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Highlights 

 PAH levels in imported canned fish were investigated. 

 PAHs levels were moderate to elevated. 

 Carcinogenicity and mutagenicity of PAHs-associated risks were evaluated.  

 Carcinogenic effects on preteens and children through fish dietary intake are likely. 

 Mutagenic toxicities are dominated by high molecular weight PAHs.  
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Abstract 

Polycyclic aromatic hydrocarbons (PAHs) occurrence and assessment of dietary exposure 

from imported canned sardines (Sardinops sagax) commercially marketed in local stores 

and supermarkets in Nigeria were evaluated for the first time. PAHs determinations were 

performed using high performance liquid chromatography (HPLC) (Agilent 1290 model) 

equipped with UV-VIS diodes array detector (DAD) at λ = 210 nm and 214 nm. The 

percentage recoveries were higher than 96%. The degree of contamination expressed as 

total concentration of PAH congeners ranged between 2.53 and 35.55 μg kg−1 dry weight 

(d.w.) at λ = 210 nm, and 1.30 and 27.93 μg kg−1 (d.w.) at λ = 214 nm. The carcinogenic 

(TEQBaP) and mutagenic toxicities (MEQBaP) of eight priority PAHs were evaluated. 

Benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene and indeno[1,2,3-c,d] 

pyrene contributed significantly to the total carcinogenic equivalents of PAHs. The 

mutagenic equivalents were largely dominated by chrysene, benzo[b]fluoranthene, 

benzo[k]fluoranthene and benzo[a]pyrene and indeno[1,2,3-c,d]pyrene equivalence 

factors. The estimated lifetime average daily dose (LADD), average annual excess risk 

(AR), excess cancer rate (ECR), and hazard quotient risk (HQ) were evaluated for adults, 

children and preteens exposure related risks. The LADD, ECR, AR and HQ of PAHs for 

carcinogenic and non-carcinogenic risks are relatively higher in preteens than children 

and adults. 

 

Keywords: Polycyclic aromatic hydrocarbons; human health risk assessments; imported 

processed fish; mutagenicity; carcinogenicity; Food analysis; Food Composition 
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Chemical compounds studied in this article 

Naphthalene (PubChem CID: 931); Acenaphthylene (PubChem CID: 9161); 

Acenaphthene (PubChem CID: 6734); Fluorene (PubChem CID: 6853); Phenanthrene 

(PubChem CID: 995); Anthracene (PubChem CID: 8418); Fluoranthene (PubChem CID: 

9154); Pyrene (PubChem CID: 31423); Benzo[a]anthracene (PubChem CID: 5954); 

Chrysene (PubChem CID: 9171); Benzo[b]fluoranthene (PubChem CID: 9153); 

Benzo[k]fluoranthene (PubChem CID: 9158); Benzo[a]pyrene (PubChem CID: 2336); 

Dibenzo[a,h]anthracene (PubChem CID: 5889); Benzo[g,h,i]perylene (PubChem CID: 

9144); Indeno[1,2,3-c,d]pyrene (PubChem CID: 188580); 

  

 

1. Introduction 

In most developing countries, fish and processed fish products constitute a dominant 

portion of daily human diet and are widely consumed as a cheap and ready source of 

protein, vitamins and essential minerals. According to Food and Agriculture Organization 

of the United Nations (FAO) balance sheet of fish and fishery products in live weight and 

fish contribution to protein supply estimates, fish consumption rate in Nigeria has 

increased by about 22% since the early nineties with current supply quantity estimated at 

63.76 g/capita/day (FAO, 2016).  With a national fish demand of about 2.1 million metric 

tonnes per annum, it has been reported that an estimated 1.9 million tonnes of fish and 

fish products are imported into Nigeria annually (Agbo, 2015). About 60% of imported 

fish and fish products come in canned and prepackaged tins steeped in preservative oil, 

sometimes from sources with known cases of serious pollution challenges. In view of 

unconfirmed quality of imports and speculated sharp practices by importers, 

contamination risk assessment of imported food products in Nigeria should be routinely 

carried out to ascertain the presence and concentrations of cancer causing substances such 

as polycyclic aromatic hydrocarbons (PAHs) and heavy metals. Traditionally, these 

substances are largely introduced into fish and fish products through the various stages of 
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production, which includes smoking, roasting, boiling, grilling, amongst other methods 

(Adeyeye et al., 2015; Dun and Fee, 2008; Karl and Leinemann, 2006; Olatuniji et al., 

2015). Fish is usually thermally treated to different degrees and with different techniques 

before consumption. PAHs can be present in seafood as a result of bioaccumulation in 

fatty tissues, introduction from overhead dispersion of wood smoke, pyrolysis of oils 

dripping into flame, and pyrolysis of nutritional elements (EFSA, 2008; Muyela et al., 

2012).  

