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� TMY for sites in north–east Nigeria was produced using Finkelstein–Schafer method.
� It was found the TMY can be used to represents the long-term weather parameters.
� The generated TMY can be used the design and evaluation of solar energy systems.
� A handy database in the estimation of building heating loads in north–east Nigeria.
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a b s t r a c t

The Finkelstein–Schafer statistical method was applied to analyze a 34-year period (1975–2008) hourly
measured weather data which includes global solar radiation, dry bulb temperatures, precipitation, rel-
ative humidity and wind speed in order to generate typical meteorological year (TMY) for five locations
spreading across north–east zone, Nigeria. The selection criteria are based on solar radiation together
with the dry bulb temperature values and representative typical meteorological months (TMMs) were
selected by choosing the one with the smallest deviation from the long-term cumulative distribution
function. A close-fit agreement is observed between the generated TMY and long-term averages. The
TMY generated will be very useful for optimal design and performance evaluation of solar energy conver-
sion systems, heating, ventilation, and air conditioning (HVAC) and other solar energy dependent systems
to be located in this part of Nigeria.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The rapid growth of industrialization and world population that
led to the increase in energy demand, depletion of finite fossil fuel
resources and climate change have made renewable energy re-
sources increasingly attractive as alternative to continued over-
dependence on conventional energy sources. Presently, access to
electric power in Nigeria has been generally low. This is due to
fluctuations in the availability and maintenance of production
sources leading to a shortfall in supply. The current peak electricity
generation in Nigeria is about 4362 MW which is about 43% of the
current forecasted peak demand for electricity in the country [1].
According to World Bank 2012 report, the average electricity con-
sumption per capital as at 2009 in Nigeria is 120.5 kW h per year
which is less than 2 kW h per day for a household of five people.
This has made access to reliable and stable supply of electricity a
major challenge for both the urban and rural dwellers in Nigeria.
However, the challenge is more significant in the rural areas where
only about 10% of the population has access to electricity [2]. It is
reported that about 51% of the entire populace reside in remote or
rural areas, that have little or no access to electricity. According to
Hermann [3], lack of or inadequacy of energy in an economy is a
potential source of social and economic poverty.

Renewable energy sources (wind, solar, hydropower, etc.) are
inexhaustible, clean, free and offer many environmental and eco-
nomic benefits; accurate assessment of weather data is thus vital
in the choice of a profitable location for proper harvest of any of
these energy sources. In order to reduce the computational efforts
in simulation and weather data handling, it is now common to
adopt one year (or ‘typical year’) of weather data instead of multi-
ple years, which can represent the long-term weather data. Forms
of typical years exist as typical meteorological year (TMY), test ref-
erence year (TRY), weather year for energy calculations (WYEC),
International Weather Year for Energy Calculation (IWEC) and
typical principal component year (TPCY) [e.g., 4–8]. According to
Skeiker and Abdul Ghani [9], the term ‘‘typicality’’ could be inter-
preted in many ways: to some users of solar and building energy
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simulations, ‘‘typicality’’ has to do with the selection of weather,
which appears to be typical of an appropriate portion of the year.
Others have selected a year, which appears to be typical from sev-
eral years of solar radiation data, and some investigators have run
long periods of observational data in an attempt to simulate typical
weather for the calculation.

Of all the various types of typical year databases, the common
typical years are the TRY and the TMY [10]. However, the major
shortcoming of TRY is that the selection process of the typical year
result in a mild year that eliminates extreme conditions [8,11] and
hence, the selected year may not be considered good enough to
represent the prevailing mean weather conditions over a long-
term period [10] and should be avoided [11]. In addition, building
energy simulation runs using TRY weather data were unusually
less dependable in representing average historical or long-term
conditions [8]. As a result of these shortcomings of TRY, Crawley
[11] recommended that methods that produces a synthetic year
(for instance, TMY) to represent the meteorological data within
the period of record are better and hence, should be used for en-
ergy simulations.

