
Complexity Metric for XML Schema Documents

Dilek Basci and Sanjay Misra

Department of Computer Engineering, Atilim University, Ankara, Turkey

dilek_basci@hotmail.com, smisra@atilim.edu.tr

Abstract. Web Services, as a new type of distributed application, use XML
documents for their data representations, so design of XML schemas play an
important role in software development process and needs to be quantified for
ease of maintainability. In this paper, we propose a new complexity metric for
XML Schema documents (XSD). On the contrary of the available complexity
metrics, the proposed metric is based on the internal architecture of the XSD
components and hence considers the complexities of its building components.
The proposed metric has been demonstrated with examples. Further a
comparative study with other similar metrics proves its soundness and
robustness.

Keywords: Complexity metric, W3C XML Schema, Web services, WSDL,
SOAP

1. Introduction

Connectivity among users and different type of applications via World Wide Web
continues to proliferate at an astounding rate since the invention of the Internet. With
the emergence of web applications the idea of integrating them as a very loosely
coupled software components leads to the development of Web Services as a new
type of distributed applications that are based on web technologies. Because the
design purpose of these components is to provide services available from anywhere
on the Internet, the idea of dynamically integrating them at runtime have been gaining
a great deal of acceptance by different types of parties that are connected to the
internet for different purposes. For integration of these components the
interoperability requirement has become a major concern of the service suppliers and
gained much bigger priority across the industry. In order to satisfy this requirement
the applications must have the capability of communication with the other
applications via Internet protocols and sending and receiving data. In order to work in
interoperable manner these distributed applications have the concise and clear
agreement on the common specifications of protocols and data format. Additionally,
such applications should be developed as fully autonomous components, that is, they

2 Dilek Basci and Sanjay Misra

must have free of dependence to run on different types of platforms. Since underlying
business and data models used by applications that are indented to be integrated may
change over time, in order for accommodation of these changes building a flexible
document structure that can be extended will pay off in the future.

 The desired integration of such applications running on different software
platforms is provided by Web Services[3], [8] that are based on an open standardized
suite of technologies such as eXtensible Markup Language (XML) [14], Hyper Text
transport Protocol (HTTP)[3], [8], [4], Simple Object Access Protocol[3], [8] (SOAP)
and Web Service Description Language[3], [8] (WSDL). Further, this integration is
achieved more rapidly, easily, and cheaply than ever before.

 The usage of Web service described by the WSDL [3], [8] documents requires a
service provider and consumer to exchange XML messages. The message format
must be well defined in order for the message sender can easily construct and the
message receiver can process. The WSDL document uses a schema to define the
name and types of the elements and attributes conveyed by the message. Once service
consumers have the WSDL file they can communicate with the Web services by using
SOAP [3], [8]. If we think Web services as remote objects that can be exposed
through WSDL, the SOAP provides a mechanism to remotely access to these objects
across the Internet without having the problems in integration and interoperability
issues between enterprises. In this mechanism XML documents are used for
representing and transporting data to and from integrated applications’ public
interfaces.

Representing the application data with XML documents requires making strategic
decisions that take into consideration some design issues which should be handled at
design time, such as performance, security, extensibility, reusability, data access etc.
In XML context, the data representations are made by designing schemata which can
be written in different XML schema languages such as DTD [14], W3C XML
Schema [15], RELAX [5], [20]. W3C XML Schema [15] and DTDs [14] are the most
favored schema languages for generating XML documents.

Deploying XML documents is a challenge problem for an application without
using supporting schema technology. In order for XML documents to provide a
common understanding about data exchanged between applications these XML
documents should be validated against the XML schema definition (XSD). For
instance, the application that requests customer information and the application that
provides information as a response to the requester application should agree on that
the exchanged data is exactly about the customer information. In this point of view
XML schemas play an extremely important role in software construction projects.
From the Web service design perspective the decisions in XML schema definition
(XSD) design can have significant impact on the Web service design. Neglecting
schemas implies that the schema validators are not used to determine if a given XML
document satisfies desired data transported among applications. In such a case the
required check have to be performed by the application programs implying that the
application developers have to write lengthy code. Using schemas not only provides
common understanding about exchanged data but also the ability of easy access
methods for XML documents to be validated.

