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Abstract The synergistic effect of the corrosion inhibition behaviour of 4-hydroxy-3-

methoxybenzaldehyde and hexadecyltrimethylammoniumbromide on mild steel in 0.5 M H2SO4

and HCl acid test solutions was studied through weight loss measurement and potentiodynamic

polarization test. Results show the admixture performed effectively in both acids with inhibition

efficiency above 90% in H2SO4 and 80% in HCl acid at all inhibitor concentrations from both tests.

Thermodynamic calculations showed the compound chemically adsorbed onto the steel surface

forming a protective film. Molecular adsorption followed the Langmuir and Frumkin isotherm

models.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The consequences of corrosion are a major problem of interna-
tional importance. Corrosion is responsible for plant shut-
downs and accidents, costly design and maintenance,

product contamination and wastage of valuable resources
due to the aggressive nature of industrial environments on

metallic surfaces of equipment and structures such as in acid
pickling of steel, chemical processing plants, oil well acidifica-
tion etc. due to the natural tendency of refined metals such as

mild steel to return to their natural state of existence (Mars;
Introduction to Corrosion; Li et al., 2009; Zaafarany, 2013).
Mild steel is the most available form of steel due to its low cost

and it exhibits metallurgical characteristics required for many
applications (Knowles, 1987; Classification of Carbon and
Low-Alloy Steels). Most pipelines worldwide are constructed
with mild steel; however the steel easily deteriorates in corro-

sive environments. This is noticeable in the scale formation
in steam boilers made of mild steels (Preboiler and boiler cor-
rosion; Boiler/Feeder guidelines; Ludwig), in acid pickling and

petrochemical processes. It is important to apply chemical
hexade-
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compounds which significantly reduce the corrosion rate of the
metallic alloys. This invariably helps extend their life span and
enable it perform its desired function. Research has shown that

organic chemical compounds with active electronegative
groups and p electrons are very effective in minimizing the cor-
rosion rate of mild steels (Ju et al., 2008; Yurt et al., 2004;

Ahamad et al., 2010). The corrosion inhibition behaviour of
the chemical compounds is the product of electrochemical
reactions with the metal surface through adsorption. Signifi-

cant scientific studies have been conducted on corrosion
inhibiting compounds for mild steel in aggressive environ-
ments (Abbasova et al., 2013; Athareh and Fatemeh, 2011),
however enhancing the inhibition efficiency of the compounds

at the lowest volumetric concentration is possible. Previous
research on 4-hydroxy-3-methoxy-benzaldehyde and hexade-
cyltrimethylammonium bromide separately without combining

them gave above average results. Niamien et al. (2011) studied
the corrosion inhibition properties of hexadecyltrimethylam-
monium bromide on aluminium alloy in dilute hydrochloric

acid at 25–55 �C. Result showed that the compound performed
effectively, adsorbing onto the aluminium alloy according to
the Langmuir isotherm model. The inhibition efficiency as

observed to decrease with increasing temperature. The syner-
gistic effect of hexadecyl trimethyl ammonium bromide and
sodium bromide on the corrosion inhibition of cold rolled steel
in dilute H2SO4 was investigated through weight loss measure-

ment and polarization technique. Results showed that the
combined admixture effectively inhibited the corrosion of the
steel with inhibition efficiency increasing with increase in con-

centration of the compound. Polarization study shows that the
inhibition type is mixed (Tang et al., 2006). Lia et al. (2010)
studied the adsorption and corrosion inhibition effect of 4-

hydroxy-3-methoxy-benzaldehyde on cold rolled steel dilute
H3PO4 medium through electrochemical methods. Results
show that inhibition efficiency increases with the inhibitor con-

centration, but decreases with temperature. Adsorption was
determined to obey the Temkin adsorption isotherm. The cor-
rosion inhibition of three cationic surfactants of 4-hydroxy-3-
methoxy-benzaldehyde on mild steel in HCl media was evalu-

ated by Shaban et al. through weight loss, polarization resis-
tance and impedance spectroscopy. The inhibitors displayed
high inhibition efficiency with the surface coverage obeying

the vilamil isotherm (Shabana et al., 2015). The aim of this
research is to assess the synergistic effect of 4-hydroxy-3-
methoxybenzaldehyde and hexadecyltrimethylammoniumbro

mide as suitable inhibitors for mild steel in dilute H2SO4 and
HCl media and to investigate the mechanism of inhibitor metal
interaction.
2. Materials and methods