TMY has been developed using several methods in literatures
[12–19], all targeted at selecting single months or years from a
long-term typical weather condition. The Sandia method devel-
oped using the Filkenstein–Schafer (FS) statistical analysis is
adopted in this work with selection criteria based on solar radia-
tion together with the dry bulb temperature values. Even though,
TMY has been developed in many regions/countries (such as
Ankara, Athens, Belgium, Italy, Spain, Canada, Damascus, Japan,
China, Nicorsia, Saudi Arabia, Hong Kong, and Macau), the concept
is not widely developed in Nigeria, only scanty work had so far
been carried out on few locations across the country viz: TRY gen-
eration for Ibadan [20], TMY for Port-Harcourt zone [21] and TMY
generation for Sokoto [22]. It should be mentioned that TRY for
Ibadan as presented by Fagbenle [20] only focused on global solar
radiation and for selection of each month, the year with minimum
value of FS is selected.

The aim of this work is therefore to develop TMY across the
north–east region of Nigeria using long duration hourly data cap-
tured at the selected locations within the region viz: Bauchi, Ibi,
Nguru, Potiskum and Yola. The geographical coordinates of these
cities are presented in Table 1. The meteorological data (global so-
lar radiation, dry-bulb temperature (mean, maximum and mini-
mum), relative humidity, precipitation, and wind speeds)
captured by the Nigeria Meteorological Agency (NIMET) located
at Oshodi, Nigeria were used.

Among other factors, these parameters (global solar radiation,
dry-bulb temperature (mean, maximum and minimum), relative
humidity, precipitation, and wind speeds) were chosen due to their
impact on (and significant contribution to) the solar energy sys-
tems performance, and heat gain and loss in buildings. For in-
stance, in building applications, the knowledge of solar radiation
is vital for accurate determination of cooling load (in tropical and
sub-tropical regions) and heating load (in temperate regions). It
should be noted that the air ambient temperature influences the
thermal response of a building and the amount of heat gain and
loss through it, so also wind speed and direction can affect the rate
of heat gain or loss through building walls by convection. The rel-
Table 1
Geographical locations of the sites used for this study.

Locations Data period Latitud

Bauchi 1978–1996, 1999–2008 10.17
Ibi 1978–2007 08.11
Nguru 1975–2007 12.53
Potiskum 1975–1981, 1983–2006 11.42
Yola 1975–2004 09.14
ative humidity is essential for the determination of latent heat for
air-conditioning systems and evaporation levels [23]. In addition,
precipitation can affect the ambient conditions (e.g. air tempera-
ture) and hence, the heat gain or loss through the building. For so-
lar energy conversion systems (Concentrating Solar Power system
and Photovoltaic system), these meteorological data are also
essential for design, selection and performance evaluation of these
systems. It should be mentioned that high precipitation can also
help in reducing (cleaning) dust accumulation on solar energy con-
version systems, such as PV [24].

2. Methods

2.1. Data treatment

The 34 year hourly data of the selected parameters are sub-
jected to relevant treatment before being used for the TMY gen-
eration. Smoothing of data for discontinuities in situation of
missing and/or invalid data is usually required to avoid abrupt
changes at the boundary between two adjacent months selected
from different years. The technique adopted in Zang [25] were
used in this study for missing and/or invalid data measurements
as witnessed in the data acquired from NIMET for the selected
sites in Table 1. Missing data that are less than five days in a
month are replaced with values of preceding or subsequent days
by interpolation and these accounts for approximately 0.96% of
the database in the whole region. However, in situation of non-
availability of data for more than five days in a month, the whole
month is excluded completely from further analysis. After suc-
cessful treatment, the general 34 year long duration hourly data
are reduced to between 28 and 33 years for the different locations
as indicated in Table 1.

2.2. TMY procedure

The approach adopted for selecting TMYs for a given zone is as
follows: a typical month for each of the twelve calendar months
from the long-term data base was chosen and then those
12 months TMMs are concatenated to form TMYs. Monthly statis-
tics were calculated for each index. Month/year combinations
which had statistics that were ‘close’ to the long-term statistics,
were candidates for typical months. TMM selection procedure con-
sisted of two steps: (i) selection of five candidate years that are
closest to the composites of all the years under study for each of
the twelve calendar month, and (ii) selection of the TMM from
the candidate years.

