
Acta Polytechnica Hungarica Vol. 8, No. 5, 2011

 – 21 –

Software Measurement Activities in Small and
Medium Enterprises: an Empirical Assessment

O. Tolga Pusatli
Department of Mathematics and Computer Science Çankaya University Ankara
Turkey, pusatli@cankaya.edu.tr

Sanjay Misra
Department of Computer Engineering Atilim University Ankara Turkey,
smisra@atilim.edu.tr

Abstract: An empirical study for evaluating the proper implementation of
measurement/metric programs in software companies in one area of Turkey is presented.
The research questions are discussed and validated with the help of senior software
managers (more than 15 years’ experience) and then used for interviewing a variety of
medium and small scale software companies in Ankara. Observations show that there is a
common reluctance/lack of interest in utilizing measurements/metrics despite the fact that
they are well known in the industry. A side product of this research is that internationally
recognized standards such as ISO and CMMI are pursued if they are a part of project/job
requirements; without these requirements, introducing those standards to the companies
remains as a long-term target to increase quality.

Keywords: metric; measurement; small-medium size enterprise; ISO; CMMI

1 Introduction

It is an established fact that software metrics play an important role in ensuring the
quality of software products. However, it is also observed that many software
companies are not implementing any software metric programs in their
organisations, as those programs are suggested. Further, the studies reveal that
more than 70% of software products were developed in small- and medium-scale
software companies [1]. There may be more than one reason for this; as a start we
look at the definitions: in 1990, IEEE closes a gap in defining measurement
standard by the following definition: “a standard that describes the characteristics
of evaluating a process of product” [2]; following that, in about less than 10 years,

T. Pusatli et. al Software Measurement Activities in Small and Medium Enterprises: an Empirical Assessment

 – 22 –

IEEE [3] defines measurement as “the act or process of assigning a number or
category to an entity to describe an attribute of that entity.” Those definitions are
not controversial, nor they are misleading; however, they indicate that
measurement in software engineering may not be always objective as it is different
to other established branches of engineering. It is because each branch of
engineering is based on basic fundamental principles of physics, but it is not so
straightforward up to now to establish principles and rules for measuring software.
The ongoing researches in establishing such fundamental rules and large amounts
of different type of measurement techniques reported in the literature support the
nature of this challenge.

The variety in measurements is induced by subjectivity, which is partially due to
aiming to measure the quality of software, such that, there are software metrics,
which are measure for quality attributes. Software quality metrics [3] can be
treated as functions whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which the software
processes are a given attribute that affects the software quality. Further quality
attributes include maintainability, flexibility, testability, usability, integrity,
efficiency, reliability, correctness, interoperability, reusability and portability,
which are closely related to software metrics [4].

Software metrics have potential roles at different scales in all type of information
systems. Most of the companies, regardless their type, such as in government,
banking and finance, education, transportation, entertainment, medicine,
agriculture, and law sectors, all use software products. Naturally, maintenance
(corrective, adaptive, perfective, preventive) is required for each software system
on a regular/irregular basis. In such activities, the software metrics can be used for
assessing the proposed modification and improvements in software systems.

Defining the problem

Metrics not only help us to evaluate a system, but they also give us ideas that help
us in decision making, and they can be utilized for scheduling and planning, and
for estimating costs. What we have represented so far led us to think about the
practical uses of the software metrics in the industry. It is a common observation
that normally large companies take initiatives to achieve quality objectives, but
small and medium sized enterprises (SMEs)/companies may put quality on a lower
rank, even if it is not explicitly said so. If we compare the ratio between large and
small companies, especially for software companies, small and medium
enterprises are dominant in producing software products when compared to large
companies. For example, 77% of the software companies in Germany in 2000
were small scale [1]. Similarly in Brazil, 69% of the software companies were
small scale in 2001. This data supports that most of the software products were
produced by small and medium scale software companies. Hence, software
companies of small/medium size are not to be underestimated and addressed
separately.

Acta Polytechnica Hungarica Vol. 8, No. 5, 2011

 – 23 –

The following are the research question and its sub-questions, which motivate us
to make an effort to study this issue.

The research question arises: Are metrics and other tools used by the SMEs
companies for achieving quality in their products?

The sub-question are as follows: If they (or some of them) are using them, to what
extent are they using them? (1)

Are they using throughout the software life cycle, starting from the requirements
stage through to the deployment of the software; or are they only using them for
reviewing purposes (software inspection/review) and testing? (2)

2 Literature Survey: Measurement and Metrics in
Software Engineering

The term software engineering was first defined by Fritz Bauer1 in the 1960s “as
the establishment and use of sound engineering principles in order to obtain
economical software that is reliable and works efficiently on real machines”. Since
then, software engineering has been widely accepted as an engineering branch,
and measurement has been seen as an important aspect of it, as there is an
engineering principle that measurement is a mandatory task [5]. With the
popularity of this branch, ongoing research is continuing on this topic with the
following examples. In [6], the authors argue that measurement information
should be properly processed and classified in order to provide a “better”
overview of the current situation. Another example is reported in [7], where the
practical problem of the applicability of measurement theory in software
engineering is underlined, despite the fact that measurement theory gives a
scientific base. In that work, the author discusses the challenge to propose a
measurement theory for software engineering, and they approach the problem by
coining the concept of weak measurement theory to solve the basic problem for
the applicability of measurement theory in software engineering. Wang [8] has
also attempted to apply measurement theory in software engineering. However,
his work is not complete and we could not find the extended works on Morasca’s
nor Wang’s on measurement. Related to measurement theory, Kaner has proposed
a framework for the practical evaluation of software metrics in [9], which provides
a more formal approach to the other existing ones.

1 From the memoirs of Brian Randell, editor of The 1968/1969 (first) NATO Software

Engineering Conference

T. Pusatli et. al Software Measurement Activities in Small and Medium Enterprises: an Empirical Assessment

 – 24 –

In addition to those articles, there are several books in literature devoted to
measurement theory. It would be beneficial to quickly visit them as we refer to
them later in the paper.

