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Abstract

In maintenance systems, the current approach to workforce analysis entails the utilisation
of metrics that focus exclusively on workforce cost and productivity. This method omits
the “green” concept, which principally hinges on energy-efficient manufacturing and also
ignores the production-maintenance integration. The approach is not accurate and could
not be heavily relied upon for sound maintenance decisions. Consequently, a
comprehensive, scientifically-motivated, cost-effective and an environmentally-conscious
approach are needed. With this in view, a deviation from the traditional approach through
employing a combined fuzzy, quality function deployment interacting with three meta-
heuristics (colliding bodies optimisation, big-bang big-crunch and particle swarm
optimisation) for optimisation is made in the current study. The workforce size
parameters are determined by maximising workforce size’s earned-valued as well as
electric power efficiency maximisation subject to various real-life constraints. The
efficacy and robustness of the model is tested with data from an aluminium products
manufacturing system operating in a developing country. The results obtained indicate
that the proposed colliding bodies’ optimisation framework is effective in comparison
with other techniques. This implies that the proposed methodology potentially displays
tremendous benefit of conserving energy, thus aiding environmental preservation and cost
of energy savings. The principal novelty of the paper is the uniquely new method of
quantifying the energy savings contributions of the maintenance workforce.

Keywords: Workforce, fuzzy inference system, quality function deployment, colliding
bodies optimisation

1. Introduction
The adequate determination of sufficient workforce size for manufacturing concerns has
been a problem that has confronted industries for decades. The problem is further
compounded when planning for both maintenance and production at the same time as in
the case of many small-and medium-scale enterprises (Sahu et al., 2013), which are
financially incapable to engage multiple employees to independently run both production
and maintenance functions at the same time. Instead, industries engage multi-skilled
professionals to man both the production and maintenance functions at the same time.
The optimal determination of workforce sizes in such a setting, where the same technical
personnel (engineers, technicians and factory support staff) run both maintenance and
production functions at the same time, is of great interest in manufacturing environments
where industrial economy is a priority in achieving competitive status in the market.



4

Economic workforce size determination is feasible in an environment where uncertainty
in both production and maintenance activities could be captured and incorporated into the
modelling framework.

Although several studies have attempted to determine the workforce size without due
consideration for uncertainty (Techawiboonwong et al., 2006; Yue et al., 2007; Ighravwe
and Oke, 2014), decisions made from such models are often of significant shortcomings
and sometimes wrong. Due to the progressive development in literature and at the same
time the great success attached to fuzzy logic applications in practice, there is an
economic significance and management importance in quantifying workforce parameters
in manners to incorporate variations in uncertainty, evidenced in maintenance and
production workforce functions in order to make correct decisions. Although substantial
works have been done to quantify or determine workforce size in the past (Felan and Fry,
2001; Yue et al., 2007; Fletcher et al., 2008; Ighravwe and Oke, 2014), from the review
of literature, it can be asserted that most of the workdone have been restricted to service
settings such as hospitals, while production optimisations in manufacturing have gained
little attention of researchers. Furthermore, maintenance settings have attracted lesser
attention of investigators and the integrated maintenance and production workforce
determination has received the least attention in research.

Owing to the important role that manufacturing operations plays in today’s
manufacturing system, a great need arises to capture all possible outcomes of workforce
variables in both production and maintenance systems. Consequently, the current article
describes the development of an integrated fuzzy logic and quality deployment model
(QFD) and their use to determine the workforce variables for both maintenance and
production systems. The workforce values resulting from the current work are intended
for use by industries in general to improve the quality of decisions in manufacturing
systems.

In determining the workforce size for a manufacturing outlet in which energy
efficiency is critical and the production-maintenance services are performed by the same
set of personnel, an adequate understanding of all factors affecting the workforce
estimation is needed. Generally, the development of workforce size models should be
based on qualitative measures such as workforce fatigue and training impacts as well as
quantitative measures such as productivity, efficiency, utilisation and turnover rate. The
data specifically related to quantitative measures are obtainable from field visits and
questionnaire administration. Also, questionnaires designed to obtain the opinions of
company management could provide substantial data on the qualitative aspects of the
data. Since diverse personnel responses are obtainable, it is sensible to conduct an
evaluation and analysis of the workforce size in a fuzzy environment. It means that the
company management are able to express their minds on workforce issues in a range of
linguistic variables over a fuzzy scale based on their own subjective opinions. Thus, the
translation of the managers’ verbal expressions into numeric values with fuzzy models
could be allowed (El-Baz, 2011).

Consequently, the current paper suggests a novel combined integration of fuzzy
inference systems and QFD. This integrated framework is potentially capable of tracking
the rating problem quantitatively and also the qualitative factors involved in workforce
size determination and effectively analyse the scenario. The method advanced in the
current paper yielded an analysis of the workforce needed for the sub-units within the
production and maintenance systems. To further explore the possibility of using improved
optimisation algorithm for maintenance variable optimisation, the article selects colliding
bodies’ optimisation (CBO) algorithm as a new solution method for the proposed model.
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Judging by the best of the authors’ knowledge, no study has applied CBO in
maintenance variables optimisation for workforce size determination. However, it is
interesting to apply new meta-heuristics that have been proven successful in other
environments to expand the application frontiers of such a meta-heuristic and improve
performance. The performance of CBO and particle swarm optimisation (PSO) has been
investigated, and a superior performance of CBO was observed (Kaveh and Mahdavi,
2014a, b). In carrying out the literature study for the current work, one was confronted
with the problem of relevance and appropriate capture of literature as to the identification
of the most appropriate literature to the research being contributed. The most relevant
literature falls in the categories of workforce planning literature and those papers written
using the integrated fuzzy and QFD concepts are the most appropriate. From another
perspective, enquires were directed to probing the literature concerning the marriage of
production functions and maintenance activities. A brief literature review then follows:

The fuzzy multiple-objective programming technique contributed by Karsak
(2004) has the capability to contain subjective as well as imprecise information that is
characteristically present in the planning process of QFD used to evaluate the satisfactory
level of design requirements. The author applied linguistic variables to depict the design
data that is imprecise as well as the degree of importance of every design goal. The model
was implemented using a real-life application. Yan and Ma (2015) contributed a decision-
making method to concurrently treat the problem of uncertainties solved with the use of
QFD. The developed model is two-phased and solves two classes of uncertainties. The
first level relates to the determination of the frizzy preference association of various DRs
in terms of every customer, which depends on the order-based semantics pertaining to
linguistic information. Furthermore, the second level; involves the determination of the
prioritization of DRs using synthesis of every customer’s fuzzy preference association
into a total one by fuzzy majority. Applicability of the approach was illustrated with two
principal illustrations involving a Chinese-based restaurant as well as a manufacturing
industry that operates on flexible principle.