2.3. Statistical analysis and selection of five candidate years

As mentioned previously, seven weather parameters (or indi-
ces) were used for the statistical analysis. In [8,22], each of the
seven sets of daily indices are sorted into bins by month and are
then used to establish 12 long-term cumulative distribution func-
tions (CDFs). According to Skeiker and Abdul Ghani [9], if a number
n of observations of a variable x are available and have been sorted
into an increasing order x1; x2; . . . xn, the CDF of this variable is
given by a function Sn(x), which is defined as follows:
e (�N) Longitude (�E) Elevation (m)

09.49 609.7
09.45 110.7
10.28 343.1
11.02 414.8
12.28 186.1



Table 2
Weighting factors assigned for the respective weather indices.

Parameter Weight (Wj)

Global solar radiation 5/12
Dry bulb temperature (mean) 2/12
Dry bulb temperature (maximum) 1/12
Dry bulb temperature (minimum) 1/12
Precipitation 1/12
Relative humidity 1/12
Wind speed 1/12
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SnðxÞ ¼
0 x < xð1Þ;
ðk� 0:5Þ=n xðkÞ � x � xðkþ 1Þ;
1 x � ðnÞ

8><
>: ð1Þ

where Sn(x) is the value of the CDF at x, n is the total number of ele-
ments, while k is ranked order number (k ¼ 1;2;3; . . . n� 1).

The statistics selected to measure the closeness of each year’s
CDF to the long-term composite for a given index was the FS statis-
tic, given in Eq. (2) as:

FSj ¼
1
n

Xn

i¼1

di; i ¼ 1;2; . . . n ð2Þ

where di is the difference between the short-term and the long-term
CDFs for day i in the month, n = number of days in the month and j is
Table 3
Weighting factors of the weather indices for FS-statistics for Ibi.

Jan Feb Mar Apr May Jun

1978 1.879 2.724 2.493 3.182 3.208 2.389
1979 1.736 2.708 2.006 2.611 2.519 2.392
1980 2.439 2.045 2.848 2.527 2.343 2.734
1981 3.205 2.588 2.036 2.575 3.252 3.259
1982 2.603 2.820 2.396 2.282 3.140 2.559
1983 3.354 2.689 3.575 3.098 2.994 3.012
1984 2.899 2.423 2.228 2.458 2.864 2.728
1985 3.104 3.039 3.247 2.856 2.648 3.521
1986 2.305 2.673 2.310 2.271 3.604 2.921
1987 2.523 2.666 2.785 3.741 4.076 3.293
1988 2.692 2.638 3.162 2.815 3.541 2.476
1989 2.359 3.067 2.813 2.859 3.409 2.892
1990 2.659 2.661 3.819 2.619 3.182 3.309
1991 2.067 2.967 2.339 3.259 3.229 2.843
1992 2.657 2.638 4.403 2.874 2.781 2.902
1993 2.179 2.617 3.268 2.712 3.459 3.772
1994 2.729 2.480 1.969 3.325 2.890 2.784
1995 1.913 2.205 2.472 2.665 2.846 3.382
1996 2.522 2.803 2.763 3.670 3.104 3.132
1997 2.569 2.525 2.480 2.874 2.823 2.762
1998 2.733 3.164 2.982 2.887 2.689 2.992
1999 2.053 3.102 2.153 2.255 2.842 3.152
2000 2.476 2.816 2.624 2.181 3.053 3.027
2001 1.914 2.266 1.940 2.115 3.011 2.858
2002 1.567 2.466 1.970 3.321 2.656 3.148
2003 2.689 2.513 2.485 5.211 3.794 2.955
2004 2.203 2.686 3.507 3.177 3.478 3.656
2005 3.082 3.461 2.451 2.468 3.364 2.893
2006 2.968 3.111 2.569 3.439 3.281 2.587
2007 1.930 2.829 2.336 2.241 2.925 3.184

Five years that have smallest weighed sum of the FS statistics of the seven daily indices

Table 4
TMYs of the selected locations in north–east, Nigeria.

Station Month

Jan Feb Mar Apr May Jun

Bauchi 1986 1984 1986 1984 1979 19
Ibi 2002 2007 2007 1978 1979 19
Nguru 2007 1975 2002 2005 2002 20
Potiskum 2006 2006 1976 1999 2008 20
Yola 1986 1975 1975 1975 1975 19
the parameter (index) considered. The smaller the value of FS, the
closer the fit of the two CDFs and therefore, the more the TMY resem-
bles the long-term data. It should be noted that a zero value of FS sta-
tistic indicates identical means, averaged standard deviations and
distributions between the TMY and long-term data [26]. For each
of the candidate months, the seven different FS statistics calculated
for the seven indices are grouped into a composite weighted index
using Eq. (3) [27] together with the weighting factors listed in Ta-
ble 2; the resulting product gives the weighted sum (WS).