The first book on the measurement of software was, to our knowledge, introduced
by M. H. Halstead [10] in 1977. This work was bookmarked as a theory of
software science, and it established the first analytical laws of computer software.
In his proposal, Halstead developed quantitative laws using a set of primitive
measures. Halstead’s measurements are considered interesting because they can be
applied after the design or completion of code. After that publication, successive
books on software measurement are reported in the literature. For instance, ‘A
framework on software measurement’, [11] by Zuse takes the theoretical, practical
and evaluative view of software measurement. This book investigates software
measurement principles and provides the proper guidelines for software
measurement. The author evaluated all the existing measurement proposals for
software at the time of writing and pointed out their pros and cons and their
practical applicability to problems and, accordingly, he suggested a “proper” way
of measurement. In addition to measurement, metrics are also researched in the
literature; for example, ‘Software Metrics’ by Fenton and Pfleeger [12] is devoted
specifically to software metrics; in the work, the authors discuss measurement in a
comprehensive way, from the basics of measurement theory to its applicability to
software engineering, which is required for software development. They explain
the fundamentals of measurements and experimentations in general and software
engineering measurements. Furthermore, the authors emphasize planning for
measurement programs, measurement in practice, and metrics tools.

Among the popular recent books, ‘Software Engineering, a practitioner’s
approach’ [13] by R. S Pressman, is one of the base books in software
engineering. This is a book which can be treated as a bible in software
engineering, as it discusses many aspects of software engineering; without going
into too much detail, those are most of the facets of software engineering starting
from software process to the latest software development practices. By taking the
measurement as the key element in engineering process, the author reports his
work on applying different measurement techniques through examples. In
addition, two specific chapters are devoted to software product and process
metrics in the book, which are used for different languages, stages, applications
and types of development.

Another recent example is Software Engineering by Sommerville [4], which is
also a valuable contribution, as it provides different measurement techniques at
different stages of the software and for different applications. Similar to
Pressman’s book, this book is not limited to specific measurement techniques. A
remarkable detail of the book is, for example, that it proposes reliability metrics2.

2 Chapter nine: critical system specification

Acta Polytechnica Hungarica Vol. 8, No. 5, 2011

 – 25 –

In some of the books, practical applications are discussed, and they provide
valuable knowledge through the experiences of applying software metrics;
‘Software process improvement: metrics, measurement, and process modeling’,
[14] edited by Haug, et al. is one of them. This book is devoted to reporting
authentic applications of measurements and to analyzing measurement techniques,
which are applied to software process improvement. As experimental data, the
authors have collected a set from the European Experience Exchange (EUREX)
project sponsored by the European Systems and Software Initiative for Software
Best Practice in Europe.

Those books are among the most famous examples that deal with software
measurements and metrics; they are widely accepted in the software engineering
community. The discussion on measurement in software engineering is not limited
only to those examples that we have visited briefly; it still continues. Those
examples show that there have been many metrics proposed for different purposes
in the software engineering domain; there are works such as [15] and [16], aiming
to compile already proposed metrics. At the same time, particular implementations
of measurement techniques for improving quality in small and medium scale
organizations are in limited number to our knowledge.

3 Definitions of Measurement and Measurement
Standards

Before we go further, we would like to define metric and measurements
definitions that we adopt in this work.

A metric is formally defined as “a quantitative measure of the degree to which a
system, component, or process possesses a given attribute” [2]. A “measurement”
is then a task which computes a metric from the attributes of the entities within a
given domain, using clearly defined rules [5]. Metrics must be purpose-oriented
[17] and have clear objectives [18].

With the examples we have given so far, the role of measurement in software
engineering proves itself as an essential to understanding software processes. In
parallel to this claim, Bourque and colleagues [5] argue that software engineering
without measurement would be hard to interpret, because without measurement,
management would be difficult. According to [17], measurement is essential to
monitor, understand and improve software processes as well as products and
resource utilization. While those points are given credit, there are other researchers
(e.g. Basili [19]; and [15] and [17]) who point out that there is a lack of consensus
around software measurements. In fact, many metrics have been defined which are
not used, according to [17]. While metrics need to be goal- or purpose-oriented, a
goal must first be determined, along with a way of measuring the degree of

T. Pusatli et. al Software Measurement Activities in Small and Medium Enterprises: an Empirical Assessment

 – 26 –

attainment of the goal, and both tasks may be subjective. For example, counting
the “lines of code”, as a metric, may serve to as an indication of the complexity of
a system. However, line count is not a measure that provides any insight into the
activity of a system, as not every line of code has the same relevance at run-time.
The number of lines of code has also been claimed to be inappropriate for
component-based systems; rather, complexity metrics for such systems should be
based on number of components and interactions among them [20], [21].

Specifications of the rules for the process of quantification may also be ambiguous
[17]. For instance, the implementation of the same metrics in different software
tools to support assessment of software design has been found to give different
results [22].

Furthermore, there are some software attributes that are a challenge for
measurement in IT domains at various levels. For example, the elements in the
IEEE standard concerning the evaluation of productivity are broad-ranging and
dynamic, such as documents per person per hour or lines of codes produced per
day [23].

Another important topic is productivity and its assessment. Metrics connected with
productivity of IS have been controversial [24], [25]. It has been argued that
traditional metrics of input versus output can work “... as long as computers allow
firms to produce more of the same product at lower costs...” [26]. Such measures
of productivity concentrate on the efficiency and effectiveness of the systems [27].
Overall performance measures include operational performance, especially system
availability and throughput (that is, producing the output within specified time
boundaries, and the quality of the content of output). However, the benefits of IT
may not always be easy to measure as they can be in forms such as customer
service or convenience, which may be intangible. Hitt underlines the contribution
of IT to business productivity but claims there has been mis-measurements of
output [28]; for instance, where customer service or convenience are the output,
there are difficulties, as well as subjectivity, that may lead to mis-measurement.

An early summary of what we have reviewed so far tells us that there are no
generally accepted metrics for many qualities, such as class cohesion in software
development, which address software quality when new features are added; this
prediction is supported in the literature (e.g. [29]). It has also been argued, in the
case of software complexity, that measures are not only subjective, but that they
do not satisfy a theory of measurement [30], and this charge can be laid against
many IT measures.

