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The inhibition performance of thiocarbanilide on the electrochemical corrosion behavior of high carbon
steel in 1 M H2SO4 and HCl acid solutions was studied through weight loss method and potentiodynamic
polarization test. Data obtained showed that the organic compound performed effectively in acid solu-
tions at all concentrations with an average thiocarbanilide inhibition efficiency above 70% in H2SO4 acid
and 80% in HCl acid from weight loss and potentiodynamic polarization test respectively. Results from
corrosion thermodynamic calculations showed that the adsorption of thiocarbanilide onto the steel
was through chemisorption mechanism whereby the redox electrochemical process responsible for cor-
rosion and the electrolytic transport of corrosive anions were simultaneously suppressed. Statistical
derivations through ANOVA analysis confirm that the influences of both the inhibitor concentration
and exposure time on inhibition efficiency values are negligible. Adsorption of the compound was deter-
mined to obey the Langmuir and Frumkin isotherm model.
� 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Carbon steel is the most versatile and highly applicable engi-
neering material, accounting for about 85%, of the total yearly steel
production worldwide. It represents the largest single classification
of metallic alloys applied in tonnage and total cost [1]. Carbon steel
corrosion has been a problem of enormous practical importance
due to its high cost on the national economy. Despite its relatively
limited corrosion resistance carbon steel is used in marine applica-
tions, petroleum production and refining, chemical processing,
pipelines, mining, construction, metal-processing equipment, fossil
fuel power and nuclear power plants. However steels exposed to
aqueous environments are strongly susceptible to corrosion due
to their thermodynamic instability therein [2]. This is more evident
in acidic media because of the increased industrial applications of
acid solutions [3]. The corrosion issue consists of the major portion
of the overall expenditure for petrochemical companies world-
wide, occurring at all stages from down–hole to surface equipment
and processing facilities. Corrosion problems are also usually asso-
ciated with operational problems and maintenance of plants and
equipment causing periodic but limited or complete process shut-
down, resulting in serious economic losses [4]. Applicable corro-
sion control and prevention methods have been shown to help
mitigate against potential disasters capable of causing loss of life,
negative social impacts, damage to water resource and environ-
mental pollution. This is the reason for the existence of entire
industries devoted to providing protective systems for iron and
steel. Historically, corrosion inhibitors has been observed to have
excellent anti-corrosive proprieties, however, a significant propor-
tion of them caused secondary effect, damaging the environment.
Thus research for environmentally friendly inhibitors, like the
organic inhibitors is ongoing [5–12]. Previous research has shown
that compounds of organic origin have good corrosion inhibition
properties for steel in acidic chloride environments [13–19]. The
chemical compounds protect through adsorption mechanism by
chemisorbing at the metal/solution interface on the metal surface
forming a protective barrier against corrosion. The paradox is sub-
ject to the nature and surface charge of the metal, the nature and
type of corrosive solution and the molecular structure of the
inhibiting compound [20]. The aim of this study is to investigate
the electrochemical and corrosion inhibition property of thiocar-
banilide a sulfur-containing compound of great industrial potential
for high carbon steel protection against corrosion in 1 M H2SO4 and
HCl acid by using weight loss and electrochemical (anodic and
cathodic Tafel polarization), optical microscopy and numerical
analysis through ANOVA.
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Materials and methods

Material

High carbon steel obtained commercially from the open market
in Lagos, Nigeria was analyzed at the Materials Characterization
Laboratory, Department of Mechanical Engineering, Covenant
University, Ota, Ogun State, Nigeria. The steel has an average nom-
inal composition (%) depicted in Table 1. The energy dispersive
spectrometer analysis is shown in Fig. 1.

Inhibitor

Thiocarbanilide (TCB) a solid white powdery substance sourced
from Merck Chemicals, South Africa in synthesized form is the
inhibiting compound used. The structural formula is shown in
Fig. 2, and the properties in Table 2.

TCB was prepared in molar concentrations of 5.48 � 106,
1.10 � 105, 1.64 � 105, 2.19 � 105, 2.74 � 105 and 1.27 � 105 per
0.2 L of the acid test media.