WS ¼
Xn

j¼1

W jFSj ð3Þ

where n = number of indices (parameters/elements) considered,
Wj = weight for index j, and FSj = FS statistic for index j.

The assignment of weighting indices is mainly intuitive and pri-
marily depends on the intended applications of the generated TMY.
In this study, a weighting index of 5/12 (usually between 40% and
50% for solar application (Jiang [28])) is assigned to global solar
radiation and 2/12 is assigned to the mean ambient temperature,
while other weather indices were given equal weights that add
up to 5/12. This higher value assigned to global solar radiation is
because (i) these methods are mainly used for solar energy sys-
tems, (ii) in tropical regions with warm weather (like Nigeria), so-
lar heat gain can be more significant in cooling load calculations for
Jul Aug Sep Oct Nov Dec

3.197 3.415 2.769 2.605 2.425 2.077
2.411 2.581 2.413 2.341 2.447 2.337
2.396 2.792 3.268 2.795 2.245 3.008
3.139 3.010 2.733 2.149 2.982 1.918
2.828 2.545 2.933 1.987 2.678 2.368
3.308 2.533 2.547 2.047 1.923 3.088
3.462 3.009 2.804 2.320 2.275 2.657
2.912 3.505 2.623 2.209 1.911 2.994
2.823 2.904 2.777 2.799 1.928 2.768
2.640 2.865 2.809 1.985 1.929 2.481
2.836 3.183 2.973 2.660 2.458 2.696
3.111 2.758 3.261 2.311 1.873 1.857
2.803 3.236 2.925 2.337 2.585 4.326
2.412 3.008 3.253 2.046 2.134 2.397
2.692 2.624 2.916 2.506 2.359 2.027
2.933 3.112 3.031 1.984 4.034 1.952
3.212 2.839 2.605 2.941 2.279 2.334
3.065 3.223 2.164 2.519 2.290 1.868
3.049 2.812 3.598 2.530 2.832 2.024
2.613 2.984 3.315 2.551 2.963 2.221
2.941 3.341 2.942 2.356 1.798 1.809
2.379 3.078 3.061 2.299 1.981 1.764
2.668 2.685 2.989 1.905 2.269 2.275
3.112 3.255 3.395 2.074 2.071 2.216
2.769 3.196 3.346 2.489 1.897 2.398
4.860 2.793 3.165 2.223 1.904 2.235
3.170 2.828 3.606 2.559 2.464 2.113
3.786 3.592 3.150 1.979 2.264 2.029
2.483 3.084 2.892 2.139 2.777 2.122
3.356 3.391 3.240 2.452 1.873 2.543

for each month are shown in italic.

July Aug Sept Oct Nov Dec

99 2007 1999 1979 1982 1985 1978
78 1979 1983 1978 1978 2007 1999
04 2003 2003 2003 2007 1989 1996
06 1976 2006 2006 1983 2005 1975
78 1997 1998 1983 1975 1985 1997



Fig. 1. The monthly mean values of the TMY, worst years and the average long-term global solar radiations for: (a) Bauchi, (b) Ibi, (c) Nguru, (d) Potiskum and (e) Yola.
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building as well as for passive and active heating systems and, (iii)
other weather parameters are directly or indirectly affected by glo-
bal solar radiation. Five years are thus selected, having the smallest
weighed sum of the FS statistics of the seven daily indices (global
solar radiation, mean dry bulb temperature, minimum tempera-
ture, maximum temperature, relative humidity, precipitation and
wind speed) for each month of the calendar year. The values of
WS (for example, Ibi) for the 34 years examined for all months
and the 5 selected years (underlined and highlighted) are pre-
sented in Table 3.