Zandi and Tavana (2011) contributed a structured approach to assess and pick the
most acceptable agile e-CRM structure in a fast-changing production environment. The
basis for evaluating the e-CRM frameworks is customer as well as financial-based
features to obtain manufacturing agility. The work prioritized then e-CRM structures in
line with their financial-based attributes with the use of frizzy group real-options
computational model. Furthermore, the e-CRM framework categorized in terms of their
customer-based behavior with the use of hybrid frizzy-group permutation as well as a
four-stage fuzzy-QFD approach in terms of three principal outlooks of agile
manufacturing (i.e. operational, functional and strategic agilities). On a final note, the
most attractive agile e-CRM structure was picked with the use of Technique for Order of
Preference by Similarly to Ideal Solution (TOPSIS) approach. Using case study analysis,
the feasibility of applying the proposed approach was demonstrated and the procedural
and algorithmic efficacy of the approach was displayed.

Jin and Bai (2011) proposed a method for developing manufacturing strategy from
the perspective of quality function deployment. The contribution as well as fused frizzy
set-theory with the house-of-quality to present an organized tool to track the
characteristics imprecision as well as vagueness of decisions. The intention is to aid the
smooth analysis of decision-related QFD information. An illustration was made using a
case study to demonstrate the usefulness of the method. Bottani (2009) contributed a
method that links agile enablers to agile attributes as well as competitive basis. The focus
of the work was to pin-point the most relevant enablers to be used by organizations
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staring from competitive characteristics inherent in the related market. The method is
dependent on the QFD philosophy (i.e. the house-of-quality), which has explored frizzy
logic in translating linguistic information needed for associations and correlation matrices
with numerical data using information from literature. Vinodh and Sureshkumar (2011)
reported the fusion of frizzy logic with the QFD structure and carried out a case study
oriented on a manufacturing system operating on electronics switches production in India.
The above literature, primarily on the integration of QFD as well as frizzy logic, has been
restricted to design, restaurant planning, flexible manufacturing system and agile
manufacturing. To the best of our knowledge, the literature is deficient in studies of
integrated frizzy logic and QFD applied to workforce size determination.

Next, a brief account of studies on workforce planning is given. A study that
investigated the problem of production’s permanent and temporary workforce as well as
inventory cost minimisation was reported by Techawiboonwong et al. (2006). The ratios
of full-time and part-time workers as well as the skill requirements for each work-station
were considered. The need to retain workers with flexible skill sets was studied by Felan
and Fry (2001) and it was observed that the use of non-flexible workforce has negative
impact on the performance of production systems. Yue et al. (2007) pointed out that to
increase workers’ flexibility, adequate provisions should be made for learning in a
system. Fletcher et al. (2008) considered the problem of correlation of workers’ attitudes
and production cycle time in production systems. The result from Fletcher et al. (2008)’s
study revealed that production task performance variations of production workers were
not influenced significantly by their attitudes.

From the above discussions, the workforce planning literature has not considered the
use of QFD-based model that accounts for the size of workforce if the same team will be
used for both production and maintenance functions. The remaining structure of this
study are organised as follows: Section 2 contains a brief review of manufacturing
sustainability and optimisation. In section 3, the proposed optimisation model is presented
and the three selected meta-heuristics are discussed in section 4. Sections 5 and 6 contain
the proposed model application and the discussion of results, respectively. The
conclusions of this study are in section 7.

2.  Manufacturing sustainability and optimisation
2.1 Manufacturing energy efficient for sustainability
Globally, manufacturing industries have been acknowledged as indispensable from the
viewpoint of economy, provision of tangible goods for consumers, employment
provision, corporate social responsibility services and economic strength (Duflon et al.,
2012). However, energy efficiency leading to sustainability, in manufacturing is one
practice that has gained the attention of manufacturers and researchers. Energy efficiency
boasts the economic and technical of performance environmentally-friendly and socially-
responsible systems (Faulkner and Badurdeen, 2014). In contemporary times,
manufacturing is expected to respond positively in a proactive manner to tackle the
significant challenges possed by the environment towards sustainability through energy
programmes. This calls for aggressive efforts at exploiting every opportunity in the
manufacturing enterprise towards more efficient usage of energy, including the electrical
power, which primarily drives manufacturing (Dauflon et al., 2012). However, this could
not be treated in isolation since optimisation of energy utilisation models will give local
optimal results. There must be a concerted effort in integrating factors such as workforce
sizing into the modelling framework of energy utilisation.



7

Apart, the special case of the production-maintenance functional integration should be
incorporated into the model. Since conservation of energy promotes the economic
soundness of industries, a natural starting point is to develop models that quantify,
monitors and control the industrial economy efficiently and link then to workforce
variables in manufacturing systems. Till date, no such models exist and efforts to
integrate such models when considering the same personnel to run both the production
system and the maintenance function have not been documented in literature.

2.2 Manufacturing system optimisation
Optimisation of system or process parameters is an important stage in workforce size
determination, particularly when an integrated production and maintenance system is
considered. Certainly, the work-study approach and the job evaluation analysis are
accepted scientific approaches currently being dealt with by human resource practitioners
in determining workforce sizes. Unfortunately, these approaches are inappropriate given
the level of research and development worldwide, because they do not consider the
interrelationships of production and maintenance workforce. These approaches are
limited in their inabilities to consider the dynamic skill levels of staff and also
inappropriate for the absence of economic considerations such as energy efficiency.

The benefits of workforce size optimisation may not be fully achieved when
workforce models that incorporate non-linear relationships are solved with conventional
optimisation techniques. This is as a result of convectional optimisation techniques’
drawbacks, tendency to be trapped at local optimal solutions. The drive for global optimal
solutions has propelled the current work to the application of a novel algorithm, colliding
bodies, originally by developed Kaveh and Mahdavi (2014a).

In order to ensure the right size of personnel and to reduce the overall workforce
effectiveness, it is necessary to select the optimal workforce sizing parameters. The
colliding bodies algorithm, based on the principle of momentum and energy will be used
for the optimisation of the workforce sizing conditions in manufacturing systems such
that the same workforce is utilised for both maintenance and production. In comparison
with the traditional optimisation techniques, the colliding bodies algorithm is robust and
attains global solution. The main contributions of this article are: (1) development of an
approach for determining the workforce size of a manufacturing system in a case where
the same workforce is used for both maintenance and production activities using fuzzy
mathematics and QFD; and (2) a practical application of the proposed method in a
production company.