Corrosive test media

Dilute concentrations of 1 M H2SO4 and HCl acid media were
prepared with analytical grade H2SO4 (98%) and HCl acid (37%)
with deionized water and used as the corrosive test environment.

Preparation of high carbon steel specimens

Cylindrical steel specimens were mechanically cut into 14 test
pieces, each with an average dimension of 0.7 cm radius and
0.7 cm length. The two exposed surface ends of the steel were
ground with silicon carbide abrasive papers of 80, 120, 220, 800
and 1000 grits before polishing with 6 lm–1 lm diamond liquid,
rinsed with distilled water and acetone, dried and later stored in
a dessicator for weight-loss analysis, and potentiodynamic polar-
ization resistance technique in accordance with ASTM G1 – 03
(2011) [21].

Weight-loss analysis

Steel samples of predetermined weight were separately
immersed in 0.2 L of the corrosive test solution for 240 h at ambi-
ent temperature of 25 �C [22]. The samples were each removed
from the acid solution after 24 h consecutively, rinsed with dis-
tilled water and acetone, dried and re-weighed in accordance with
ASTM G31-12a [23]. Plots of corrosion rate, q (mm/y) and percent-
age inhibition efficiency (g) versus exposure time T were plotted
from the results computed during the exposure hours. The corro-
sion rate (q) calculation was determined from Eq. (1) [24].

q ¼ 87:6 ~x
DAT

� �
ð1Þ

where ~x is the weight loss in mg, D is the density in g/cm3, A is the
total area in cm2 and 87.6 is a constant.

Inhibition efficiency (g) was calculated from (2)

g ¼ ~x1 � ~x2

~x1

� �
� 100 ð2Þ
Table 1
Nominal composition (%) of high carbon steel.

Element symbol C Sb Mn Mo Ni Cs Fe

% Composition 2.40 0.04 0.69 0.08 0.01 0.02 96.76
where ~x1 and ~x2 are the weight loss of the specimens in the pres-
ence and absence of specific concentrations of TCB. gwas calculated
for every TCB concentration throughout the exposure period.

Surface coverage was determined from Eq. (3) [25,26].

h ¼ 1� ~x2

~x1

� �
ð3Þ

where h is the quantitative amount of TCB compound, adsorbed per
gram on the steel specimens. ~x1 and ~x2 are the weight loss of the
specimen in the presence and absence of predetermined concentra-
tions of TCB in acid media.

Potentiodynamic polarization technique

Potentiodynamic polarization test was performed with cylindri-
cal high carbon steel electrodes mounted in acrylic resin with an
unconcealed surface area of 154 mm2. The steel electrode was pre-
pared according to ASTM G59-97 (2014) [27]. The studies were
performed at 25 �C ambient temperature with Digi-Ivy 2300
potentiostat and electrode cell containing 0.2 L of the acid media,
with and without TCB compound. Platinum rod was used as the
counter electrode and silver chloride electrode (Ag/AgCl) was
employed as the reference electrode. Potentiodynamic measure-
ment was performed from �1.5 V to +1.5 V at a scan rate of
0.0016 V/s according to ASTM G102-89 (2015) [28]. The corrosion
current density (jcorr) and corrosion potential (Ecorr) were calcu-
lated from the Tafel plots of potential versus log current. The cor-
rosion rate (q) and the percentage inhibition efficiency (g2) were
from Eq. (4).

r ¼ 0:00327� Jcorr � Eq

D
ð4Þ

where jcorr is the current density in lA/cm2, D is the density in g/
cm3; Eq is the specimen equivalent weight in grams. 0.00327 is a
constant for corrosion rate calculation in mm/y [29,30]. The per-
centage inhibition efficiency (g2) was calculated from corrosion rate
values using Eq. (5) below;

g2 ¼ 1� ~q2

~q1

� �
� 10 ð5Þ

where q1 and q2 are the corrosion rates with and without TCB
inhibitor.