2.1. Material

Mild steel commercially obtained and analysed at the Mate-
rials Characterization Laboratory, Department of Mechani-

cal Engineering, Covenant University gave an average
nominal per cent (%) composition shown in Table 1. 14
cylindrical mild steel samples were cut with an average

length of 10 mm. Their exposed surface ends were metallo-
graphically prepared in accordance with ASTM G1-03
(2011).
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2.2. Inhibiting Compound and Acid Test Media

4-Hydroxy-3-methoxybenzaldehyde and hexadecyltrimethy
lammoniumbromide (CBH) were obtained in synthesized form
from Sigma Aldrich, USA and SMM Instrument, South Africa

in synthesized form. Their structural formulas are shown in
Fig. 1, and the properties in Table 2.

CBH was prepared in molar concentrations of 4.8 � 106,
9.7 � 106, 1.45 � 105, 1.94 � 105, 2.42 � 105 and 2.9 � 105

respectively per 200 mL of the acid solution. 1 M H2SO4 and
HCl acid solution were prepared with grade of H2SO4 acid
(98%) and HCl acid (37%) with deionized water.

2.3. Weight-loss measurement and potentiodynamic polarization

test

Weighed steel samples individually immersed into 200 mL acid
solution for 432 h (Mathur and Vasudevam, 1982) were
weighed every 24 h interval according to ASTM G31-72

(2004) (ASTM NACE/ASTM G31-12a). The corrosion rate
(c) calculation is defined in Eq. (1) (Venkatesan et al, 2009).

c ¼ 87:6~x
DAT

� �
ð1Þ

where ~x is the weight loss in mg, D is the density in g/cm3, A is
the total area in cm2 and 87.6 is a constant. Inhibition effi-
ciency (g) was calculated from Eq. (2) (Güls�en, 2008).

g ¼ ~x1 � ~x2

~x1

� �
� 100 ð2Þ

where ~x1 and ~x2 are the weight loss with and without specific

CBH concentrations. Surface coverage was determined from
the mathematical relationship (Eq. (3)) (Moussa et al., 2007).

h ¼ 1� ~x2

~x1

� �
ð3Þ

where h is the amount of CBH compound, adsorbed per gram
of the mild steel. Electrochemical test was performed with
cylindrical mild steel electrodes embedded in acrylic resin with

an exposed surface area of 154 mm2 according to ASTM G59-
97(2014). Tests were performed with Digi-Ivy 2300 poten-
tiostat with platinum counter electrode and Ag/AgCl reference

electrode from �1.5 V to 1.5 V at a scan rate of 0.0016 V/s
according to ASTM G102-89(2015). The corrosion rate (c)
was calculated from Eq. (4).

c ¼ 0:00327� Jcorr � Eq

D
ð4Þ

where jcorr is the corrosion current density, D is the density in
g/cm3; Eq is the specimen equivalent weight in grams. 0.00327

is a constant for corrosion rate calculation in mm/y
(Venkatesan et al, 2009).

3. Results and discussion

3.1. Weight-loss Measurement

Results from weight loss test for mild steel in both acid solu-
tions are shown in Tables 3. Fig. 2 shows the plot of corrosion
rate versus exposure time in the acid media. The control sam-

ple (sample A) corroded significantly in the acid media in com-
erties of the synergistic effect of 4-hydroxy-3-methoxybenzaldehyde and hexade-
ing Saud University – Engineering Sciences (2016), http://dx.doi.org/10.1016/j.
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Table 1 Percentage composition of mild steel.