Studies have shown that PAHs are introduced into the food matrix by direct 

pyrolysis of food nutrients during thermal treatments such as frying, grilling and smoking 

(Essumang et al., 2012; Karl and Leinemann, 2006; Wretling et al., 2010; Silva et al., 

2011). Essentially, mono-unsaturated hydrocarbons in oils, fats and other nutrients 

undergo aromatization and dehydrocyclization reactions forming PAHs in the process 

(Olatunji et al., 2014). PAHs can also enter food matrices during thermal treatment from 

the combustion of fuels such as coal, wood and petroleum products (EFSA, 2008). Fish 

and fish products in Nigeria are considered as complements of major food group like 

carbohydrates because they are regarded as good sources of proteins and lipids. They 

however contribute significantly to the daily dietary intake of PAHs by humans. Several 

studies have highlighted enhanced levels of PAHs in food and relate subsequent 

consumption as an important exposure pathway (Essumang et al., 2012; Duedahl-Olesen 

et al., 2006; Drábová et al., 2010; EC, 2005a, b; Jira, 2004; Reinik et al., 2007; Wretling 

et al., 2010). Humans are exposed to PAHs and other organic pollutants through three 

principal routes: respiration, dermal contact and dietary intake of contaminated food and 

water (Bandowe et al., 2014; Benson and Olufunke, 2011; Duedahl-Olesen et al., 2006). 
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In recent times, several researchers have reported enhanced levels of PAHs in processed 

fish products (Ciecierska and Obiedzinski, 2007; Oluseyi et al., 2011; Yusuf et al., 2015). 

Generally, the presence of PAHs in human diet could pose serious health problems that 

may be associated with carcinogenic and mutagenic toxicities.  

Polycyclic aromatic hydrocarbons have been a source of growing public concern 

because of their non-degradability and pervasiveness in the environment (Benson et al., 

2014). They are a group of persistent organic pollutants formed during incomplete 

combustion or pyrolysis of carbonaceous materials, either by natural or anthropogenic 

agents (Benson et al., 2009, 2014; Huang et al., 2015; Lee and Vu, 2010; Maliszewska-

Kordybach, 1999; Shukla et al., 2013). Due to the multiplicity of PAHs and their 

complex existence, several regulatory bodies including the European Food Safety 

Authority (EFSA) have prioritised some PAH compounds as representatives of the lot 

based on factors such as availability of information about them compared to others, 

degree of toxicity, chance of exposure, and degree of concentration (Ravindra et al., 

2007). The Commission however, approved the use of benzo[a]pyrene as a marker for 

PAH contamination but stressed the need for continued data collection on the whole PAH 

profile to avoid being blindsided by changes in this profile (Alomirah et al., 2011; EFSA, 

2008). Because they are practically unavoidable by human beings, regulatory bodies such 

as the USEPA and WHO have set maximum tolerable limits beyond which exposed 

persons are at risk. These standards seek to control and monitor PAH exposure especially 

through food consumption. Fish and seafood form an essential part of the average human 

being’s diet. Although a lot of research efforts have been channeled towards assessment 

of PAH contamination levels in smoked fish, little has been done to exclusively evaluate 
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canned fish to ensure that their processing techniques do no expose the public to health 

risk. Therefore, the present study was designed to (i) determine and evaluate the PAHs 

content of canned fish products in Nigeria, (ii) conduct the health risk assessment of 

PAHs exposure using the carcinogenic (TEQBaP) and mutagenic (MEQBaP) quotients. 

 

2. Materials and Method 

2.1 Chemicals and reagents 

Sixteen priority PAH Standard Calibration Mix recommended by EPA610 method was 

purchased from Accustandard (New Haven, CT, United States) containing naphthalene, 

acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, 

benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, 

benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-

cd]pyrene. The dichloromethane and n-hexane used were GC grade and of highest purity 

purchased from Merck (KGaA, Darmstadt, Germany). Activated amorphous silica 

powder was purchased from Loba Chemie (Mumbai, India), while anhydrous magnesium 

sulphate (Certified ACS reagent grade) used was sourced from Fisher Chemicals 

(Pittsburgh, PA, USA). Deionised water was used all through the experiments.  

 

2.2 Sample collection, preparation and extraction  

Five (5) brands of commercially imported canned samples of Sardinops sagax 

were purchased from local retail outlets in Ota, Nigeria. Products considered in this study 

were designated using codes TTS, SNV, NVY, MLO, and SAR for each branded 

Sardinops sagax. Five samples for each brand of sardine were purchased as 
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representatives of each product, and were composited into twenty-five independent 

samples. The samples were carefully removed from their cans and the preservative oil 

discarded. They were then shredded to increase surface area and dried in an oven for 

about 12 hours after which they were homogenized by grinding. 10 g of each sample was 

collected and further homogenized with 10 g anhydrous magnesium sulphate to remove 

moisture. Thereafter, 5 g of the sample was weighed and loaded into a column built by 

stuffing a burette with cotton wool, and 20 mL of dichloromethane (DCM) was added 

and the column allowed to stand for 30 minutes before draining. This procedure was 

followed by adding another 20 mL of dichloromethane to the burette and allowed to stand 

for 15 minutes before draining. The extracted liquid was allowed to evaporate to about 1 

mL, and reconstituted with 3 mL of n-hexane, evaporated to about 2 mL, and was later 

subjected to sample clean-up. 