In the end, the literature pushes us to question if it is possible to objectively
measure all useful qualities of software. There are approaches to this problem.
Attributes have been divided into categories of external and internal, according to
whether they are indirectly or directly measurable, respectively [31]. External
metrics are most likely to be subjective. More explicitly, internal attributes, such
as defects, can be measured, for example by counting, while an external attribute,

Acta Polytechnica Hungarica Vol. 8, No. 5, 2011

 – 27 –

such as maintainability, can be measured only with the help of internal attributes
which act as surrogates, such as measuring modularity with a count of
components. Another internal metric is “lines of code”, which is simple to
implement by counting, whereas “effort” required producing those lines is difficult
to determine and so is an external attribute which can only be approximated by
surrogate measures, such as “development time”.

There is a great deal of literature on the measurement of external attributes in
software development, software quality and software maintenance [31]. Many of
the metrics proposed in the literature are directly or indirectly related to structural
connections between the number of classes, the number of times a class is
invoked, and class size, which are all internal attributes. These measures are used
as surrogates in measuring external attributes such as how flexible or reliable a
system is.

Another important aspect of the software products is maintenance. Measurement
and metrics are important for assessing proposed maintenance activities in
software systems. As the business requirements change over time, further
maintenance activities are performed. Those activities are not limited to changes
in the hardware of systems but can also be change in the code, which may create a
risk of instability in the system; this degradation is referred to as code decay,
which is the decrease of the quality of the code due to further modifications [32],
but the degradation of systems needs to be measured through the observation of
activities required to add new functionalities or new hardware, or repairing faults.
An indirect measure of system decay proposed in [33] involves the relative effort,
time to complete, and quality of modifications. To quantify the effect of aging in
operating system resources, various metrics such as “estimated time to
exhaustion” have been proposed in an attempt to develop proactive techniques to
limit system crashes. The “time to exhaustion” metric suggested in [34] is based
on the slope estimation of the resource usage on UNIX variants and can be applied
to different system resources including free memory and file table size. Another
approach [35] focuses on estimating resource exhaustion through time series
analysis, where they create artificial workload to the web server and monitor the
resources for applications involving web servers.

When it comes to the reliability, it also requires measurement, as software quality
is strongly tied to it. Reliability is the ability of a system or component to perform
its required functions under stated conditions for a specified period of time as
defined by IEEE [2]. The literature on reliability measures is not newly emerged.
One of the earlier works on software reliability measures identifies mean time to
failure and cumulative execution time as surrogate measures. [36] and [37]
proposes assessment techniques based on errors remaining after the testing phase,
as well as on failure and hazard rates. Those errors may be captured later via user
feedback; meanwhile, errors and failures remain the main elements in measuring
reliability (e.g. [38], which is a revised version of [39]) although inclusion of
measures of software complexity, test effectiveness and the consideration of the

T. Pusatli et. al Software Measurement Activities in Small and Medium Enterprises: an Empirical Assessment

 – 28 –

complete operating environment have been recommended to make reliability
assessment more accurate [40].

Coming back to the subjectivity of the measurement in software engineering, we
remark that Fenton identifies reliability, maintainability and productivity as the
quality attributes of high level software, and he notes that maintainability and
reliability are attributes of the software itself, whereas productivity is an external
attribute associated with people (the organization) dependent on processes and
software [18]. He claims that the use of internal software attributes to measure
these external attributes remains subjective. For example, modularity may or may
not be considered a surrogate for maintainability. The metric of class number may
be taken into account more when modularity is considered, because the increased
number of classes allows for greater precision in expressing dependencies [41].

By definition, metrics have been developed to measure aspects of software
development. For example, productivity of a development team provides a
measure of delivery of maintenance activity [42]. Modularity and a system’s
resulting flexibility are important for further maintenance. As with other software
metrics, the objectives of a software development project shape the criteria for
their evaluation. In some environments, speed of development is critical, in which
case a low number of classes may be desirable because the development team is
rushing to produce software within a tight time frame. A related adverse by-
product may be that the production rate for lines of code per day is high because
of the duplication of code elements. Conversely, when future maintenance is
considered to be important, the metric of class number may be useful because the
increased number of classes allow for greater precision in expressing
dependencies [41], despite a lower production rate of lines of code per day
because more design thought is put into the software construction.

As seen from this quick review of the literature, the topic of measurement/metrics
is not a narrow topic and one must comprehend the details of the metric in order to
employ it, including the circumstance for which it has been proposed; this makes
measurement/metric proposals not always straightforward. Such complexity may
discourage SMEs in the software industry, where time and human power are
usually precious. The good news is that there are some internationally recognized
standards in parallel to this issue.

3.1 International Standards

So far, we have provided and discussed our literature survey to do with software
measurement and metrics. Through this report we can deduce that software
measurement and metrics are not only challenging, but they also can be
controversial, subjective and open to discussion. Despite those handicaps, there
are some standards which have international reputation. For instance, the
capability maturity model integration (CMMI) is presently accepted as the best

Acta Polytechnica Hungarica Vol. 8, No. 5, 2011

 – 29 –

accreditation for the software industry. Some of the CMMI certified organizations
are Boeing’s Space Transportation System software, Tata Consultancy Services3,
Telcordia Technologies4 and Granter Inc.5 By adopting the CMMI, automatically,
they consider the best practices of measurement in their processes.

With the International Standards Office (ISO), providing ISO9001 and ISO9000-
3, companies can have two more standards to certificate and authenticate their
work. ISO 9001, which is a standard for any type of product, was basically not for
the software industry, but its application to software was initiated by TickIT (UK),
which provides the methodology for adopting ISO 9001 to the software industry.
As a figure, in 2002, 1252 organizations in 42 countries were accredited by ISO
9001 (TickIT) (in 2002) (www.iso.org, www.isoqar.com/iso9001/ qualintro.htm).
ISO 9000-3 explains how ISO 9001 can be applied to software. ISO 9000-3
(http://www.praxiom.com/iso-9000-3.htm) provides the guidelines which lead and
serve as an all-inclusive standard for the software industry. ISO 9000-3 is used in
developing, supplying, installing, and maintaining computer software. For
acquiring the ISO 9000-3 certification, an organization must develop the
organization’s software quality assurance (SQA) team, implement the
organization’s SQA systems and undergo certification audits.

