

International Journal of Ambient Energy

Latest Articles

Original Articles

Economics of wind energy utilisation for water pumping and CO₂ mitigation potential in Niger Delta, Nigeria

Fidelis I. Abam & Olayinka S. Ohunakin

Pages 1-11 | Received 28 Jul 2014, Accepted 20 Aug 2015, Accepted author version posted online: 24 Aug 2015, Published online: 19 Oct 2015

- Download citation
- http://dx.doi.org/10.1080/01430750.2015.1086675
- <u>Crossmark</u>

Abstract

The wind characteristics of six locations in Niger Delta, Nigeria, and the economics of the application of wind energy for water pumping and possible avoidable CO_2 emissions through wind utilisation were examined. The wind data were measured at 10 m height and analysed using the two-parameter Weibull model. Small size wind turbines were accessed with Goulds 45J03 water pump series. The average power density, average energy density and annual energy across locations ranged between

 $6.28 \le APD \le 102.90 \text{ W/m}^2$,

 $4.49 \le AED \le 82.96$ kWh/m^2 and $422 \le AE \le 747$ $kWh/m^2/year$, respectively. Bergey Excel-10 kW turbine had the lowest cost of energy and water pumping cost of $0.022 \le COE \le 0.151$ k/kWh and $0.074 \le WPC \le 0.403$ m^3 , respectively. The annual capacity of water yield varies from 21,847 to 120,206 m³/year on a total dynamic head of 50 m. Furthermore, the annual diesel saved across the locations ranged from 1605 to 8696 l/year (17.47 to 94.67 GJ/year), while the annual averaged CO₂ saved was between 4.32 and 22.93 tons/year.

KEYWORDS: Wind energy, CO2 emissions, water pumping, wind turbine

Registered in England & Wales No. 3099067 5 Howick Place | London | SW1P 1WG