
SIMULTANEOUS AND SINGLE GENE EXPRESSION: COMPUTATIONAL  

ANALYSIS FOR MALARIA TREATMENT DISCOVERY 
 

 

 

 

 

 

 

 

 

 

 

VICTOR CHUKWUDI OSAMOR 

CUO3GP0042 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2009 
 
 
 
 
 



Simultaneous and Single Gene Expression: Computational  

Analysis for Malaria Treatment Discovery 
 

 

 

 

 

By 

 

 

 

 

 

 

Victor Chukwudi Osamor 

CUO3GP0042 

Department of Computer and Information Sciences 

College of Science and Technology 

Covenant University 

 

 

 

Being 

 

 

A Thesis Submitted in Partial Fulfillment  

of the Requirement for the Award of  

Doctor of Philosophy (Ph.D) 

 in Computer Science of 

Covenant University 

Ota, Ogun State 

Nigeria 

 

 ii



CERTIFICATION 

We certify that this work was carried out by Victor C. Osamor in the Department of 

Computer and Information Sciences, College of Science and Technology, Covenant 

University, Ota, Ogun State, Nigeria. 

 

 

 

     Dr. Ezekiel  F. Adebiyi   -------------------------------------------- 

                            (Supervisor)                            Signature & Date 

 

  

Dr Seydou Doumbia    --------------------------------------------- 

 (Co-Supervisor)                        Signature & Date 

 

 

 

                       Dr. Ezekiel  F. Adebiyi  -------------------------------------------- 

                        (Head of Department)                  Signature & Date 

 
 

 
 
  Prof. E.A. Onibere      -------------------------------------------- 

                        (External Examiner)                  Signature & Date 

 

 

 iii



 
DEDICATION 

 

 
I dedicate this work to the Almighty God without whose miracles, this work would not 

have been successful. I also dedicate it to my wife, Mrs Ifeoma Patricia Osamor whose 

support in innumerable ways aided me to conquer all obstacles in course of this work.  In 

addition, I will also like to dedicate it to my biological father Pa Joseph Okafor Osamor, 

whose push and eagerness propelled me to finish this work. Unfortunately, 24hrs (19th, 

April 2009) to the submission of this thesis, news filtered in that he has gone to be with 

Lord. May his gentle soul rest in perfect peace. Adieu Papa!!! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 iv



ACKNOWLEDGEMENT 
 
Firstly, I wish to acknowledge Almighty God for it is not of him that willeth  nor of him 

that runneth, but of God that sheweth mercy (Romans 9:16). God has made me to pursue 

and conquer even when at a time it looked as a deep cloud in outer darkness, God still 

guided me by showing me a light at the end of the tunnel. God’s word (“I returned, and 

saw under the sun, that the race is not to the swift, nor the battle to the strong, neither yet 

bread to the wise, nor yet riches to men of understanding, nor yet favour to men of skill; 

but time and chance happeneth to them all” (Ecclesiastes 9:11) kept me alive and burning 

even in the race to acquire this Doctor of Philosophy (Ph.D) Degree. I am really indebted 

to God as I mark and pledge to serve him all days of my life. Thank you Bishop (Dr) 

David Oyedepo for teaching us the winning keys and God bless Covenant University for 

making this possible. I also want to thank the Vice Chancellor Prof Aize Obayan, new 

Registrar, Dr Daniel Rotimi and former Registrar Pastor Yemi Nathaniel for their 

exemplary leadership that gave birth to this success. 

 

My profound gratitude to my Supervisor and current H.O.D. Dr Ezekiel Adebiyi whose 

meticulous criticisms, corrections, suggestions and guidance to the entire work gave me 

impetus to work very hard even in the presence of other academic and administrative 

loads. Sir, I sincerely wish to specially thank you for your effort and rigorous training 

during this work as I pray that God will also bless your beloved wife (Mrs Adebiyi) for 

creating time for you to attend to my work. To the former H.O.D. and current Director of 

Academic Planning Unit (DAPU) Dr C.K. Ayo, I also appreciate you and pray that God 

will reward you for recognizing my strength and your proffered advice in course of my 

Ph.D training. This also goes to Prof. Olushola Ojo for his support and guidance as I pray 

that the Almighthy God will reward you. I also wish to thank Prof N. Okonjo of 

Chemistry Department, current Dean of College of Science and Technology Prof. James 

Katende for their prayers and guidance.  

 

To Mr Oyelade J. Olarenwaju, I will like to thank him very much for all the 

implementation support he gave me in the course of the work. I use this opportunity to 

thank all staff of Computer and Information Science Department for their cooperation 

 v



during this work.  Foreign scientists that are worthy of acknowledgement include my co-

supervisor Dr Seydou Doumbia of Malaria Research Training Centre (MRTC), University 

of Bamako in Mali and Dr Doulaye Dembele,  my first MATLAB teacher from 

Plateforme BIOPUCES de Strasbourg, IGBMC, 67404 ILLKIRCH CEDEX, FRANCE 

for the initial criticism of my first Ph.D proposal. We are grateful to Johanna P. Daily of 

Department of Immunology and Infectious Disease, Harvard School of Public Health, 665 

Huntington Avenue, Boston, Massachusetts 02115, USA and Fahim, A. M. from Faculty 

of Education, Suez Canal University, Suez city, Egypt, Chris Ding, NERSC Division, 

Lawrence Berkeley National Lab., UC Berkeley, USA, for useful and constant 

discussions. We also thank the DeRisi J. from Department of Biochemistry and 

Biophysics, University of California, San Francisco, USA, and Karine LeRoch from 

University of California, Riverside, USA., for making their microarray data available 

through the web. We also will like to thank the three anonymous reviewers of the BMC 

Bioinformatics Journal for their very useful assessment which improved the quality of 

Chapter Three beyond what it was when we made our first submission for publication.  

 

The home could not have been more conducive if my lovely queen Mrs Ifeoma Osamor 

had not made it so. Indeed her support was incalculable arising from her intuitive and 

instinctive guidance as she aided in some routine mathematical and computer-related 

tasks.  Honey, I thank you so much for sharing this vision and may the Lord strengthen 

you further and give you more blessings. I thank my father Joseph Osamor whose dream 

has been to support me up to Doctorate level but unfortunately we lost him, a day to the 

submission of this thesis. Papa may your soul rest in perfect peace, Amen. I also 

appreciate my mother, Mrs Regina Osamor for her blessings, prayers and my success, 

Ifeanyi Peter Osamor and Tina Ebube (nee Osamor) my younger brother and sister 

respectively for their keen interest in my Ph.D work. It is also a great privilege to use this 

opportunity to thank my parents-in-law, Mr and Mrs Okpah and the entire Okpahs’ family 

for their support and understanding. Moreso, thanks to the Ebubes’ family, Osamors’ 

family, John Onwuegbuzie, Mr Owoloko e.t.c, whose name have not been mentioned but 

contributed directly or indirectly to the progress of this work. I thank Mr Baderu and 

Pastor Abolarin of Faith Academy for assisting in the proof-reading of this thesis. 

 vi



ABSTRACT 
 

The major aim of this work is to develop an efficient and effective k-means algorithm to 

cluster malaria microarray data to enable the extraction of a functional relationship of 

genes for malaria treatment discovery. However, traditional k-means and most k-means 

variants are still computationally expensive for large datasets such as microarray data, 

which have large datasets with a large dimension size d. Huge data is generated and 

biologists have the challenge of extracting useful information from volumes of microarray 

data.  Firstly, in this work, we develop a novel k-means algorithm, which is simple but 

more efficient than the traditional k-means and the recent enhanced k-means. Using our 

method, the new k-means algorithm is able to save significant computation time at each 

iteration and thus arrive at an O(nk2) expected run time. Our new algorithm is based on the 

recently established relationship between principal component analysis and the k-means 

clustering. We further prove that our algorithm is correct theoretically. Results obtained 

from testing the algorithm on three biological data and three non-biological data also 

indicate that our algorithm is empirically faster than other known k-means algorithms. We 

assessed the quality of our algorithm clusters against the clusters of known structure using 

the Hubert-Arabie Adjusted Rand index (ARIHA), we found that when k is close to d, the 

quality is good (ARIHA > 0.8) and when k is not close to d, the quality of our new k-means 

algorithm is excellent (ARIHA > 0.9).  We compare three different k-means algorithms 

including our novel Metric Matrics k-means (MMk-means), results from an in-vitro 

microarray data with the classification from an in-vivo microarray data in order to perform 

a comparative functional classification of P. falciparum genes and further validate the 

effectiveness of our MMk-means algorithm. Results from this study indicate that the 

resulting distribution of the comparison of the three algorithms’ in- vitro clusters against 

the in-vivo clusters is similar, thereby authenticating our MMk-means method and its 

effectiveness.  Lastly using clustering, R programming (with Wilcoxon statistical test on 

this platform) and the new microarray data of P. yoelli at the liver stage and the P. 

falciparum microarray data at the blood stages, we extracted twenty nine (29) viable P. 

falciparum and P. yoelli genes that can be used for designing a Polymerase Chain 

Reaction (PCR) primer experiment for the detection of malaria at the liver stage. Due to 

the intellectual property right, we are unable to list these genes here. 
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CHAPTER ONE 
  

INTRODUCTION 
 
 
1.1 BACKGROUND INFORMATION OF THE STUDY 
 
Fatal human malaria infection is initiated when an infected Anopheline mosquito –

Anopheles gambiae, injects sporozoites during a human blood meal. After injection, 

sporozoites enter the bloodstream and go to the liver, where they invade hepatocytes and 

develop into exoerythrocytic forms (Coppi et al., 2005). These liver stage parasites mature 

and are released into the Red Blood Cell (RBC) for erythrocytic stage, a form 

characterized with symptomatic malaria.  Four species of the genus Plasmodium are 

responsible for the human malaria out of which P. falciparum stands out as the most lethal 

compared to P. vivax, P.malariae and P.ovale.  

 

Drug resistance in evolving Plasmodium falciparum strains and insecticide resistance of 

the female Anopheles mosquito account for major biomedical catastrophe standing against 

all efforts to eradicate malaria in Sub-Saharan Africa. Malaria is endemic to more than 

100 countries and by far the most costly in terms of human health causing major losses 

among many African nations including Nigeria. Plasmodium species is a protozoan 

parasite that infects approximately 500 million people annually, killing more than one 

million, mainly children and pregnant women in Africa (Le Roch et al., 2003; Breman, 

2001). Malaria is a global problem as estimates suggest that 40% of the world’s 

population is at risk of malaria (Brown and Reeder, 2002). In a recent PCR (Polymerase 

Chain Reaction), malaria diagnostics study conducted on 401 children that complained of 

fever in Lafia, located within the Guinea savanna ecological zone in north-central Nigeria, 

Oyedeji et al., (2007) reported that 285 patients out of these 401 were infected with 

malaria. Within this region, malaria transmission was formerly described as stable and 

uniformly intense through most of the year (Bruce-Chwatt, 1951; Molineaux and 

Gramiccia, 1980). 
 

There are three main strategies presently attempting to control malaria disease: 

vaccination, vector control, and drugs. Of these, drug application is currently the main line 
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of disease control with some level of mosquito control. Despite initially promising results 

with multicomponent recombinant protein vaccines targeted against the asexual blood 

stages (Genton et al., 2003) and vaccines directed against the sporozoite stage (Bojang et 

al., 2001), effective immunization against the disease is not yet available (Yeh et al., 

2004).  There is, however, a deepening crisis with emerging resistance among malaria 

parasites to the existing drugs. For these reasons, it is imperative that new lines of drugs 

be explored before existing drugs lose too much efficacy (Ralph et al., 2001). 

 

Malaria treatment discovery and antimalarial drug development can follow several 

strategies, ranging from minor modifications of existing agents to the design of novel 

agents that act against new targets, as available agents are being combined to improve 

antimalarial regimens (Rosenthal, 2003).  Among important efforts that are currently 

ongoing are the optimization of therapy with available drugs, including the use of 

combination therapy, the development of analogs of existing agents, the discovery of 

natural products, the use of compounds that were originally developed against other 

diseases, the evaluation of drug resistance reversers, and the consideration of new 

chemotherapeutic targets. The last category benefits from recent advances in malaria 

research technologies and genomics and is providing new classes of drugs (Rosenthal, 

2003). 