Standards on metrics and measurements are not limited to these examples;
recalling that this paper aims to shed a light how much the measurements and
metrics are adopted in SMEs, we discuss this limitation in a literature survey on
standards in the last section.

4 Research Methodology

For the purposes of our research, the attributes which are deemed to be of interest
in the literature on metrics are more important than the form of the metric and
measurements. In seeking an answer to the research question, we have reviewed
discussions on the objectivity and complexity of the applicability of the
measurements/metrics. The literature we have surveyed caused us to think on
whether the SMEs use measurement as a tool in their business or not. In the case
that they are using them, we aim to learn about how much they benefit from them.

4.1 Research Framework

This research adopts a two-stage approach to address the research question.

3 http://www.tcs.com/homepage/Pages/default.aspx (accessed in 2010)
4 http://www.telcordia.com (accessed in 2010)
5 http://www.gartner.com/technology/home.jsp (accessed in 2010)

T. Pusatli et. al Software Measurement Activities in Small and Medium Enterprises: an Empirical Assessment

 – 30 –

Firstly, we formed a body-of-knowledge including software metrics and
measurements. As Figure 1 shows, while reviewing the literature, we saw that an
empirical study would help to fill the practical applications of the
measurement/metric in SMEs in the software domain; and we identified the
research question accordingly. Later, with the preparation/modification of the
interview questions, we saw that approaching the research question via sub-
questions would ease and increase the validity/reliability of the research.

Figure 1

Research Framework

Given the qualitative nature of the research, we have selected to conduct semi-
structured interviews to collect data from the field. The preliminary questions are
based on the literature survey and the gaps we identified to our knowledge.

We started looking for local SMEs to approach software developer firms in
Ankara as potential key informants, who later discussed the validity of the
preliminary interview questions. As a selection criterion, those key informants6
have considerable knowledge and experience on software engineering in the
industry. With the fourth and the fifth informants delivering similar comments and
advice, we decided to stop aligning questions and look for interviewees.

6 For privacy reasons, we do not mention the names of the key informants, nor any

identifier that can reveal their workplaces.

Acta Polytechnica Hungarica Vol. 8, No. 5, 2011

 – 31 –

The second stage of the research is based on the aligned semi-structured interview
questions from the previous stage. Those aligned questions formed the main
discussion points with the interviewees. Similarly, these interviewees were
selected from different companies with the selection criterion of being senior
professionals in their fields.

Additionally, we added the analyses of semi-structured interviews and ranks
which we collect from the interviewees to this data pool in order to design, revise
and validate our research (Figure 1). This way of doing research fits into the
grounded theory of Glaser [43], i.e. research where the data collected during the
research guides the research.

Before going to the interview sections we selected keywords as codes to be used
while analyzing the free comments of the interviewees. Those codes accelerated
our analyses to cluster quotes under similar topics.

As these steps indicate, this qualitative research is designed as a descriptive study
rather than an explanatory one, and it adopts partially grounded theory and
interviews as research techniques.

4.2 Collection, Analysis and Interpretation of the Results

All the questions were finalized and validated by chief executives in established
software companies’ in Ankara. First, we interviewed these executives and, based
on these discussions and their recommendations; we redesigned our questions and
sent them to be validated through e-mails. After their modification, the following
set of the questions and their scope were finalized and summarized, as in Table 1.

Table 1
Survey questions and their scope

Q. No. Questions Scope
1 How many software professionals are you

employing?
1-5 / 5-10 / 10-20 / 20-50

2 How many of those s/w professionals are
working with you more than 2 years?

Stability of the employees in
particular industry

3 What is the average experience of your s/w
professionals not only in your place but in
the industry?

Average experience of software
professional

4 How many core team members are aware
about the usefulness and importance of
software measurements to achieve quality
objectives?

Experience and awareness of
team members for measurements
in software Industry

5 Which tools and methods are you applying
for achieving quality objectives?

Knowledge of tools for quality
measurements

6 Does the company use software
measurement as tool in the business?

Applicability of measurement
tools for quality measurements

T. Pusatli et. al Software Measurement Activities in Small and Medium Enterprises: an Empirical Assessment

 – 32 –

7 Have you got any measurement
guidelines/framework for
controlling/assessing your products’
quality?

Awareness and availability of
measurement tools

8 In terms of software development, are you
using any internationally recognized
standards for achieving quality objectives
and to improve your business? For
example, ISO, IEC, CMMI.

Availability and applicability of
international standards

9 If you already have any of those standards,
did they help you to improve your
company up to your expectations? If so, in
what aspects?

Effect and results of using
international standards

10 Do you think CMMI is a criterion to assess
a company’s quality and reputation?

Aim of adopting highest
standard for a company

11 Which type of measurements are you
using? Could you please name few of
them e.g. resource management of
computer, number of: line of code, loops,
modules, errors...etc

Specific metric for
measurements

12 Has the company got expert team or
members who are software quality
engineer or experienced in software
measurement; if so, how many? Do you
hire any person outside for this activity,
alternatively?

Availability of software quality
engineers

13 In the full software development cycle
(from requirements, through design,
development, testing, to deployment) are
you using any kind of measurement?

Use of measurement Techniques
in software life cycle

14 Do you give more importance to
inspection or testing your products? In
other words, do you do assessment while
inspecting or testing?

Software review/inspection

15 Where else are you using measurements;
e.g. maintenance or support to you clients?

Further use of measurement

16 Are you following quality
guidelines/frameworks/ measurements
while doing business with your partners?

Use/effect of measurements in
business

17 Do you think that software measurement
can improve the quality of your products?
Please provide an example while
answering.