 

2.3 Sample clean-up and analysis 

A glass column was stuffed with glass wool up to the 3 mL mark, followed by activated 

amorphous silica powder up to the 10 mL mark. The sides of the column were tapped to 

properly settle and level the silica bed. The column was conditioned with 20 mL of n-

hexane and 2 mL of the extract was loaded into it. The sample was then eluted with 20 

mL of DCM for aromatics and collected into a glass amber bottle. It was evaporated to 

about 1 mL and reconstituted with 3 mL of n-hexane. It was allowed to evaporate to 

about 2 mL before it was transferred into vials for HPLC analysis. The quantification of 

PAHs (naphthalene (NAP), acenaphthylene (ACY), acenaphthene (ACE), fluorene 

(FLO), phenanthrene (PHA), anthracene (ANT), fluoranthene (FLA), pyrene (PYR), 
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benzo[a]anthracene (B[a]A), chrysene (ChY), benzo[b]fluoranthene (B[b]F), 

benzo[k]fluoranthene (B[k]F), benzo[a]pyrene (B[a]P), dibenzo[a,h]anthracene (D[ah]A), 

benzo[g,h,i]perylene (B[ghi]P), and indeno[1,2,3-cd]pyrene) (IP) was performed using an 

Agilent 1290 Model HPLC system (Agilent Technologies, Santa Clara, CA, USA) 

equipped with a G-4226A HiP auto-sampler, a G-4220A binary pump, a G-1316C 

column thermostat, a vacuum degasser, and a G-4212A UV diode-array detector (DAD). 

The HPLC with fluorescence detection is an analytical method that is most frequently 

used for determination of the carcinogenic PAHs in food samples (Barrancco et al., 2004; 

Fontcuberta et al., 2006). In this study, the detection was carried out at two wavelengths, 

210 nm and 214 nm. Prior to analytical chromatography, the C-18 column was stabilized 

at 25°C for about 60 minutes. The HPLC analysis was carried out with a flow rate of 0.03 

mL/min and the injection volume was 3.0 μL. The mobile phase was a gradient prepared 

from water (solvent A) and acetonitrile (solvent B). The details of the gradient, flow rate 

and pressure limit are presented in Table I. The chromatogram from the UV diode-array 

detector (DAD) was displayed after each completed run on the computer and automated 

printout of results were made. The number of independent composite samples (n) 

analysed is twenty-five (n=25). However, triplicate measurements were carried out for 

each extracted composite sample, totaling seventy-five (75) analytical replicates, and the 

results were averaged and recorded. 

Prior to injection of extracted samples contained in well-labelled vials, a stock 

standard solution of 16 US EPA priority PAHs mix standard was serially diluted with 

acetonitrile to prepare five separate calibration standard PAH solutions containing 50, 40, 

30, 20, and 10 μg/L of stock solution. Blanks samples containing no PAH were also 
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analysed before and after injection of samples. The recovery of the analytical method was 

evaluated using 30 μg/L of PAH mix stock solution as an internal standard, which was 

added to representative samples and subsequently analysed. Measurements conducted on 

spiked samples were repeated in duplicates and the recoveries were calculated. The 

recoveries were considered as acceptable, and were in the range between 96.40 and 

100.16 % for NAP, ACY, ACE, FLO, PHA, ANT, FLA, PYR, B[a]A, ChY, B[b]F, 

B[k]F, B[a]P, D[ah]A, B[ghi]P, and IP. In addition, the linearity of calibration plots was 

satisfactory with regression coefficients greater than 99% for all the PAH congeners. 

 

2.4 Benzo(a)pyrene-equivalent carcinogenicity and mutagenicity assessments 

In order to assess the possible human exposure risks associated with carcinogenic 

or mutagenic PAHs in canned fish samples, the toxic equivalence factors (TEFs) and 

mutagenic potency equivalent factors (MEFs) were calculated relative to a Reference 

standard, benzo[a]pyrene, B[a]P as reported by (Benson et al., 2014; Koh et al., 2004; 

Rogula-Kozłowska et al., 2013; Zhang et al., 2012). The overall carcinogenicity or 

mutagenicity of nonvolatile PAHs were estimated based on the weighted sum of 

individual congener concentrations and equivalence factors (TEFs or MEFs) relative to 

the cancer or DNA altering potency to B[a]P. This implies that carcinogenic equivalents 

(TEQBaP) and mutagenic equivalents (MEQBaP) were calculated as a product of the 

observed concentrations of the individual PAH congeners with its TEF for cancer 

potency relative to B[a]P, and MEF for DNA modification capacity relative to B[a]P, 

respectively. TEQBaP and MEQBaP were calculated as shown in the equations below: 
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where Ci, TEFi and MEFi are the individual PAH concentration, toxic equivalence factor 

and mutagenic equivalence factor, respectively. Further expansion of this equation would 

yield the following: 

TEQBaP= [BaA] × 0.1 + [ChY] × 0.01 + [BbF] × 0.1 + [BkF] × 0.1 + [BaP] × 1 + 

          [IP] × 0.1 + [DahA] × 0.1 + [BghiP] × 0.01  

and 

 

MEQBaP = [BaA] × 0.082 + [ChY] × 0.017 + [BbF] × 0.25 + [BkF] × 0.11 +  

         [BaP] × 1 + [IP] × 0.31 + [DahA] × 0.29 + [BghiP] × 0.19 

 

The toxicity equivalency factor (TEF) methodology was developed by the U.S. 