The concept of gene expression can simply be understood by considering genes as 

containing the instructions for making messenger RNA (mRNA); but at any moment, each 

cell engages itself in the production (expression) of mRNA from only a fraction of the 

genes it carries. If a gene is used to produce mRNA, it is considered "on", otherwise "off". 

Many factors determine whether a gene is on or off, these include the time of the day, 

whether or not the cell is actively dividing, its local environment, and chemical signals 

from other cells. Skin cells, liver cells and nerve cells turn on (express) somewhat 

different genes and that is in large part, what makes them different. Therefore, an 

expression profile allows one to deduce a cell's type, state, environment, and other 

attributes. 
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Gene expression profiling experiments often involve measuring the relative amount of 

mRNA usually called transcript, expressed in two or more experimental conditions. This 

is because altered levels of a specific sequence of mRNA suggest a changed need for the 

protein coded for by the mRNA, perhaps indicating a homeostatic response or a 

pathological condition. Placing expression profiling results in a publicly accessible 

microarray database, makes it possible for researchers to assess expression patterns 

beyond the scope of published results, perhaps identifying similarity with their own work. 

Gene expression profiling has been commonly used to study the pathogen’s or host’s 

responses to each other or to the external stimuli such as drug or vaccine treatments. The 

fight against malaria is failing and microarray analyses need to keep up the pace to unravel 

the evolving parasite’s gene expression profile, which is a pointer to monitoring the genes 

involved in malaria’s infective metabolic pathway. Gene expression profiles can also be 

used in studying various state of malaria development in which expression profiles of 

different disease states at different time points are collected and compared to one another 

to establish a classifying scheme for purposes like diagnosis and treatments with adequate 

drugs. 

Deoxyribonucleic Acid (DNA) microarray gene expression profiling is a high-throughput 

measurement of the activity (the expression) of thousands of genes simultaneously (at the 

same time), to create a global picture of cellular functions. These profiles can, for 

example, distinguish between cells that are actively dividing, or show how the cells react 

to a particular treatment. Many experiments of this sort measure an entire genome 

simultaneously, that is, every gene present in a particular cell. DNA Microarray 

technology measures the relative activity of previously identified target genes. Tag-based 

techniques, like serial analysis of gene expression (SAGE, SuperSAGE) are also used for 

gene expression profiling (Wikipedia, 2008).  

To detect or analyse single gene in an environment, we need a PCR-based technology. 

This is most useful in the quest to detect effectively when a person is infected with the 

malaria parasite.   
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Discovery of new malaria treatment benefits from recent advances in malaria research 

technologies and genomics and is providing new classes of drugs. A number of new 

antimalarial therapies will likely be needed over the coming years. So, it is important to 

pursue multiple strategies for drug discovery.  The development of resistance in the 

parasite to effective and inexpensive drugs, the lack of a licensed malaria vaccine, and the 

fundamental complexity inherent in the malaria parasite means that there is an urgent need 

to better understand the function of P. falciparum genes and their biological role to 

support the development of new and effective antimalarial strategies (Le Roch et al., 

2003).  For example, Figure 1 shows a current typical WHO/TDR drug discovery pipeline 

from genomics (which is the domain of this work) to preclinical development stage.  

 

 
 
 
Figure 1.1: TDR Drug Development Pipeline and Portfolio with Genomics at the Basi
 
 
All contributions of our work are at the genomic level which suppor

screening. We therefore engage computational tools such as k-means 

principal component analysis, etc to explore the huge data generated fro

experiments involving simultaneous and single gene expression fo

extracting meaningful information that will benefit the malaria treatm

discovery.  

 

(Source: Nwaka, 2008)
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1.2 STATEMENT OF THE PROBLEM 
 
Malaria caused by Plasmodium falciparum is lethal and responsible for major losses and 

deaths in Sub-Saharan Africa. On a regular basis, data are generated by researchers. 

Forming a large part of these huge raw data resources is the Malaria Microarray Data 

(MMD) arising from the study of gene expression in Plasmodium. Researchers are often 

faced with difficulties or inabilities to: 
 

1) Cluster enormous amount of genomic data at a reasonable time shorter than 

the runtime of existing algorithms. 

2) Analyse  and extract useful knowledge from the vast amount of MMD.  

3) Find a functional relationship among genes involved in malaria infection to 

understand the complex biology of the parasite. 

4) Enhance a better understanding of malaria disease and provide adequate 
knowledgebase on how best to apply treatment protocols. 

 
This work is poised at providing viable solutions to the challenges listed above. 
 
 
1.3 AIM AND OBJECTIVES OF THE STUDY 
 
The aim of this research work is to develop a consortium of analytical tools to cluster 

genes into their functional roles at improved runtime, with a view to contributing to 

knowledge on many P. falciparum genes. 

  

From the above stated aim, the objectives of the research work are as follows: 

1) To improve the run-time of the k-means algorithm for useful clustering of 

high throughput data at a reasonable time.                      

2) To improve the quality of experimental results interpretation for biological 

researchers arising from improved clusters output.       

3) To find a functional relationship of genes involved in malaria infection. 

4) To enhance a better understanding of the malaria disease and to provide 

adequate knowledgebase on how best to apply treatment protocols.  
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1.4 RESEARCH QUESTION 
 
The following are the research questions that will enhance the accomplishment of the 
proposed research objectives: 
 

1) How can we improve the runtime of our new algorithm to cluster large 

through-put microarray data for P.falciparum genes at a reasonable time?       

2) How can the quality of clusters from our new algorithm be assessed to ensure 

that we have appropriate cluster quality for experimental results 

interpretation? 

3) What is the significance of comparative functional classification of P. 

falciparum genes using k-means clustering? 

4) Will our algorithm and clustering result interpretation be able to advance 

malaria treatment discovery? 

 

  

1.5 RESEARCH METHODOLOGY 
 
The methodology involves the use of principal component analysis (PCA) to develop a 

new and novel k-means algorithm for   microarray data clustering with Pearson correlation 

as the distance metric. Our new algorithm is based on the recently established relationship 

between principal component analysis and the k-means clustering.  Using the Ding and He 

threshold (Ding and He, 2004) and our new theoretical derivation, we are able to 

determine which of the k clusters are optimally equal to the expected ones; (that is, its 

members will always remain in the same cluster in subsequent iteration). We shall prove 

that our algorithm is correct and assessed the quality of our algorithm clusters against the 

clusters of known structures using the Hubert-Arabie Adjusted Rand index (ARIHA) 

(Steinley, 2004).  

 

Using C++, we implemented the three variants of k-means algorithms, namely, the 

Traditional, Overlapped and Enhanced k-means following the design of Fahim et al., 

(2006). We also implemented a fourth one, our MMk-means algorithm using C++ 

equipped with a MATLAB gateway code.  The C++ program is executed from MATLAB 

environment that links Borland C++ through the gateway code to exchange data. Borland 
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C++ accepts the raw microarray data and computes its covariance matrix (r) which is sent 

to MATLAB for the covariance matrix’s eigenvalues computation and returned to C++.  

Our MMk-means algorithm runs like the traditional k-means algorithm except that it is 

equipped with a mechanism to determine when a cluster is stable, that is, its membership 

data points will always remain in the same cluster in each subsequent iteration. The 

algorithm was developed and tested on a DeLL computer, INTEL® CORE™ DUO CPU 

T2300 @1.66GHz, 512 RAM, 80GB HDD running on Windows Vista operating system. 

 

In ascertaining the significance of comparative functional classification of Plasmodium 

falciparum genes, we deployed our earlier implemented traditional and MMk-means 

algorithms to cluster Le Roch et al. (2003) data for k=15. The traditional k-means 

algorithm is set a gold standard and is used to validate MMk-means algorithm while the 

Robust k-means clustering results from Le Roch et al.(2003) for k=15 serve as a 

benchmark to compare the effectiveness of the two algorithms. We employed Relational 

Database Management System (RDBMS) using Microsoft Access 2003 to map genes (in 

clusters) of Traditional k-means and MMk-means algorithms to their robust k-means 

counterpart. This data mining allowed us to compare and contrast traditional k-means and 

MMk-means from their percentage similarity with Le Roch et al. (2003) clusters.  

 

To further consolidate the validation of our MMk-means algorithm, we carried out 

comparative analysis of clusters results on Le Roch et al. (2003) data as generated by the 

three (3) algorithms on Daily et al. (2007) data. We ran Significant Analysis of 

Microarray (SAM) (Trusher, et al. 2001) at the settings of delta (∆) = 0, data type = One 

Class, to extract list of significant genes that are highly expressed for each of the three 

clusters. We compared clusters 1-15 from Le Roch et al. (2003) data for each of the three 

k-means algorithms with each cluster of Daily et al. (2007) and computed the percentage 

number of genes common to both. We placed via venn diagrams the results of the three 

different k-means algorithms from the in-vitro microarray data of Le Roch et al. (2003) on 

the classification from the in-vivo microarray of Daily et al. (2007) and compared the 

distinct physiological states of P. falciparum  from venous blood of malaria patients for 

identification of important genes that can advance malaria treatment discovery. 
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In exploring Polymerase Chain Reaction (PCR)-based dectection of malaria, we analyse 

the behavior of parasite genes at  the liver stage by employing the use of the microarray 

data of Tarun et al. (2008) and Bozdech et al. (2003a) and their orthologues in PlasmoDB 

(Kissinger et al., 2002). Our interest is to further analyse the behaviour of these liver stage 

genes using some knowledge obtained from blood stages of P. falciparum 3D7 and HB3 

strains from the microarray data of Bozdech et al. (2003a). This idea lends credence to the 

role of orthologues in functional genomics, as genes in a different species that evolved 

from a common ancestral gene by speciation retain the same function in the course of 

evolution (Lewis, 2009). 

 

The Traditional clustering algorithm implemented in Osamor et al., (2009) was deployed 

and used to cluster Tarun et al., (2008) and Bozdech et al., (2003) microarray data 

independently. Using guilty by association (GBA) principle, genes in the same cluster are 

expected to be functionally related and orthologues of Tarun et al. (2008) genes in the 

same cluster using P. falciparum 3D7 and HB3 strains expression are expected to be key 

genes. The number of cluster input was set at k = 15 to serve as benchmark for effective 

comparative study with other published result like Le Roch et al. (2003). In addition, the 

dataset tested seem to have the most stable cluster output at k=15. The resultant output 

was exported to MS Access relational database management system (RDBMS) for 

analysis. A significance test was conducted between the two strains (3D7 and HB3) genes 

using the Wilcoxon’s statistics. Based on these statistics and annotation information, the 

orthologues in P. yoelli of the most significant genes for 3D7 and HB3 were 

recommended as important genes that are likely suitable for PCR-based diagnosis of 

malaria at the liver stage.  

 

 
 
 
 
 
 
 
 
 

 8



1.6 SIGNIFICANCE OF THE STUDY 
 
Generally, the knowledge of the biology and gene expression pattern of  P. falciparum 

will provide an invaluable resource for characterizing the complex roles of individual 

genes and ultimately the identification of new chemotherapeutic and vaccine candidates 

(Bozdech et al. 2003b) for antimalaria strategies. 

However, the significance of this study includes: 

1. Development of a novel algorithm for clustering microarray data for identification 

of important genes for an enhanced understanding of malaria disease that will help 

to advance treatment discovery.  

2. Obtaining acceptable cluster quality with good effectiveness assessed by standard 

cluster index. 

3. Finding the functional relationship of genes involved in malaria infection. 

  

 
1.7 CONTRIBUTIONS 
 
Our three main contributions in this work are summarized as follows: 
 
1.7.1 OUR CONTRIBUTIONS: REDUCING THE TIME REQUIREMENT OF K-

MEANS ALGORITHM 
 
Since traditional k-means and its variants are still computationally expensive for large 

datasets such as microarray data, we developed a novel k-means which we shall refer to as 

MMK-means, which is simple and more efficient than traditional k-means, overlapped 

and enhanced k-means as designed by Fahim et al (2006). Our new k-means algorithm 

saves significant computation time at each iteration and thus arrived at an O(nk2) expected 

run time. 