Actual knowledge and
awareness of quality objectives

18 Do you think there are
additional/alternative tools/methods than
software measurements in order to
improve your business in software
development?

Awareness of other tools for
improving quality and level of
company

Acta Polytechnica Hungarica Vol. 8, No. 5, 2011

 – 33 –

After finalization of the questionnaire, the interviewing technique (section 4.1) is
adopted for examining the applicability and awareness of software measurement
and metrics in software companies located in Ankara. We collected the list of
software development companies from METU-Technopolis7, a place inside a
leading university of Turkey, Middle East Technical University, where the offices
of approximately 280 companies are located. Of those companies, more than 90%
are SMEs operating in the ICT (60%) and electronics (25%) industries. As we
mentioned earlier, most software is developed in small/medium-scale companies.
This practice is more common in developing countries, but it also found in
developed countries such as in Germany. We considered companies which
between 5 and 50 software developers as small- and medium-scale companies. We
aimed to interview only those companies in this category; hence we visited about
half of the listed software companies.

5 Observations

We have a general interpretation of the results that shows at the first glance that
SMEs are not inclined to put the measurement at the first rank, which is in parallel
with [17] what has been discussed previously. Despite the fact that there is a
considerable amount of metrics proposed in literature, these tools are not
considered; some of them are not even known among the interviewed companies,
although they are actively doing business with a variety of clients (from defense to
accountancy).

We have not found encouraging results regarding measurement for achieving
quality objective in their software programs. Most of the companies have ad hoc
evaluation criteria in their software development programs. Their main aim is to
complete and deliver the job as soon as possible because they are tied to strict time
frames. For this reason, most of the companies failed to answer our survey
questions with details, as there are no specific measurement/metrics programs
implemented in their organisations. The most they do is that, in the case of failure
or complaint, they try to remove the errors.

At a small set of companies, the organisers found interested in measurement and
metrics. The appendix has a sample set which shows the feedback from the
interviewees.

We have been informed that not applying measurement techniques is not only
because of reluctance but also it is considered as “not necessary” and “not
required” in their project contracts.

7 http://www.metutech.metu.edu.tr/cms/index.php?Lang=EN (accessed in 2010)

T. Pusatli et. al Software Measurement Activities in Small and Medium Enterprises: an Empirical Assessment

 – 34 –

Although the role of measurement in software engineering is given credit and still
remains as one of the popular topics in the software domain, SMEs do not see any
“persuasive” benefit to urge them to study, evaluate and choose measurement
techniques and metrics to adopt in their workplaces. This observation may be seen
as challenging what we have recovered in the literature survey e.g. [5], [15], [17]
and [19]; however, feedback from relatively larger software companies shows that
measurement becomes a necessity in order to monitor, understand and improve
software processes along with software products and resource utilization as the
companies get larger in the number of employees. The following feedback is from
relatively larger companies.

“Definitely, yes, (s/w measurement can improve quality of the product).
The outcome of the measurements can be used as input in following
projects; hence, more suitable project scheduling is possible, which makes
the application correct and high-quality” (interviewee 5, noe (number of
employee): 20-50)

“Yes (s/w measurement can improve quality of the product). With
measurement the tasks can be planned and managed. Staff can be
educated with the composite metrics” (interviewee 11, noe: 20-50)

“Yes (s/w measurement can improve quality of the product), we identify
spots to rehabilitate and we take preventive actions with the aid of
measurement” (interviewee 13, noe: 80)

Pretty much all of the companies informed us that the quality of the products
should be assessed by the developer, the team leader and/or through meetings for
software inspection/review. However, to achieve quality standards, none of the
interviewees has put any metric or measurement techniques forward. In a broader
sense, most of them do not use any measurement tools in their business, except
some who limit measurement to evaluating jobs in price:

“…we calculate e.g. 33 hour requirement for the client” (interviewee 17,
noe: 5-10)

Because quality is strongly tied to measurement in software products, as we have
surveyed in the literature, we attempted to collect more information about the
quality standards from the interviewees. The result is that the following
internationally recognized standards (such as ISO, CMMI) are beneficial in
general; however, adopting such methodology requires time and patience:

“An increase in quality but slowing development due to procedure”
(interviewee 4, noe: 1-5)

Another observation is that even simple metrics such as lines of code are open to
discussion:

“Yes, (s/w measurement can improve the quality of the product) but
cannot be single criterion alone; e.g., the number of LOC was 200 in a

Acta Polytechnica Hungarica Vol. 8, No. 5, 2011

 – 35 –

program we wrote 10 years ago and the performance was poor. Later, we
reduced it to 3 LOC and it runs correctly and fast. Here, less LOC brought
an advantage through speed; however, higher LOC may not be a
disadvantage; at the same time, it should run correctly. Another example
is that we have delivered a project with 10 forms although we have been
contracted for one form. Here, some of the forms were simple while the
others were a separate project each. Those numbers became important
while negotiating on price” (interviewee 16, noe: 10-20)

Obtaining an internationally recognized certificate is not an easy task. However,
those certificates are not always obtained because the company would like to
make the work place “better” and/or up to a standard, but rather because they are
required in project specifications. While discussing the role of CMMI we collected
the following feedback:

“CMMI is a very important criterion but not sufficient alone. The course
could be left after obtaining CMMI” (interviewee 5, noe: 20-50)
“… it (CMMI) may stay as a label and not be applicable logically and
efficiently for small companies” (interviewee 6, noe: 10-20)
“CMMI cannot always be followed; a company can flex it according to
internal dynamics” (interviewee 14, noe: 10-20)

6 Results, Discussion and Recommendations

Recalling our survey of discussions on the absence of consensus on software
measurements [15] [17] [19] [22] we predicted a reluctance to use metrics in the
industry. This is gets more complicated with controversial and subjective
proposals in productivity measurements [24] [25] [28]. Similarly, maintenance is
seen as one of the most important activities in software systems, but indirect
measurements provide subjective and system-specific solutions [33] [34] [35].
Also reliability, hence error-failure measurements, are important [36] [37] [38]. In
addition to these, assessing the developer team [42] is another measure. Coming
along with the metrics and measurements, popular international standards (CMMI,
ISO9001 and ISO9000-3) stand as common criteria to maintain quality levels in
software companies.