All above considerations related with XML documents imply that the schemas
need to be properly designed, so that it can be easily maintained in order for XML

Complexity Metric for XML Schema Documents 3

data to be effectively and properly used by distributed applications. Further, schema
metrics must be developed to enable quantification of schema size, complexity,
quality and the other properties; however, a few researches that deal with schema
quality and complexity metric has been done. Klettke et al. [6] used some well known
procedural metrics for evaluating complexity of DTD, such as LOC, McCabe, Fan-in
and Fan-out, DIT. An extension of this paper is [7] that present eleven metrics for
XSDs and two formulae that use the metrics to compute quality indices for XSDs and
complexity indices for conforming XML documents. The metrics reported in that
paper are mostly related with XSD components’ counts such as number of elements,
complex and simple types, annotations, type references, unbounded elements
definitions/declarations. Mustafa et al. [10] demonstrated that the XML documents
that are generated by the DTD with higher nesting levels have higher weights and
more complicated compared to the documents with lower nesting levels. In this
demonstration various techniques were used to represent XML documents as a regular
expression and by determining complexity values of regular expression; a tree
representation of XML documents and the implementation of Weight Allocation
(WA) algorithm. A comprehensive analysis was made for XML Schema documents
usage in [11] and, in addition to, the measures for XSD-agnostic schema size such as
number of all XML nodes; XSD-aware counts such as number of all element and
attribute declaration; all type, and model group definitions, the metrics LOC,
McCabe were also revisited. In [13] to measure structural complexity of XSDs the
metrics which are Tree Impurity, Efferent and Afferent Coupling, Instability,
Cohesion, Normalized Count of Modules were evaluated by the adaptation of some
well known existing metrics developed for other software artifacts. Besides these
papers many online articles are also available on the web [16].

The common approach to measure the complexity of XML schema documents in
[7], [11] is to count the number of schema components. However, the metrics that
measure schema’s complexity by counting the number of each component do not give
sufficient information about complexity value of a given schema and the complexity
of each independent component is also important, which were neglected in those
papers. This is the main motivation for us to develop new metric for XSDs. Another
motivation to focus on to develop the complexity metric for XSDs is that W3C XML
Schema language [15] has the stronger capability than DTD to describe the
vocabularies of XML documents and has general agreement of being the schema
language of the future for XML. We suggest that the complexity of a given XML
schema document written in W3C XML Schema language closely depends on
complexities of internal complexities of its building components, that is, each
component contributes their complexity values on the basis of their design
architectures to the schema document’s complexity. In this point of view, it will be
meaningful to assign a weight value for each component that reflects complexity of
each component called complexity degree. Further, for calculating the complexity of
the schema document each of its component’s weight values should be summed up in
order to evaluate a single complexity value.

In section 2 we define our metric for XSD. The proposed metric is demonstrated
by examples in section 3. A comparative study with other measures has been done in
the same section. Lastly, section 4 provides concluding remarks and a reflection on
future work.

4 Dilek Basci and Sanjay Misra

2. Proposed Metric

Major building components of XML Schema are elements having simple or complex
type as a type reference; attributes, simple and complex types, elements and attributes
group definitions/ declarations [18]. The schema document may not necessarily
validate any XML document and can be designed as a library document. Based on its
design style [12] a given schema may have different number of components
declared/defined locally or globally. For example, the number of complex or simple
type definitions may be greater than element with or without attributes declaration or
vice versa or the schema may use global elements and attributes group definitions or
encode all groups inside complex type’s content model definition instead. Based on it,
we proposed that, the complexity of XSD depends upon the following factors;

a) The complexity due to elements and attributes definitions/declarations.
b) The complexity due to elements and attributes group definitions/
 declarations.
c) The complexity due to all types including user defined and built-in simple
type and complex type definitions.