 

Mathematically, we also showed that our algorithm is correct. The quality of the clusters 

generated by our MMk-means were assessed using the Hubert – Arabie Adjusted Rand 

Index (ARIHA) (Steinley, 2004), against the structure of known clustering result. The 

results of the exercise show that the quality of MMk-means clusters are desirable.   
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Note, however, that the new clustering algorithm can be used for other clustering needs as 

long as an appropriate measure of distance between the centroids and the members is used. 

This has been demonstrated in the course of this work on three non-biological data. 

 

 
1.7.2 OUR CONTRIBUTIONS: COMPARATIVE FUNCTIONAL 

CLASSIFICATION   OF PLASMODIUM FALCIPARUM GENES USING K-
MEANS CLUSTERING 

 
We carried out comparative studies of the clustering analysis of major P. falciparum 

microarray results with the objective of seeing the implication of the different clustering 

tools applied on the malaria parasite under different microarray experiments. In this work, 

we demonstrated the biological characteristics of our new algorithm against two other well 

known k-means clustering algorithms (that has been used on this same biological data) 

and discovered a new functionality for some set of genes.  

 

By this work, we were able to further validate our new and novel MMk-means algorithm. 

Results from this study indicate that the resulting distribution of the comparison of the 

three k-means algorithms’ in-vitro clusters against the in-vivo clusters are similar thereby 

authenticating our MMk-means method and its effectiveness. 

 

1.7.3 OUR CONTRIBUTIONS: EXPLORING PCR-BASED DETECTION OF 
MALARIA INFECTION AT LIVER STAGE 

 

In addressing the challenges faced with the identification of useful genes and possible 

primer information, our in-silico prediction in chapter seven points to suggest a new 

exploratory experimental study for possible PCR-based detection of malaria infection at 

the liver stage. Using our method, the concept of orthology, R programming, recent 

microarray data at the liver and blood stages, we predicted twenty nine (29) key genes that 

will be useful for malaria diagnosis at the liver stage. 
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1.8 SCOPE AND LIMITATION OF THE STUDY 
 
The work focused on clustering algorithm applied principally to microarray data from 

P.falciparum life cycle. This is to allow for thorough in-depth experimental analysis. 

Despite the fact that other species of Plasmodium and other parasitic organisms of 

apicomplexan origin can cause disease of importance, this study is limited to human 

malaria caused by Plasmodium falciparum. Different P. falciparum data were the only 

biological data considered among many other Plasmodium species because it is the most 

fatal and considered of much economic importance. Note that we also validated the 

application of our method to non-biological data. 

 

Microarray data are usually noisy, hence, this study will contend with this limitation by 

analysing large data sets. Issues relating to Polymerase Chain Reaction (PCR) as regards 

the development of a diagnostic test on it are explored in chapter 7 of this thesis.  The 

work is limited by the emphasis on P. falciparum over other human malaria parasites due 

to the fatal nature of the P. falciparum malaria. 

 

1.9 OUTLINE OF THE THESIS 

 
This write-up is structured in eight chapters and they are as follows: In chapter one, 

motivation behind the work was elucidated while the background section gave a brief 

introduction and enumerated the contributions of the work. Also included in this chapter 

are the statement of the problems, research questions, methodology, aim and objectives, 

and scope and limitation of work.  

 

The literature review spanned through chapters two, three and four for the purpose of 

clarity in addressing specific areas of the work. Chapter two highlighted the malaria 

challenge and existing solutions including global initiatives and local efforts in solving the 

malaria problem. Chapter three gave an account of the meaning and the technology behind 

DNA microarray and PCR, taking into consideration the various DNA platforms 

applications, in respect to malaria treatment discovery and the drawbacks of PCR. In 
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Chapter four, we discussed the clustering techniques, existing clustering methods, 

applications and drawbacks of k-means clustering.  

 

We dedicated each of the next three chapters (five, six and seven) to specific objectives of 

the work. Chapter five described the ways to solving the problem, the main objective of 

this work. In its background section, we introduced “Reducing the Time Requirement of 

k-means Algorithm” and presented previous variants of k-means algorithm. Methods 

section presents the design of our new algorithm, the Metric Matrices k-means (MMk-

means) as well as algorithms correctness and complexity analysis. In result and discussion 

section, we presented our experimental experience and concluded the chapter. Chapter six 

reported a set of computational experiments on “Comparative Functional Classification of 

Plasmodium falciparum Genes Using k-means Clustering” to discover the functional role 

of new sets of genes. Chapter seven discussed the in-silico prediction that points to 

suggest a new exploratory experimental study for possible Polymerase Chain Reaction 

(PCR)-based detection of malaria infection at the liver stage. In chapter eight, we 

summarized and concluded the whole work.  
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CHAPTER TWO 
 

LITERATURE REVIEW 1: THE MALARIA CHALLENGE 
AND EXISTING SOLUTIONS 

 
 
2.1 MALARIA TRANSMISSION AND PATHOGENICITY 
 
Plasmodium undergoes developmental life cycle in man and mosquito as depicted in 

Figure 2.1 (a & b). When a parasite-infected mosquito feeds on a human, it injects the 

parasites form called sporozoites from its salivary gland into the subcutaneous layer of the 

skin and into the bloodstream. These migrate to the liver cell forming a quiet liver stage 

parasite in the parasitophorous vacuole. The co-receptor on sporozoites that mediates 

invasion involves, in part, the thrombospondin domains on the circumsporozoite protein 

(CSP) and on thrombospondin-related adhesive protein (TRAP). These domains bind 

specifically to heparin on hepatocytes. Inside the hepatocyte, each sporozoite develops 

into tens of thousands of merozoites (Miller, et al. 2002), which can each invade the red 

blood cells (RBC) on release from the liver.  
 

 
(Source: Wirth, 2002) 

Fig 2.1: Life cycle of the parasite Plasmodium falciparum in Man (a) and Mosquito (b).                       
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Furthermore, the blood stage parasites grow and multiply severally, invading many more 

RBC and releasing the metabolic products arising from RBC degradation and leading to 

malaria symptoms. To commence sexual stage development, some merozoites undergo 

several developmental stages namely ring and trophozoite stages and finally differentiate 

into gametocytes which are picked up by blood-sucking mosquitoes during a bite on an 

infected person.  Eventually, up to 10% of all red blood  cells becomes infected and  

patients’ may begin the manifestation of clinical features of malaria, including fever and 

chills, anaemia and cerebral malaria which can lead to death in case of Plasmodium 

falciparum from female anopheline mosquitoes.  
 
On each mosquito bite of an infected human, it takes up blood containing gametocytes, 

which develops into male and female reproductive cells (gametes) in the mosquitoes gut, 

and fusion occurs to form a zygote. The zygote in turn develops into the ookinete, which 

crosses the wall of the gut and forms a sporozoite-filled oocyst. When the oocyst bursts, 

the sporozoites move to the mosquito’s salivary glands, and the process begins again 

(Wirth, 2002). 
 
 
2.1.1 RED BLOOD CELL (RBC) INVASION 
 
In respect to RBC invasion, Miller et al. (2002) noted that what remains completely 

unknown is which merozoite surface molecules recognize the RBC surface and then signal 

the start of the invasion process. The parasite induces a vacuole derived from the RBC’s 

plasma membrane and enters the vacuole. Three organelles on the invasive (apical) end of 

the parasite (rhoptries, micronemes and dense granules) define the phylum Apicomplexa. 

Receptors that mediate invasion of RBCs by merozoites and invasion of liver by 

sporozoites are found in micronemes, on the cell surface, and in rhoptries. Identifying the 

signalling pathways that release organelle contents on contact with a host RBC is a critical 

issue in parasite biology. Invasion events include releasing essential molecules from apical 

organelles and initiating the actin–myosin moving junction that brings the parasite inside 

the vacuole that forms in the RBC.  
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Although other parasite proteins on the merozoite surface and in apical organelles have 

been proposed as receptors, there is no direct evidence so far. Because invasion is such a 

complex series of events from RBC binding, to apical reorientation, to entry, it seems 

likely that several proteins are required for efficient invasion. For example, evidence has 

suggested that RBC invasion requires the cleavage of a surface protein on the RBC by an 

unknown parasite serine protease. Thus, the molecular and cellular events surrounding 

each step in invasion still remain to be elucidated. Understanding these pathways will give 

insight into parasite virulence and will facilitate rational vaccine design against merozoite 

invasion. A single parasite protein, P. falciparum erythrocyte membrane protein 1 

(PfEMP1), which is expressed at the infected erythrocyte surface connects parasite 

binding to all the various receptors. PfEMP1 is encoded by the large and diverse var gene 

family that is involved in clonal antigenic variation and has a central role in P. falciparum 

pathogenesis.  Adherence protects the parasite from destruction, as non-adherent mature 

parasitized RBCs are cleared rapidly in the spleen.  

 

2.1.2 RBC (HAEMOGLOBIN) DEGRADATION  

The ability of the blood protein haemoglobin to carry oxygen depends on an iron-

containing haeme group, which is made separately in the cell and then binds tightly to a 

crevice on the globulin protein surface in red blood cells (RBC or erythrocytes). 

Haemoglobin is degraded by a series of proteases in the digestive food vacuole. The 

sequential process is represented in Figure 2.2. 
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Figure 2.2: Plasmepsins from Plasmodium falciparum Degrades Haemoglobin in RBC.  
 
 
Plasmepsin I and II attack the haemoglobin breaking it down to haeme and small pepetides. The haeme is 
converted to haematin by oxidation and further polymerises to haemozoin which causes the high fever. 
Eventually, smaller peptides result and metabolise into amino acid. 
 

Two homologous plasmepsins I and II are responsible for the initial attack on the 

hemoglobin Alpha chain between the residues Phe 33 and Leu 34, in the hinge region. 

This region is highly conserved and responsible for the stability of the haemoglobin 

tetramer. Upon cleavage, haeme (ferrous +2) is released which is toxic to the parasite and 

is further oxidized to haematin (ferric +3), also toxic to the parasite. Finally, the haematin 

is polymerized to haemozoin, the malarial pigment. Both plasmepsin I and II are capable 

of causing an initial cleavage in the hemoglobin, and the plasmepsins are also capable of 

several other cleavages after the initial attack. 
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2.2 SOCIAL AND ECONOMIC IMPACT OF MALARIA 
 
The statistics of Bathurst (2008) elucidated the social and economic impact of malaria and 

it is highlighted below: 

•Afflicts more then 1/3 of the human population; 

•Responsible for over 1 million deaths per year of especially children under 5; 

•Malaria is curable: 90% of deaths caused by malaria are preventable;  

•Annual lost GDP for Africa: $15 billion; 

•Costs up to 40% of total public health expenditure; 

•Is the cause of up to 50% of in-patient and out-patient care; and 

•Costs up to 60% of total household expenditure  

 

This alarming statistics on the threat of malaria have spun global interest to set up 

initiatives with spelt out responsibilities and goals to combat the malaria pandemic. 

 

 

2.3 GLOBAL INITIATIVES ON MALARIA PROBLEM 
 

In recent years, several significant objectives and initiatives relevant to the global malaria 

problem have affirmed the challenge of malaria. The following specific objectives, 

initiatives, and resolutions (Pan American Health Organisation, 2006) form the basis for 

the development of and the setting of priorities under the Malaria Plan in most countries: 

 

• The United Nations Millennium Development Goals (MDG) (September 2000) 

 The malaria plan of MDG is to halt and begin to reverse the incidence of malaria 

(and other major diseases) by 2015. MDG refers to eight goals that respond to the 

world's main development challenges to be achieved by 2015. The eight MDGs 

break down into 21 quantifiable targets that are measured by 60 indicators. These 

goals were drawn from Millennium Declaration that was adopted by 189 nations-

and signed by 147 heads of state and governments during the UN Millennium 

Summit in September 2000. Listed in definite order, these eight goals 

(http://www.undp.org/mdg/basics.shtml, 2009) are: 
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Goal 1: Eradicate extreme poverty and hunger  

Goal 2: Achieve universal primary education  

Goal 3: Promote gender equality and empower women  

Goal 4: Reduce child mortality  

Goal 5: Improve maternal health  

Goal 6: Combat HIV/AIDS, malaria and other diseases  

Goal 7: Ensure environmental sustainability  

Goal 8: Develop a Global Partnership for Development 

 

• Medicine for Malaria Venture (MMV) (1999) 

 A Swiss non-profit initiative that operates as a public-private partnership for R&D    

             and production of efficacious malaria drugs. 