6.1 Results

As summarized and clustered above, we prepared our interview questions (section
4.2) to address the motivation for measurement and tools to measure productivity,
reliability, maintenance, developer teams and to address the awareness of
international standards.

T. Pusatli et. al Software Measurement Activities in Small and Medium Enterprises: an Empirical Assessment

 – 36 –

We concluded the following results in conjunction with our observations (section
5):

Measurement is not a priority unless it is money-oriented (1)

For small companies, until they get some financial benefit/support, they do not
implement any specific measure to improve quality.

The use of measurement is limited in the assessment of software
(development) quality and it is considered a long term activity (2)

Most of the SMEs have the perception that software measures are only used for
improving quality, but that it requires a long time to implement in the workplace.

Measurement and metrics are limited due to the unawareness of
measurement techniques amongst the developer (3)

In fact, there is a considerable confusion about what the measurement activities
are for in improving quality of the product. They know the fundamentals, that a
code should be reviewed and metrics should be applied, but not which specific
tools and techniques should be applied at different stages of software
development; most of them are not aware or interested. This is closely tied to
result (1) as financial benefits are seen as main motivator in the industry.

The use of software metrics is limited due to heavy time pressure for the
delivery of products (4)

This is also a hard truth for the software industry and especially for the SMEs,
who are considerably affected in achieving quality objectives due to heavy time
pressure, as they are often working on projects with tight timeframes.

The use of software metrics is limited due to lack of highly experienced
professionals in the company (5)

In SMEs, there are several constraints, including (and maybe led by) financial
constraints. To achieve quality objectives, any company must have experienced
professionals in permanent positions or must hire them for some specific
activities, e.g. software inspection/review. However, financial constraints are a
barrier to doing so. Further, changing organizations amongst software
professionals is not an uncommon practice; when software developers gain some
expertise in a specific area, they get offers from bigger industries with better
packages; hence, it is not uncommon for small companies to lose those employees
who become experienced in evaluating measurement and metrics..

The uses of measurement techniques are limited due to an unawareness of the
depth knowledge of quality issues in the software development process (6)

Before joining the software industry, most, but not necessarily all, professionals
come from universities with an engineering degree. However, in most of the
syllabi of engineering branches, quality issues are not given emphasis in the

Acta Polytechnica Hungarica Vol. 8, No. 5, 2011

 – 37 –

course curriculum. Even in computer engineering, software quality management is
not an essential part of the study curriculum unless the student chooses to take
such elective courses.

An obtained standard or certificate may be used just as a label (7)

It is not uncommon to require standards such as ISO or certificates such as CMMI
as a prerequisite in project specifications. In order to have a chance of entering the
pool of companies tendering for projects, companies are motivated to apply such
standards/certificates. However, after getting involved in projects, the certificate
may stand on the wall and the company does not necessarily follow its directives.

6.2 Recommendations

This paper presents our survey of SME measurement activities used to achieve
quality objectives in their software products. Although improving the quality of
software seems to be a prime objective in the industry, our survey reports that
most SMEs do not spend as much care as is encouraged in the literature. This
study also hints at the effects of an absence of consensus regarding software
measurements and, as a result, an associated reluctance to use metrics in the
software industry. On the other hand, neglecting quality objectives bears the risks
of delivering low quality software; obvious consequences are not only the
rejection of the projects but also a poor reputation for the software company, an
important element in the long term for any developing company.

Apparently, the bringing of the metric/measurement notion into a workplace may
increase budgets for projects and/or reduce short-term earnings because adopting a
notion in a company requires stability (keeping adoption with changing employees
and projects) and separate documentation for knowledge management for further
projects to apply similar measurements. However, our study supports the view that
it is not only our suggestion that SMEs adopt the measurement and metrics in their
software development program, but also that those companies give credit to this
practice.

Keeping in mind that this paper has limitations while focusing on the application
of quality methods specifically, the reader should be informed that this report
should be read in conjunction with related literature on quality in the software
domain. Software quality issues include the application of the measurement
methods, but it is not limited to this; for example, while getting into more
technical detail, the quality of the applied algorithms and program code are given
credit generally in the literature. Recent examples include [44], where the author
underlines the performance linked to those two items while developing software
products.

T. Pusatli et. al Software Measurement Activities in Small and Medium Enterprises: an Empirical Assessment

 – 38 –

Conclusion and Future Work

As following discussion of results and limitations indicate there is room to
research to itemize the reasons linked with the findings of this study.

Adopting metrics/measurements in SMEs is not an easy task, as we mention in
Section 2. Hence, blaming those companies for not doing so would not contribute
to a solution and would leave the recommendation unsupported. Rather, proposing
a way to adopt metric/measurement applications could encourage SMEs to get
motivated in this topic. For such an attempt, a framework of IT, project
management and economics may generate a method of approach to introduce the
idea of metrics and measurement within SMEs in a long-term, step-by-step
approach.

When proposing such a method, the limitations of the results presented in Section
6.2 should be considered. A general limitation is that we have conducted
interviews locally. However, this limitation is not a great constraint as the
companies present a broader variety of interest as we mention in Section 5.
Another one is that we had only one person per company to interview. Most SMEs
have a limited number of employees; for this reason we do not expect any
considerable variety of information within a company. However, obtaining
information about the employees’ degrees and their course curricula could extend
results (3), (5) and (6) as a more focused questionnaire could be prepared to
investigate their knowledge on metrics and measurements.

The current study did not have the chance to study project requirements in order to
analyse the details of results (1) and (4). We are aware that as a part of the
industry, there are many companies working on delivering bespoke information
systems. However, we have excluded this issue in this study. This limitation opens
an associated and further study on project-based investigation in SMEs.

The current study gives signals that although some companies have acquired
internationally recognized certificates and standards, they may not follow them, as
summarized in result (7). As we have observed, standards may be used only as
labels. We see the potential for future studies focused on revealing more concrete
reasons for delaying obtaining these standards.