Accordingly, the total complexity of the XSD is given by the following formula

 C(XSD)= C(Vg) + C(Gg)+ C(Tg) (1)

where C(XSD) is the complexity value of the schema document(XSD) written in

XML Schema language; C(Vg) is the total complexity values of all unreferenced
global elements and attributes that is assigned by the weight values of reflected by
their type complexity values; C(Gg) is the total complexity values of unreferenced
global elements and attributes group, and C(Tg) is the total complexity values of
unreferenced global complex and simple type definitions/declarations of XML
Schema document. By the word “unreferenced” we mean components that have no
reference made within any component definitions of the current schema. The reason
for considering unreferenced components is that; since an element or attribute being
declared locally or globally have type reference to any globally defined complex or
simple type definitions, we are at risk adding two times both element’s, attribute’s
complexity values and their respective type complexity values to C(XSD). Similarly,
since global elements and attributes group can be referenced inside any complex type
definitions or the other group definitions we again risk for adding two times
complexities of both complex type’s and group’s definitions.
Definitions of each component of C(XSD) are given below:

C(Vg) can be defined as:
 C(Vg)=C(Eg)+C(Ag) (2)

 where C(Eg), and C(Ag) are complexities of unreferenced global elements and
attributes definitions/declarations respectively and given by:

 C(Eg)= ; (3)
ig

N

i
i Ewe∑

=1

Complexity Metric for XML Schema Documents 5

 C(Ag)= ; (4)
jg

M

j
j Awa∑

=1

 where, N, and M are the total number of unreferenced global element, attribute
declarations; wei , and waj are corresponding weight values for the type definition of
the unreferenced global element

igE and attribute .
jgA

C(Gg) can be defined as:
 C(Gg) = C(EGg) + C(AGg) (5)
 where, C(EGg), and C(AGg) are the complexity of the unreferenced global elements
and attributes group definition/declaration respectively and are defined as:

 C(EGg) = (6)
tg

K

t
t EGweg∑

=1

 C(AGg)= (7)
sg

P

s
s AGwag∑

=1

 where, K, and P are the total number of unreferenced global elements and
attributes group declarations/definitions; wegt ,and wags are corresponding weight
values of the elements group and attributes group

tgEG
sgAG respectively.

C(Tg) is defined as:
 C(Tg)=C(cTg) + C(sTg) (8)
 where, C(cTg), and C(sTg) are complexity of global complex and simple type
definition respectively and defined as:

 C(cTg)= (9)
rg

R

r
r cTwc∑

=1

 C(sTg)= (10)
qg

Q

q
q sTws∑

=1

 where, R, and Q are the number of global unreferenced complex-type and simple-
type definitions; wcr,and wsg are corresponding weight values of complex and simple
type definitions , respectively. Thus, the equation for C(XSD) (see the

equation 1) can be rewritten as:
rgcT

qgsT

C(XSD) = C(Vg) + C(Gg)+ C(Tg)
 = [C(Eg) + C(Ag)] + [C(EGg) + C(AGg)] + [C(cTg) + C(sTg)]

=[+]+[+]+
ig

N

i
i Ewe∑

=1
jg

M

j
j Awa∑

=1
tg

K

t
t EGweg∑

=1
sg

P

s
s AGwag∑

=1

 [+] (11)
rg

R

r
r cTwc∑

=1
qg

Q

q
q sTws∑

=1

As explained earlier, weight values for each schema component can reflect the
complexity degree of corresponding component and are assigned on the basis of their
design structures i.e. its internal architectures, since components of XSDs can be
dependent on each other in the sense that the definition/declaration of any component

6 Dilek Basci and Sanjay Misra

may use the other components [17]. As a result, while the weight value of element
depends on its type’s weight value, that type’s weight value depends on its internal
structure. In this point of view, due to the complex type definition can include nested
compositors or particles with different number of occurrences [17], [18] based on its
content model, the weight value for an element having simple type as a type reference
differs from the element having complex type. Similarly, the weight value for a
complex type with simple content model may differ from a complex type with
complex content model. Hence, while assigning weight value to a complex type
definition, weight values of each constituent member encoded in the content model of
it should be considered. This is also valid to evaluate weight values for the element
and attribute groups definitions since each member of any type of groups definitions
may have different complexity weight values.