3. Methodology
The performance of manufacturing systems can be linked to different factors like cost
(salaries), human (workforce size), machine (production volume) and time (production
and maintenance) management. The quest for the determination of optimal values for the
above mentioned management factors necessitate the use of QFD in this article. This
helped in establishing the interrelationships among these factors and workers’ group. A
framework for determining maintenance-production relationship and the production
workforce that is used in evaluating the contribution of each workforce group is presented
in Figure 1. The proposed framework is anchored on fuzzy inference system (FIS) and
QFD methodologies.

In stage 1, the integration of different factors used in generating an index for a
particular aspect of a system evaluation is presented. Since the requirement of accepting a
criterion as adequate is relative and often expressed in linguistic terms, this study
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employed the use of FIS in creating membership functions. Decision makers’ opinions are
subjective and can sometime lead to incorrect decisions, whose consequences may result
in losses of lives, interruptions in company’s operations, manpower shortages, loss of
company’s profits, severe damages to equipment and machineries, and penalty costs. To
obtain objective information on workforce, opinion pooling from experts should be used
when implementing the framework in Figure 1. In stage 2, grey relational analysis (GRA)
system was employed in generating a single index for the system’s overall performance,
while stage 3 utilises the concept of QFD in determining the contributions of the different
workforce groups to organisation goals. Also, stage 3 is where the proposed optimisation
model was formulated.

3.1 Nomenclature
The following nomenclature is used in the proposed model.

Indices:
I Manufacturing task
J Workers’ group
L Performance index
T Sub-planning period
L Total number of performance indices
M Total number of manufacturing tasks
N Total number of workers’ group
T Total planning period
Parameters:

ly
 Minimum value of performance index l

ly
 Maximum value of performance index l

ijx
 Minimum number of workers in manufacturing task i belonging to worker’s

group j

ijx
 Maximum number of workers in manufacturing task i belonging to workers’

group j

ijt Average unit earned-value of  workers in manufacturing task i belonging to
workers’ group j at period t

Variables

jtx1
Number of workers scheduled to carry out production assignments only
belonging  to workers’ group j at period t

jtx2
Number of workers scheduled to carry out maintenance-production
assignments belonging  to workers’ group j at period t

jtw1
Amount of workload for a worker’s schedule to carry out production
assignment belonging  to workers’ group j at period t

jtw2
Amount for a workload for a worker’s schedule to carry out production and
maintenance assignments belonging  to workers’ group j at period t

jt1 Amount of idle time expected from a schedule to carry out production
assignment belonging  to workers’ group j at period t

jt2 Amount of idle time expected from a schedule to carry out production and
maintenance assignments belonging  to workers’ group  j at period t

y1 Machine performance index
y2 Human performance index
y3 Cost management index
y4 Time management index



Figure 1: A three-stage framework for maintenance-production workforce determination

Machine efficiency, machine
utilisation, machine availability,

and machine reliability

Basic Inputs

Workers productivity, workers
efficiency, workers utilisation, and

workers turnover rate

Production cost, maintenance cost
(spare parts cost and workforce

cost), and overhead cost

Actual maintenance time, actual
production time, and idle time

Machine performance index
(MPI)

Human performance index
(HPI)

Cost management index
(CMI)

Time management index
(TMI)

Transformation stage

Overall system
performance

Production workforce

Maintenance-production
workforce

Output
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3.2 Model development
The optimal value for electric power usage in a production system is affected by wastes
that may result from the workforce. One of such wastes is workers being idle when they
are supposed to use the available electricity for productive activities (maintenance and
production). To be more practicable, a loss function ( iL ) for the amount of electricity
supply for a particular manufacturing activity is considered. This function is used to
account for the expected losses in energy usage in a system. By combining the allocated
and idle times of workers, the electric power efficiency objective function is defined as
Equation (1).
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where, Oit is the proportion of overtime time for manufacturing activity i  at period t  that
cannot be easily quantified, and  is the amount of electric power consumption per
measure of manufacturing activity (time).

The overall system performance index value that a system will obtain from engaging
the different scheduled workers at each period is expressed as Equation (2). Since there
are no direct interrelationships among the various performance indices, a first-order
regression equation is used in estimating the overall system performance index at a
particular period t.

Max Z2 =   
 











T

t

L

l
ltl cya

1 1

 (2)

where la  and c are constant parameters to be estimated from the regression equation.

The mathematical expressions for 1y , 2y , 3y , and 4y are given in Equations (3) to (6),

respectively. With Equations (3) to (6), the minimum and maximum limits for 1y , 2y , 3y ,

and 4y  can be determined using simulation. This study selects trapezoidal membership
function in converting linguistic terms to crisp values.
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ME and MEx  are the membership functions as well as crisp values, respectively, for

machine efficiency, MU  and MUx  are the membership functions as well as crisp values,

respectively, for machine utilisation, MA and MAx  are the membership functions as well

as crisp values, respectively, for machine availability, and MR  and MRx  are the
membership functions as well as crisp values, respectively, for machine reliability,

       
       2

. . . .WP WP WP WE WE WE WU WU WU WT WT WT

WP WP WE WE WU WU WT WT

x x x x x x x x
y

x x x x

   
   

  


  
                      (4)

where, WP and WPx are the membership functions as well as crisp values, respectively,

for workers productivity, WE and WEx  are the membership functions as well as crisp

values, respectively, for workers efficiency, WU and WUx  are the membership functions

as well as crisp values, respectively, for workers utilisation, and WT  and WTx  are the
membership functions as well as crisp values, respectively, for workers turnover rate.
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where, PC  and PCx  are the membership functions as well as crisp values, respectively,

for production cost, SP  and SPx  are the membership functions and crisp values,

respectively,  for spare parts costs, WC and MCx  are the membership functions as well as

crisp values, respectively, for workforce costs, and OC and OCx  are the membership
functions as well as crisp values, respectively, for overhead costs.
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where, TM and TMx are the membership functions as well as crisp values, respectively,

for the actual maintenance time, TP and TPx are the membership function as well as crisp

values, respectively, for the actual production time, and TI and TIx  are the membership
functions as well as crisp values, respectively,  for idle time.

Based on the questionnaire in Appendix A, the membership functions and the
characteristic expressions for the various linguistic terms for the minimum and maximum
performance indices (inputs) are shown in Figures 2 and 3, respectively. The values for
accepting any inputs as having a membership value of 1 is taken at 95 % of the average
values of the total simulated values for any input. The determination of the minimum and
maximum values for each of the performance index is evaluated using grey relational
analysis (GRA).
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Figure 3: Membership functions for the maximum are preferable inputs

where
ddi is the boundary between partial and complete memberships function for minimum

inputs, and
ffi is the boundary between partial and complete memberships function for maximum
inputs.