2.4. Selection of TMM

After generating WS for each individual month for the respec-
tive site under consideration, the following steps are followed in
arriving at values needed for the TMY according to Chan et al. [8]:
� The five candidate years are ranked in ascending order of the
WS values.
� A typical month is then selected by choosing from among the

five, months with the lowest WS values.
� The persistence of mean dry bulb temperature and daily global

horizontal radiation are evaluated by determining the frequency
and run length above and below fixed long-term percentiles.
– For mean daily dry bulb temperature, the frequency and run

length above the 67th percentile and below the 33rd percen-
tile are determined.

– For global horizontal radiation, the frequency and run length
below the 33rd percentile are also determined.

� The persistence data are used to select from the five candidate
months, the month to be used in the TMY. The highest ranked
candidate month in ascending order of the WS values that meet
the persistence criterion is used in the TMY.



Fig. 2. The monthly mean TMY, worst years and the average long-term values of the mean temperature for: (a) Bauchi, (b) Ibi, (c) Nguru, (d) Potiskum and (e) Yola.
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2.5. Mean percentage error

The performance of the TMY was investigated using methods of
stochastic analysis to calculate the mean percentage error (MPE).
MPE was adopted as it is often preferred for long term performance
of the examined relations. MPE is commonly used to evaluate
cross-sectional forecasts. It has valuable statistical properties in
that it makes use of all observations and has the smallest variabil-
ity from sample to sample [29]. It is expressed as:

MPE ¼ 1
n

X ULT � UTMY

ULT
� 100

� �� �
ð4Þ

where ULT and UTMY are the long-term and TMY values of each
respective indices of the seven weather parameters, n is the number
of months. Low values of MPE are thus desirable.
3. Results and discussion

The results of the TMY selections of the seven locations are
shown in Table 4. The TMMs are determined based on their being
able to follow the long term frequency distributions. Besides
frequency of occurrence, it would be useful to compare the actual
daily or monthly values, especially for mean dry bulb temperature
and global solar radiation, and see whether the TMMs selected do
show good agreement with the long-term data. The FS statistics for
individual weather index were examined and found to differ from
one index to another and also vary between months. The persis-
tence of mean dry bulb temperatures and daily global solar radia-
tion on horizontal surfaces for the five candidate months were
evaluated by determining the frequency and run length above
and below fixed percentiles (33rd and 67th) as discussed in
Sawaqed et al. [27]. This was considered because it will definitely
produce useful information needed for building energy



Fig. 3. The monthly mean TMY, worst years and the average long-term values of the relative humidity for: (a) Bauchi, (b) Ibi, (c) Nguru, (d) Potiskum and (e) Yola.
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performance. The comparison between the generated TMY and
long term averaged as well as selected year for chosen weather
parameters are presented in Figs. 1–4 for all the sites.

The results of comparison of the monthly mean values of the
global solar radiations are given for the TMY, worst years (com-
posed of the worst months of the period, which are months having
the farthest short-term cumulative distribution functions (CDFs) to
the long-term cumulative distribution functions over all parame-
ters (elements) CDFs) and the average long-term measurements
within the selected sites as shown in Fig. 1. It can be observed that
there is a similar trend with excellent relationships between the
TMY and the long-term mean of the global solar radiation in all
the selected sites. Even though the worst year (WY) follows similar
trend to the long term and TMY curves, significant monthly devia-
tion from the other curves can be observed in almost all the sites.
The values computed for the selected locations peaked were
19.06 MJ/m2/day in April, 17.30 (March) and 19.64 MJ/m2/day
(March) for the TMY, WY and long-term values respectively in Bau-
chi; the values at Ibi are 20.78 and 18.44 in March and 19.18 MJ/
m2/day in February; 23.79 and 20.92 MJ/m2/day (May) and 22.85
in April at Nguru; 23.45, 22.69 and 22.72 MJ/m2/day in March at
Potiskum; TMY, WY and long-term average values, respectively.

The mean temperature curves of the selected locations for the
TMY, worst year and long-term fluxes are presented in Fig. 2. Sim-
ilar to solar radiation (Fig. 1), the mean temperature plots follows
similar trends (Fig. 2), with all the sites having good fit between
the TMY and long term average. Maximum values of the curves oc-
curred in March, which is a dry season month across the region.
Again, the worst year (WY) deviates significantly from the other
curves in some months in all the sites.