Results and discussion

Potentiodynamic polarization

The anodic and cathodic polarization plots of the electrochem-
ical influence of TCB inhibitor on the corrosion of high carbon steel
in 1 M H2SO4 and HCl acid solutions are shown in Figs. 3 and 4.
Tables 3 and 4 show the results obtained from the polarization
scans. Observation of the corrosion rates in Table 3 shows the sig-
nificant difference in corrosion rate values for TCB inhibited and
uninhibited steel samples at 0.0025–0.0150% TCB & 0% TCB. At
0% TCB significant anodic dissolution of the carbon steel sample
occurred with the formation of pores, pits and channels within
the porous oxide layer. The SO4

2� ions within the acid solution
are responsible for the corrosion reactions that occurred on the
steel surface. The remarkable decrease in corrosion rate occurred
from 0.0025% to 0.0150% TCB. These values are generally the same
with the average inhibition efficiency of 70% due to the electro-
chemical action of TCB in the acid solution. Metallic corrosion is
complex and non-homogeneous due to the presence of numerous
anodic and cathodic reaction cells. Corrosion inhibiting compounds
tend to interact with the cells, through retardation of the redox



Fig. 2. Chemical structure of thiocarbanilide.

Table 2
Properties of the TCB compound.

S/N Compound Molecular formula Molar mass (g mol�1)

1 Thiocarbanilide C13 H12 N2 S 228.31

Fig. 1. Energy dispersive spectrometer analysis of high carbon steel specimen.
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electrochemical process and/or inhibition of the diffusion of active
corrosive anions from the acid solution to the steel. Changes in TCB
concentration have no significant effect on the inhibition efficiency
values. TCB inhibition performance is independent of its inhibitor
concentration. At 0.0025% TCB the inhibition efficiency is 73.91%,
while at 0.0150% TCB, the inhibition efficiency is 73.70%.

The electrochemical performance of TCB in HCl slightly con-
trasts its behavior in H2SO4 from observation of lower corrosion
rate and higher inhibition efficiency values in Table 4. The change
in corrosion rate corresponds with changes in corrosion current
values. The anode–cathode polarization plots in Figs. 3 and 4 show
active–passive behavior under the inhibiting action of the TCB
compound. The corrosion potential generally alternates between
cathodic and anodic corrosion potentials suggesting that the mech-
anism of inhibition by TCB is through surface coverage of the steel
preventing anodic deterioration and selective blockage of the reac-
tion sites whereby the main cathodic reactions involving hydrogen
evolution and oxygen reduction reactions are suppressed through
precipitation of insoluble compounds on cathodic areas to increase
the surface impedance and limit the diffusion of reducible species
[31]. TCB reacts with the corrosion product, initially formed, result-
ing in a cohesive and insoluble film on the metal surface i.e. with
the displaced metal ions produced on the anode, forming generally
insoluble compounds which deposit on the steel surface as an
insoluble film and impermeable to metallic ion. This promotes pas-
sivation of the steel through adsorption and hinders its deteriora-
tion as the inhibitor surface coverage decreases the number of
surface metal atoms at which corrosion reactions can occur. This
observation is confirmed from the anodic and cathodic potentials
in Tables 3 and 4. Changes in potentials indicate that TCB has a sig-
nificant influence on the mechanistic aspects of corrosion i.e. the
mechanism of the corrosion process was significantly influenced.

The maximum change in corrosion potential in H2SO4 is 17 mV
in the anodic direction while in HCl it is 27 mV in the cathodic
direction, thus TCB is a mixed type inhibitor in both acids
[32,33]. TCB compound has a number of lone pairs of electrons in
the atoms within its molecular structure. This enables the avail-
ability of electrons to the unoccupied orbital on the steel surface
leading to the formation of stable covalent bonds i.e. TCB chemi-
cally adsorbs on the steel reducing the active surface area of the
steel, thus retarding the rate of the corrosion process through for-
mation of a protective coating [34,35].
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Fig. 3. Anodic–cathodic polarization plots for high carbon steel in 1 M H2SO4 for 0– 0.0150% TCB.
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Fig. 4. Anodic–cathodic polarization plots for high carbon steel in 1 M HCl for 0–0.0150% TCB.

Table 3
Anodic–cathodic polarization results for high carbon steel in 1 M H2SO4 for 0–0.0150% TCB.