We assume that built-in simple types have the weight value of 1 since these types
are simplest data type structure used in the schema document (XSD). In the schema
document an element type that does not explicitly specify a structure type implicitly
specifies anyType [2], [12], [19], as the structure type. The content of an element in an
XML instance whose structure type is anyType is unconstrained. The simplest type
structure for anyType can be a built-in simple type. For this reason we assumed that
the weight value for any attributes or elements whose type definition is specified by
anyType is 1. The <any> [12, 17, 18, 19] element provides a mechanism for
specifying elements with what the XML Schema Recommendation [17] calls a
wildcard. By the usage of the <any> element an XML validator validates elements in
an XML instance document. The <any> element generally specifies a set of
namespaces against which the XML validator may validate. The XML validator
searches each namespace for global element types that might correspond to the
elements referenced in the XML instance. Since, in the simplest case that global
element types can be a simple type we made another assumption that the weight for
an element declared by <any> element in the schema is 1. Similarly, we also assume
that the weight value for an attribute declared by <anyAttribute> [12], [17], [18], [19]
element in the schema is 1 since <anyAttribute> element is analogous to the <any>
element of W3C XML Schema.

Another point that needs to pay attention is that we only take into considerations
referenced components of the external schemas that are included to the current
schema via import, include and redefinition mechanism [12], [17], [18], [19] while
evaluating complexity value of the current schema document. Based on these
assumptions, weight values for each XML schema component can be calculated as
follows:
Element’s weight value
we = ws, if elements have simple- type (12.1)
 =wc, if element has complex-type (12.2)
 =1, if element is declared by using < any > element (12.3)
 =1, if element is declared by using anyType (12.4)
where ws is the weight value for simple type definition; wc is the weight value for the
complex type definition.
Attribute’s weight value:
wa=ws ,since attributes can only have simple-type (13.1)
 =1, if attribute is declared by < anyAttribute > elements (13.2)

Complexity Metric for XML Schema Documents 7

Weight values of elements group can be calculated by summing up all its elements’
weight values, that is:

 weg= wegbaseGroup ± i

N

i
i Ewe∑

=1
 (14.1)

 where, wegbaseGroup is the weight value of base elements group of defined
elements group if it is extended or restricted by redefinition mechanism of W3C XML
Schema.; N is the number of newly declared elements inside group redefinition or the
number of not inherited elements from base group to redefined group; wei is the
weight value of corresponding declared element Ei .

Weight values of attributes group can be calculated by summing up all its
attributes’ weight values and define as:

 wag = wagbaseGroup ± (15.1) i

N

i
i Awa∑

=1

Here, wag definition is similar to weg definition, but, in this case we are mentioning
about attributes. Note that the weight values of the attributes that are prohibited by the
derived attribute group subtracted from the weight value of the base attribute group.
The meaning of ± sign will be explained in the next paragraph.