Environmental Protection Agency (EPA) to evaluate the relative toxicity and assess the 

risks of a mixture of groups A (known human) and B (probable human) carcinogenic 

polycyclic aromatic hydrocarbons, especially considering their common mechanism of 

action when ingested or inhaled by humans. These include benzo(a)anthracene, 

benzo(a)pyrene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, 

benzo(g,h.i)perylene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene. The US EPA 

suggests that these eight PAHs have significant carcinogenic potential (Węgrzyn et al., 

2006). In the article, we describe the analysis and use of these eight PAHs for evaluating 

the relative toxicity using the toxicity equivalent factors. The TEF for these PAHs is an 

estimate of the relative toxicity of each PAH compared to benzo(a)pyrene, which is 

assigned a reference value of 1 (Benson et al., 2014; Collins et al., 1998; Nsibet and 

LaGoy, 1992). 

 2.5 Risk assessment for carcinogenic exposure 
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The excess cancer risk (ECR) for adults and children was calculated based on a 

lifetime consumption of Sardinops sagax using Eq. (3): 

 

 

where Q (mg/kg/d) is the carcinogenic potency of B[a]P, EDtot (years) exposure duration, 

BWa (kg) is the average adult or children body weight and ATn is the averaging time of 

exposure (365 days/year × number of exposure years). The value of Q is 7.3 mg/kg/d 

(Ding et al., 2012; Xia et al., 2010; Yoon et al., 2007). This represents the geometric 

mean calculated from the oral cancer slope factor (4.5, 5.9, 9.0 and 11.7) of 

benzo[a]pyrene  (US EPA 1991, 2001). IFR (g/day) is the fish ingestion rate. According 

to Food and Agriculture Organization of the United Nations, the fish ingestion rate in 

Nigeria based on 2013 estimate is 63.76 g/capita/day (FAO, 2016). The average body 

weight for children (age range 1-6), (age range 6–18 years) and adults in Nigeria are 19, 

48 and 70 kg, respectively. The EDtot is estimated at 52.8 years for adults (World Bank 

2016 estimate for average life expectancy in Nigeria) (World Bank, 2016).  

On the other hand, the exposure rate to carcinogenic PAHs during the lifetime of adults, 

children and preteens in Nigeria was also evaluated using the lifetime average daily dose, 

LADD (mg/kg/d). The PAHs exposure dose rate is computed following the Eq. (4):  
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where CPAHs represents the concentration of individual PAHs, EF is the exposure 

frequency, and IFR, EDtot, BWa and Atn represent variables as previously defined. 

However, the average annual excess risk of cancer for an individual is calculated using 

Eq. (5):  

 

where AR is the average annual excess risk of cancer for an individual, dimensionless; SF 

is the level of intensity of carcinogenic chemicals (mg/kg/d); and ATn is the number of 

an individual average lifetime presented in years.  

 

2.6 Risk characterisation 

The evaluation of exposure risk associated with threshold contaminants (i.e. 

acenaphthene, anthracene, fluoranthene, fluorene, and pyrene) was accomplished by 

calculating an exposure ratio called a hazard quotient (HQ) using the Hazard Quotient Risk 

Calculation model RISC 4.02 (USEPA, 1989). The HQ is usually calculated to characterise 

non-carcinogenic risks on the basis that at threshold level (HQ=0.2), exposure to 

contaminants would unlikely have effects on sensitive populations. For a calculated hazard 

quotient greater than 0.2, a risk to human health potentially exists. In the present study, risks 

associated with threshold contaminants were estimated for preteens (1-6years), children (6-

18) years and adults.   

 

2.7 Statistical analysis 

All data were analysed using the XLSTAT-Pro software (AddinSoft, Inc., NY, USA) 

and Microsoft Excel 2011. Comparative and continuous summary descriptives were also 
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performed. Fischer’s two-tailed tests was used to test the method’s precision, and the 

statistical significance was considered for p<0.05. 

 

3. Results and discussion 

3.1 Levels of PAHs 

Sixteen (16) PAHs were investigated in branded Sardinops sagax. However, 

fourteen (14) PAH concentrations were detected (Tables 2, 3). The mean concentrations 

of PAH congeners in all the samples at the two wavelengths are presented. The PAH 

concentrations varied largely with individual branded sardines. The SAR brand indicated 

higher concentrations of PAHs with phenanthrene, pyrene and anthracene having 

concentrations higher than eleven other PAH congeners. Comparatively, the estimated 

total PAH concentrations (ΣPAHs) are significantly higher in SAR samples at both 

wavelengths with 35.54 and 27.92 µg/kg at 210 and 240 nm, respectively. The 

concentration of each PAH congeners ranged between BDL – 15.27±0.68 µg/kg. PAHs 

levels in food substances are generally known to be variable and in low concentrations, 

which are primarily attributed to metabolic residues of contaminated food ingestion via 

the web chain or dermal contact through exogenous exposure pathway in contaminated 

aquatic ecosystems (Bandowe et al., 2014; Duedal-Olesen et al., 2006; Essumang et al., 