Sample TCB
conc.
(%)

Corrosion
rate (mm/y)

TCB inhibition
efficiency (%)

Corrosion
current (A)

Corrosion current
density (A/cm2)

Corrosion
potential (V)

Polarization
resistance, Rp

Cathodic tafel
slope (Bc)

Anodic tafel
slope (Ba)

0 0.0000 1.44 0 1.91E�04 1.24 � 10�4 �0.367 134.60 �8.451 27.670
1 0.0025 0.38 73.91 4.98E�05 3.23 � 10�5 �0.384 200.50 �8.428 15.750
2 0.0050 0.39 72.98 5.16E�05 3.35 � 10�5 �0.369 164.80 �7.215 33.800
3 0.0075 0.41 71.29 5.48E�05 3.56 � 10�5 �0.365 152.70 �7.126 17.380
4 0.0100 0.42 70.66 5.60E�05 3.64 � 10�5 �0.372 160.40 �8.775 26.330
5 0.0125 0.43 70.10 5.71E�05 3.71 � 10�5 �0.362 142.00 �6.910 30.540
6 0.0150 0.38 73.70 5.02E�05 3.26 � 10�5 �0.382 177.40 �9.013 19.920

Table 4
Anodic–cathodic polarization results for high carbon steel in 1 M HCl for 0–0.0150% TCB.

Sample TCB
conc.
(%)

Corrosion
rate (mm/y)

TCB inhibition
efficiency (%)

Corrosion
current (A)

Corrosion current
density (A/cm2)

Corrosion
potential (V)

Polarization
resistance, Rp

Cathodic tafel
slope (Bc)

Anodic tafel
slope (Ba)

0 0.0000 3.06 0 4.05E�04 2.63 � 10�4 �0.374 63.38 �10.330 13.870
1 0.0025 0.54 82 7.16E�05 4.65 � 10�5 �0.394 164.10 �9.899 8.895
2 0.0050 0.62 80 8.19E�05 5.32 � 10�5 �0.378 138.20 �9.501 9.823
3 0.0075 0.52 83 6.83E�05 4.44 � 10�5 �0.376 172.10 �8.318 11.280
4 0.0100 0.68 78 9.04E�05 5.87 � 10�5 �0.384 156.30 �9.971 10.060
5 0.0125 0.62 80 8.29E�05 5.38 � 10�5 �0.347 310.10 �9.626 8.420
6 0.0150 0.67 78 8.94E�05 5.80 � 10�5 �0.347 287.60 �10.120 7.597
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Weight-loss measurements

Results from weight loss measurement of the high carbon steel
specimens for weight loss ( ~x), corrosion rate (q) and percentage
inhibition efficiency (g) in H2SO4 and HCl acids are depicted in
Tables 5 and 6. Figs. 5(a), (b) and Figs. 6(a), (b) show the plot of cor-
rosion rate and percentage inhibition efficiency versus exposure
time in the acid media. Observation of the results from H2SO4 acid



Table 5
Data for high carbon steel in 1 M H2SO4 at predetermined concentrations of TCB from weight loss analysis.

Samples Weight loss
(mg)

Corrosion rate (mm/
y)

TCB concentration
(%)

TCB concentration
(molarity * 103)

TCB inhibition efficiency
(%)

TCB surface coverage
(h)

A 0.848 6.409 0 0 0 0
B 0.246 1.857 0.0025 5.48 � 10�6 71.02 0.710
C 0.244 1.842 0.0050 1.10 � 10�5 71.27 0.713
D 0.240 1.814 0.0075 1.64 � 10�5 71.69 0.717
E 0.241 1.818 0.0100 2.19 � 10�5 71.63 0.716
F 0.253 1.909 0.0125 2.74 � 10�5 70.22 0.702
G 0.321 2.426 0.0150 3.29 � 10�5 62.15 0.622

Table 6
Data for mild steel in 1 M HCl at predetermined concentrations of TCB from weight loss analysis.