Since a manufacturing system with low manufacturing costs and operation time is
preferable to a manufacturing system with high manufacturing costs and operation time,
the normalisation scheme for the results obtained for the costs and time management
indices is estimated with Equation (7). For the machine and human performance indices,
high values are preferable, that is the higher-the-better, Equation (8) is used as the
normalisation scheme for machine and human performance indices  (Hasani et al., 2012).
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where,  kxo
i connotes the original sequence and  kxi

 represents the sequence after data
pre-processing

 kxo
imin and  kxo

imax are the minimum and maximum values of  kxo
i , respectively

The definition of the grey relational coefficient for each of the performance index is
expressed with Equation (9).

    max

maxmin
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 maxmaxmax                              (11)

where,   is called identification coefficient and its values lie between (0,1).  kxo


and  kxi
  are the reference sequence as well as comparative sequence, respectively

(Hasani et al., 2012).

The grey relational grade (Hasani et al., 2012) for the system performance integration
is defined with Equation (12).
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The expected optimal values for 1y , 2y , 3y , and 4y  have direct relationships with the
total amount of workloads in a production system. The amount of workload in a system
for the maintenance-production workers should be close to optimal values, in order to
fully enjoy the benefits of optimal values for 1y , 2y , 3y  and 4y . This will enhance the
expected earned-value from the maintenance-production workforce. Equation (13) is
considered in computing the workforce earned-values.

Max Z3 =        
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The ability of a production system to meet the demand for its products is a function of
the proportion of time allocated for production and maintenance activities. In a
production system where production workers are assigned to carry on with maintenance
activities, the amount of productive time used for production by a worker ( jtx2 ) that

carried out maintenance activities will be less than that of a worker ( jtx1 ) who will carry

out only production activities only. The implication of this variation in the amount of
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production time expected from the production workers is that the total amount of
products expected from the production system will be less when compared with a
situation where production workers are expected to carry out only production activities.
The expression for the amount of goods expected from a production system when
production workers are scheduled to carry out production and maintenance functions is
expressed as Equation (14).
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where, td is quantity of goods demanded at period t

The interrelationships among the total amount of manufacturing time ( tW ), the amount of
time spent on production and maintenance tasks as well as the workforce size is used in
constraining the quantity of products that will be produced at each period (Equation 15).
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In order to include uncertainty to the amount of available manufacturing time, we
assumed that variation in the total amount of manufacturing time can be handled using
the minimum ( minW ) and the maximum ( maxW ) limits of the available manufacturing time
(Equation 16). A similar approach was presented in Mekidiche et al. (2013). By applying
the concept of uniform distribution constraint (Wu, 2008) and the prescribed confidence
or probability level (


), Equations (15) and (16) can be combined to form a single

constraint (Equation 17).
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By determining the optimal amounts of production and maintenance times, the
quantity of electricity supply to power the production systems can be considered as
another restrain on the number of production workers in a production system. Given that
there is interrelationship between the quantity of electric power required for machineries
and workloads in production and maintenance functions at regular and overtime periods,
the expected cost for electricity consumption at each period can be estimated as Equation
(18).
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where, tc  is the unit cost of electricity at period t.

Apart from the time spent for maintenance activities, which affects the production plan,
workforce idle time also has an effect on production time management. Given that part
of the allocated time for maintenance and production activities is lost to idle activities, it
is possible to model the workforce idle time as Equation (19).
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where, t  is the proportion of the total manufacturing time that all workers are expected
to be busy at period t.

To determine the contribution value of each worker’s group, this study proposes the
use of QFD as a means of estimating the importance of each worker’s group with respect
to the particular performance indices in Figure 1. The designed house of quality for the
workers’ importance is shown in Figure 4. Based on the knowledge gained from the
works of Chin et al. (2002), Wang (2007) and Bottani (2009), the HOQ for maintenance-
production workforce (Figure 4) implementation is described as follows:

Step 1: Identification of the management requirements (customer requirements)
expected from maintenance-production workers. In this study, these
requirements have been briefly grouped into four, Figure 1;

Step 2: Classification of workers required into groups (technical requirements) to
execute the maintenance and production activities in manufacturing systems.
In the current study, workers are grouped into full-time and causal workers.
Further breakdown may entail the classification of such section-wise
(electrical, mechanical, packing, quality control, and production), cadre-wise
(foreman, supervisors, and operators), and gender-wise (male and female);

Step 3: Selection of rating scale for technical requirement relationships, management
requirement relationships and the interrelationships among the workers and
management requirements. Ranking scale between the workers and
management requirements may be expressed as being strong, medium and
weak (Bottani et al., 2009; Ramanathan and Yunfeng, 2009). These linguistic
expressions for scale can be converted to crisp values using direct conversions
of 1, 3, 9 (Ramanathan and Yunfeng, 2009) or fuzzy logic approach (Bottani et
al., 2009);

Step 4: Pair-wise comparison of workers requirements and determination of the degree
of importance of each management requirement;

Step 5: Pair-wise comparison of workers and management requirements; and
Step 6: Determination of the absolute and relative importance of each worker’s

requirement.
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Figure 4: House of quality (HOQ) for workforce relative importance

where
FTW and PTW represent the full-time and causal production workers in a system,
respectively, and
FPMW and CPMW represent the full-time and causal maintenance-production workers in
a system, respectively.

In this study, the relative importance of each worker’s group is estimated with Equation
(20). For the current study, I = J = 2.
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where I and J are the total number of maintenance section and workers’ group,
respectively
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The ability to meet the production target each period is directly associated with how
well 1y and 2y are met. By desiring higher for 1y and 2y , its possible to attain a higher

value for production target and vice-versa. The constraint for the limits on 1y and 2y is
expressed as Equation (21).
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The interest of decision makers in production is to reduce the amount of funds and time
spent on manufacturing activities. To achieve this objective, constraint (Equation 22) is
considered.
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where ijlf is the individual contribution due to manufacturing task i expected from

workers’ group j for performance index l.

To sustain a particular limit of the production system performance evaluation matrix,
limits on each of the performance evaluation index are considered and expressed as
Equation (23).

lltl yyy
  Ttl  ;4,3,2,1                                          (23)

The constraint on each of the worker’s group limits is defined with Equation (24), while
the expected value for their idle times is restrained with Equation (25).

ijtijtijt xxx
  TtNjMi  ;;                              (24)

ijtijtijt 


 TtNjMi  ;;                              (25)

In order to improve the practical application of the proposed model, the shortest
normalised distance concept is used in formulating a single objective function as
Equation (26). The Pareto solution to the problem is taken as the solution with the least
normalised distance (Wu, 2008).
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where,
S is a scale that ranges between (0,1) and (0-100)

iZ is the ideal solution for objective function i

max,iZ and min,iZ are the maximum and minimum values for objective function i in a

population at a particular iteration step

The final structure of the non-linear workforce optimisation model is presented as
follows:
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4.   Solution Approaches
In this article, three solution methods are considered for the proposed model. The
selection of the solution method is based on their unique features.