2012; Olatunji et al., 2015). The high molecular weight PAHs, which are generally more 

potent carcinogens, contributed less to the total PAH concentration. Benzo[a]anthracene 

was not detected in any of the samples at any wavelength. In all the samples, B[a]P 

concentrations were well below the European market maximum permissible limit for 

processed fish of 2 µg/kg (EFSA, 2008; Yusuf et al., 2015). However, since analysis 
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using HPLC-DAD was carried out at two wavelengths (210 nm and 214 nm), it was 

observed that the measurements at 210 nm showed significant levels of PAH detection 

compared to 214 nm for the five canned fish products analyzed, detecting all sixteen 

priority congeners, while 214 nm detected fifteen (excluding fluorene). Also, the detected 

concentrations of congeners at 210 nm were generally higher and more significant those 

detected at 214 nm. However, in order to test whether there is a statistical difference at 

95% confidence level (P>0.05) between PAHs concentrations obtained at 210 and 214 

nm, a two-tailed F-test was employed. The F-test otherwise termed the Fischer’s test is a 

mathematical tool that looks at the test of precision, and basically involves the 

comparison of the variances or standard deviations of two analytical methods with the 

sole objective of elucidating their differences that can be explained by indeterminate 

error. The results indicated that at 95% certainty, there is no difference between the 

standard deviations of the two PAHs quantification wavelengths. 

“Table 2 – 3 here” 

 

At wavelength 210 nm, TTS samples showed a total PAH content of 5.64 µg/kg, 

with the highest contributor being indeno[1,2,3-cd]pyrene (3.72±0.26 µg/kg) followed by 

phenanthrene (0.85±0.28 µg/kg). However, at 214 nm acenaphthene concentration was 

found to be 1.46±0.45 µg/kg although it was not detected in TTS samples at 210 nm 

(Table 2). This discrepancy might be attributable to non-detectability of peak 

concentration or retention time above 210 nm maximum wavelength, or chromatographic 

conditions (Węgrzyn et al., 2006). The SNV samples showed high concentrations of 

pyrene (3.72 ± 0.21 µg/kg) and anthracene (1.22±0.72 µg/kg) at 210 nm. At wavelength 

214 nm, pyrene also recorded a relatively high concentration (1.16±0.64 µg/kg) although 
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indeno[1,2,3-cd]pyrene contributed more to the total PAH content with 3.33±0.71 µg/g. 

Generally, NVY, MLO and SAR samples showed less presence of HMW PAHs. The 

NVY indicated very low and insignificant levels of PAHs. However, its pyrene content 

was consistently high at both wavelengths, impacting on the total PAH content, while 

MLO had the lowest total PAH content with 2.53 µg/kg and 1.28 µg/kg at 210 nm and 

214 nm, respectively. SAR showed extremely high concentrations of phenanthrene and 

pyrene and these impacted on the total PAH contents, giving 35.54 µg/kg and 27.93 

µg/kg at 210 and 214 nm, respectively. In the present study, the concentration of B[a]P in 

all brands of sardines investigated indicated levels that are lower than the threshold B[a]P 

level of 2.0 ng g-1 ww set by the European Union for fish muscle. The PAHs levels 

obtained in the present work are comparable to concentrations reported in other studies 

(Duedahl-Olessen et al., 2006; Bandowe et al., 2014; Essumang et al., 2012; Silva et al, 

2011; Wretling et al., 2010). 

 

3.2 Health risk assessment 

The carcinogenic toxicity (TEQBaP) and mutagenic toxicity (MEQBaP) relative to 

B[a]P were calculated to find the potential carcinogenic and mutagenic risk associated 

with ingestion of these canned fish. B[a]P is commonly used as a biomarker as well as an 

index chemical to estimate the health risks posed by exposure to ΣPAHs because of the 

paucity of experimental risk assessment values for each individual ΣPAH. While TEQBaP 

is used to evaluate potential carcinogenicity of a given PAH mixture, MEQBaP (mutagenic 

activity) provides information for a wider range of health issues other than cancer 

including pulmonary diseases, birth defects, impotency, low intelligent quotient, etc. (Li 
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et al., 2014; Hsu et al., 2014; Stolyhwo and Sikorsi, 2005). From the results in Table 4, 

the TEQ for the eight USEPA priority carcinogens were shown to be low compared to 

those of grilled and smoked items as analysed by Alomirah et al. (2011). Known 

carcinogenic PAHs were not found in NVY sample at wavelength 214 nm, hence the 

absence of TEQ and MEQ values. The following congeners B[b]F, B[k]F and IP made 

significant contributions to carcinogenic PAHs equivalents in nearly all investigated 

samples at both wavelengths and the mutagenic equivalents were also largely influenced 

by equivalence factors of B[a]P, ChY, B[b]F, B[k]F, and IP. 