 

• The Roll Back Malaria (RBM) Initiative (October 1998) 

 Halve the malaria burden in participating countries through interventions 

 that are adapted to local needs and reinforcement of the health 

 sector by 2010. 

 

• The Global Malaria Control Strategy (GMCS) (October 1992) 

• Provide early diagnosis and prompt treatment; 

• Plan and implement selective and sustainable preventive measures, 

    including vector control; 

• Detect early, contain or prevent epidemics; 

• Strengthen local capacities in basic and applied research to permit 

    and promote the regular assessment of a country’s malaria situation, 

    in particular the ecological, social, and economic determinants of the 

    disease. 
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2.4 EXISTING DRUGS AND VACCINES FOR MALARIA TREATMENT  
          

 2.4.1 SOME AVAILABLE DRUGS 

 
Drugs are chemicals or other substances that alter the function of an organism and are 

referred as medicines or therapeutic drugs when used for the prevention, treatment and 

alleviation of diseases as opposed to other hard drugs, such as opiates, which are used 

illegally. Drugs can be derived from plant, mineral, animal, or synthetic sources. Many 

early folk medicines, including aspirin, opium, and quinine were derived from plants. 

Minerals used as medicines include boric acid, Epsom salts, and iodine. Many hormones 

used to treat a bodily malfunction include insulin for diabetes, or growth hormone to 

promote proper human development. Table 1 shows the list of some available malaria 

drugs as they evolve with time and fail due to resistance, non-compliance, safety and 

formulation issues (Nwaka, 2008). 

 

 

Table 2.1: Some Available Malaria Drugs Showing Evolution with Time. 

Drug   Reg.(Yr) Organisations 

Mefloquine 1984 Hoffman La Roche, WRAIR 

Halofantrine 1988 GSK, WRAIR 

Artemether 1997 Malariaone Poulenc Rorer, Kunmig /TDR 

Artemether-lumefantrine 1999 Novartis 

Atovaquone+proguanil 2000 GSK 

Artemotil (beta-arteether) 2000 Artecef, WRAIR / TDR 

Chlorproguanil-dapsone 2003 GSK / TDR 

Artesunate-Amodiaquine 2007 Sanofi-Aventis/DNDi 
(Source: Nwaka, 2008) 

The table also shows respective organizations involved in various antimalarial drug 

development. 

 

Natural products are the sources of the two most important drugs currently available to 

treat severe P. falciparum malaria, quinine and derivatives of artemisinin. In the case of 
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artemisinin, relatively simple chemical modifications of the natural product parent 

compound have led to a series of highly potent antimalarials that are playing an 

increasingly important role in the treatment of malaria (Meshnick, 2001). However, the 

cost of these compounds may be limiting, and so efforts to design fully synthetic 

endoperoxides that are less expensive to produce are an important priority (Posner et al., 

2003; Vennerstrom et al., 2000). 

Artesunate has been studied in combination with both sulfadoxine/pyrimethamine (von 

Seidlein et al., 2000) and amodiaquine (Adjuik et al., 2002) in Africa, with good efficacy. 

Rosenthal (2003) stated that artemisinin analogs, in particular artesunate and artemether, 

have recently shown great promise as rapidly acting as potent antimalarials, but the short 

half-lives of these compounds lead to many late recrudescences after therapy, as seen with 

artesunate/sulfadoxine/pyrimethamine in Uganda (Dorsey et al., 2002) suggesting that 

combination therapies are necessary to fully exploit the potency of this class.  

Ideally, a combination regimen that prevents resistance development should include at 

least two agents against which parasite resistance has not yet developed and which have 

similar pharmacokinetics, so that low blood levels of a single agent will not be present. No 

such ideal regimen is currently available, although chlorproguanil/dapsone/artesunate may 

prove to fit this description. Alternatively, the combination of a short-acting, highly potent 

compound and a longer-acting agent may prove effective, if the initial decrease in parasite 

burden is so great as to limit subsequent resistance development to the long-acting agent 

(e.g. artesunate/mefloquine). As another alternative, two drugs with similar 

pharmacokinetics may prove effective even if resistance to each agent is present in the 

community (e.g. amodiaquine/sulfadoxine/pyrimethamine). Relatively slow-acting 

antimalarials (e.g. antibiotics) in combinations like quinine and doxycycline may be 

effective (Rosenthal, 2003).  

Initiatives like Medicine for Malaria Venture (MMV) had projects with drugs at various 

stages of development as at second quarter of 2008 (shown in Figure 2.3). From figure 

2.3, we have the cherry taste and powdery form of Coartem dispersible (from Norvatis), 

newly formulated for children now at regulatory stage and waiting to be recognized for 
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usage sometimes in  late 2009. Also Azithromycin CQ is formulated to be safer 

antimalarial at pregnancy. They all pass from exploratory to regulatory stages drug 

development pipeline. 

 
 )

Figure 2.3: Medicine for Malaria Venture (MMV) Initiative Drug Discovery 

 

 2.4.2 MALARIA DRUG RESISTANCE ISSUES 
  
Complicating the process of developing new drugs and treatment strategies 

the problem of drug resistance issues. This is worse particularly regarding

resistance to the most affordable drugs such as chloroquine and Fansidar® (a

drug of pyrimethamine and sulfadoxine are now widely spread). Some prog

 

( Source: Bathurst, 2008
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made in studying the mechanisms of drug action and drug resistance in malaria parasites, 

particularly in Plasmodium falciparum. These efforts are highlighted by the demonstration 

of mutations in the parasite’s dihydrofolate reductase (DHFR) and dihydropteroate 

synthase (DHPS) genes conferring resistance on pyrimethamine and sulfadoxine 

respectively, and by the discovery of mutations in the gene coding for a putative 

transporter, PfCRT, conferring resistance on chloroquine. Mutations in a homologue of a 

human multiple-drug-resistant gene, PfMDR1, have also been shown to be associated with 

responses to multiple drugs (Hayton and Su, 2004). However, except in the case of 

resistance to antifolate drugs, the mechanisms of action and resistance to most drugs 

currently in use are essentially unknown or are being debated. But it is believed that there 

are many more novel ways the parasite uses to engender resistance to drugs. 

 

 

2.4.3 VACCINES 

 

Zakeri et al., (2007) stated that most experimental pre-erythrocytic stage vaccines are 

based on or include the circumsporozoite protein (CSP) as an immunogen (any substance 

or organism that provokes an immune response (produces immunity) when introduced 

into the body). CSP is the dominant surface protein of the sporozoite and it is used for 

formulations targeting the pre-erythrocytic stages (the sporozoite and the liver stage 

parasite). The gene coding for CSP was the first Plasmodium gene to be isolated and 

characterized (Dame et al., 1984; Ellis et al., 1983) and the first P. falciparum subunit 

vaccine tested in human volunteers was based on this protein (Herrington et al, 1987). 

Today, the most advanced vaccine against malaria, RTS, S, is based on the P. falciparum 

CSP (PfCSP) (Gordon et al., 1995). This vaccine has already undergone two Phase IIb 

clinical trials in adults and children from The Gambia and Mozambique, respectively         

(Alonso, 2004; Bojang et al., 2001; Kester et al., 2001) where it provided modest levels of 

protection. Other examples include, multistage DNA vaccine combination (MuStDO), 

apical membrane antigen 1 (AMA 1), TRAP/SSP2, synthetic peptide vaccine (SPf66), etc. 

Generally, protein-based vaccines, DNA-based vaccines, naturally acquired immunity 
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(NAI) and immunisation with irradiated sporozoite confers partial immunity in rodent and 

humans (Richie and Saul, 2002).  

 

 

 

2.5 LOCAL EFFORT TOWARDS MALARIA CONTROL STRATEGIES IN      
         NIGERIA 
 
In Nigeria, malaria control activities are planned and implemented through the Primary 

Health Care (PHC) system (Federal Ministry of Health, 2005). However, the use of health 

centres, as the first resort for malaria management has been shown to be low in many 

African studies including Nigeria. Mothers' malaria treatment-seeking behaviour in rural 

south-western Nigeria revealed that more than 80% of malaria episodes received treatment 

outside of the existing government healthcare system (Olaogun et al., 2005; Ajayi and 

Falade, 2006). The option of malaria treatment at PHC is delayed till the advent of 

complication and near death. This was attributed to difficulty with access to health centre, 

scarcity of affordable drugs including antimalarial drugs, perceived deficiencies in the 

performance of formal health services including poor clinical skills, attitude of health 

personnel and cultural beliefs (World Health Organisation / United Nations International 

Children’s Emergency Fund, 2003; Feyisetan, et al., 1997). This practice increases 

morbidity and mortality in addition to contributing to possible emergence of drug 

resistance (World Health Organisation / United Nations International Children’s 

Emergency Fund, 2003; Okonkwo et al., 2001; Ajayi et al., 2008) 

. 

World Health Organisation (WHO) initiated the Roll Back Malaria (RBM) Programme in 

1998 to halve malaria death world-wide by 2010 (Nabarro and Tayler, 1998) with 

interventions such as home management of malaria (HMM) (early and appropriate 

treatment of malaria especially for children less than five years old); intermittent 

preventive treatment (IPT) of malaria for pregnant women; insecticide treated nets and 

artemisinin-based combination therapy (ACT) replacing chloroquine and sulfadoxine-

pyrimethamine that exhibit parasite resistance (World Health Organisation  2001.; Attaran 

et al., 2004). 
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With the approach of 2010 deadline for Roll Back Malaria (RBM), a pilot study was 

conducted by Adeneye et al. (2007) to assess the awareness, accessibility and use of 

malaria control strategies among at-risk groups within the context of RBM in Nigeria 

holo-endemic community, Ijebu-Igbo, in Ogun State, Nigeria. Their results showed that 

14.7% and 16.2% of all classes of respondents interviewed were aware of the home 

management of malaria (HMM) and new antimalarial drug policy programme. Also 

63.5% knew about insecticide treated nets (ITNs), while only 22.1% was using the treated 

material. Only 5.8% of mothers of children less than five years old and none of the 

pregnant women had taken the new combination drug (ACT). Eight (23.5%) of the 34 

pregnant women interviewed knew about intermittent preventive treatment of malaria for 

pregnant women (IPT). The results of this pilot study showed that efforts need to be 

intensified to make adequate information and materials relating to the different malaria 

control strategies more available and accessible at the community level to achieve and 

sustain the RBM goals, both in Ogun State and in Nigeria in general  (Adeneye et al., 

2007).  
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Figure 2.4: Malaria Control Strategies Awareness Level in parts of Ogun State, Nigeria 
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The Nigerian Government after 2000 Abuja Declaration, where African Governments 

agreed to support the RBM strategy of at least 60% at risk-population sleep under ITN, 

has been promoting RBM interventions through the NetMark initiative (a United States 

Agency for International Development-funded public-private partnership (United Nations 

Internation Children’s Emergency Fund/ Federal Ministry of Health, 2002). Nigeria’s 

national policy on malaria treatment in 2004 dropped chloroquine and adopted the 

combination therapy of artemether and lumefantrine (Coartem), artesunate and 

amodiaquine (Adeneye et al., 2007). 

 

Ajayi et al. (2008) confirms earlier reports that majority of treatment for malaria take 

place in the home with drugs bought from drug vendors and proposed the evaluation of 

intervention (health education plus treatment guideline developed using participatory 

approach) in the use of artemisinin based combination drugs such as artemether-

lumefantrine which is now the drug of choice in the treatment of acute uncomplicated 

malaria in Nigeria.  