4.1 Meta-heuristics
Meta-heuristics are algorithms that have gained wide acceptable among researchers and
industrial practitioners in the field of systems optimisation. These algorithms are usually
population-based and utilise stochastic search principle in exploiting and exploring the
available solution spaces for the decision variables in a problem. Some of the first sets of
meta-heuristics are genetic algorithm (Holland, 1975), simulated annealing (Kirkpatrick
et al., 1983), particle swarm optimisation (Eberhart and Kennedy, 1995) and differential
evolution (Storn and Price, 1997). The quest for improved solution quality and
computation time reduction has led to hybrid of some of the above algorithms e.g.
adaptive differential evolution with optimal external archive (Zhang and Sanderson,
2009),

Some new meta-heuristics in literature are the big-bang big-crunch (Erol and Eksin,
2006), firefly algorithm (Yang, 2009), teaching-learning-based optimisation (Rao et al.,
2011) and colliding bodies optimisation (Kaveh and Mahdavi, 2014a). One common
feature in meta-heuristic algorithms is the random generation of initial values for the
decision variables in a problem, and this is often achieved with Equation (27).

 min,max,min, iiiij xxrandxx   (27)

When dealing with constrained optimisation problem with either free or non-negative
decision variables, the values of the objective function(s) and the level of each constraint
violation are used in formulating a penalty function. Penalty function is used in
evaluating the fitness of each solution in a population. In this article, the fitness function
for each particle (bodies) in a population is evaluated with Equation (28). Equations (29)
and (30) are used to compute the violation values for inequality and equality constraints
in a problem (Coello, 2002). The three meta-heuristics (colliding bodies optimisation,
big-bang big-crunch and particle swarm optimisation) considered in this article operate
based on the concept of shifting the position of bodies or particles.





JJ

JJ
Jjj

J

j
jii HPGPxfx

1

2

1

1)()( (28)

 


)(,0 xgMaxG jj  (29)



20




)(xhH jJ      (30)

where, 


 and 


are constant values and it is taken as 1 or 2.

4.2 Colliding Bodies Optimisation
CBO was developed by Kaveh and Mahdavi (2014) from the laws of momentum and
energy during the collision of bodies. The basic principle of CBO algorithm is the
determination of bodies velocity before and after collusion as well as the value of the
coefficient of restitution at a particular iteration step and their masses. The mass of each
body is a function of the quality of its solution relative to other bodies in a population
(Kaveh and Mahdavi, 2014). The new positions for bodies in a population are determined
using the velocities after collusion and previous positions. A summerised outline of a
CBO algorithm is presented as follows.

Step 1: Select the stoppage criterion and population size
Step 2: Generate initial values for the work number for the different groups using
Equation (27)
Step 3: Assess the fitness of each body in the population using Equation (28). Arrange the
solutions in descending order and divide it into two equal parts (stationary and moving
parts) using their masses (Kaveh and Ghazaan, 2014).
Step 4: Compute the masses (mk) for the population using Equation (31)
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Step 5: Compute the velocity of the stationary (Equation 32) and moving (Equation 33)
body before collusion (vi).
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Step 6:  Compute the velocity of the stationary (Equation 34) and moving (Equation 35)

after collusion ( '
iv ).
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where,   is the coefficient of restitution and it is a function of current iteration step (ts)
and the maximum iteration step (tmax). The expression for computing   is given as
Equation (36).
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1
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ts                                                                                                                        (36)

Step 7: Determine the new position of each stationary (Equation 37) and moving
colliding (Equation 38) body in the population.
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where, Rnd is a uniform random number that is between (-1,1).

Step 8:   Change the stoppage criterion.

4.3 BB BC Algorithm
In this work, the big-bang big-crunch evolutionary algorithm is pursued for analysis in
view of its outstanding characteristics. The BB-BC is a search approach that is
stochastically driven, and completely mimics the evolution of natural biological species
in social behavioural pattern. This idea is brought into the evaluation of data points,
considered as particles in analysis. Being solution-based, the BB-BC explores the results
from a group of solutions in point of time rather than considering only one item of
solution. This powerful attribute of BB-BC gives opportunity to this algorithm in
searching the complete problem space and hence have the ability to produce mid-point
results at any point of time in the event of computation. The success which the big-bang
big-crunch (BB-BC) procedure is currently experiencing in literature is due to its low
computational time and capacity to generate competitive solutions like other meta-
heuristic algorithms (particle swarm optimisation, different evolution and genetic
algorithm).  The BB-BC procedure is designed after the theory of evolution of the
universe and it requires two basic phases. The first phase requires the determination of
centre-of-mass for each decision variable in a problem, and this is known as the big-
crunch phase. In the second phase, estimation of new positions of particles are known
based on the range of the decision variable limits and the associated centre-of-mass, this
phase is called the big-bang phase. The description of the BB-BC algorithm is presented
as follows (Erol and Eksin, 2006):



22

Step 1: Select the stoppage criterion and population size
Step 2: Generate initial values for the work number for the different groups using
Equation (27)
Step 3: Assess the fitness of each body in the population using Equation (28).
Step 4: Compute the centre-of-mass for each decision variable (mk), for the population
using Equation (39). The value of the global solution can be taken as the centre-of-mass.
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Step 5: Determine the new position of each particle in population using Equation (40).
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where, iRnd is a uniform random number that is between (-1,1),   is a constant
parameter which controls the search capacity of the algorithm.

Step 6:   Change the stoppage criterion.

4.4 Particle Swarm Optimisation
The explorative and exploitative proprieties of PSO algorithm have encouraged its wide
applications as one of the mostly-used meta-heuristics for system variable optimisation,
especially in the field of electrical engineering. Yet, few reports on the benefits of PSO in
maintenance and production activities optimisation are in literature. Worse still, sparse
information on the use of PSO algorithm for joint optimisation of maintenance-
production variables exist. The PSO algorithm generates global solution for system
variables using the concept of cognitive (personal best solution) and social (global
solution) knowledge (Eberhart and Kennedy, 1995). The personal best solution is the best
value of a particle at after iteration step t, while the global solution is the best value in a
population that has been obtained at iteration step t. The combination of the cognitive and
social knowledge is used in adjusting the velocity of each particle in a population. A brief
explanation of the PSO algorithm is presented as follows (Engelbrecht, 2007):

Step 1: Select the stoppage criterion and population size
Step 2: Generate initial values for the work number for the different groups using
Equation (27)
Step 3: Assess the fitness of each particle in the population using Equation (28)
Step 4: Compute the velocity for the population using Equation (41).
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Step 5: Determine the new position of each particle in population using Equations (42)
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Step 6: Change the stoppage criterion

5. Model Application
The required number of datasets to demonstrate the applicability of the proposed model is
generated through simulation based on the practical data obtained from an aluminium
product manufacturing company. The summarised information from the administered
questionnaire is presented in Table 1.