 

“Table 4 here” 

 

The exposure rate due to lifetime average daily dose is presented in Table 5, while the 

average annual excess risk of cancer for adults and children in Nigeria due to individual 

PAHs is shown in Table 6. According to the US EPA, one out of a million (1×10-6) 

chance of developing cancer over a lifetime is the level of risk considered to be 

acceptable or inconsequential, whereas a lifetime cancer risk of one in ten thousand 

(1×10-4)  or greater is considered serious. 

“Table 5 – 6 here”  

 

The estimated lifetime average daily dose (LADD) of PAHs for carcinogenic 

risks is relatively higher in the preteens aged 1 – 6 years old than in children (6 – 18 

years) and adult Nigerians. Also, the estimated carcinogenic risks associated with PAHs 

exposure through oral ingestion of different brands of canned sardines considered in this 

study and commercially sold in Nigeria were calculated to be 3.4 × 10-6, 4.57 × 10-7, and 

1.07 × 10-8 in preteens, children and adults, respectively, for PAHs quantification made at 

210 nm. On the other hand, the estimates made at 214 nm indicated unit risks of 5.06 × 
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10-7 for preteens, 6.67 × 10-8 for children, and 1.57 × 10-8 for adults. Results indicate that 

preteens are the most vulnerable and sensitive group, with vulnerability trend showing 

preteens>children>adults. This means that approximately, 35 out of every 10,000,000 

preteens in Nigeria may likely develop cancer related disease(s) in their lifetime as a 

result of exposure to PAHs associated with consumption of branded canned sardines 

imported into the country. In the same vein, about 5 out of every 10,000,000 children 

aged 6 – 18 years may likely develop cancer or cancer related disease via ingestion of 

sardines. The most notable endpoint of PAH toxicity includes liver, skin, lung, bladder, 

and gastrointestinal cancers (ATSDR, 2013). In addition, risk assessment calculations 

using excess cancer risk model corroborate this finding (Fig. 1). The calculated excess 

cancer risk (ECR) from dietary exposure to the investigated brands of sardines is less 

than 1.0 x 10-6, therefore the level of risk is acceptable or might be considered to be 

inconsequential.   

In this study, the health risk associated with threshold contaminants estimated for 

preteens (1-6years), children (6-18) years and adults using the Hazard Quotient Risk 

Calculation model RISC 4.02, is presented in Table 7. Results suggest that calculated 

hazard quotients for PAH concentrations in the SAR brand of Sardinops sagax are 

greater than 0.2 for preteens, children and adults (Table 7), while SNV brand indicated an 

hazard quotient of 0.48 for preteens only. Therefore, dietary exposure to PAHs through 

these brands could potentially pose serious health risks to these populations. Likely non-

carcinogenic effects or risks associated with PAHs exposure involve primarily the 

gastrointestinal, pulmonary, dermatologic and renal systems (ATSDR, 2013). 
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“Table 7 here” 

 

4. Conclusions 

The results of the present study show moderate to elevated concentrations of 

PAHs in various brands of canned sardines commercially sold in Nigeria. However, 

considering the relatively high rate of consumption of these imported sardines by 

Nigerians, potential health assessment estimates indicate carcinogenic and non-

carcinogenic associated risks. The lifetime average daily dose and excess cancer risk 

associated with consumption of canned sardines was relatively higher in preteen than 

children and adults, with ECR value below the 1×10−6 threshold (guideline) value. The 

concentration of B[a]P in all investigated brands of sardines indicate levels lower than the 

European Union threshold B[a]P level. However, B[b]F, B[k]F and IP made significant 

contributions to carcinogenic PAHs equivalents, while the mutagenic equivalents are 

largely influenced by B[a]P, ChY, B[b]F, B[k]F, and IP equivalence factors. 

The outcome of this study has provided useful information about the level of 

PAHs in most of the commercially imported canned sardine. This study will serve as a 

baseline for future research work to determine the level of PAHs in most imported 

canned foods. Having considered the findings and the observations made in this research, 

it is imperative that a continuous monitoring and assessment of PAHs in imported and 

local food products be instituted to avoid PAHs exposures.  
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        Figure 1: Calculated excess cancer risk for different brands of Sardinops sagax 
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         Table 1: Timetable of the mobile phase gradient 
 

 Solvent A Solvent B   

Time (min) Water (%) Acetonitrile (%) Flow (mL/min) Pressure (bar) 

        1.50   40.00     60.00    0.030 1200 

7.00   10.00 90.00 0.030 1200 

13.00 0.00 100.00 0.030 1200 

17.00 0.00 100.00 0.030 1200 

22.00  40.00 60.00 0.030 1200 

 
 

Table 2: Mean PAH concentrations (µg/kg) in imported sardines (Sardinops sagax) 

              obtained at 210 nm  
Congeners TTS SNV NVY MLO SAR 

Naphthalene BDL BDL BDL BDL 0.451 ± 0.637 

Acenaphthylene 0.017 ± 0.024 BDL BDL BDL 0.004 ± 0.0001 
Acenaphthene BDL 0.802 ± 0.161 0.694 ± 0.041 0.633 ± 0.040 1.455 ± 0.002 