The weight value of a complex-type can be calculated by all its constituent
components (elements, attributes, and groups) and can be defined as:

w c = wcbaseType ±[+ + +] (16) i

N

i
i Ewe∑

=1
j

M

j
j Awa∑

=1
t

K

t
t EGweg∑

=1
s

P

s
s AGwag∑

=1

 where, wcbaseType is the weight value of derived complex-type’s parent; N, M, K,
and P are the number of local or referenced elements, attributes, element groups and
attribute groups definitions/declarations respectively. If a complex type is not derived
complex-type these capitals represents the number of not inherited components from
base type or the number of newly added components to derived complex-type
definition; wei, waj, wegt and wags are corresponding weight values of element Ei,
attribute Aj, element group EGt and attribute group AGs respectively. Note that the ±
sign in equations (14.1), (15.1) and (16) indicates that if groups and complex types are
derived by extension, then the weight values of all newly added components of the
derived groups or complex types should be added to respective parent’s weight value
and if it is derived by restriction then weight values of all constituent members that
are not inherited from parent should be subtracted from its parent’s weight value.
Note that element and attribute groups can be derived via redefinition mechanism of
W3C XML Schema [12], [18].
Weight value of a simple-type can be defined as:
ws =1, if it is built in simple type (17.1)
 = r|r is the number of restriction, if it is derived by restriction. (17.2)

 = u |u = , if it is derived by union. (17.3) i

P

i
i Mw∑

=1

 = l | l is the weight value of item type, if it is derived by list. (17.4)

8 Dilek Basci and Sanjay Misra

In (17.3), P is the number of members declared within union simple-type; wi is the
weight value of member Mi that can be built-in or derived simple type and equals to
ws since the types of the members should only be simple type [18].

3. Illustration of the Proposed Metric

To illustrate the proposed metric we used one WSDL document example, WS-
BaseFaults.wsdl, available online [22]. Since the WSDL document uses the <type>
element as a container for data type definitions that can represented by using XML
Schema. In figure 1.a the WSDL document example named as WS-BaseFaults.wsdl is
shown and the schema document, WS-BaseFaults.xsd that is included inside its
<type> element is given in figure 1.b. The WS-BaseFaults.wsdl document defines an
XML Schema type for a base fault, along with rules for how this fault type is used by
Web services. A designer of a Web services application often uses interfaces defined
by others. Managing faults in such an application is more difficult when each
interface uses a different convention for representing common information in fault
messages. Support for problem determination and fault management can be enhanced
by specifying Web services fault messages in a common way. When the information
available in faults from various interfaces is consistent, it is easier for requestors to
understand faults. It is also more likely that common tooling can be created to assist
in the handling of faults [22].The calculation of the complexity value for the schema
document WS-BaseFaults.xsd is explained in section 3.1.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="BaseFaults"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsbf="http://www.ibm.com/xmlns/stdwip/web-
services/WS-BaseFaults"targetNamespace="http://www.ibm.
com/xmlns/stdwip/web-services/WS-BaseFaults">
 <!-- ======== Types Definitions ======= -->
 <wsdl:types>
 <xsd:schema >
 <xsd:import
 namespace=
 "http://www.ibm.com/xmlns/stdwip/web-services/WS-
BaseFaults"
 schemaLocation= "./WS-BaseFaults.xsd"/>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="BaseFaultMessage" >
 <wsdl:part name="Fault" element="wsbf:BaseFault" />
 </wsdl:message>
</wsdl:definitions>

Figure1.a. The WSDL document WS-BaseFaults.wsdl uses the schema document
WS-BaseFaults.xsd (see figure1.b) declared inside its <type> element.

Complexity Metric for XML Schema Documents 9

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"
xmlns:wsbf="http://www.ibm.com/xmlns/stdwip/web-services/WS-
BaseFaults"
targetNamespace="http://www.ibm.com/xmlns/stdwip/web-
services/WS-BaseFaults">
<xsd:import
namespace="http://schemas.xmlsoap.org/ws/2003/03/addressing"
schemaLocation="http://schemas.xmlsoap.org/ws/2003/03/addressing
"/>
<xsd:import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="http://www.w3.org/2001/xml.xsd"/>
 <!-- ----BaseFault Types------->
 <xsd:element name="BaseFault" type="wsbf:BaseFaultType"/>
 <xsd:complexType name="BaseFaultType">
 <xsd:sequence>
 <xsd:element name="Timestamp" type="xsd:dateTime"
minOccurs="1" maxOccurs="1"/>
 <xsd:element name="Originator"
type="wsa:EndpointReferenceType" minOccurs="0" maxOccurs="1"/>
 <xsd:element name="ErrorCode" minOccurs="0"
maxOccurs="1">
 <xsd:complexType>
 <xsd:complexContent mixed="true">
 <xsd:extension base="xsd:anyType">
 <xsd:attribute name="dialect"
type="xsd:anyURI" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Description" minOccurs="0"
 maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute ref="xml:lang"
 use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:elementname="FaultCause"type="wsbf:BaseFaultTyp
e" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Figure1.b. The schema document WS-BaseFaults.xsd.