Table 1: Practical datasets
Items Values
Weekly production volume 50 – 70 tonnes
Production cost N  120,000,000 - 150,000,000
Cost of spare parts N 150,000 - 200,000
Overhead cost N 300,000 - 400,000
Production hours 75 hrs
Breakdown time 15 hrs
Production workers idle time 41 – 60 %
Maintenance workers idle time 41 – 60 %
Machine efficiency 61 – 80 %
Machine utilisation 0 – 40 %
Machine availability 61 – 80%
Machine reliability 81 – 100%
Production workers efficiency 61 – 80 %
Maintenance workers utilisation 81 – 100%
Maintenance workers efficiency 61 – 80 %
Production workers utilisation 41 – 60 %
Workers turnover rate 0 – 40  %
Full-time production workers 60-70 workers
Part-time production workers 30-35 workers

By using the simulated data, FIS, and GRA, the results obtained shown for 40 samples
are presented in Table 2.

Table 2: Grey relational analysis performance indices

S/n Data pre-processing Grey relational coefficient
Grey relational

grade
 1x  2x  3x  4x  1i  2i  5i  4i i

1 0.310 0.626 0.910 0.086 0.420 0.572 0.847 0.354 0.548
2 0.191 0.379 0.082 0.317 0.382 0.446 0.353 0.423 0.401
3 0.038 0.585 0.471 0.000 0.342 0.547 0.486 0.333 0.427
4 0.263 0.335 0.870 0.114 0.404 0.429 0.794 0.361 0.497
5 1.000 0.000 0.952 0.263 1.000 0.333 0.912 0.404 0.662
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6 0.242 0.533 0.849 0.223 0.397 0.517 0.768 0.392 0.519
7 0.678 0.520 0.098 0.089 0.608 0.510 0.357 0.354 0.457
8 0.545 0.416 0.090 0.328 0.523 0.461 0.355 0.427 0.442
9 0.457 0.102 0.990 0.511 0.479 0.358 0.981 0.506 0.581
10 0.405 0.213 0.348 0.106 0.457 0.389 0.434 0.359 0.409
11 0.683 0.604 0.892 0.618 0.612 0.558 0.822 0.567 0.640
12 0.000 0.552 0.858 0.481 0.333 0.527 0.779 0.491 0.532
13 0.587 0.101 0.944 0.297 0.547 0.358 0.900 0.416 0.555
14 0.018 0.222 0.451 0.560 0.338 0.391 0.476 0.532 0.434

Table 2 (cont’d): Grey relational analysis performance indices

S/n Data pre-processing Grey relational coefficient
Grey relational

grade
 1x  2x  3x  4x  1i  2i  5i  4i i

15 0.528 0.387 0.956 0.499 0.514 0.449 0.920 0.500 0.596
16 0.210 1.000 0.951 0.898 0.388 1.000 0.910 0.830 0.782*
17 0.364 0.437 0.878 0.075 0.440 0.470 0.804 0.351 0.516
18 0.423 0.801 0.564 0.137 0.464 0.715 0.534 0.367 0.520
19 0.611 0.671 0.490 0.619 0.562 0.603 0.495 0.567 0.557
20 0.197 0.701 0.559 0.637 0.384 0.626 0.532 0.579 0.530
21 0.263 0.636 0.959 0.607 0.404 0.579 0.924 0.560 0.617
22 0.419 0.512 0.920 0.452 0.463 0.506 0.863 0.477 0.577
23 0.328 0.661 0.000 0.240 0.427 0.596 0.333 0.397 0.438
24 0.237 0.480 1.000 0.287 0.396 0.490 1.000 0.412 0.575
25 0.264 0.286 0.962 0.033 0.404 0.412 0.929 0.341 0.522
26 0.390 0.550 0.911 0.098 0.451 0.526 0.850 0.357 0.546
27 0.555 0.550 0.497 0.362 0.529 0.526 0.498 0.439 0.498
28 0.355 0.602 0.969 0.771 0.437 0.557 0.942 0.686 0.655
29 0.169 0.520 0.929 0.868 0.376 0.510 0.876 0.792 0.638
30 0.079 0.670 0.637 0.386 0.352 0.603 0.579 0.449 0.496
31 0.143 0.055 0.714 0.273 0.369 0.346 0.636 0.408 0.440
32 0.169 0.445 0.991 0.256 0.376 0.474 0.982 0.402 0.558
33 0.228 0.169 0.974 0.787 0.393 0.376 0.951 0.702 0.605
34 0.284 0.457 0.124 0.232 0.411 0.480 0.363 0.394 0.412
35 0.218 0.857 0.532 0.366 0.390 0.778 0.517 0.441 0.531
36 0.260 0.746 0.949 0.105 0.403 0.663 0.907 0.358 0.583
37 0.366 0.563 0.942 1.000 0.441 0.534 0.896 1.000 0.718
38 0.201 0.880 0.475 0.319 0.385 0.807 0.488 0.424 0.526
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39 0.156 0.658 0.975 0.007 0.372 0.594 0.953 0.335 0.564
40 0.360 0.481 0.468 0.404 0.439 0.491 0.484 0.456 0.467

The optimal parametric setting for the system using simulation run is at experiment 16
(Table 2) and the associated values for each factors that were used in computing the
various performance indices are shown in Table 3.

Table 3: Optimal parametric settings
Items Values
Production cost N  138,572,581.00
Cost of spare parts N 180,106.60
Overhead cost N 330,535.27
Workforce cost N  2,556,655.65
Production hours 75 hrs
Breakdown time 15 hrs
Production workers idle time 52.25  %
Maintenance workers idle time 57.40  %
Machine efficiency 66.03 %
Machine utilisation 6.32  %
Machine availability 60.19 %
Machine reliability 86.41 %
Production workers efficiency 77.09 %
Maintenance workers utilisation 95.47 %
Maintenance workers efficiency 75.80 %
Production workers utilisation 56.67 %
Workers turnover rate 0.78 %
Full-time production workers 61 workers
Part-time production workers 33 workers
Note: N 200 = $1

Using the values for  kx  and grey relational grade, the information in Table 2, the
constants parameters in Equation (2) are generated and the results obtained as depicted in
Table 4.

Table 4: Predictive model results
Regression Statistics Coefficients

Parameters Values Parameters Values
Multiple R 0.959 Intercept 0.248

R-Square 0.920 1y 0.137

Adjusted R-square 0.911 2y 0.124

Standard error (Se) 0.026 3y 0.189

No. of observations 40 4y 0.140

Next, we proceed to the design of the HOQ for the maintenance-production
workforce-based. Based on the authors’ knowledge on maintenance-production systems,



26

and discussions with experts in manufacturing systems, the HOQ for the maintenance-
production workforce-based model is presented as Figure 5.