 

A part WHO/TDR initiative, African Network for Drugs and Diagnostics Innovation 

(ANDI) was launched in Abuja in 2008 (http://meeting.tropika.net/andi/, 2009) to promote 

and sustain African-led R&D innovation through the discovery, development and delivery 

of affordable new tools including those based on traditional medicines. Malaria treatment 

discovery is one of the major challenges before this initiative. Osamor and Adebiyi 

(2007), emphasized the seriousness of institutions and governments in Africa towards 

eradicating malaria through the use of genomics techniques and microarray technology by 

citing the interest of The New Partnership for Africa’s Development (NEPAD) and 

WHO/TDR efforts in capacity building in the continent. Examples include the setting-up 

of ACGT Microarray and African Biosciences facilities in South Africa; series of 

conferences and workshops organized by African Society of Bioinformatics and 

Computational Biology (ASBCB); International Workshop on Pattern Discovery in 

Biology (IWPDB) at Covenant University, Nigeria; and WHO/TDR sponsored functional 

genomics workshops in Mali. 
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CHAPTER THREE 
 

LITERATURE REVIEW 2: DNA MICROARRAY AND PCR TECHNOLOGIES 
 
 
3.1  DNA MICROARRAY TECHNOLOGY 
 
A DNA microarray (also commonly known as HgeneH or Hgenome H chip, DNA chip, or gene 

array) is defined by Wikipedia encyclopedia as a collection of microscopic HTDNATH spots, 

commonly representing HTgenesTH, arrayed on a solid surface by HTcovalentTH attachment to 

chemically suitable matrices. In the paper of Chen (2006), DNA microarray is defined as an 

array of tens of thousands of molecular sequences (i.e., probes) mobilized in the form of 

DNA on a solid and planar platform on a microscopic and high-density scale and can be 

used in hybridization experiments to parallel measure the quantity of bound homologous 

sequences in biological samples. 

 

 However, we define DNA Microarray as a technology with a grid of nucleic acid 

molecules of a known composition called probe, placed/immobilized on a solid substrate or 

slide and used to hybridize messenger RNA (mRNA) from a target cell or tissue of 

unknown composition to reveal changes in gene expression relative to a control sample. By 

hybridization, we mean that the four nitrogenous bases of the probe pair up with their 

complimentary nitrogenous bases in the unknown or tested sample such that Adenine (A) 

pair Thymine (T)/Uracil (U) and Cytosine (C) pair Guanine (G). Microarray technology, 

which is also known as “DNA chip” technology, allows the expression behaviour of many 

thousands of genes to be assessed in a single experiment.  

 

The use of microarrays for gene expression profiling was first published in Schena et al. 

(1995) and the first complete HTeukaryoticTH genome ( HTSaccharomyces cerevisiaeTH) on a 

microarray was published in 1997 (Tatusov et al., 1997). MicroarrayP

 
Pexperiment involves 

monitoring gene expression as the cell undergoesP

 
Psome biological processes. These 

experiments are often used to measure gene expression and therefore are able to detect 

differences in gene expression between two populations of cells; a test population (disease 

cell or tissue) versus a control population (normal cell or tissue). However, the 

experimental and control gene expression values ratio is computed and used. Huge data is 
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generated and the biologist has the challenge of extracting useful information from volumes 

of microarray data. Expression levels for tens of thousands of genes can be simultaneously 

measured in a single hybridization experiment and are collectively called a “gene 

expression profile”.  

 

Each particular cell or tissue in the body has a nucleus bearing a number of chromosomes 

with genes containing information in its DNA, about the type of needed proteins to be 

produced by the cell. The characteristic of producing different sets of proteins passes the 

process called transcription by copying the DNA genetic information of the needed protein 

to form mRNA (an intermediate product) and finally to protein biomolecules through 

translation as shown in Figure 3.1.  

 

     (Source: Wosik, 2006) 

Figure 3.1: Process of Protein Synthesis (DNA=>mRNA=>Protein).  

 

This process involves transcription and translation. The information contained in DNA is used to code for the 

required protein. 

This molecular biology dogma, “DNA => mRNA => Protein” is the basis of microarray 

technology as DNA microarray measures mRNA transcript as gene expression level. DNA 

code (genetic code) which is a triplet codon arising from a combination of three(3) of the 
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four (4) nitrogenous bases: Adenine (A), Thymine (T) ,Guanine (G), and Cytosine (C) form 

the type of amino acid or protein to be produced while a stop codon terminates the process. 

The availability of genomic sequence data for many organisms, has made it possible for 

scientists to easily design microarrays containing tens of thousands of sequence probes to 

interrogate the behaviour of all the genes in an organism. This approach has revolutionized 

our way of performing biological research from the “one-gene-one experiment” approach 

to a “global” or “genome-wide” systemic study (Chen, 2006).  

 
A typical DNA microarray workflow is depicted in Figure 3.2. Microarray designs in terms 

of suitable platform and appropriate probes should be made available from the start. The 

experimental design issues should be well sorted out in advance and required materials 

provided before the commencement of the experiment. With the experimental design in 

place, the microarray experiment can be performed, followed by data capture, analysis and 

management. 
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 (Source: Chen, 2006) 

 
Figure 3.2: A General Workflow of a DNA Microarray Experiment.   
 
 
The workflow depicts microarray, probe and experiment designs preceding the stage of the actual experiment 
which is usually followed by data capture and analysis.  
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3.1.1 DNA MICROARRAY FABRICATION AND PROBE DESIGN  
 
Microarray’s fabrication is achieved through two technologies and involves either DNA 

deposition or in situ synthesis. While deposition method allows the deposition of PCR-

amplified cDNA clones and printing of already synthesized oligonucleotides with fine-

pointed pins onto glass slides, in situ manufacturing is by HTphotolithography TH using pre-made 

masks, ink-jet printing, or HTelectrochemistryTH on microelectrode arrays. Nucleic acid 

microarrays primarily use short oligonucleotides (15–25 nucleotides), long oligonucleotides 

(50–120 nucleotides) and PCR-amplified cDNAs (100–3,000 base pairs) as array elements. 

Due to varied and evolving technological trend in the function of DNA microarray, it will 

be convenient to categorize them into two types: One-colour and Two-colour Microarray 

platform technologies. 

 

3.1.1.1 One Colour Fabrication Technology 
 
In this fabrication method, only one stain is used during hybridization. Examples include 

Affymetrix, Nimblegen, Agilent, Illumina microarray technologies.  

 
3.1.1.1.1 Affymetrix Oligo Platform 
 
The main features of Affymetrix Oligo Platform as shown in Figure 3.3(a) include: 

• High density, up to 40,000 genes on a chip. 

• High reliability, 16-20 pairs of probes represent each gene. 

• Single-channel hybridization due to high reproducibility between spots and arrays. 

 

In Affymetrix, short probes of 15-25 nucleotides long are possible because they are 

selected using special algorithms to run on already sequenced genome data to find unique 

sequences that serve as a representative of each gene in an organism.  Figure 3.4 (b) shows 

a probe with both Perfect match and Mismatch pair aligned to a reference. A probe cell also 

called feature contains 25 nucleotides and can be a perfect match (PM) or mis-match 

(MM). Usually, probes are manufactured in pairs such that PM has the same sequence of 25 

nucleotides as the MM except for one nucleotide at the middle (13P

th
P) position which is 

complementary. PM hybridizes with the experimental sample to measure the degree of 

signal intensity while the MM hybridizes to give value for the background subtraction 



 31

which improves data accuracy. One or more probes can be used to represent a gene and a 

typical Affymetrix probe contains about 16-20 probes in a probe set.   

  
 
 
 
   
 
 
 

(Source: Xu and Vernick, 2006) 
 

Figure 3.3  (a) Affymetrix GeneChip.  
 
 
This is a very handy and flat device with high density capable of containing up to 40,000 genes on a chip. 
It has high reliability and16-20 pairs of probes represent each gene.  
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(Adapted from Affymetrix, 2001) 
 

Figure 3.4 (b) Design of Oligonucleotide probe (feature).  
 
 
It shows its location in the probe set and 1 gene represented by 1 probe. A probe contains 25 nucleotides.  The 
difference between Perfect Match and Mismatch probe is one nucleotide and the Mismatch is to support 
background correction from noise.  
 

Photolithographic manufacturing process produces GeneChip arrays with millions of 

probes on a small glass chip or substrate called wafer or Array. The photolithographic 

process begins by coating a 5″ x 5″ quartz wafer with a light-sensitive chemical compound 

that prevents coupling between the wafer and the first nucleotide of the DNA probe being 

created. A physical illustration of the photolithographic manufacturing construction process 

is shown in figure 3.5.  

ference         ----TACGTCATATCGGAGCTAGCATCAGGGCATCAGCA------ 

MM sequence        ATATCGGAGCTACCATCAGGGCATC 

PM sequence         ATATCGGAGCTAGCATCAGGGCATC 

A Probe Set with 10 probe (pairs) 
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(Source: Wosik, 2006) 

Figure 3.5: Photolithographic Manufacture of Affymetrix Oligonucleotide Array.  

A mask is used to protect the wafer. The shifting of the mask permits light to aid the free nucleotide in 
solution to attach to the wafer and grow till it reaches 25 nucleotides. The ‘O’ changes to ‘OH’ under light 
and it is in turn displaced by nucleotides A, C, G, T. 

 
3.1.1.1.2 Nimblegen Oligo Platform 
 
The following are the main features of Nimblegen oligo chip: 

• Maskless array synthesis controlled by software-driven micro-mirrors; 

• Digital Micromirror Device (DMD) is an array of 786,000 aluminum mirrors on a 

computer chip; 

• Each mirror is individually addressable to shine light in specific patterns on the 

chip;  

• Photodeposition chemistry produces arrays of oligonucleotide probes. 

• ~400,000 probes/array (~20,000 genes @ 20 probes/gene); 

• Array design completely dynamic from one chip to the next (ie, can change 1 

nucleotide of one probe, or completely change the sequence of every probe); 

An example of Nimblegen oligo chip platform is given in figure 3.6 

(Affymetrix)
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(Source: Xu and Vernick, 2006) 

 
Figure 3.6: Nimblegen Maskless Array Synthesis.  
 
 
This type of array constitutes a digital micromirror device (DMD) which is an array of 786,000 
aluminum mirrors on a computer chip guided by software-driven micro-mirrors. Each mirror is 
individually addressable to shine light in specific patterns on the chip; Photodeposition chemistry 
produces arrays of oligonucleotide probes. 

  
 
 
3.1.1.1.3 Ambion Illumina Oligo Platform 
 
The technology uses transcript-specific 50mer oligonucleotide DNA probes attached to 

small (3µM) beads through an “address” linker sequence (see figure 2.9).  It is made of 

optic fibre with a strand core cladding either side. There is a well on the strand core which 

is covered by the bead on the outside. It is called also called BeadArray. 
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(Source: WTAC, 2007) 

 
Figure 3.7: Illumina Microarray Fabrication. 
 
 
This technology uses beads placed in wells created by the use of optic fibres. The chip is similarly made on a 
silicon wafer. The arrow shows the integration of the various parts that give rise the to the visible beads in 
wells.  
 
 
 
3.1.1.2 Two-Colour Fabrication Technology 
 
A good example of the of two-colour fabrication is the cDNA microarray 
 
3.1.1.2.1 cDNA Microarray Platform 
 
Array fabrication is by DNA clones chosen based on annotation (functional identities, 

pathways, chromosomal location) or obtained experimentally (EST library from subtractive 

screen). The probe is designed through polymerase chain reaction (PCR) amplification of 

the clones and purification under quality control. Spotting on the array is done by robotic 

arrayer (see figure 3.8). The two types of techniques for printing oligos in the slide by the 

robotic arrayer are given in figure 3.8.  The microarrays containing PCR amplicons are 
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usually referred to as “cDNA microarrays” as the PCR products are derived from either 

predicted open reading frames (ORFs) or expressed sequence tags (ESTs). 

 

 

 
 

(Source: Xu and Vernick, 2006) 
 
Figure 3.8: Microarrayer- a Robotic Spotting on a Glass Slide for cDNA Microarray. 
 
 
The pointed pin is used to print oligos on a glass slide. This technique of printing can be either contact or non-
contact printing as in figure 3.8. 
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(Source: Xu and Vernick, 2006) 
 
Figure 3.9: (a) Contact and (b) Non-Contact Printing of Oligos on Slide.  
 
 
Contact printing as in (a) uses pin that dispenses ~ 0.6nl upon uptake of ~0.25ul oligos by direct contact or 
touch of the pin on the slide while non-contact printing is done using ink jet that drops the oligo on a slide 
without touching it. Microlitre (ul) = 10P

-6
Pl, Nanolitre (nl) =10P

-9
Pl, Picolitre (pl)= 10P

-12
Pl. 