10 Dilek Basci and Sanjay Misra

All the components definition/declarations with their weight values of the schema
document WS-BaseFaults.xsd is given in table1. The schema document includes the
other two schemas by import mechanism of W3C XML Schema [12], [17], [18], [19],
thus, adds the complexities of those schemas referenced components to its complexity
value. The complex type EndpointReferenceType is imported from the included
schema addressing.xsd [23] as a type reference for the local element Originator. The
attribute declaration of the element Description is imported by giving reference to the
“xml:lang” attribute declaration of the other included schema document xml.xsd.

Table1. The components of the schema document WS-BaseFault.xsd (see Figure1.b).

Weight
QName Notes Symbol Value Equation

No
BaseFault A complex-typed global element we 12 12.2,16

Description A global element having complex
type derived by extension we 2 12.2,16

BaseFaultType A global complex type definition wc 12 16
Timestamp A simple-typed local element we 1 12.1,17.1
Originator A complex-typed local element we 9 12.1,16

ErrorCode A local element having complex
type derived by extension we 2 12.1,16

dialect A built-in simple-typed local
attribute wa 1 13.1,17.1

xml:lang
An attribute imported from

xml.xsd having user-defined
simple type derived by union

wa 1 13.1,17.3

wsa:EndpointRefer
enceType

A complex type imported from
addressing.xsd wc 9 16

From Table1 it can be observed that elements may have different complexity

degrees based on the complexity value of their type definitions. For example, the two
global elements “BaseFault” and “Description” have different complexity degrees
represented by their weight values even though both are complex-typed elements. The
BaseFault element’s weight value is assigned by calculating the weight value of its
type definition which is BaseFaultType. For this assignment we use the equations
(12.2) and (16). According to the equation (12.2) the element’s weight value, we, is
calculated by using the equation (16) since the element has complex type. In order to
calculate the complex type weight value, wc, we should sum the weight values of all
the components declared inside that complex type definition. The BaseFaultType
complex type includes three elements declaration. Therefore we sum up the weight
values of the elements TimeStamp, Originator and ErrorCode. Thus, the weight
value, wc, for BaseFaultType is:

 wc BaseFaultType = 1 + 9 + 2
 = 12

Complexity Metric for XML Schema Documents 11

 Since the complex type BaseFaultType is referenced by the element BaseFault as
a its type structure definition the weight value for this element is assigned as 12. Note
that in order to assign weight values for the imported components we should analyze
the external schema documents included via import, include and redefine mechanism
of W3C XML Schema. For example, the weight value for the local element
Originator declared inside the complex type BaseFaultType definition is we should
analyze the included external schema document addressing.xsd [23] since the
imported complex type definition EnpointReferenceType is encoded inside this
external schema. Similarly, the weight value for the attribute declaration of the
element Description we should refer the other included external schema document
xml.xsd [24].

3.1 Calculation of C (XSD)

As mentioned in section 2 while evaluating complexity value of a given XML
Schema document, C(XSD), we are adding complexity values of all unreferenced
globally defined/declared elements, attributes plus unreferenced global element,
attribute groups plus unreferenced global complex and simple type
definitions/declarations. The C(XSD) value for the schema document WS-
BaseFaults.xsd is calculated by only summing the weight values i.e. complexity
values of two unreferenced global elements, namely BaseFault and Description,
since this schema has neither unreferenced groups nor type definitions/declarations.
The values of C (XSD) and its components are shown in table2.