When applying the proposed model, modellers have the final decision on what the
interrelationships among the various performance indices and the worker’s groups will
be.  The interpretation of the degree of importance in Figure 5 is that the cost
management index is more important than the other performance indices in Figure 5. This
is because the level of attainment of other performance indices depends to a large extent
on the amount of funds that is made available for their executions. Time management is
more important than human and machine performance indices, because manufacturing
activities is hinged on how much time is distributed among the various operations in
manufacturing systems.
     A manufacturing systems with high level of cost and time managements has the
potential of generating high value of returns on investment (ROI) from human and
machines used during manufacturing activities.  However, the ROI from machines is
expected to be high when compared with the ROI from workers. This can be seen in the
high importance level of machine performance index in Figure 5 when compared with
human performance index.  The number of full-time production workers that will be used
for production tasks only is expected to be approximately 42 % of the total number of
maintenance and production workers (Figure 5). The results that will be generated from
the optimisation model for the number of full-time maintenance and causal production is
expected to be close.
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The information in Table 2 is used in identifying the samples with the minimum and
maximum overall performance, and the bounds for the four performance indices used for
computing the overall system performance index is fixed objectively.  We now proceed
to the formulation of the model and solving it using the three selected solution methods.
In order to determine the solution boundaries (B), that is the minimum and maximum
bounds, statistically, each of the solution methods was run 30 times and Equation (43) is
used in computing the bounds for the solutions that were obtained (Engelbrecht, 2007).
The results obtained for the 30 different runs using the solution methods are presented in
Table 5. At α = 1 %, the performance of the three solution methods are analysed based on
Equation (43) and the results obtained as shown in Table 5.
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Table 5:  Performances of the selected solution methods
Runs BB-BC PSO CBO
1 1.443 1.2391 1.4173
2 1.1739 1.8345 1.4102
3 1.2559 1.1343 1.1694
4 1.1038 1.5756 1.1724
5 1.1432 1.2556 1.2278
6 1.2981 1.1323 1.2522
7 1.4393 1.5433 1.2639
8 1.3677 1.5295 1.1359
9 1.5776 1.2607 1.3267
10 1.1701 1.1501 1.2581
11 1.5934 1.6442 1.1235
12 1.434 1.4918 1.3503
13 1.1567 1.3907 1.2984
14 1.3163 1.7291 0.8385
15 1.201 1.2881 1.4653
16 1.4245 1.1824 1.2707
17 1.4151 1.5481 1.1655
18 1.098 1.1849 1.494
19 1.3376 1.6899 1.295
20 1.2383 1.2966 1.2836
21 1.2811 1.3079 1.2773
22 1.1779 1.424 1.1817
23 1.2444 1.3579 1.3193
24 1.0087 1.8762 1.5561
25 1.2916 1.4957 1.0103
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26 0.9237 1.0245 1.1308
27 1.2451 1.7607 1.2536
28 1.2392 1.5292 1.3751
29 1.0868 1.4389 1.2797
30 1.135 1.5163 1.3226

Best 0.9237 1.0245 0.8385
Worst 1.5934 1.8762 1.5561
Lower bound 1.1564 1.2782 1.1688
Upper bound 1.3650 1.5773 1.3596

6. Discussion of Results
The current approach used in handling the goals in this paper has been successfully
handled and the results obtained for these goals are relatively stable for all the selected
solution methods. This approach has the benefit of reducing the dependence on key
decision makers in a system associated with using fuzzy goal programming technique
(Belmokaddem et al., 2014). For instance, there is no need of establishing the limits for
an objective to be assigned full or partial membership (fuzzy goal programming) when
using Euclidean distance approach. The results presented in Table 5 showed that in terms
of the best and the worst solutions, the CBO procedure exhibited better performance than
the BB-BC as well as the PSO procedure. Although, the range of solution from the CBO
and the BB-BC algorithms are close, a detailed look at the upper bounds of both
algorithms indicates that the CBO algorithm results are preferable to the BB-BC
algorithm.

Using the CBO algorithm as a solution method in generating the optimal values for
the system workforce size, idle time and workloads as well as the expected performance
indices were obtained. The optimal value for the single objective function is 1.2470. The
optimal value for the total energy efficiency for the system was 0.9750, and the optimal
value for the overall system performance and workforce earned-value are 0.5131 and N
7,373,576.54, respectively. The implication of these optimal values on the system
performance indices are showed in Table 6. By generating optimal values for these
indices, decision makers will be equipped with relevant information on how to manage
the available resources (human, machine, time and funds).

Table 6: Optimal values for performance indices
Periods MPI HPI CMI TMI
1 0.2353 0.3447 0.6019 0.0464
2 0.2662 0.3589 0.7635 0.1124
3 0.3199 0.8256 0.5043 0.4596
4 0.2086 0.5280 0.7279 0.7084

Based on the optimal values in Table 6, the cost management index for the system is
higher across all the periods. The total value for the overall system performance (i.e.,
objective function 2), that is 51.31%, can be attributed to the low optimal values for the
different performance indices in Table 6. The deviation of the optimal value obtained for
the second objective from the minimum and maximum values in Table 2 are 0.1040 and
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0.2690, respectively. This shows that the proposed model was able to establish a
compromise between the grey relational grade’s minimum and maximum values. The
optimal results can be seen as being flexible when compared with the grey relational
grade in Table 2. By equipping decision makers with this information, an improved
instruction can be communicated to workers on how the organisation’s goals (human,
time, machine and funds management) can be achievable. The optimal distribution of
workforce that is associated with the above performance indices is showed in Table 7.

Table 7: Optimal values for workforce idle time, size and workloads
Group 1 Group 2

Periods
(Months)

Idle time
(hr)

Workforce
size

Workload
(hr)

Idle time
(hr)

Workforce
size

Workload
(hr)

Production variables
1 0.5868 70 8.3643 0.5822 34 8.461
2 0.4834 66 9.6993 0.7851 36 6.8160
3 0.6229 63 8.3824 0.8575 33 8.0833
4 0.5699 64 6.8880 0.8581 31 8.8667

Maintenance-production variables
Group 1 Group 2

1 0.6808 25 1.1226 1.0303 13 1.0131
2 1.025 23 0.7290 0.4712 14 1.3881
3 0.9174 29 1.4197 0.9892 14 1.1957
4 0.8504 19 1.0150 0.6139 11 0.5097

From the results in Table 7, the amount of idle time that is allocated to the scheduled
maintenance-production workers is higher than the amount of idle time allocated to the
scheduled production workers by approximately 18.7%. In practice, this result is
expected especially for systems with low level of automation.