Acta Polytechnica Hungarica Vol. 8, No. 5, 2011

 – 39 –

Appendix: Sample set from the interviews
1 2 3 4 5 6 7* 8 9 10 11 12 13 14 15 16 17 18
10,20 12 4 4 CMMI based no a ISO, CMMI Extraordinary

change in SE.
Especially while
having a project in
defense. As a
result of std., things
are getting easier
like repeating,
inspecting and
adding.

yes 1 quality
eng.

Sub-versioning is
used related to
configuration
management

Inspection is
important, testing
is still on the
developer

Measurement
in
maintenance

When we
are sub-
contractor,
yes.

No programming
measurement is used,
yet.

1,5 1 1,4 all No time to apply No time
to apply

d Not yet yes no Eclipse IDE and
integrated SVN

testing no Definitely yes

1,5 1 1,5 2 yes a, b, c ISO Increase in quality
but slowing in
development due to
procedure

no Resource
management,
loop, module,
error counts

1 We use our
program
developed here

Both in inspecting
and testing

Maintenance
and support
to client

 More quality products
thanks to minimized
errors; less problems
with the clients

20,50 10 3,4 all ISO, CMMI Screen,
code
and sql
line
count

b, c We use ISO
and working
on CMMI

Yes, increase in
quality, software
reverse ratio
increased, code
library is more
productive

CMMI is a
very
important
criterion
but not
sufficient
alone. The
course
could be
left after
obtaining
CMMI.

Code line, error,
database table
counts

2
software
quality
eng.

MS TeamSystem,
Foundation
Server

More on the
inspection phase

 Yes, quality
guidelines
and
document
templates

Definitely yes.
Outcome of the
measurements can be
used as input in
following projects
hence more suitable
project scheduling is
possible, which makes
the application correct
and quality.

5,10 3 1,3 all ISO 9001:2000,
tools and methods
defined within our
quality
management.

TS
12207

a, b, c ISO yes both Customer
support

yes

5,10 6 7,8 1 We don’t use We don’t
use

a No Yes We don’t use No No Test We don’t do
measurement

No It may without doubt No
comment

1,5 2 10 1 Source controlling,
regular testing

No a, c No No Source
management,
error count

2, we
provide
this
service,
too

No, we develop
ourselves

Test Unit testing

20,50 10-
20

8 We have
ISO;
majority
knows

We follow ISO
quality standards

We don’t
use tools

c We follow
ISO quality
standards

Yes, it made us to
work more
productive and in
an order.

Certainly it
is an
important
criterion

LOC, # of
modules, ratio of
compile time
error to runtime
errors

1 Enterprise
Architect

Both of them are
important equally
for us.

We don’t
have
currently.

Yes It increases quality of
the products.

20,50 35-
40

5 15 Agile, Atlassian
JIRA, Continuous
Integration

JIRA a, b ISO, SPICE Beneficial indirectly.
Measuring and time
frame provide
essential benefits

No We have non-
integrated
solutions (see
13)

5-6. we
have
consultin
g firm
working
of
quality.

Total lines, LOC,
comment lines,
DP, DP/LOC (see
11)

Testing and
continuous
Integrations are
more important

We do
measurement
on every field,
including
support and
sale.

Yes Yes, with the
measurement the
tasks can be planned
and managed. Staff
can be educated with
the composite metrics.

Continuous
Integration
time frame.
Testing
automation
.

10,20 6 4 all We follow
approach
compatible to
CMMI

no c Because the
company is
small we
don’t have
any certificate
but we try to
follow
standards
e.g. ISO

- CMMI
cannot be
followed
always;
company
can flex it
according
to internal
dynamics

We follow RUP
life cycle. We
test speed and
security of the
program

3 people Enterprise
Architect

In both During
instalment to
the client

yes Yes, we ensure re-
usable codes to save
work power

-

* (a)The developer himself checks the quality with available tools (b)The team leader checks the quality regularly (c)Meetings are organized to evaluate the quality of
code, (these meetings are called software inspection or software review) (d)The company only bothers about the output i.e. if programs produce the output without any
bug or error, no matter how the code is built (e)Any other

T. Pusatli et. al Software Measurement Activities in Small and Medium Enterprises: an Empirical Assessment

 – 40 –

References
[1] Wangenheim, C. G. v., T. Punter, and A. Anacleto. Software Measurement

for Small and Medium Enterprices - A Brazilian-German view on
extending the GQM method. in 7th International Conference on Empirical
Assessment on Software Engineering (EASE) 2003, Keele, UK

[2] IEEE, IEEE Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries - 610. 1990: IEEE 217

[3] IEEE, IEEE Standard for a Software Quality Metrics Methodology, in IEEE
Std 1061-1998. 1998. document number

[4] Sommerville, I., Software Engineering. 7th ed. 2004: Pearson Addison-
Wesley. xxii, 759

[5] Bourque, P., et al. Lack of Consensus on Measurement in Software
Engineering: Investigation of Related Issues. in 14th International
Workshop on Software Measurement IWSM/MetriKon. 2004. Magdeburg,
Germany: Springer-Verlag

[6] Gómez, O., et al. A Systematic Review Measurement in Software
Engineering: State-of-the-Art in Measures. in First International
Conference on Software and Data Technologies. 2006, Setúbal, Portugal:
Springer-Verlag

[7] Morasca, S. Foundations of a Weak Measurement-Theoretic Approach to
Software Measurement. in FASE 2003. 2003. Warsaw, Poland: Springer-
Verlag

[8] Wang, Y. The Measurement Theory for Software Engineering. in Canadian
Conference on Electrical and Computer Engineering (IEEE CCECE) 2003.
Montreal: IEEE

[9] Kaner, C. and W. P. Bond. Software Engineering Metrics: What Do They
Measure and How Do We Know? in 10th International Software Metrics
Symposium (Metrics 2004) 2004. Chicago, IL

[10] Halstead, M. H., Elements of Software Science. Operating and
programming systems. 1977: Elsevier Science Ltd. 142