Samples Weight loss
(mg)

Corrosion rate (mm/
y)

TCB concentration
(%)

TCB concentration
(Molarity * 103)

TCB inhibition efficiency
(%)

TCB surface coverage
(h)

A 1.852 13.998 0 0 0 0
B 0.346 2.615 0.0025 5.48 � 10�6 81.32 0.813
C 0.320 2.420 0.0050 1.10 � 10�5 82.71 0.827
D 0.312 2.361 0.0075 1.64 � 10�5 83.14 0.831
E 0.363 2.742 0.0100 2.19 � 10�5 80.41 0.804
F 0.323 2.440 0.0125 2.74 � 10�5 82.57 0.826
G 0.317 2.396 0.0150 3.29 � 10-5 82.89 0.829
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Fig. 5. Plot of (a) corrosion rate versus exposure time (b) inhibition efficiency versus exposure time for high carbon steel in 1 M H2SO4 at 0 M–0.0329 M TCB.
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shows TCB inhibition efficiencies at all TCB concentrations studied
to be generally above 70% due to increased surface coverage by the
adsorbed TCB molecules, with the exception of 3.29 � 105 M TCB
concentration where the inhibition efficiency decreased to 62% as
a result of desorption of TCB or modification in the adsorbed TCB
species. It is suggested that the modification accelerates the catho-
dic reaction causing a reduction in inhibition efficiency [36]. Some
authors [37] have suggested the decrease in inhibition efficiency to
be due to the reduction of TCB to release corrosion accelerating
ions, others have suggested it to be due to protonation based on
the belief that protonated species facilitates the hydrogen evolu-
tion reaction, and thus corrosion. This observation is further con-
firmed from the corrosion rate values where the corrosion rate
the carbon steel sample at 0 M TCB has significantly higher corro-
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sion rate value of 6.409 mm/y compared to the values for samples
immersed in acid solutions with TCB. The values for TCB inhibition
efficiencies in HCl acid are significantly higher than values in
H2SO4 acid at all TCB concentrations with average inhibition effi-
ciency above 80%. The results show that the corrosion inhibition
properties and electrochemical behavior of TCB on the high carbon
steels in both acids is appreciable as TCB suppressed the redox
electrochemical reactions responsible for corrosion degradation.
The molecular structure of TCB consists mainly of multiple bonds
and heteroatoms within its structure which are strongly polar
and capable of releasing electrons from its reaction center which
facilitates its adsorption on carbon steel surface [38,39]. TCB being
an organic compound tends to form a very thin and protective
adsorbed film that leads to the general decrease in the corrosion
rate of the carbon steel specimens due to the suppression of the
anodic reaction, the cathodic reaction, or both [40]. The adsorption
mechanism of the corrosion inhibition process occurs on the reac-
tive sites of the steel through the p-electrons of structural rings
and the lone pair of electrons of nitrogen and sulfur atoms [41,42].

Adsorption isotherm

The mechanism of adsorption of TCB compound on high carbon
steel is a surface phenomenon through which TCB ionized mole-
cules are attracted to the steel surface and adsorb through inter-
molecular or electrostatic mechanism. The ionization potential,
surface characteristics of the metal, electronic behavior, degree of
adsorption of ions present and the electrochemical potential at
metal/solution-interface are responsible for the mechanism and
type of adsorption. Adsorption isotherms describe the behavior of
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Fig. 6. Plot of (a) corrosion rate versus exposure time (b) inhibition efficiency
the inhibitor molecules and provide information about the interac-
tion of the inhibitor molecules with the metal surface [43]. The
adsorption characteristics of TCB compound were analyzed to fur-
ther establish the interaction mechanism between TCB and the car-
bon steel [43–45]. Langmuir and Frumkin isotherm produced the
best fit for TCB in H2SO4 and HCl acid.

The isotherms are of the general form shown in Eq. (6)

kc ¼ gðh; xÞexpð�fhÞ ð6Þ
where g(h,x) is the configurational factor subject to the physical
model and assumptions involved in the emanation of the isotherms.
The general form of the Langmuir equation is shown below,

h
1� h

� �
¼ KadsC ð7Þ

rearranging Eq. (7)

c
h
¼ 1

h

� �
þ C ð8Þ

where h is the value of surface coverage on the steel alloy, C is TCB
concentration in the acid solution, and Kads is the equilibrium con-
stant of the adsorption process. The plots of TCB concentration/sur-
face coverage versus the TCB concentration were linear in H2SO4