Element Symbol C Si Mn P S Cu Ni Al Fe

% Composition 0.401 0.169 0.440 0.005 0.012 0.080 0.008 0.025 98.86

 (a)   (b)

Figure 1 (a) 4-Hydroxy-3-methoxybenzaldehyde, (b) hexadecyltrimethylammoniumbromide.

Table 2 Properties of the CBH inhibiting compound.

S/N Compound Molecular Formula Molar Mass (gmol�1)

1 4-Hydroxy-3-methoxybenzaldehyde C8H8O3 152.15

2 Hexadecyltrimethylammoniumbromide C19H42BrN 364.45

Table 3 Data for mild steel in 1 M H2SO4 and HCl acid solution at specific concentrations of CBH at 432 h.

0.5 M H2SO4 0.5 M HCl

Samples CBH Conc.

(M � 103)

Weight

Loss (g)

Corrosion

Rate (mm/y)

CBH Inh.

Efficiency (%)

Samples CBH Conc.

(M � 103)

Weight

Loss (g)

Corrosion

Rate (mm/y)

CBH Inh.

Efficiency (%)

A 0 8.9779 1.40 0 A 0 2.829 0.012 0

B 4.84E�06 0.4758 0.07 94.7 B 4.84E�06 1.992 0.009 29.6

C 9.68E�06 0.3927 0.06 95.6 C 9.68E�06 1.078 0.005 61.9

D 1.45E�05 0.3927 0.06 95.6 D 1.45E�05 0.706 0.003 75.0

E 1.94E�05 0.3000 0.05 96.7 E 1.94E�05 0.661 0.003 76.6

F 2.42E�05 0.3817 0.06 95.7 F 2.42E�05 0.465 0.002 83.6

G 2.90E�05 0.2456 0.04 97.3 G 2.90E�05 0.415 0.002 85.3
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Figure 2 Corrosion rate vs exposure time for 0.5 M H2SO4 and HCl solution at 0–2.9 � 105 M CBH.

Inhibition by 4-hydroxy-3-methoxybenzaldehyde and hexadecyltrimethylammoniumbromide 3
parison to samples with varying degrees of CBH concentra-
tion, however the corrosion rate in H2SO4 acid is much higher

than in HCl even though the solubility product constant of
FeCl2 (pKs = 39.4) is greater than that of FeSO4
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(pKs = 22.8) at 25 �C due to two reasons; (a) the relative con-
centration of the H2SO4 is much higher than HCl, (b) at higher

concentration H2SO4 completely ionizes in the solution releas-
ing two protons that strongly reacts with the steel surface com-
erties of the synergistic effect of 4-hydroxy-3-methoxybenzaldehyde and hexade-
ing Saud University – Engineering Sciences (2016), http://dx.doi.org/10.1016/j.
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Figure 3 Langmuir Isotherm plot for CBH in 1 M H2SO4 and HCl acid solution.
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Figure 4 Frumkin Isotherm plot for CBH in 1 M HCl acid

solution.
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Figure 5 Polarization plot for mild steel in 0.5 M

Table 4 Data for Gibbs free energy, surface coverage and equilibr

0.5 M H2SO4 0

Samples CBH Conc.

(M � 103)

Surface

Cov. (h)
Equi. Constant

of Ads. (K)

Gibbs Free

Energy, DG
(kJ/Kmol)

S

A 0 0 0 0 A

B 5E�06 0.947 4E+06 �47.42 B

C 1E�05 0.9563 2E+06 �46.21 C

D 1E�05 0.9563 2E+06 �45.20 D

E 2E�05 0.9668 2E+06 �45.20 E

F 2E�05 0.9575 9E+05 �44.00 F

G 3E�05 0.9726 1E+06 �44.69 G
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pared to HCl which releases one proton at a weaker concentra-
tion. The steel being a ferrous alloy spontaneously reacts with
acid resulting in hydrogen evolution and oxidation reactions

causing the release of Fe2+ ions into the solution through
the action of sulphate and chloride anions. The presence of
CBH compound in the solution (sample B to G) suppressed

the reduction–oxidation reaction responsible for corrosion
degradation. CBH protected the steel from corrosion through
adsorption of its cations onto the mild steel surface. This

explanation is confirmed from the significant difference in cor-
rosion rate between the CBH inhibited and uninhibited sam-
ples (Tables 3). CBH inhibitor has higher inhibition

efficiency in H2SO4 acid despite the high dissociation constant
of the acid. This can be explained on the basis that in H2SO4
1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
-0.87 -0.37