The results for workforce size showed that the number of workers in group 1 is
approximately twice the total number of workers in group 2. This result is consistent with
the ratio of relative importance workforce in Figure 5. Thus, it may be inferred that with
QFD, the relationships among the different workers’ group can be used to establish an
inexact workforce plan under different management requirements for a new
manufacturing systems when there is insufficient data for the implementation of
workforce optimisation models. Also, the QFD framework will help in providing a
platform upon which simulation of the effect of variation in the relative importance of
different management requirements will have on the workforce structure.

The main implications of the workforce structure in Table 7 are in four phases. In the
first (cost implication) phase, during workforce planning, the quantum of funds that will
be budgeted for workforce expenses can be tracked easily. For instance, more funds will
be required to take care of for the workforce at period 1 than any other period. Period 4
requires the least amount of funds for workforce expenses. This information will help in
improving funds budgeting. The second phase deals with the benefit of time
management. To effectively manage the available manufacturing time, decision makers
are interested in the proportion of time required to be contributed by each group of
workers towards the organisational goals. The optimal values for time allocated for the
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full-time (groups 1) and causal (groups 2) workers showed that the full-time workers
require more time than causal workers (approximately 3.5 %). This showed that the
distribution of the available manufacturing time should be at a ratio of 56.5: 43.5 % for
groups 1 and 2, respectively.

This information will aid decision makers in generating an approximate time
utilisation plan for the workers. By and large, bias towards allocating more time to a
certain group of workers will be reduced to the bearable limits. This will translate to
harmonious working relationships among the different groups of workers in
manufacturing systems and improve the attainment of organisation goals.

The third phase deals with machine performance management. The issue of labour
shortage when there is urgent demand for a company service can be properly handled
given the time requirement for such service. With the time requirement for a particular
service, the number of maintenance-production and production workers that should be
scheduled can be easily determined. This will help in improving the utilisation of
machines in the system. Also, the problem of delay in production activities as a result of
labour shortages, especially for a system that does not have a separate maintenance and
production departments, can be handled with the proposed model. For instance, a
minimum of 30 workers will be needed in scheduling, to implement maintenance-
production activities at any point in time. Under this case, 19 and 11 workers will be
required from worker’s groups 1 and 2, respectively.

Lastly (human performance), provision of idle time in the design of workforce
structure is necessary, despite the calculated periods for breaks. Such idle time may be
the time due to emergency breakdown, delay in releasing materials for production or
maintenance activities, delay in receiving instruction from supervisors and other
unquantifiable human factors in production systems (fatigue). In the system, the
minimum amounts of idle time for maintenance-production and production workers are
1.464 and 1.169 hr, respectively. In summary, the information in Table 7 will
complement existing tools used in the design of motivation scheme for workers who
carry out maintenance-production and production activities.

The results obtained from the proposed model are data sensitive. There is a
possibility of obtaining a different set of results if some of the parameters used in testing
the proposed model are changed. Furthermore, in a production system where there are
separate production and maintenance workforce (department), that is a system where the
maintenance and production workers are only allowed to perform a specific task, the
proposed model is still applicable. For such systems, the amounts of production
workloads in Equations (1), (14), (15), and (19) will have to be modified so as to
accurately account for the total time used for maintenance activities. In explicit terms, all
workloads and idle times that are attributed to maintenance workers that will engage in
production activities becomes zero.

7. Conclusions
The determination of effective workforce size for manufacturing systems has been a
long-standing problem in the operations and maintenance arena. The problem becomes
more important when considering the amalgamation of maintenance and production
functions, which will be carried out by only one set of technical personnel. Several efforts
have been expended to improve the accuracy of prediction, and evaluation on
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determination of the workforce size in manufacturing. However, most effort had been
concentrated on production workforce determination alone and a handful of recent
investigations are directed at maintenance function workforce determination.

Unfortunately, the literature search results did not produce any realistic detailed
analysis of the integrated maintenance and production workforce determination, opening
a gap for further enquires on the possible conceptualisation of such a useful integration.
The investigation reported in this article has made conscious advancement in the analysis
of workforce that would perform integrated functions in both maintenance and
production functions. This investigation considers the development of an approach, based
on the marriage of fuzzy logic and QFD concepts for capturing uncertainty in workforce
analysis for manufacturing systems. A further attempt was made to produce optimal
workforce size by utilising CBO algorithm. The results obtained were compared with that
of the BB-BC and PSO algorithms. We observed that the BB-BC algorithm results were
closed to that of the CBO algorithm results.

The implementation of the proposed model using practical data showed that the
model is easy to implement and practicable. The QFD framework presented has been able
to show that the integration of management and workforce requirements can be used as a
tool for planning the performance to expect from factors used in manufacturing activities
when combined with optimisation model. However, the current QFD can be extended to
incorporate the contributions of non-engineering workers in manufacturing systems.
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APPENDIX A
Section A

1. What is the number of products produced?

2. What is the average weekly production volume of each product?

  Product A Product B Product C Product D Product E

3. Do your company outsource production activity?
4. If yes, what is the average weekly volume of each product that is outsourced?

  Product A Product B Product C Product D Product E
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5. What is the unit cost of outsourced product?
  Product A Product B Product C Product D Product E

Section B

In this section, information on evaluation of the performance of a production system is
required.  The set of selected questions are presented below, while the rating system for
these questions is given as follows:

Grade Interpretation
Low Less than 40 %
Medium 41-60 %
High 60- 80 %
Very high Above 80 %

Sn Questions for responses Low Medium High Very high
1 How will you rate production workers idle time

in your company?
2 How will you rate maintenance workers idle time

in your company?
3 How will you rate machine efficiency in your

company?
4 How will you rate machine utilisation in your

company?
5 How will you rate machine availability in your

company?
6 How will you rate machine reliability in your

company?
7 How will you rate production workers efficiency

in your company?
8 How will you rate maintenance workers

utilisation in your company?
9 How will you rate maintenance workers

efficiency in your company?
10 How will you rate production workers utilisation

in your company?
11 How will you rate workers turnover rate in your

company?

Section C
In this section, the range of some resources used during weekly production activities is
required. Kindly assist us in providing information for the following set of questions:

S/No. Questions for responses



35

1 What is the range of weekly full-time production workers?
2 What is the range of weekly full-time maintenance workers?
3 What is the range of weekly causal production workers?
4 What is the range of weekly causal maintenance workers?
5 What is the range weekly production?
6 What is the range of weekly breakdown time?
7 What is the range of weekly production cost?
8 What is the range of weekly maintenance cost?
9 What is the range of weekly cost of spare cost?
10 What is the range of weekly workforce cost/?
12 What is the range of weekly maintenance?
13 What is the range of weekly production time?