Fluorene 0.002 ± 0.0001 0.001± 0.0001 0.001 ± 0.0001 0.001 ± 0.0001 0.003 ± 0.004 

Phenanthrene 0.852 ± 0.283 0.394 ± 0.055 0.542 ± 0.019 0.595 ± 0.003 15.271 ± 0.689 

Anthracene BDL 1.217 ± 0.721 BDL BDL 5.012 ± 0.089 
Fluoranthene BDL 0.011 ± 0.016 BDL BDL 0.073 ± 0.003 

Pyrene 0.415 ± 0.065 3.72 ± 0.206 1.291 ± 0.017 0.851 ± 0.031 11.845 ± 0.191 

Benzo[a]anthracene BDL BDL BDL BDL BDL 
Chrysene 0.015 ± 0.021 0.049 ± 0.002 BDL 0.060 ± 0.084 0.271 ± 0.031 

Benzo[b]fluoranthene 0.192 ± 0.272 0.865 ± 0.049 BDL BDL BDL 

Benzo[k]fluoranthene 0.048 ± 0.068 BDL BDL 0.062 ± 0.088 0.236 ± 0.033 
Benzo[a]pyrene 0.202 ± 0.012 0.428 ± 0.282 0.062 ± 0.088 0.288 ± 0.005 0.925 ± 0.062 

Dibenzo[a,h]anthracene 0.172 ± 0.172 0.136 ± 0.010 BDL 0.0363 ± 0.051 BDL 

Benzo[g,h,i]perylene BDL BDL BDL BDL BDL 
Indeno[1,2,3-cd]pyrene 3.72 ± 0.267 0.405 ± 0.223 BDL BDL BDL 

ΣPAH content 5.639 8.033 2.590 2.526 35.546 

BDL- Below detection limit; Limit of Detection = <0.001; (number of independent samples, n=25) 
 

 

 

 

Table 3: Mean PAH concentrations (µg/kg) in imported sardines (Sardinops sagax) 

              obtained at 214 nm  
Congeners TTS SNV NVY MLO SAR 

Naphthalene BDL BDL BDL BDL 1.676 ± 0.370 

Acenaphthylene 0.031 ± 0.043 BDL BDL BDL 0.014 ± 0.0002 

Acenaphthene 1.461 ± 0.451 0.253 ± 0.344 0.316 ± 0.004 0.321 ± 0.002 0.777 ± 0.001 
Fluorene BDL BDL BDL BDL BDL 

Phenanthrene 0.234 ± 0.108 0.116 ± 0.160 0.151 ± 0.090 0.233 ± 0.014 12.645 ± 1.532 

Anthracene 0.026 ± 0.007 0.009 ± 0.002 BDL BDL 3.665 ± 0.183 
Fluoranthene BDL 0.006 ± 0.001 BDL BDL 0.147 ± 0.003 

Pyrene 0.254 ± 0.031 1.163 ± 0.637 0.833 ± 0.007 0.528 ± 0.023 7.935 ± 0.113 

Benzo[a]anthracene BDL BDL BDL BDL BDL 
Chrysene BDL 0.054 ± 0.001  BDL 0.091 ± 0.032 0.272 ± 0.041 

Benzo[b]fluoranthene BDL 1.793 ± 0.535 BDL BDL BDL 

Benzo[k]fluoranthene 0.041 ± 0.058 BDL BDL BDL 0.112 ± 0.015 
Benzo[a]pyrene 0.119 ± 0.048 0.191 ± 0.012 BDL 0.117 ± 0.010 0.686 ± 0.074 

Dibenzo[a,h]anthracene BDL BDL BDL BDL BDL 

Benzo[g,h,i]perylene BDL BDL BDL BDL BDL 
Indeno[1,2,3-cd]pyrene 0.750 ± 0.060 3.328 ± 0.706 BDL BDL BDL 

ΣPAH content 2.916 6.913 1.299 1.289 27.929 

BDL- Below detection limit; Limit of Detection = <0.001; (number of independent samples, n=25) 
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       Table 4: Calculated carcinogenic and mutagenic equivalents in  

                     imported sardines (Sardinops sagax) 
 210 nm 214 nm 

 TEQBaP MEQBaP TEQBaP MEQBaP 

TTS 0.7703 1.4599 0.1979 0.3558 

SNV 0.6909 0.8100 0.7035 1.6716 

NVY 0.0624 0.0624 0 0 

MLO 0.3310 0.3062 0.1176 0.1182 

SAR 0.9547 0.9590 0.6997 0.7027 

 
 

Table 5: Lifetime average daily dose (mg/kg/day) of PAHs in adults and children for 

              different brands of Sardinops sagax 
      TTS                    SNV                 NVY                  MLO                  SAR 

Chrysene 

4.14E-08a 

1.63E-08b 

1.22E-08c 

(0)a* 

(0)b* 

(0)c* 

1.35E-07 

5.35E-08 

3.67E-08 

(1.49E-07) 

(5.89E-08) 

(4.04E-08) 

0 

0 

0 

(0) 

(0) 

(0) 

1.65E-07 

6.55E-08 

4.49E-08 

(2.51E-07) 

(9.94E-08) 