[11] Zuse, H., A Framework of Software Measurement. 1998: Walter de
Gruyter. 755

[12] Fenton, N. and S.L. Pfleeger, Software Metrics. 2nd ed. 1996: Pws
Publishing Company. 638

[13] Pressman, R.S., Software Engineering: A Practitioner's Approach. 5th ed.
2001: McGraw-Hill Science

[14] Haug, M., E.W. Olsen, and L. Bergman, Software process improvement:
metrics, measurement, and process modelling. 2001: Springer 391

Acta Polytechnica Hungarica Vol. 8, No. 5, 2011

 – 41 –

[15] Purao, S. and V. Vaishnavi, Product Metrics for Object-oriented Systems.
ACM Computing Surveys, 2003. 35(2): pp. 191-221

[16] Herlocker, J. L., et al., Evaluating Collaborative Filtering Recommender
Systems. ACM Transactions on Information Systems, 2004. 22(1): pp. 5-53

[17] Berander, P. and P. Jönsson. A Goal Question Metric-based Approach for
Efficient Measurement Framework Definition. in ISESE '06: Proceedings
of the 2006 ACM/IEEE international symposium on Empirical software
engineering. 2006. Rio de Janeiro, Brazil

[18] Fenton, N., Software Measurement: A Necessary Scientific Basis. IEEE
Transactions on Software Engineering, 1994. 20(3): pp. 199-206

[19] Basilli, V. R., G. Caldiera, and H. D. Rombach, Goal Question Metric
Paradigm, in Encyclopedia of Software Engineering. 1994, John Wiley &
Sons. document number

[20] Gill, N. S. and Balkishan, Dependency and Interaction-oriented Complexity
Metrics of Component-based Systems. ACM SIGSOFT Software
Engineering Notes, 2008. 33(2)

[21] Mahmood, S. and R. Lai, A Complexity Measure for UML Component-
based System Specification. Software: Practice and Experience, 2006.
38(2): pp. 117-134

[22] Lincke, R., J. Lundberg, and W. Löwe. Comparing Software Metrics Tools.
in Proceedings of the 2008 international symposium on Software testing
and analysis. 2008

[23] IEEE, IEEE Standard for Software Productivity Metrics, in IEEE Std 1045-
1992. 1993. document number

[24] Du, J., X. Yang, and Z. Wang. Effective Runtime Scalability Metric to
Measure Productivity in High Performance Computing Systems. in
Conference on Computing Frontiers. 2008. Ischia, Italy

[25] Hitt, L. M. and E. Brynjoifsson, Productivity, Business Profitability, and
Consumer Surplus: Three Different Measures of Information Technology
Value. MIS Quarterly, 1996. 20(2): p. 121

[26] Brynjolfsson, E. and L. M. Hitt, Beyond the Productivity Paradox.
Communications of the ACM, 1998. 41(8): pp. 49-55

[27] Scudder, R. A. and A. R. Kucic, Productivity Measures for Information
Systems. Information & Management, 1991. 20: pp. 343-354

[28] Hitt, L. M., Economic Analysis of Information Technology and
Organization, in Sloan School of Management. 1996, Massachusetts
Institute of Technology. document number: 165

[29] Mäkelä, S. and V. Leppänen. A Software Metric for Coherence of Class
Roles in Java Programs. in 5th International Symposium on Principles and
Practice of Programming in Java. 2007. Lisboa, Portugal

T. Pusatli et. al Software Measurement Activities in Small and Medium Enterprises: an Empirical Assessment

 – 42 –

[30] Misra, S. and H. Kilic, Measurement Theory and Validation Criteria for
Software Complexity Measures. ACM SIGSOFT Software Engineering
Notes, 2007. 32(2): pp. 1-3

[31] Vliet, H. v., Software Engineering: Principles and Practice. 3rd ed. 2008:
John Wiley&Sons. 740

[32] Parnas, D. L. Software Aging. in 16th International Conference on Software
Engineering (ICSE-16) 1994. Sorrento, Italy: IEEE

[33] Eick, S. G., et al., Does Code Decay? Assessing the Evidence from Change
Management Data. IEEE Transactions on Software Engineering, 2001.
27(1)

[34] Garg, S., et al. A Methodology for Detection and Estimation of Software
Aging. in The Ninth International Symposium on Software Reliability
Engineering. 1998. Paderborn, Germany

[35] Li, L., K. Vaidyanathan, and K. S. Trivedi. An Approach for Estimation of
Software Aging in a Web Server. in International Symposium on Empirical
Software Engineering. 2002

[36] Musa, J. D. The Use of Software Reliability Measures in Project
Management. in Computer Software and Applications Conference, 1978.
COMPSAC '78. The IEEE Computer Society's Second International. 1978

[37] Yamada, S., S. Osaki, and Y. Tanio, Software Reliability Measurement and
Assessment Methods During Operation Phase and Their Comparisons.
Systems and Computers in Japan, 1992. 23(7): pp. 23-34

[38] IEEE, IEEE Std 982.1 - 2005 IEEE Standard Dictionary of Measures of the
Software Aspects of Dependability, in Revision of IEEE Std 982.1-1988.
2006, IEEE. document number

[39] IEEE, IEEE Standard Dictionary of Measures to Produce Reliable Software
- IEEE Std 982.1-1988. 1989. document number

[40] Xu, S. An Accurate Model of Software Reliability. in 13th IEEE
International Symposium on Pacific Rim Dependable Computing. 2007

[41] Bar, H., et al., The FAMOOS Object-oriented Reengineering Handbook.
1999. 329

[42] Stark, G. E., Measurements to Manage Software Maintenance. 1997:
http://www.stsc.hill.af.mil/crosstalk/1997/07/maintenance.asp (checked in
2009). document number

[43] Glaser, B. G. and A. L. Strauss, The Discovery of Grounded Theory. 1967:
Aldine de Gruyter. xiv, 271

[44] Keszthelyi, A., Remarks on the Efficiency of Information Systems. Acta
Polytechnica Hungarica, 2010. 7(3): pp. 153-161

