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Numerical simulation results for the dynamics of 𝜙6-systems abound in the literature but their experimental results are yet to
be known. This paper presents the chaotic dynamics of 𝜙6-Van der Pol oscillator via electronic design, simulation, and hardware
implementation. The results obtained are found to be in good agreement with numerical simulation results. The condition for
stability of the fixed points is also computed and the method of multiple time scale is used to investigate the dynamical behaviour
of the system.Therefore, the 𝜙6-circuits which have rich dynamics andmay have important applications in secure communications,
random number generations, cryptography, and so forth have been practically implemented.

1. Introduction

In recent years the study of chaotic phenomena in self-excited
oscillators with parametric and external-excitation has
attracted much attention [1–6]. Among the 2-dimensional
periodically forced oscillators, the most extensively studied
examples are the Van der Pol oscillators [7, 8], Duffing
oscillators [9], and Rayleigh oscillators [10]. Many works on
self-excited, parametrically excited, and externally excited
oscillators are also investigated in the literature. Recently, the
rich dynamics of Van der Pol oscillator have been explored by
theoretical analysis and numerical simulations [3, 11].

The 𝜙4-Van der Pol oscillator is a very significant classical
model circuit that has been studied and even modified in
some studies as reported by King et al. [12, 13], Fotsin et al.
[14], and Fodjouong et al. [15]. However, with the advent of
the study of chaotic motion by means of strange attractors,
Poincare’ map, fractal dimension, it is necessary to seek for a
better understanding of nonlinear systems with higher order
nonlinear terms such as the 𝜙6-Van der Pol oscillator.

A 𝜙6-Van der Pol oscillator or extended Van der Pol
oscillator is the nonlinear oscillatorwith fifth-order nonlinear
term. Its numerical simulation has been studied extensively
by Siewe Siewe et al. [16, 17], Tchoukuegno et al. [18–20],
and Yu and Li [21] and its synchronization behaviours for
possible applications in information processing and secure
communication by Njah et al. [22–24], and its application
in the modeling of chemical reactions and brain activ-
ity by Chen and Dong [25] and Ott et al. [26]. In the
past three decades, implementation of chaotic systems in
power electronics has gone through intense development
in many aspects of technology [27–29], including power
devices, control methods, circuit design, computer-aided
analysis, passive components, and packaging techniques.
Like many areas of engineering, power electronics is mainly
motivated by practical applications, and it often turns out
that a particular circuit topology or system implementation
has found widespread applications long before it is thor-
oughly analyzed and most of its subtleties are uncovered
[30, 31].
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The aim of this paper is to design, simulate, and imple-
ment periodically forced 𝜙6-Van der Pol oscillator by trans-
forming the state equations into electronic circuit via analog
components modeling. We also generate phase portraits for
the triple-well and double-well attractors of the system. To the
best of our knowledge, computer simulation with electronic
software and hardware implementation of 𝜙6-Van der Pol
oscillators have not been studied. The rest of the paper is
organized as follows: Brief description of the conditions for
stability of fixed points for unperturbed system is discussed in
the next section. Section 3 explains the numerical simulation
of the oscillator for at least six physically relevant situations
with corresponding attractors while Section 4 explains the
analog simulations with electronic software (multisim) and
hardware implementation of the system. Finally, Section 5
concludes the paper.

2. Analysis of the Unperturbed System

Thegeneral formof second-order differential equation of Van
der Pol systems is given as

�̈� = 𝜇 (1 − 𝑥2) �̇� − 𝑑𝑉 (𝑥)
𝑑𝑥 + 𝑓 cos𝜔𝑡, (1)

where 𝜇 < 0 is the damping parameter and 𝑓 and 𝜔
are amplitude and angular frequency, respectively, and its
potential 𝑉(𝑥) can be expressed in Taylor series as

𝑉 (𝑥) = 1
2𝛼𝑥
2 + 1

4𝛽𝑥
4 + 1

6𝜆𝑥
6, (2)

where 𝛼, 𝛽, and 𝜆 are constant parameters. The condition for
stability of the fixed points of oscillator (1) for an unperturbed
system can be assumed when 𝜇 = 𝑓 = 0. Thus, the system
can therefore be expressed as a set of first-order differential
equations of the form

�̇� = 𝑦,
�̇� = −𝛼𝑥 − 𝛽𝑥3 − 𝜆𝑥5 (3)

which corresponds to an integrable Hamiltonian system
with the potential function in (2) and whose associated
Hamiltonian function is

𝐻(𝑥, 𝑦) = 1
2𝑦
2 + 1

2𝛼𝑥
2 + 1

4𝛽𝑥
4 + 1

6𝜆𝑥
6. (4)

From (3) and (4), we can compute for the fixed points and
analyze their stabilities after some algebraic manipulations
using the following conditions.

(i) For 𝛽2 < 4𝜆𝛼, the unperturbed system has only one
fixed point (0, 0), the centre, for which the system is
single-well if 𝛼 > 0 and 𝛽 > 0 and single-hump
potential if 𝛼 < 0 and 𝛽 < 0 as shown in Figures 1(a)
and 1(b), respectively.