E(
V)

 v
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g/
Ag

Cl

Log I (Acm2)

SAMPLE A

SAMPLE B

SAMPLE C

SAMPLE D

SAMPLE E 

SAMPLE F

SAMPLE G

H2SO4 and HCl acid at 0–2.9 � 105 M CBH.

ium constant of adsorption for 0–7.5% CBH in 1 M H2SO4.

.5 M HCl

amples CBH Conc.

(M � 103)

Surface

Cov. (h)
Equi. Constant

of Ads (K)

Gibbs Free

Energy, DG
(kJ/Kmol)

0 0 0 0

4.8E�06 0.296 86744.821 �38.13

9.7E�06 0.619 167875.82 �39.77

1.5E�05 0.750 207039.95 �40.29

1.9E�05 0.766 169366.03 �39.79

2.4E�05 0.836 209953.7 �40.32

2.9E�05 0.853 200404.6 �40.20

erties of the synergistic effect of 4-hydroxy-3-methoxybenzaldehyde and hexade-
ing Saud University – Engineering Sciences (2016), http://dx.doi.org/10.1016/j.
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Inhibition by 4-hydroxy-3-methoxybenzaldehyde and hexadecyltrimethylammoniumbromide 5
CBH protonates strongly allowing more molecules to release
electrons, the phenomenon increases the reactivity of the com-
pound enabling strong interaction with the steel surface. Due

to the large molecular weight of the Hexadecyltrimethylammo
niumbromide component of CBH [C16H33N

+(CH3)
3Br�], the

compound easily attached itself to the mild steel through inter-

molecular attraction. It consists of hydrophilic [+N(CH3)3]
which enhances its solubility in the solution and facilitates
adsorption to the steel while the main hydrophobic part

(C6H33) enables substitutional adsorption mechanism. These
attributes allow for chemical interaction with the steel at steel/
solution interface through covalent bonding resulting from
electrostatic attraction between the nitrogen cations and nega-

tively steel surface (El-Maghraby and Soror, 2010; Luo et al.,
1998).

The physicochemical property of 4-hydroxy-3-

methoxybenzaldehyde is related to its functional groups (alde-
hyde, hydroxyl, and ether) and their chemical reactivity. Ethers
are slightly polar, the presence of two lone pairs of electrons on

the oxygen atoms enables hydrogen attachment with water
molecules possible (James). The hydroxyl functional group
has two active covalent bonds, the C–O bond and the O–H

bond (Alcohol Nomenclature). The aldehyde functional group
has the carbon atom which shares bonds with oxygen, hydro-
gen atom and other group of atoms. The reactivity of these
compounds arises largely through the polarity of the grou-

p and the acidity of any a-hydrogen that are present in their
structure which reacts with the nucleophide atoms of the cor-
rosive species (Cl� and SO4

2�) to form a new covalent bond

(Aldehyde Chemical compound).

3.2. Adsorption isotherm

Adsorption characteristics of CBH were studied to understand
the mechanism of interaction between the compound and mild
steel (Limousin et al., 2007). Langmuir isotherm had the best

fit for CBH in H2SO4 and HCl acid. Frumkin isotherm had
a good fit for CBH in HCl solution only. The Langmuir iso-
therm for HCl (Fig. 3) did not show a slope around unity.
According to Langmuir CBH cations occupy specific adsorp-

tion sites at the metal/solution interface. Interaction between
the adsorbed CBH species and changes in adsorption heat with
increasing surface coverage would affect the slope resulting in

the slight deviation of the slope from unity (Abiola, 2006).
Frumkin isotherm (Fig. 4) assumes unit coverage at high inhi-
bitor concentrations over heterogeneous electrode surface.