 

3.1.2 EXPERIMENTAL DESIGN 

Often neglected is a well thought-out relevant experimental design to address the 

appropriate comparison to be made in microarray studies for answering suitable biological 

questions. Microarray experimental design allows researchers to test and vary the input 

variables that impact on the microarray experiment to get correct output. These involve 

three major principles: Replication, Randomisation and Blocking (Draghici, 2003). In 

replication, it duplicates, or repeats the same experiment more than once but varies one 

factor like changing the location of the same probe on the array to monitor its behaviour. 

This gives an estimate of the experimental error to conclude as to whether or not the 

differences observed in the data are significant. Randomisation means that experimental 

data can be monitored by allowing probes to be placed on the array in no particular order 

(random). Blocking allows the experimenter to keep all nuisance factors (not of interest but 

can affect the experiment outcome) while interesting factor is varied (Quackenbush, 2001).  

 

(a) Contact Printing 
Pins 
-uptake ~0.25 ul 
-dispense ~0.6 nl 
-approx 1-10ng DNA per 
spots 

(b) Non-Contact Printing 
Piezoelectric or ink jet 
– higher spot-to-spot 

reproducibility than 
contact printing 

– 1 drop ~100 pl 
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Some microarray specific types of experimental design include Direct-dye swap design, 

Balanced block design, Reference design and Loop design (see figure 2.12). In reference 

design, many sample conditions or time points tB1 B, tB2 B,…,tBn B are pair wise compared to only 

one reference sample ref.  Samples 1 to n are measured once while ref is measured n times. 

Vinciotti et al. (2005) studied the relative efficiency ofP

 
Pboth a loop and a reference design 

using the same RNAP

 
Ppreparations. Their results of these experiments showP

 
Pthat (1) the loop 

design attains a much higher precision thanP

 
Pthe reference design, (2) multiplicative spot 

effects are a P

 
Plarge source of variability, and if they are not accounted forP

 
Pin the 

mathematical model, for example, by taking log-ratiosP

 
Por including spot effects, then the 

model will perform poorly. 

 

 

(a) 

  

   

(b) 

     

 
 
(c)                           (d) 

 

 
 
 
 
 
 
 
 
 

   (Quackenbush, 2005) 
 

Figure 3.10: ( a) Direct comparison with Dye Swap , ( b) Reference Design (c) Balanced Block Design 
(e) Loop Design  
Boxes= Individual samples to be compared, D “Diseased” and N “Normal” 

          Arrow= Hybridisation assay with tail end for 1P

st
P  dye and head end for 2P

nd
P dye. 
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3.1.3 OLIGONUCLEOTIDE MICROARRAY EXPERIMENT 

Once the microarray is constructed by Affymetrix, Oligonucleotide chip experiment 

requires the preparation of a sample for GeneChip arrays. Messenger RNA (mRNA) is 

extracted from the cell and converted to cDNA as shown in figure 3.11. It then undergoes 

amplification and labeling where the target mRNA population is labeled; typically with a 

fluorescent dye, so that hybridization to the probe spot can be detected when scanned with 

a laser (Gibson, 2003).  Fragmentation and hybridization of the sample to the 25-mer oligos 

on the surface to the chip takes place under an appropriate temperature. The next step is the 

washing of unhybridized material, the chip, scanned in a confocal laser scanner and the 

image analyzed by computer. This approach provides a way to use directly the growing 

body of sequence information for experimental investigations (Wosik, 2006). However, one 

sample is hybridized on one array, unlike cDNA which is capable of hybridizing two 

distinctly labeled (R and G) samples on one array.  

 

(Source: Wosik, 2006) 
Figure 3.11: Oligonucleotide Chip Experiment. 
 
The chip was bought from Affymetrix and target sample is capable of fluorescence using PM and MM on 
hybridisation. 
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Illumina follows the RNA isolation step from sample to obtain cDNA by RT, which is used 

for IVT biotinylated cRNA and hybridisation with Cy3. Biotin-labeled cRNA is hybridized 

to the array and the array is stained using a post-hybridization cocktail containing 

strepatavidin-Cy3 (see figure 3.12). This allows six RNA samples to be analysed per slide. 

However, if our RNA sample is small, we can apply a two round amplification kit which 

allows us to start with smaller quantities of RNA. 

 

 

 
 (Source: WTAC, 2007) 

Figure 3.12: Illumina Microarray Experiment.  
 
 
This requires RNA isolation and converted into cDNA  using Reverse Transcriptase to obtain IVT 
biotinylated cRNA which hybridizes with Cy3. The bead has 23 addressable bases and 50bases used for 
probe. 
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3.1.4 cDNA MICROARRAY EXPERIMENT  

 
Spotted or cDNA or Two-channel microarrays consist of thousands of individual DNA 

sequences called probe printed in a high density array on a glass microscopic slide using a 

robotic arrayer. The process of probe printing is shown in Figure 3.13 during array 

preparation. During target preparation, mRNA is extracted from two samples called A and 

B to be studied. These target samples mRNA are reverse-transcribed into cDNA and 

labeled using different florescent dyes where Cy3 represents green and Cy5 represents red. 

Labeled samples are mixed together and competitively hybridized with the probe on the 

array, to give rise to image for analysis. Relative abundance of spotted DNA sequences or 

probe in two samples may be assessed by monitoring the differential hybridization of the 

two samples to the sequences on the array. 

                
(Source: Wosik, 2006) 

Figure 3.13: cDNA Microarray experiment.  
 
The Target preparation is for two chanels (Red and Green) which hybridize competitively on the chip. 
Required for hybridization solution preparation are the following: RNA extraction (experimental & reference 
samples), RNA labeling , Enzymatically synthesize first-strand cDNA, Reverse transcriptase, Incorporate 
fluorescently labeled deoxyribonucleotides (dNTPs), Cyanine5 (Cy5) labels Experimental sample (red), 
Cyanine3 (Cy3) labels Reference sample (green), cDNA purification, mix the two labeled RNAs. Data 
acquisition requires GenePix software and need is a chip description file (CDF).  
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3.1.5 Creation of Microarray Images and Data analysis 
 
After competitive hybridization, images of slides are taken by Microarray Scanner which 

makes fluorescent measurement of each dye. The ratio of the fluorescence intensities for 

each spot is indicative of the relative abundance of the corresponding DNA sequence in the 

nucleic acid samples. cDNA microarray image processing steps generate two main 

quantities R (red) and G (green) for each spot on the array, thereby measuring transcript 

abundance for red and green mRNA labeled samples. The R and G values are usually 

combined or normalized into a single log-intensity ratio, logB2 BR/G, measuring relative 

transcript abundance in the two samples. A positive log-ratio denotes gene over-expression, 

while a negative log-ratio denotes gene under-expression. Normalisation needs to be done 

before clustering for further data analysis so as to identify and remove systematic sources 

of variation such as different labeling efficiencies, scanning properties of dyes used, and 

print tip of robotic arrayer during probe spotting. 

  
Microarray gene expression profiles are often subjected to cluster analysis and pathway 

mapping to unveil groups of co-regulated genes – a practice that is referred to as regulatory 

network and metabolic pathways discovery or reconstruction. A common early step in 

microarray data analysis is log transformation. Typically, log base 10 is used (Affymetrix, 

2001); however, log base 2 or natural log will work equally well. Log transformation has 

several important effects on the data. The most critical reason for log transform microarray 

data is that some of the error in the signal intensity measurement increases as the magnitude 

of signal intensity increases. That is, small numbers have less error in an absolute sense 

than higher numbers. Fortunately, higher numbers have roughly the same percentage error 

as small numbers. This roughly constant factor can be simply calculated and subtracted to 

normalize the data, once the signals have been log transformed. There are additional effects 

of logging that make log-transformed microarray data more closely fit statistical 

assumptions, when applying statistical test methods. Log transformation makes data more 

symmetrical, one of the standard assumptions of normality. Log transformation also 

reduces the influence of a single measurement. Means on a log scale are more like 

geometric means, which are resistant to the effects of outliers, and it follows that outliers 

result in better estimates of variance. So, by log transforming data, common statistical 
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methods are made more reasonable and provide more accurate insights for the biologist. To 

uncover hidden knowledge buried in the huge data, further analysis, using tools like k-

means clustering is desirable. 

 
 
 
3.1.6 MICROARRAY SOFTWARE SUPPORT 
  
There are various commercial and open source software products existing currently to 

support DNA microarray analysis. For this work, we consider a free open source software 

TM4 (Saeed et al., 2003) from The Institute of Genomic Research (TIGR) used for cDNA 

microarray analysis, a commercial GeneChip Operating Software (GCOS) from Affymetrix 

and dChip software for Oligonucleotide microarray. 

 

 

3.1.6.1 TIGR TM4 

The Institute of Genome Research (TIGR) TM4 suite of tools consists of four major 

applications, Microarray Data Manager (MADAM), TIGR_Spotfinder, Microarray Data 

Analysis System (MIDAS), and Multiexperiment Viewer (MeV), as well as a Minimal 

Information About a Microarray Experiment (MIAME)-compliant MySQL database, all of 

which are freely available to the scientific research community at 

HThttp://www.tigr.org/softwareTH. The MADAM data entry interface provides access to data 

associated with a microarray study. It has a navigation panel on the left-hand side which 

leads users through the process of data entry during a microarray experiment. TIGR 

Spotfinder provides image processing with direct connections to the microarray database. 

MIDAS allows users to define data normalization and filtering protocol using a simple 

graphical scripting interface. MeV allows users to apply a number of sophisticated data 

mining tools to their array data and provides integrated graphical depictions of the results 

from the analyses conducted. Three of the TM4 applications, MADAM, MIDAS, and MeV, 

were developed in Java and have been tested on Microsoft ® Windows, Linux, Unix, and 

MacOS X platforms; TIGR Spotfinder was written in C/C++ and runs only on Windows 

systems (Saeed et al., 2003). 
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3.1.6.2 GeneChip Operating Software (GCOS) 

GCOS is proprietary software currently used to analyse Affymetrix Oligonucleotide 

microarray after hybridization of probe with target samples, since Microarray Suite (MAS) 

has been discontinued. Image of the slide is captured via a scanner and expression values 

are generated into a *.dat file (Data File). The software derives the *.cel file (Cell Intensity 

File) from a *.dat file and automatically creates it upon opening a *.dat file. It contains a 

single intensity value for each probe cell delineated by the grid (calculated by the Cell 

Analysis algorithm). Chip File *.chp, the output file generated from the analysis of a probe 

array contains a qualitative and quantitative analysis for every probe set. Report File *.rpt is 

a text file summarizing data quality information for a single experiment and is generated 

from the analysis of output file (*.chp). There are also other output files involved in the use 

of GCOS such as *.cab (Cab File) which is a compressed file that is a backup copy of a 

process or publish database, project, sample, and/or experiment. *.txt and *.xls are standard 

formats for text files and spreadsheet files and GCOS exports text in these file formats. The 

Library Files (probe information) *.cif, *.cdf, and *.psi contain information about the probe 

array design characteristics, probe utilization and content, scanning and analysis 

parameters. These files are unique for each probe array type. Fluidics Files include *.bin 

and *.mac. The fluidics files contain information about the washing, staining, and/or 

hybridization steps for a particular array format. 

 

3.1.6.3 DNA-Chip Analyser (dChip)  

 DNA-Chip Analyzer (dChip) is a software package for probe-level and high-level analysis 

of Affymetrix gene expression microarrays and SNP microarrays (Li and Wong, 2001a; Li 

and Wong, 2001b; Lin et al., 2004). However, gene expression or SNP data from other 

microarray platforms can also be analyzed by importing as external dataset. High-level 

analysis in dChip includes comparing samples, hierarchical clustering, Loss Of 

Heterozygosity (LOH) and copy number analysis of SNP arrays. To use dChip, the user 

needs to provide Affymetrix array data files (in CEL or DAT format, or see public CEL 

files), and the CDF file (Chip Description File). Obtain the dChip and gene information 

files and CEL file if required into a local directory and double click to start the dChip 

program. Affy conversion tool will convert all CEL files in a directory from version 4 to 
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version 3, while leaving the file name the same. You can check the CEL file’s change in 

size to confirm if conversion is done and also ensure that CEL files are not read-only. If 

conversion fails, DAT files can also be read by dChip instead of CEL files. 