(ii) For 𝛽2 = 4𝜆𝛼 with 𝛼 < 0, 𝛽 > 0, and 𝜆 > 0, the
unperturbed systems have three fixed (equilibrium)
points, that is, one centre (0, 0) and two saddles
connected by two heteroclinic orbits (±𝑥2, 0), (5).

(iii) For 𝛽2 > 4𝜆𝛼 with 𝛼 > 0, 𝛽 < 0, and 𝜆 > 0, the
unperturbed systems have five fixed points: one centre
(0, 0), two saddles connected by two heteroclinic
orbits (±𝑥2, 0), and two saddle points connected to
each other by one homoclinic orbit (±𝑥1, 0), (5) and
(6).

In previous works, Siewe Siewe et al. [16, 17] have shown that,
for 𝜇 = 0, system (4) is a Hamiltonian system with a pair of
heteroclinic orbits defined as

𝑥het (𝑡) = ±√2𝑥1 sinh ((𝛾/2) 𝑡)√−𝜉 + cosh (𝛾𝑡) ,

𝑦het (𝑡) = ±√2𝛾 (𝜉 − 1) cosh ((𝛾/2) 𝑡)
2 (−𝜉 + cosh (𝛾𝑡))3/2 ,

(5)

and a pair of symmetric homoclinic trajectories connecting
each unstable point to itself given by

𝑥hom (𝑡) = ±√2𝑥1 cosh ((𝛾/2) 𝑡)√𝜉 + cosh (𝛾𝑡) ,

𝑦hom (𝑡) = ±√2𝛾 (𝜉 − 1) sinh ((𝛾/2) 𝑡)
2 (𝜉 + cosh (𝛾𝑡))3/2 ,

(6)

where

𝑥1 = √− 1
2𝜆 (𝛽 + √Δ),

𝑥2 = √− 1
2𝜆 (𝛽 − √Δ),

𝛾 = 𝑥21√2𝜆 (𝜌2 − 1),

𝜉 = 5 − 3𝜌2
3𝜌2 − 1 ,

𝜌2 = 𝛽 − √Δ
𝛽 + √Δ,

Δ = 𝛽2 − 4𝛼𝜆.

(7)

3. Numerical Simulation

The general form of the periodically forced Van der Pol oscil-
lator model is given by the second-order nonautonomous
differential equation (1), where 𝑥 is the state variable, dot(s)
over 𝑥 denotes the derivative with respect to time 𝑡, 𝑓 is the
amplitude of periodic forcing, 𝜔 is the angular frequency,
𝜇 > 0 is the damping parameter, and 𝑉(𝑥) is the potential.
The potential for six physically relevant situations (single,
double, and triple-well and hump) is shown in Figure 1.
They correspond to different choices of the set of values for
the parameter set 𝛼, 𝛽, and 𝜆. For instance, the potential is
double-well if (𝛼 < 0, 𝛽 > 0, and 𝜆 > 0), double-hump if (𝛼 >
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Figure 1:The smooth potential function,𝑉(𝑥), of the 𝜙6-oscillators for (a) single-well: 𝛼 = 0.5 and 𝛽 = 0.175, (b) single-hump: 𝛼 = −0.5 and
𝛽 = −0.175, (c) double-well: 𝛼 = −0.46, 𝛽 = 0.7, and 𝜆 = 0.1, (d) double-hump: 𝛼 = 1.5, 𝛽 = −0.7, and 𝜆 = −0.1, (e) triple-well: 𝛼 = 0.46,
𝛽 = −0.7, and 𝜆 = 0.1, and (f) triple-hump: 𝛼 = −1, 𝛽 = 0.7, and 𝜆 = −0.1.
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Figure 2: Phase portrait of the chaotic attractor for the 𝜙6-Van der Pol oscillator with parameters values (a) 𝜇 = 0.01, 𝛼 = 0.46, 𝜔 = 0.86,
𝑓 = 9.0, 𝛽 = 1.0, and 𝜆 = 0.1 for the double-well potentials and (b) 𝜇 = 0.4, 𝛼 = 1.0, 𝜔 = 3.14, 𝑓 = 9.0, 𝛽 = −0.7, and 𝜆 = 0.1, for the
triple-well.

gNRR
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Figure 3: Schematic circuit of Van der Pol model.

0, 𝛽 < 0, and 𝜆 < 0), triple-well if (𝛼 > 0, 𝛽 < 0, and 𝜆 > 0),
and triple-hump if (𝛼 < 0, 𝛽 > 0, and 𝜆 < 0).

Van der Pol oscillator models describe various physical,
electrical, mechanical, and engineering devices, for different
potentials 𝑉(𝑥). The potentials 𝑉(𝑥) are approximated by
finite Taylor series for the 𝜙6-chaotic oscillators as shown in
(3), where𝛼,𝛽, and𝜆 are constant parameters of the potential.
The introduction of a new parameter 𝜆 in (2) yields 𝜙6-Van
der Pol equation (9) that can be expressed as

�̈� = 𝜇 (1 − 𝑥2) �̇� − 𝛼𝑥 − 𝛽𝑥3 − 𝜆𝑥5 + 𝑓 cos𝜔𝑡. (8)

Numerical simulation of (8) using fourth-order Runge-Kutta
method gives the phase portraits presented in Figure 2 for
double and triple scroll attractors. From the phase portraits

it is obvious that the systems are chaotic for the parameter
values used.