3.3. Thermodynamics of the corrosion process

Gibbs free energy (DGo
ads) values for the adsorption process

are shown in Table 4. The heterogeneous nature of the steel
surface is responsible for the changes in DGo

ads with respect
to surface coverage (Damaskin and Frumkin, 1971). The aver-
age value of DGo

ads for CBH adsorption in H2SO4 and HCl

acid solution is above 40 KJmol�1 which depicts chemisorp-
tion adsorption mechanism (Benali et al., 2013).

3.4. Potentiodynamic polarization studies

The potentiodynamic polarization plots of the electrochemical
behaviour of CBH compound on the corrosion inhibition of
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the mild steel sample in 0.5 M H2SO4 and HCl solution are
presented in Fig. 5. Table 5 shows the data obtained from
the polarization scans. Significant difference in corrosion rate

values between the CBH inhibited and uninhibited steel speci-
mens (0 M & 4.8 � 106–2.9 � 105 M CBH) is observed, how-
ever the corrosion rate in H2SO4 is much higher than in

HCl. At 0 M CBH the steel oxidizes in the acid solution caus-
ing the formation of porous oxides which accelerates the rate
of corrosion. The corrosive species (Cl� and SO4

2�) within

the solution aggravates the corrosion mainly due to depassiva-
tion effect in iron dissolution as a result of the presence of
numerous anodic and cathodic reaction cells. The corrosion
rate reduced dramatically after 0 M CBH (sample A) in

H2SO4 acid solution and remained generally the same till
9.68 � 106 M CBH at sample G with inhibition efficiency
above 90% throughout, however there was a gradual decrease

in corrosion rate in the HCl solution before sample D
(1.45 � 105 M CBH), after which increase in corrosion rate
was appreciable till sample G (9.68 � 106 M CBH) with a max-

imum inhibition efficiency above 85%. At low concentrations
CBH molecules is unable to effectively withstand the electro-
chemical action of Cl� ions in HCl in contrast to SO4

2� ions

in H2SO4. The electrochemical reactions of CBH within both
acids cause the formation of an adherent film that generally
inhibits mild steel corrosion. The corrosion inhibiting mole-
cules of CBH tend to interact with the electrochemical cells,

through retardation of the redox electrochemical process
and/or inhibition of the diffusion of active corrosive anions
from the acid solution to the steel and diffusion of Fe2+ ions

into the acid solution. Increase in CBH concentration did
not affect the corrosion rate values in H2SO4. Its inhibition
efficiency is independent of CBH concentration and acts

instantaneously from the lowest CBH concentration.
The polarization plots (Fig. 5) show that CBH compound

significantly influenced the corrosion polarization behaviour

of the mild steel specimen under the inhibiting action of
CBH compound and that the inhibition mechanism is through
surface coverage of the active regions preventing the diffusion
of iron cations into the acid solution and suppression of hydro-

gen evolution and oxygen reduction reactions through selective
precipitation on the cathodic sites. This increases the surface
impedance and limits the diffusion of reducible species

(Hosseini and Azimi, 2009). The maximum change in corro-
sion potential in H2SO4 is 54 mV while in HCl it is 41 mV, thus
CBH is a mixed type inhibitor in both acids inhibiting the total

redox process (Susai et al., 2002; Sahin et al., 2002).

4. Conclusion

The combined admixture of 4-hydroxy-3-methoxybenzaldehyde
and hexadecyltrimethylammoniumbromide showed excellent
corrosion inhibition at all concentrations H2SO4 while in HCl
there was a gradual but appreciable increase in corrosion rate

with increase in inhibitor concentration due to the effective
inhibiting action of the compound. The compound showed
mixed inhibition properties suppressing the redox electrochemi-

cal process. Molecular adsorption of the compound onto the
steel surface was observed to obey the Langmuir and Frumkin
adsorption isotherm models through chemisorption adsorption

mechanism from thermodynamic calculations.
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Güls�en, A., 2008. Corrosion inhibition of indole-3-acetic acid on mild

steel in 0.5 M HCl. Colloids Surf. A 317 (1–3), 730–736.