Figs. 3 and 4 show the TMY, WY and long-term curves for the
relative humidity and wind speed, respectively. Regular trend



Fig. 4. The monthly mean TMY, worst years and the average long-term values of the wind speed for: (a) Bauchi, (b) Ibi, (c) Nguru, (d) Potiskum and (e) Yola.

Table 5
Comparison of MPE (%) of the long-term average values of indices with TMMs for the respective locations.

Locations Mean percentage error, MPE (%)

Mean temperature Global solar radiation Wind speed Relative humidity

Bauchi �0.45 2.23 �1.83 1.39
Ibi 0.17 �1.45 �10.67 �1.18
Nguru 0.62 �0.28 20.17 2.42
Potiskum �0.04 �0.12 �2.95 2.04
Yola �0.60 0.20 13.41 4.03

158 O.S. Ohunakin et al. / Applied Energy 112 (2013) 152–159
can be observed with relative humidity (Fig. 3) throughout the
region considered. However, slightly wide variation can be noticed
in Bauchi and Yola with more prevalence during the rainy season
for the TMY, WY and long-term averages; all curves are also found
to peak between July and September in all the sites. Similarly,
regular trend exist in the wind speed pattern across the zone for
the TMY and long-term mean values (Fig. 4). Similar to the solar
radiation and mean temperature plots, the worst year (WY) devi-
ates significantly from the other curves in some months in all the
sites for these two parameters. In addition, the degree of closed-
fit between the TMY and long-term average for the relative humid-
ity and wind speed is less when compared with solar radiation and
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dry-bulb temperature data. This observation may due to non-uni-
formity of the weighting factors and the selection of the TMMs
which was based on persistence of mean temperature and daily
global radiation.

In addition to the graphical comparison, the deviation of the
TMY from the long-term average was estimated using mean per-
centage error (MPE) so that the degree of deviation of the TMY from
long-term averaged can be quantified. Table 5 shows MPE results of
all sites and for main weather parameters. A value of MPE repre-
sents an overall estimate of prediction bias between the TMY and
long-term values, whereas the negative and positive values indicate
respectively, under- and over-estimation of the TMY value when
compared with the long-term average value. It can be observed
from this table that variations of the monthly averaged mean dry
bulb temperature TMMs are close to the long-term averaged in all
the locations going by their respective MPEs (with values less than
1%). Also, the MPEs for TMY and long-term averaged are observed to
be small with highest value of 2.23% (for Bauchi) and least value of
�0.12% (for Potiskum) in the case of global solar radiation. The
MPEs for wind speed and relative humidity indicates relatively high
degree of deviation between the TMY and long-term means when
compared with those for mean temperature and global solar radia-
tion. As mentioned before, this disparity can be attributed to
weighted factors applied to each weather parameters (which are
bias toward mean temperature and global solar radiation).

The good fit between the TMY and long-term values as reported
in this study, especially for the global solar radiation and mean
dry-bulb temperature, is in agreement with findings of Anderson
et al. [23] and Yang et al. [30]. Based on the performance of solar
water heating system simulation [23] and building energy simula-
tion [30], they reported that the key climatic variables of the TMYs
followed closely their long term values and have a good statistical
representation of the prevailing weather condition. It should be
mentioned here that, in the advent of a changing climate, there
is also the tendency of a reduction or increase in magnitude of
weather parameters needed for weather data generation (most
especially the global solar radiation and mean dry bulb tempera-
tures that are found to be more prevalent in the chosen region);
therefore a change in the selection of the typical weather years
due to changing climate is thus inevitable [31].

4. Conclusion

The FS statistics technique was used to select 12 TMMs and
then developed a TMY based on the most recent 34 years (1975–
2008) measured weather data of five cities in north–east region
Nigeria. This work represents a first step to developing a full
TMY weather database for building heating loads and energy sim-
ulations in Nigeria. The following were concluded:

� The methodology implemented leads to acceptable results.
� The deviations of the TMY data from long term data are found to

be small which shows that the generated TMYs can effectively
be used instead of the long term averaged and hence, weather
data processing and computation duration and space can be
reduced for building and energy systems calculations.
� The result presented in this work can facilitate the design and

performance evaluation of a solar energy conversion systems
as well as a useful database in the determination of building
heating loads in this part of Nigeria.
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