4. Design of Analog Simulator

Circuit realization of 𝜙6-Van der Pol system is shown in
Figure 3 (schematic circuit) and Figure 4 (analog circuit) in
which the nonlinear resistor (NR) can be modeled by using
𝑖-𝜙 nonlinear characteristic given by the following relation:

𝑖NR = 𝑑𝑞
𝑑𝜙 ⋅ 𝑑𝜙𝑑𝜏 = (𝛼𝑜𝜙 + 𝛽𝑜𝜙3 + 𝛿𝑜𝜙5) , (9)

where 𝛼𝑜, 𝛽𝑜, and 𝛿𝑜 are parameters of the nonlinear resistor
𝑔NR, 𝜙 is the flux over the resistor, 𝑞 is the charge, 𝐶 is
the capacitance, 𝐿 is the inductance, 𝑅 is the resistance,
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Figure 4: Analog circuit of 𝜙6-Van der Pol oscillator.

𝑉 = 𝐸 cos𝜔𝜏, and 𝑖NR is the current through the nonlinear
resistor. Applying Kirchoff ’s law to the circuit shown in
Figure 3, we have

𝑉𝑅 + 𝑉𝐿 + 𝑉𝐶 + 𝑉NR = 𝐸 cos𝜔𝜏,
𝑖𝑅 + 𝑖𝐿 + 𝑖𝐶 + 𝑖NR = 0. (10)

Then (10) becomes

𝑑2𝜙
𝑑𝑡2 − √ 𝐿

𝐶 [1 − 𝜙2] 𝑑𝜙𝑑𝑡 + 𝑅
𝐿2𝐶 (𝜙𝑜 + 𝜙3𝑜 + 𝜙5𝑜)

= 𝐸
√𝐿𝐶 cos𝜔𝑡.

(11)

Taking 𝜇 = √𝐿/𝐶, 𝑡 = 𝜏/√𝐿𝐶, 𝛼 = (𝑅/𝐿2𝐶)𝛼𝑜, 𝛽 = (𝑅/
𝐿2𝐶)𝛽𝑜, 𝑓 = 𝐸/√𝐿𝐶, and 𝛿 = (𝑅/𝐿2𝐶)𝛿𝑜, we can rewrite
electronic equation (11) in form of flux as

𝑑2𝜙
𝑑𝑡2 − 𝜇 [1 − 𝜙2] 𝑑𝜙𝑑𝑡 + 𝛼𝜙 + 𝛽𝜙3 + 𝛿𝜙5 = 𝑓 cos𝜔𝑡. (12)

The electronic analog simulator for 𝜙6-Van der Pol oscillator
can be designed using the electronic multiplier, 𝐴𝐽633𝐴𝑁,
which perform the multiplication operations. The analog
circuit operates over a dynamic range of ±15D.C. The
integrators are operational amplifiers,𝑈5 and𝑈6 (UA741CD)
with feedback capacitors, and summations of the state vari-
ables are obtained using operational amplifiers 𝑈7 with the
help of feedback resistors and multiple input resistors. Also,

the simulator output showing the dynamics when varying
the input components can be viewed directly on a software
oscilloscope using an appropriate time scaling. The designed
circuitry realization for the oscillator consists of two channels
A and B which realize the two state variables 𝑥 and �̇�,
respectively. The attractors were generated from 𝜙6-Van der
Pol circuit of Figure 4 by varying

𝜆 = 𝑅9
𝑅8 . (13)

The computer simulation of 𝜙6-Van der Pol circuit on
electronic software (multisim) (Figure 5(a)) and its hard-
ware implementation on electronic breadboard (Figure 5(b))
both reproduced the numerical results in Figure 2 on the
oscilloscope. Indeed, the practical implementation of the
aforementioned system has application in technology such as
in secure communication.

5. Conclusion

In this paper, we have used the analog electronic software
(multisim) for the electronic circuit design and simulation of
𝜙6-Van der Pol oscillator and have practically implemented
the designed circuit on electronic breadboard using analog
components. Our experimental results reproduced those
obtained via numerical simulation and multisim simulation.
Therefore the rich dynamics of extended Van der Pol oscil-
lator which have wide application in science and technology
have been practically implemented, for possible technological
application such as in secure communication.
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(i) (ii)

(a)

(i) (ii)

(b)

Figure 5: Phase portrait of 𝜙6-Van der Pol attractors for (a) computer simulation and (b) experimental implementation for (i) double-well at
𝑅8 = 50Ω and 𝑅9 = 200 kΩ and (ii) triple-well at 𝑅8 = 5 kΩ and 𝑅9 = 50 kΩ.
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