Table2. The overall complexity value of the schema document WS-BaseFault.xsd & C(XSD).

 Components Value Equation no

C(Eg) 14 3
C(Ag) 0 4

C(EGg) 0 6
C(AGg) 0 7
C(cTg) 0 9
C(sTg) 0 19

C(XSD) 14 11

The overall complexity value of the schema document WS-BaseFaults.xsd is

evaluated by using equations (1) and (11):

C (XSD) = C(Vg) + C(Gg)+ C(Tg)

 =[+]+[+]
ig

N

i
i Ewe∑

=1
jg

M

j
j Awa∑

=1
tg

K

t
t EGweg∑

=1
sg

P

s
s AGwag∑

=1

12 Dilek Basci and Sanjay Misra

 +[+]
rg

R

r
r cTwc∑

=1
qg

Q

q
q sTws∑

=1

 = [+] + 0 + 0
ig

N

i
i Ewe∑

=1
jg

M

j
j Awa∑

=1

 = + 0
ig

N

i
i Ewe∑

=1

 =weBaseFault+weDescription (18)

The global element Description has a derived anonymous complex type with
simple content and its weight value is assigned based on its type definition’s weight
value. The anonymous complex type is derived from the built-in simple type string
and hence, its base type weight value is 1. Further, this anonymous complex type has
only one attribute declaration having user defined simple type derived by union from
the built in simple type language. Note that to assign the weight value to this attribute
we should refer the external schema document xml.xsd [24]. Hence the weight value
for the element Description is evaluated by using the equations 12.2 and 16:

weDescription = wc

 =wcbaseType ±[+ + +] i

N

i
i Ewe∑

=1
j

M

j
j Awa∑

=1
t

K

t
t EGweg∑

=1
s

P

s
s AGwag∑

=1

 = 1 + [0+ +0+0] j
j

j Awa∑
=

1

1

 = 1 + j
j

j Awa∑
=

1

1

 = 1 + waxml:lang
The weight value, wa, for the attribute “xml:lang” is evaluated by the equations

(13.1) and (17.3) since the attribute has user-defined simple type derived by union.
When we look to the declaration of the attribute “xml:lang”encoded inside
xml.xsd[24] ,we see that it has union simple type with only one member having the
built-in simple type language. According to (13.1) and (17) the weight value for this
attribute is:

waxml:lang = ws
 = u

 = i

P

i
i Mw∑

=1

 = 1
 where wi is the weight value for the type of union member having the built-in

simple type language and its value is 1.

Complexity Metric for XML Schema Documents 13

As a result, the weight value for the element Description is recalculated by (12.2)
and (16):

weDescription = wc

 = wcbaseType ± [+ + +] i

N

i
i Ewe∑

=1
j

M

j
j Awa∑

=1
t

K

t
t EGweg∑

=1
s

P

s
s AGwag∑

=1

 = 1 + waxml:lang
 = 1 + 1
 = 2

The weight value, weBaseFault , for the element BaseFault is evaluated in a similar
way and the weight value for it is 12. Hence, by turning back to the equation (18) and
putting the weight values of the elements BaseFault and Description we evaluate the
overall complexity value for the schema document WS-BaseFault.xsd as:

C(XSD) = weBaseFault + weDescription
 = 12 + 2
 = 14

4. Concluding Remark and Future Work

Flexible nature and ease of implementation of XML allows developer to create their
own mark-ups to describe data, to define document types, to store, share information
and to transmit documents across web, thus, XML has been gaining a general
acceptance as a standard for data representation and exchange information since its
development. As a new type of distributed application based on XML technologies,
Web Services [3] use XML documents for their data representations. In this aspect
designing XML schemas play an important role in software development process and
needs to be quantified for ease of maintainability. For this purpose we have presented
the complexity metric for the schema documents written in W3C XML Schema
language since it has the stronger capability than DTD to describe the vocabularies of
XML documents and has general acceptance of being the schema language of the
future for XML. The proposed metric value was evaluated on the basis of the internal
complexities of major building components of XSDs and computed by using the
provided formulas. Further, we demonstrated that the internal architecture of XSDs’
building components affect the overall complexity of XSD. From this demonstration
we can insist on that our complexity metric gives better indication than the metrics
which measures the complexity of a given schema based on the counts of schema’s
each components. In order for the proposed metric to be reliably applied for schema
quantification it should be validated. The empirical validation of the proposed metric
in this paper is one of our future works. As another future work we aimed to adopt
existing grammar metrics [1], [9] to the schema documents written in DTD, W3C
XML Schema, RELAX and to develop new ones since these languages can also be
represented by tree grammars [21].

14 Dilek Basci and Sanjay Misra

References:

1. Alve,T., Visser,J.: Metrication of SDF Grammars, Technical Report. Departamento
de Informática, Universidade do Minho, DI-PURe-05.05.01, May 2005.

2. Binstock,C., Peterson, D., Smith, M., Wooding,M., Dix, C., Galtenberg,C.:The XML
Schema Complete Reference. Addison Wesley Professional Publischers.(2002)

3. Erl,Thomas:Service-Oriented Architecture: A Field Guide to Integrating XML and
Web Services, Prentice HallPublischers.(2004)

4. Gourley, D., Totty, B.: HTTP: The Definitive Guide. O'Reilly Publischers(2002)
5. ISO/IEC:Information Technology – Text and Office Systems – Regular Language
6. Description for XML (RELAX) – Part 1: RELAX Core, 2000.D TR 22250-1.
7. Klettke, M. , Scneider,L. ,Heuer, A.,”Metrcis for XML document collections”,

XMLDM Workshop,Czech Republic,2002,pp.162-176
8. McDowell,A., Schmidt,C., Yue,K.:Analysis and Metrics of XML Schema. In SERP

'04, Proceedings of the International Conference on Software Engineering Research
and Practice, 538-544. CSREA Press(2004)

9. Newcomer,E.,Greg Lomow,G.: Understanding SOA with Web Services. Addison
Wesley Professional.(2004)

10. Power,J.F., Malloy,B.A.: A metrics suite for grammar-based software. Journal of
Software Maintenance and Evolution. John Wiley & Sons, Inc., 16(6), 2004, pp. 405-
426.

11. Qureshi,Mustafa H., Smadzadeh,M.H.,:Determining the Complexity of XML
Documents, Proceedings of the International Conference on Information Technology:
Coding and Computing (ITCC'05) - Volume II - Volume 02,pp. 416 – 421,April
2005.

12. R. L¨ammel,R., Kitsis, S., Remy,D.: Analysis of XML schema usage. In Conference
13. Proceedings XML 2005(2005)
14. Van der Vlist , Eric:XML Schema. O'Reilly Publication(2002)
15. Visser,J.:Structure Metrics for XML Schema, Proceedings of XATA.(2006)
16. http://www.w3.org/TR/1998/REC-xml-19980210
17. http://www.w3.org/TR/xmlschema-1/
18. http://www.xfront.com/GlobalVersusLocal.html;

http://www.oreillynet.com/xml/blog/2006/05/metrics_for_xml_projects_1_ele.html
19. http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
20. http://www.w3.org/TR/2001/PR-xmlschema-0-20010330/
21. http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
22. http://www.xml.gr.jp/relax.
23. http://www.cs.ucla.edu/∼ dongwon/paper/.
24. http://www-128.ibm.com/developerworks/library/specification/ws-resource/
25. http://schemas.xmlsoap.org/ws/2003/03/addressing.xsd
26. http://www.w3.org/2001/xml.xsd

http://www.oreillynet.com/cs/catalog/view/au/971?x-t=book.view
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2001/PR-xmlschema-0-20010330/

