses often form shallow perched aquifers in
the area which may not yield appreciable groundwater to
drilled wells.

The unconsolidated sand unit in the geoelectric sounding
parameters (layer 8 in Table | and Fig. 6), which is observed
to be laterally continuous with relatively uniform model resis-
tivity and thickness in the entire areal extent, is thought to be
the main (regional) aquifer body in the area. The 2D inverse
model resistivity of the delineated aquifer unit ranges from
about 75—150 2m; this corresponds to the model resistivity
observed in the resistivity soundings for the same geoelectric
unit (layer 8 in Table 1 and Fig. 6). The main aquifer unit
delineated in the 2D resistivity and chargeability images is
well penetrated in traverses 3, 4, 5, and 7 (Figs. 9, 10, and
12) but partially penetrated in traverses 1, 2, and 6 (Figs. 7, 8,
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Fig. 11 2D inverse model resistivity and chargeability for traverse 6

and 11). This is due to the fact that data level of 12 (minimum
electrode spacing of 10-120 m) was used for the data mea-
surements in traverses 1, 2, and 6 as against data level of 16
(minimum electrode spacing of 10-160 m) used for the data

Sand lens
(perched aquifer)

Clay lens

measurements of other traverses. The 2D resistivity images
show that the delineated aquifer occurs at an elevation of
about 5 m to about 20 m below mean sea level corresponding
to an average depth-to-aquifer of about 80 to 100 m and
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Fig. 12 2D inverse model resistivity and chargeability for traverse 7
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average aquifer thickness of about 15 m. This model thickness
agrees reasonably well with that observed in the geoelectric
parameters of the resistivity soundings.

The main aquifer unit delineated is overlain by a relatively
more resistive layer that is also observed to be laterally con-
tinuous in the entire area in both the 2D images and the resis-
tivity soundings. The layer is characterized with relatively
uniform inverse model resistivity value that range from about
280—400 m and an average thickness of about 12.3 m. This
unit is saturated but relatively impermeable; consequently, it
serves both as a confining bed and aquitard to the main aquifer
body. Most hand-dug wells in the area are tapping groundwa-
ter from this aquitard unit because of the large diameters with
which the wells are dug.

The aquitard unit is overlain with a relatively thick and very
resistive layer that is conspicuously observed in the 2D resis-
tivity images of all the traverses as well as the resistivity
soundings. This layer is laterally continuous across the entire
area but the resistivity varies spatially due to changes in the
degree of compaction and mineralogy. The chargeability
anomaly (IP effect) observed for this high resistive layer is
not very distinct, but a careful observation of the chargeability
images show that the high resistive layer is characterized with
a moderately high chargeability anomaly indicating massive
or compacted clayey lithology for the layer. This is consistent
with the results of previous studies conducted within the same
geologic environment (Aizebeokhai and Oyeyemi 2014).

The aquifer unit is underlain by a very low resistivity unit
as shown in both the 2D inverse models and the geoelectric
parameters of the resistivity soundings (layer 9 in Table 1 and
Fig. 6). This low resistivity unit is characterized with a distinct
high chargeability anomaly as observed in traverses 3 and 7
(Figs. 10 and 12). The observed high chargeability anomaly
for this low resistivity unit indicates that the delineated aquifer
is underlain with clayey/shaley formation. This is also consis-
tent with similar studies conducted around the area
(Aizebeokhai and Oyebanjo 2013; Aizebeokhai and
Oyeyemi 2014).

Conclusion

Geophysical survey involving resistivity sounding and 2D
resistivity and time-domain IP imaging was carried out in
Iyana-Iyesi and Canaan Land area, southwestern Nigeria.
The survey is part of a preliminary assessment of the ground-
water resource potential in the area. The knowledge of
groundwater resource potential is essential for groundwater
resource development planning as well as groundwater re-
source management and monitoring. The near-surface was
characterized by integrating the geoelectric layered parame-
ters obtained from the resistivity soundings with the 2D resis-
tivity and chargeability inversion models. This integration is

@ Springer

found to be effective in characterizing near-surface heteroge-
neities. The aquifer unit delineated is thought to be high-yield
regional aquifer and is confined by a low yield aquitard. The
thickness of the aquifer delineated is largely uniform and av-
erage of about 12.5 m; depth to the aquifer progressively in-
creases northward in the basin.
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