 

To read in cDNA array data, an external data file with every two columns as the green and 

red channel intensities from one array (e.g. obtained from GenePix GPR file), is read into 

dChip by “Analysis/Get external file” before continuing with data analysis. dChip is a 

freeware, single executable program developed on Windows 2000 but preferring windows 

NT/XP computers with 512 Megabytes memory for maximal operation. dChip is written in 

Visual C++ 6.0 and uses Windows-specific functions for graphic tasks, and the source code 

is freely available for academic purposes.  
 
 
 
3.1.7 APPLICATIONS OF DNA MICROARRAY 

 

3.1.7.1 Gene Expression Profiling Applications 

Gene expression profiling applications include the following: 

• Pathogenesis studies 

• Pathogen’s responses to drugs 

• Pathogen’s responses to host 

• Host’s responses to infection 

• Host’s responses to Treatments 

• Host response to Vaccines 

 

Expression levels for tens of thousands of genes can be simultaneously measured in a 

single hybridization experiment and are collectively called a “gene expression profile”. In 

the gene expression profiling experiments, the biological samples that the probes are 

designed to interrogate are RNA extracted from cells or tissues. This type of experiments 

answer the question of “what genes and how much of them are expressed in the biological 

sample?”. The RNA molecules are first converted to cDNA by reverse transcription and 

labeled with a fluorescent dye. The expression level of a gene are measured as the light 
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intensities emitted, after excitation with laser light, by the fluorescent dye attached to the 

cDNA that bound the homologous probes on the array (Chen, 2006). 

 

Gene expression profiles of the host to pathogen may also be used in diagnosis for 

identifying possible pathogens. DNA microarray technology enables scientists to perform 

global survey of novel virulence factors, antimicrobial drug resistance genes, and potential 

vaccine targets by monitoring the transcription profiles of the pathogens in response to host 

environments.  

 

For example, two recent studies used the microarray approach to monitor the gene 

expression of the malaria pathogen Plasmodium falciparum in the host cells and have 

identified potential vaccine candidates or drug targets. Daily et al. (2007) studied the gene 

expression profiles of P. falciparum that was isolated from blood samples of infected 

patients and compared them with the in-vitro profiles of a reference P. falciparum strain at 

the ring stage. A new family of hypothetical protein that may encode surface antigens were 

found to be over-expressed in the in-vivo samples, making these potential candidates for 

vaccine development.  

 

Gaur et al. (2006) identified new virulence genes by comparing gene expression profiles 

between two P. falciparum clones. The P. falciparum Dd2, a parasitic clone that requires 

sialic acid residues on the erythrocyte surface for successful invasion, is capable of 

undergoing a genotypic switch to become a subclone Dd2 (NM), which can invade 

erythrocytes without the sialic acid residues. By comparing the expression profiles of these 

two parasitic clones, four novel genes were initially identified to be up-regulated in the 

sialic independent clone Dd2 (NM). Two of these genes, PfRH4 and PEBL, were 

confirmed by RT-PCR and the expression of PfRH4 at protein level was further confirmed 

to be only in Dd2 (NM) (Chen, 2006). 
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3.1.7.2 Gynotyping Applications 

 

Genotyping applications include the following: 

• Pathogen Identification 

• Drug Resistance Survey 

• Host Susceptibility 

• Pathogen Cataloging 

• Vaccine Re-Evaluation 

 

In the genotyping experiments, the targets are DNA extracted from the biological samples 

and the probes are designed to survey the sequence variations in or among the samples. 

“Single nucleotide polymorphism (SNP) microarray” is an example of genotyping 

microarray. A variation of the SNP microarray is called “sequencing microarray” or “re-

sequencing microarray” and can be used to re-sequence a specific region of a closely 

related genome, of which the sequences have to be decoded. 

 

The most direct and perhaps also the most widely used applications of DNA microarray 

technology in infectious diseases fall in this category. DNA microarrays allow quick 

identification of the pathogens based on the unique sequence signature detectable by the 

large number of the probes on the array. 

 

 A good example is the identification of a new corona virus that caused the severe acute 

respiratory syndrome (SARS) epidemic outbreak in 2003. Before the outbreak, Wang et al. 

(2003) had devised a microarray intended for detecting the widest possible range of both 

known and unknown viruses. This viral microarray platform contained probes representing 

all the approximately 1,000 known virus sequences at the time from GenBank. In March 

2003, Wang et al. (2003) used this microarray to quickly identify the viral agent in SARS 

samples as a new type of corona virus. 
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3.2 PCR TECHNOLOGY 

 

3.2.1 WHAT IS PCR TECHNOLOGY? 

 

The HTpolymerase chain reactionTH (PCR) is a common method for amplifying DNA or making 

unlimited copies of genes of interest. PCR is a cyclic process with the doubling of DNA 

targets at each cycle.  The strands in each targeted DNA duplex are separated by heating 

and then cooled to allow primers to bind them. The DNA polymerases extend the primers 

by adding nucleotides to them (Anderson, 2006). In this way, duplicates of the original 

DNA-strand targets are produced (see Figure 3.14 - 3.15). 

 
                                                                                      (Source : Xu and Vernick, 2006) 
 
Figure 3.14: The Concept of Denaturation and Reannealing Process of Double Stranded DNA                             
                     Molecule.  
 
         When heat is applied to a dsDNA, it separates but it anneals again on cooling.  
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(Adapted from Mullis, 1990) 

 
Figure 3.15: Polymerase Chain Reaction (PCR) Stages (Denaturation, Annealing and Extension).  
 
Target double stranded DNA is heated up to separate and allow the primers to anneal at a lowered 
temperature, before polymerase comes to extend each strand.  
 

 

PCR was invented by Kary Mullis in 1982 when at Cetus Corporation. Beginning with a 

single molecule of genetic material DNA, the PCR can generate several billion similar 

molecules in one afternoon (Mullis, 1990).  This is exemplified in Figure 3.16. 
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(Adapted from Mullis, 1990) 
 

Figure 3.15: Polymerase Chain Reaction (PCR) Exponential Synthesis.  
 
PCR is a cyclic process with the doubling of DNA targets at each cycle. This depicts exponential synthesis of 
a DNA fragment up to the 35P

th
P cycle yielding about 34 billion copies. 

 

In order to robustly detect and quantify gene expression from small amounts of RNA, 

amplification of the gene transcript is necessary. For mRNA-based PCR the RNA sample is 

first reverse transcribed to HTcDNATH with HTreverse transcriptaseTH. Development of PCR 

technologies based on HTreverse transcriptionTH and HTfluorophoresTH permits measurement of DNA 

amplification during PCR in real time, i.e., the amplified product is measured at each PCR 

cycle. The data thus generated can be analysed by computer software to calculate relative 

gene expression in several samples, or mRNA copy number. Real-time PCR can also be 

applied to the detection and quantification of DNA in samples to determine the presence 

and abundance of a particular DNA sequence in these samples (Wikipedia, 2007). 

 

Real-time PCR as a highly sensitive technique for the continuous on-line monitoring of 

PCR-amplified products has been developed for the quantification of nucleic acids in 

literature (Higuchi et al., 1993; Bassler et al., 1995; Morrison et al., 1998, 1999; Abe et al., 

1999; Donovan et al., 2000). It is based on the detection and measurement in ‘real-time’ of 

fluorescence emitted proportionally to the synthesis of the PCR product. The fluorescent 
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signals required for detection can be obtained by labelling the PCR product with either a 

fluorescent dye (Morrison et al., 1998, 1999) or a fluorogenic probe (Bassler et al., 1995; 

Abe et al., 1999; Donovan et al., 2000). Fluorescent dyes (i.e. SYBR Green I) bind 

nonspecifically to any PCR product generated, while the fluorogenic probes are designed to 

release fluorescence after they are annealed to the specific target sequence. Thus, 

fluorogenic probes can be considered sequence-specific detection reagents. 

 

The liver stages of malaria parasites have been traditionally studied using histopathological 

methods (Yoeli et al., 1965; Khan et al., 1992), which involve labour-intensive and time 

consuming procedures. The development of methods such as reverse transcription-PCR 

(Briones et al., 1996; Vernick et al., 1996), which can detect malaria-specific nucleotide 

sequences, partially overcame these limitations. 

 
Orlandi-Pradines et al. (2006) noted that the CSP antigen is actively expressed only in the 

sporozoite stage and is generally used as a reference for estimation of immunologic 

exposure to malaria transmission (Druilhe et al., 1986). The pre-erythrocytic antigens tested 

also included liver stage antigen 1 (LSA1), which is expressed only in the hepatic stage, 

sporozoite threonine- and asparagines rich protein (STARP), and sporozoite and liver-stage 

antigen (SALSA), which are expressed both at the sporozoite and hepatic stages (Druilhe 

and Fidock, 1998).  

  
 

3.3.2 PCR TECHNOLOGY IN MALARIA TREATMENT DISCOVERY 

 
In reviewing what the PCR technology has delivered towards the treatment discovery of 

malaria, we discussed some PCR-based works on malaria parasite. 

 

Human Plasmodium falciparum malaria parasite SALSA is a small protein localized on the 

sporozoite membrane surface and that it continues to be expressed during the liver stage. 

Bottius et al.(1996), using the PCR DNA amplification technique for the gene encoding 

SALSA in seven culture-adapted strains (five Asiatic and two African strains) and 16 

isolates from Senegal, suggested that the SALSA protein be completely conserved among 
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P. falciparum isolates and pointed out the scarce homology (<30%) between SALSA and 

other P. falciparum antigens. 

 

Nardin et al. (1999) investigations underscore the importance of the liver stage as a target 

for vaccine development, as the inhibition of parasite growth in hepatocytes can result in 

the reduction or complete ablation of the erythrocytic stages, thus attenuating or eliminating 

the symptoms and the pathology of the disease. 

 

In an attempt to stimulate studies aimed at evaluating very precisely the efficacy of anti-

malarial drug treatments and vaccination regimens, Brun˜a-Romero et al., (2001) applied a 

real time PCR-based assay that detects and measures parasite loads in the livers of mice 

exposed to the bite of a single malaria-infected Anopheles mosquito.  

 

Fallon et al., (2003) described a polymerase chain reaction (PCR) assay that detects avian 

malarial infection across divergent host species and parasite lineages representing both 

Plasmodium spp. and Haemoproteus spp. The assay is based on nucleotide primers 

designed to amplify a 286-bp fragment of ribosomal RNA (rRNA) coding sequence within 

the 6-kb mitochondrial DNA malaria genome. They claimed that the rRNA malarial assay 

outperformed other published PCR diagnostic methods for detecting avian infections. 

Fallon et al., (2003) noted that the development of molecular technology has made 

screening for these parasites faster and more reliable. Interest in developing a single 

screening assay that accurately detects diverse strains of nonhuman malaria, including 

infections missed by microscopic examination, has resulted in a number of polymerase 

chain reaction (PCR) assays (Feldman et al., 1995; Li et al., 1995; Perkins et al., 1998; 

Bensch et al., 2000; Richard et al., 2002) and a serological technique (Atkinson et al., 

2001).   

 

Considering the study of the malaria parasite biology and treatment discovery, the issue of 

how malaria parasites exit their host cells after completion of reproduction remains largely 

unsolved. Aly and Matuschewski (2005) attempted to validate a vital function of malaria 

cysteine proteases in active parasite egress, using a target gene that can be analyzed 
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functionally by real time PCR. They described a complete arrest of Plasmodium sporozoite 

egress from Anopheles midgut oocysts by targeted disruption of a stage-specific cysteine 

protease. Their findings show that sporozoites exit oocysts by parasite-dependent 

proteolysis rather than by passive oocyst rupture arising from parasite growth. They stated 

that malaria cysteine proteases are necessary for egress of invasive stages from their 

intracellular compartment and propose that similar cysteine protease–dependent 

mechanisms occur during egress from liver-stage and blood-stage schizonts. 