and HCl acid [Fig. 7(a) and (b)] confirming Langmuir adsorption.
According to Langmuir model TCB molecules occupy specific

adsorption sites at the metal/solution interface resulting in the
slight deviation of the slope from unity as shown in the correlation
coefficient values in Fig. 7(a) and (b) [46,47]. Fig. 8(a) and (b)
shows the Frumkin adsorption isotherm for TCB for high carbon
steel in both acids. The correlation factor in H2SO4 is 0.0602 while
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Fig. 7. Plot of TCB concentration/surface coverage versus the TCB concentration (a) in 1 M H2SO4, (b) in 1 M HCl.
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in HCl is the factor is 0.4724. Frumkin isotherm assumes unit cov-
erage at specific TCB concentrations and that the carbon steel sur-
face is heterogeneous i.e. the effect of lateral interaction is
significant, thus the active surface of the steel where adsorption
takes place is accounted for. Frumkin adsorption isotherm can be
expressed according to Eq. (9). K is the adsorption–desorption con-
stant and a is the lateral interaction term describing the interaction
in adsorbed layer

Log C � h
1� h

� �� �
¼ 2:303logKþ 2ah ð9Þ

Increase in TCB concentration in the acid solutions results in
changes in the interaction energy with water molecules as TCB
molecules ionize and adsorb on the carbon steel. The amount of car-
bon steel released into the acid solution is related to the extent of
coverage of TCB over the carbon steel surface. With the assumption
that the steel surface is covered with water dipoles, adsorption of
the TCB occurs through substitution of the water dipoles by TCB
cations [48,49].
Thermodynamics of the corrosion process

The thermodynamics of the substitutional process depends on
the amount of water molecules (n) removed by TCB inhibiting
compound. Results determined for Gibbs free energy (DGo

ads) for
the adsorption process shown in Tables 7 and 8 were calculated
from Eq. (10) below.
DGads ¼ �2:303RTlog½55:5Kads� ð10Þ

where 55.5 is the molar concentration of water in the solution, R is
the universal gas constant, T is the absolute temperature and Kads is
the equilibrium constant of adsorption. Kads is related to surface
coverage (h) from the following equation.

KadsC¼ ½ h
1� h

�
ð11Þ

The heterogeneous surface properties (i.e. flaws, impurities, cracks
and vacancies) of the steel are responsible for the differential values
of DGo

ads of TCB compound as the surface coverage value changes
[48,50–51]. This relationship is responsible for the differences in
adsorption energies depicted on the tables. The negative values of
DGo

ads shows the adsorption is spontaneous. Values of DGo
ads

around �20 kJ mol�1 depicts physisorption adsorption mechanism,
while DGo

ads around �40 kJ mol�1 depicts chemisorption adsorp-
tion reactions. The reaction involves (charge sharing or transfer
between the inhibitor cations and the valence electrons of the metal
forming a co-ordinate covalent bond). The highest DGo

ads value in
H2SO4 is �42.20 KJ mol�1 at 5.48 � 106 M TCB while the lowest is
�36.76 KJ mol�1 at 3.29 � 105 M TCB. In HCl the highest DGo

ads

value is �43.26 KJ mol�1 at 5.48 � 106 M while the lowest is
41.04 KJmol�1 at 3.29 � 105 M TCB. thus at the lowest TCB concen-
tration in H2SO4 and HCl acid the carbon steel was most inhibited
from corrosion. The values of DGo

ads for TCB adsorption on carbon
steel shows chemisorption interaction [52,53].
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Fig. 8. Plot of C
h versus TCB concentration (C) (a) in 1 M H2SO4, (b) in 1 M HCl.

Table 7
Results for Gibbs free energy, surface coverage and equilibrium constant of
adsorption for TCB inhibitor in 1 M H2SO4.

Samples TCB
concentration
(Mol � 103)

TCB
surface
coverage
(h)

Equilibrium
constant of
adsorption (K)

Gibbs free
energy, DG
(kJ/Mol)

A 0 0 0 0
B 5.48 � 106 0.710 447,535 �42.20
C 1.10 � 105 0.713 226,483 �40.51
D 1.64 � 105 0.717 154,165 �39.56
E 2.19 � 105 0.716 115,289 �38.83
F 2.74 � 105 0.702 86114.1 �38.11
G 3.29 � 105 0.622 49984.2 �36.76

Table 8
Data for Gibbs free energy, surface coverage and equilibrium constant of adsorption
for TCB inhibitor in 1 M HCl.