Hosseini, S.M.A., Azimi, A., 2009. The inhibition of mild steel

corrosion in acidic medium by 1- methyl-3-pyridin-2-yl-thiourea.

Corros. Sci. 51, 728–732.

Ju, H., Kai, Z., Li, Y., 2008. Aminic nitrogen-bearing polydentate

Schiff base compounds as corrosion inhibitors for iron in acidic

media: a quantum chemical calculation. Corros. Sci. 50, 865–871.

Knowles, P.R., 1987. Design of Structural Steelwork. Surrey Univer-

sity Press, London, p. 1.

Li, X., Deng, S., Fu, H., Li, T., 2009. Adsorption and inhibition effect

of 6-benzylaminopurine on cold rolled steel in 1.0 M HCl.

Electrochim. Acta 54, 4089–4098.

Lia, X., Dengb, S., Fua, H., 2010. Adsorption and inhibition effect of

vanillin on cold rolled steel in 3 M H3PO4. Prog. Org. Coat. 67 (4),

420–426.

Limousin, G., Gaudet, J.P., Charlet, L., Szenknect, S., Barthes, V.,

Krimissa, M., 2007. Sorption isotherms: a review on physical bases,

modelling and measurement. Appl. Geochem. 22, 249–275.

Luo, H., Guan, Y.C., Han, K.N., 1998. Corrosion inhibition of a mild

steel by aniline and alkylamines in acidic solutions. NACE Corros.

54 (9), 721–731.
erties of the synergistic effect of 4-hydroxy-3-methoxybenzaldehyde and hexade-
ing Saud University – Engineering Sciences (2016), http://dx.doi.org/10.1016/j.

http://refhub.elsevier.com/S1018-3639(16)30041-1/h0005
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0005
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0005
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0005
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0005
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0010
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0010
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0010
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0015
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0015
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0015
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0015
http://www.elsevier.com/xml/linking-roles/text/html
http://www.elsevier.com/xml/linking-roles/text/html
http://www.astm.org/Standards/G31
http://www.elsevier.com/xml/linking-roles/text/html
http://www.astm.org/Standards/G31
http://www.astm.org/Standards/G31
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0040
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0040
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0040
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0040
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0040
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0045
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0045
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0045
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0045
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0045
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0045
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0045
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0050
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0050
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0055
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0055
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0055
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0065
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0065
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0065
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0070
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0070
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0070
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0080
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0080
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0080
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0085
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0085
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0090
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0090
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0090
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0095
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0095
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0095
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0095
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0095
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0100
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0100
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0100
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0110
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0110
http://refhub.elsevier.com/S1018-3639(16)30041-1/h0110
http://dx.doi.org/10.1016/j.jksues.2016.10.001
http://dx.doi.org/10.1016/j.jksues.2016.10.001


Inhibition by 4-hydroxy-3-methoxybenzaldehyde and hexadecyltrimethylammoniumbromide 7
Mathur, P.B., Vasudevam, T., 1982. Reaction rate studies for the

corrosion of metals in acids—I, Iron in mineral acids. Corrosion 38

(3), 171–178.

Moussa, M.H.N., El-Far, A.A., El-Shafei, A.A., 2007. The use of

water-soluble hydrazones as inhibitors for the corrosion of C-steel

in acidic medium. Mater. Chem. Phys. 105, 105–113.

Niamien, P.M., Ossonon, D., Trokourey, A., Kouassi, H.A., Bokra,

Y., 2011. Inhibitive action of hexadecyltrimethylammonium bro-

mide (HDTAB) on aluminium alloy (AA3003) corrosion in

hydrochloric acid medium. Afr. J. Pure Appl. Chem. 5 (9), 297–

306.
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