(6.81E-08) 

7.47E-07 

2.76E-07 

2.03E-07 

(7.50E-07) 

(2.97E-07) 

(2.04E-07) 

Benzo[b]fluoranthene 

5.29E-07 a 

2.09E-07 b 

1.44E-07 c 

(0) a* 

(0) b* 

(0) c* 

2.38E-06 

9.44E-07 

6.48E-07 

(4.95E-06) 

(1.96E-06) 

(1.34E-06) 

0 

0 

0 

(0) 

(0) 

(0) 

0 

0 

0 

(0) 

(0) 

(0) 

0 

0 

0 

(0) 

(0) 

(0) 

Benzo[k]fluoranthene 

1.32E-07 a 

5.24E-08 b 

3.59E-08 c 

(1.13E-07) a* 

(4.48E-07) b* 

(3.07E-08) c* 

0 

0 

0 

(0) 

(0) 

(0) 

0 

0 

0 

(0) 

(0) 

(0) 

1.71E-07 

6.77E-08 

4.64E-08 

(0) 

(0) 

(0) 

6.51E-07 

2.58E-07 

1.77E-07 

(3.09E-07) 

(1.22E-07) 

(8.38E-08) 

Benzo[a]pyrene 

5.57E-07 a 

2.21E-07 b 

1.51E-08 c 

(3.28E-07) a* 

(1.29E-07) b* 

(8.91E-08) c* 

1.19E-06 

4.67E-07 

3.20E-07 

(5.27E-07) 

(2.09E-07) 

(1.43E-07) 

1.71E-07 

6.76E-08 

4.64E-08 

(0) 

(0) 

(0) 

7.94E-07 

3.14E-07 

2.16E-07 

(3.23E-07) 

(1.28E-07) 

(8.76E-08) 

2.55E-06 

1.01E-06 

6.93E-07 

(1.89E-06) 

(7.49E-07) 

(5.14E-07) 

Dibenzo[a,h]anthracene 

4.74E-07 a 

1.88E-07 b 

1.29E-07 c 

(0) a* 

(0) b* 

(0) c* 

3.75E-07 

1.48E-07 

1.02E-07 

(0) 

(0) 

(0) 

0 

0 

0 

(0) 

(0) 

(0) 

1.00E-07 

3.96E-08 

2.72E-08 

(0) 

(0) 

(0) 

0 

0 

0 

(0) 

(0) 

(0) 

Indeno[1,2,3-cd]pyrene 

1.03E-05 a 

4.06E-06 b 

2.78E-06 c 

(2.07E-06) a* 

(8.19E-07) b* 

(5.61E-07) c* 

1.12E-06 

4.42E-07 

3.03E-07 

(9.18E-06) 

(3.63E-06) 

(2.49E-06) 

0 

0 

0 

(0) 

(0) 

(0) 

0 

0 

0 

(0) 

(0) 

(0) 

0 

0 

0 

(0) 

(0) 

(0) 
a = LADD for preteens (1-6yrs) at 210 nm, b = LADD for children (6-18yrs) at 210 nm, c = LADD for adults at 210 nm 
a* = LADD for preteens (1-6yrs) at 214 nm, b* = LADD for children (6-18yrs) at 214 nm, c* = LADD for adults at 214 nm 
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   Table 6: Annual exposure rate for preteens, children and adults in Nigeria 

 1-6 years 6-18 years Adult 

 210 nm 214 nm 210 nm 214 nm 210 nm 214 nm 

Chrysene 9.45E-07 0 1.25E-07 0 2.93E-08 0 

Benzo[b]fluoranthene 1.21E-07 0 1.59E-08 0 3.75E-09 0 

Benzo[k]fluoranthene 3.02E-08 2.58E-08 3.98E-09 3.40E-09 9.37E-10 8.01E-10 

Benzo[a]pyrene 1.27E-08 7.49E-09 1.68E-09 9.88E-10 3.94E-10 2.32E-10 

Dibenzo[a,h]anthracene 1.08E-08 0 1.43E-09 0 3.36E-10 0 

Indeno[1,2,3-cd]pyrene 2.34E-06 4.72E-07 3.09E-07 6.23E-08 7.27E-08 1.46E-08 

Total  3.46E-06 5.06E-07 4.57E-07 6.67E-08 1.07E-08 1.57E-08 

 

 

 

Table 7: Summary of hazard quotient risk estimates for preteens, children and adults 
  TTS SNV NVY MLO SAR 

 

 

210 nm 

HQPT 0.047 0.475 0.183 0.131 1.544 

HQCH 0.018 0.188 0.073 0.052 0.611 

HQAD 0.013 0.129 0.049 0.035 0.419 

 

 

214 nm 

HQPT 0.837 0.145 0.110 0.077 1.266 

HQCH 0.331 0.057 0.043 0.030 0.501 

HQAD 0.227 0.039 0.030 0.021 0.343 

(HQ = acenaphthene, anthracene, fluoranthene, fluorene, pyrene); HQPT = Hazard Quotient for preteens; 

HQCH = Hazard Quotient for children; HQAD = Hazard Quotient for adults 

 
 