Samples TCB
concentration
(Mol � 103)

TCB
surface
coverage
(h)

Equilibrium
constant of
adsorption (K)

Gibbs free
energy, DG
(kJ/Mol)

A 0 0 0 0
B 5.48 � 106 0.813 795,170 �43.62
C 1.10 � 105 0.827 436,814 �42.14
D 1.64 � 105 0.831 300,113 �41.21
E 2.19 � 105 0.804 187,409 �40.04
F 2.74 � 105 0.826 173,024 �39.84
G 3.29 � 105 0.829 147,437 �39.44
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Statistical analysis

Statistical analysis through ANOVA at a confidence level of 95%
(significance level of a = 0.05) was applied to quantify the statisti-
cal importance of TCB concentrations and immersion time on the
inhibition efficiency values of TCB with respect to Eqs. (11)–(13).
Data obtained from ANOVA analysis (Tables 9 and 10) showed that
the concentrations of TCB studied is the only variable that seems to
be statistically relevant to TCB inhibition efficiency results, how-
ever with F-values of 0.66 in H2SO4 solution and 2.38 in HCl solu-
tion it is not because the values are significantly lower than the
significance factor (significance F) in Tables 7 and 8, proving that
they are not significant at the level of probability applied. The sta-
tistical influence of TCB concentration is 10.1% in H2SO4. It shows
that TCB concentration has a negligible electrochemical influence
on the corrosion inhibition behavior of TCB, likewise the exposure
time. For HCl acid the same phenomenon is observed with the sta-
tistical influence of TCB concentration at 35.1%.

The Sum of squares among columns (exposure time) was
obtained with Eq. (12).

SSc ¼
P

T2
c

nr
� T2

N
ð12Þ

Sum of squares among rows (inhibitor concentration)

SSr ¼
P

T2
r

nc
� T2

N
ð13Þ

Total Sum of squares

SSTotal ¼
X

x2 � T2

N
ð14Þ



Table 9
Analysis of variance (ANOVA) for TCB inhibition efficiency in 1 M H2SO4 (at 95% confidence level).

Min. MSR at 95%
confidence

Source of variation Source of variation Sum of squares Degree of freedom Mean square Mean square ratio (F) Significance F F (%)

Among columns Inhibitor concentration 23459.49 5 4691.90 0.66 2.53 10.1
Among rows Exposure time �5962.13 6 �993.69 �0.14 2.42 �2.57
Residual Residual 214792.31 30 7159.74
Total Total 232289.67 41

Table 10
Analysis of variance (ANOVA) for TCB inhibition efficiency in 1 M HCl (at 95% confidence level).

Min. MSR at 95%
confidence

Source of variation Source of variation Sum of squares Degree of freedom Mean square Mean square ratio (F) Significance F F (%)

Among columns Inhibitor concentration 38984.19 5 7796.84 2.38 2.53 35.1
Among rows Exposure time �28945.27 6 �4824.21 �1.47 2.42 �26.73
Residual Residual 98254.56 30 3275.15
Total Total 108293.49 41
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Conclusion

Results of the electrochemical performance of TCB organic com-
pound on the corrosion inhibition of high carbon steel in dilute
H2SO4 and HCl acid confirms the organic derivative to be highly
effective. The compound was determined to be mixed type in both
acids with dominant anodic inhibition in H2SO4 and cathodic in
HCl. The inhibition efficiency remained generally the same at all
TCB concentrations evaluated due to the effective action of the
functional groups and heteroatoms of the compound which facili-
tated and maintained an adherent protective covering over the
steel surface. Thermodynamic evaluation of TCB confirms
chemisorption adsorption mechanism on the carbon steel surface
and the adsorption obeyed the Langmuir and Frumkin adsorption
isotherms. Statistical analysis show that TCB concentration and
exposure time had negligible influence on its inhibition efficiency
values.
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