 

Oyedeji et al (2007) used patients blood samples in a recent PCR (Polymerase Chain 

Reaction) malaria diagnostics study conducted on 401 children that complained of fever in 

Lafia, north-central Nigeria. They reported that 285 patients out of these 401 were infected 

with malaria. They conducted PCR on stevor, SSUrRNA and MSA2 genes for comparison 

and assessment of PCR-based detection of P. falciparum in human blood sample. It was 

reported that stevor gene amplification has the highest sensitivity. Hence the most suitable 

for the parasite detection  

 

PCR-based methods have been consistently shown to be a powerful tool for malaria 

diagnosis (Coleman et al., 2006; Berry et al., 2005; Cox-Singh et al., 1997; Di Santi et al., 

2004). 
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3.3.3 DRAWBACKS OF PCR TECHNOLOGY 

 

Despite having higher sensitivity and specificity in detecting Plasmodium infections, the 

use of PCR-based techniques in routine diagnosis is limited because of its logistical and 

technical difficulties (Hanscheid and Grobusch, 2002). The following are the drawbacks of 

evolving PCR technology for malaria treatment discovery and diagnosis: 

 

(1)  In malaria parasites, most genes like cytochrome b gene has a high AT content 

(approximately 73%), making it difficult to design effective primers.  In addition, 

designing 'universal' primer assays is complicated by sequence variation in 

Plasmodium spp. (Bensch et al., 2000; Richard et al., 2002; Ricklefs and Fallon, 

2002). 

 

(2)   PCR-based techniques for routine diagnosis are labour intensive and costly to maintain 

and this is in agreement with Oyedeji et al., (2007). 

 

(3)  Despite the fact that PCR-based assays have better sensitivity than conventional 

microscopy and antigen-based diagnostic tests (Tham et al., 1999), observations from 

the study of Oyedeji et al. (2007) showed that the level of sensitivity for PCR could 

vary depending on the approach employed (e.g. in terms of protocol) and the 

characteristic of the target sequence of the chosen assay. There is no current standard 

set for PCR-based malaria diagnosis. Hence for all amplification techniques, it is not 

known if the sensitivity of PCR is high enough to justify their use as a reference or 

standard in the diagnosis of P. falciparum infection. 

 

As the scale of PCR technological studies grows, PCR diagnosis of malaria will play an 

increasing role in epidemiology with the development of high-throughput techniques that 

could facilitate a large-scale analysis of samples within a short period. 

 



CHAPTER FOUR 
 

LITERATURE REVIEW 3: THE CLUSTERING TECHNIQUES: EXISTING 
METHODS, APPLICATIONS AND DRAWBACKS 

 
 

4.1 DEFINITION, HISTORY AND APPLICATIONS OF CLUSTERING 
 
Cluster analysis is to discover the natural grouping(s) of a set of patterns, points, or 

objects. “Cluster analysis” first appeared as a phrase in 1954 and was suggested as a tool 

used to understand anthropological data (Clements, 1954). Biologists called it “numerical 

taxonomy” owing to the early research done on hierarchical clustering, a technique that 

aided them to create hierarchy of different species for analyzing their relationship 

systematically and understanding their phylogeny. 

 

Cluster analysis is described in Webster dictionary as a statistical classification technique 

for discovering whether the individuals of a population fall into different groups by 

making quantitative comparisons of multiple characteristics. Single-link clustering 

(Sneath, 1957), Complete-link clustering and Average-link clustering (Sokal and 

Michener, 1958) first appeared in 1957, 1948, and 1958 respectively. The most popular 

partitional clustering algorithm, k-means, has been proposed several times in the 

literature: Lloyd in 1957 (Lloyd, 1957), and MacQueen in 1967 (MacQueen, 1967).  

 

Cluster analysis finds its need in any discipline that involves analysis of multivariate data. 

Although not exhaustive, some important applications of clustering can be enumerated as: 

 

4.1.1 IMAGE SEGMENTATION 

This is an important problem in computer vision and can be formulated as a clustering 

problem (Jain and Flynn, 1996). Image segmentation for computer vision is one of the 

most important issues involved in building intelligent, autonomous systems whose major 

contribution is in the area of image understanding. In order to understand an image, the 

first thing a computer must do is to segment the image into several parts. In a satellite 

image, we may want to divide the image automatically into buildings, water, forest, and 

 55



agriculture. Data clustering plays an integral role in image segmentation algorithms 

(Hamerly, 2003). 

 

4.1.2 DATA COMPRESSION 

Clustering of data ensures that each cluster has some set of objects that belong to that 

cluster. In that sense, we may wish to represent the set of those objects with a form of 

description that easily replaces the set of objects in the cluster. If we do not need to store 

all of the objects, this offers an opportunity not to store all the objects but instead replace 

it with sets of description such as number of objects and boundary of the set of objects, 

thereby ensuring data compression. 

 

4.1.3 REDUCTION OF SEARCH SPACE FOR FAST DATA ACCESS 

 A common type of query in databases is searching for the database object nearest to some 

query object. In databases, we search for desired objects and results using suitable queries 

to obtain them in form of output. Fast search and access is implemented when we cluster 

the data in the database in such a way that related data belong to same cluster. If we 

cluster the data in the database before any query execution, then we can do a two-level 

search which can be faster; searching first, the nearest cluster, and then doing a local 

search for the nearest object in that cluster. Documents can be clustered to generate topical 

hierarchies for information access or retrieval (Bhatia and Deogun, 1998). 

 

4.1.4 FUNCTIONAL GENOMICS ANALYSIS 

 Clustering algorithm is also applicable in the study of genome data (Baldi and Hatfield, 

2002). It can be used to find complex relationships within populations of gene expression 

values from DNA microarray data. We apply, for example, k-means algorithm 

numerically to cluster the gene expression values, because gene in the same cluster 

provides clues that they are performing a similar function. The concept of co-regulation 

and co-expression of genes in functional genomics is an important feature which k-means 

clustering tool can provide information to assist researchers in doing data analysis and 

data interpretation. 
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4.2 OVERVIEW OF CLUSTERING ALGORITHMS 

 

A clustering algorithm is either hierarchical or partitional as shown in Figure 4.1. 

Hierarchical algorithms create successive clusters using previously established clusters, 

whereas partitional algorithms determine all clusters at once.  For the hierarchical variants, 

we have the agglomerative and divisive clustering. However, in partitional clustering, we 

have QT-Clustering (Heyer et al., 1999), Self Organising Map (SOM) (Tamayo et al, 

1999) and Traditional k-means which have evolved in recent years for high level analysis. 

A number of k-means variants algorithms exist and some of them include the Fuzzy C-

means (Dembele and Kastner, 2003), X-means (Pelleg and Moore, 2000), G-means 

(Hamerly and Elkan, 2003 ), and PG means (Feng and Hamerly, 2006)  

 

Clustering 

Hierarchical Partitional 

Traditional k-
means 

Agglomerative 
(Bottom-up)

Divisive (Top-Down) k-means Variants 

Self organizing Map 
(SOM) 

QT-Clustering 
 

 
Figure 4.1: Evolving Clustering Algorithms and k-means variants.  
 
These are the major classes of clustering with partitional clustering giving rise to traditional k-means. 
Several k-means variants have emerged for different applications using various models. 
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4.2.1 HIERARCHICAL CLUSTERING 
Hierarchical algorithms can be agglomerative (bottom-up) or divisive (top-down). A 

hierarchical clustering algorithm becomes agglomerative (Härdle and Simar, 1998), if it 

starts from isolated data patterns and coalesces the nearest pattern or groups as specified 

by the threshold, in bottom-up fashion, forming hierarchies whereas divisive starts from 

whole set of patterns that divides along the top-down direction into successive smaller 

clusters (see Figure 4.2). 

 
Using six raw data elements {u}, {v}, {w}, {x}, {y} and {z} as in figure 4.2 below with 

the position or location of each individual data reflecting the distances between them, 

which ultimately determine the data to merge into a cluster. Usually, we want to take the 

two closest elements, therefore we must define a distance d (element1, element2) between 

a pair of elements.  

 
 

Hierarchical clustering 
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 (Source: Wikipedia, 2006) 
Figure 4.2: Agglomerative and Divisive Clustering.  

 

Agglomerative is usually a bottom up approach while Divisive clustering is a top-down approach. 

 
One can also construct a distance matrix showing the closeness of individual data points to 

each other. Merging two closest raw data points v and w result in the following clusters {v  
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w}, {u}, {x}, {y} and {z}. In order to merge further, we need to compute the distance 

between {u} and {v w} hence the need to define the distance between two clusters. {x} 

merges with  {y} to form {x y} which further merges to {z}. Finally, clusters {u}, {v w}, 

{x y z} merge into a single whole cluster {uvwxyz}.  Computing distances between 

clusters can be done using single linkage, complete linkage or average linkage. Distance 

d(x,y) can be computed by using a distance metric measure like the Euclidean distance. 

However, other distance metric measures include the Pearson Correlation, Mahalanobis  

(City block) distance  and Chebychev, which is like City Block, which instead of 

summing the differences, takes the maximum. Correlation coefficient of 1 means perfectly 

correlated (giving zero distance), a correlation coefficient of 0 means uncorrelated (giving 

unit distance), and a correlation coefficient of –1 means oppositely correlated 

(Biodiscovery, 2001).  

 
Several problems are shared by these hierarchical methods. Decisions to join two elements 

are based only on the distance between those elements, and once elements are joined they 

cannot be separated. This is a local decision-making scheme that does not consider the 

data as a whole, and it may lead to mistakes in the overall clustering. In addition, for large 

data sets, the hierarchical tree is extremely complex, and the choice of location for cutting 

the tree is unclear (Heyer et al., 1999). 

 

4.2.2 PARTITIONAL CLUSTERING AND TRADITIONAL K-MEANS 

In partitional clustering, there are distinct data groups such that each data belongs to a 

group called partition. One good example is the traditional k-means algorithm and some of 

its variants. The word “k-means” indicates that the algorithm takes as an input a user 

predefined number of clusters, which is the k from its name, while means stands for an 

average representing the average location of all the members of a particular cluster.  

 

k-means algorithm is a simple, iterative procedure, in which each cluster has only one 

centroid which moves based on the computed means of data belonging to that cluster. 

Centroid is an artificial point in the space of data which represents an average location of 

the particular cluster. The coordinates of this centroid point are averages of attribute 
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values of all examples that belong to the cluster.  We define k-means clustering as an 

algorithm used to group objects or data points into user-defined number of classes called 

clusters based on certain attributes, whereby each data point presented is allocated to a 

cluster whose centroid maintains the shortest distance to that data point.  

 

k-means clustering (MacQueen, 1967) is the most common partitioning algorithm. The 

goal and objective function of k-means algorithm is to minimize dissimilarity in the 

elements within each cluster, while maximizing this value between elements in different 

clusters. A simplified representation of k-means algorithm as adapted from Teknomo 

(undated) and Sammy (undated) is given in Figure 4.3.  

 

Step 1: Select k initial cluster centroids, c1, c2, c3, ..., ck. One way to do this is   

             either:             

           Take first k instances or 

           Random sampling of k elements or  

          Take any random partition in k clusters and computing their  centroids  

Step 2: Assign each instance x in the input data to the cluster whose centroid is the 

nearest to x.  

 

Step 3: For each cluster, re-compute its centroid based on which elements are contained 

           within it.  

 

Step 4: Go to (2) until convergence is achieved, i.e. until a pass through the input data 

causes no new assignments. 

 
   (Source: Adapted from Teknomo (2006); Sammy (2006)) 

Figure 4.3: A Simplified Representation of Traditional k-means Algorithm.  

 

There are three possible ways to select your initial centroids: first k instances, random sampling or 

random partition. Data are assigned to their nearest centroid and new k centroids are computed for 

the next iteration iteratively till convergence is reached. 
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In k-means clustering, we are given a set of n data points in d-dimensional space Rd  and 

an integer k. The problem is to determine a set of k points mj, j=1,2,3,….k, in Rd, called 

centers, to minimize the mean squared distance from each data point to its nearest center 

(Kanungo et al, 2004).  The objective function is: 

       1/n ∑  d
=

n

i 1

[ min
j

2(xi,mj)                                     (2.1) ]

Where d2(xi,mj) denotes the metric used (Euclidean distance) for example, distance 

between xi and mj for j=1,2, 3,…,k. 

 

The problem in Eq.(2.1) is to find k cluster centroids, such that the average squared 

Euclidean distance (MSE) between a data point and its nearest cluster centroid is 

minimized. The approximate solution to Eq. (2.1) is easily implemented by k-means. 

 

The k-means algorithm is popular and easy to implement, scalable with speed of 

convergence always to a local minimum as the global minimum is NP-complete. The 

particular local minimum found depends on the starting cluster centroids. The algorithm 

updates cluster centroid iteratively to decrease the objective function in Eq. (2.1) till local 

minimum is found. Its computational complexity is O(nkl), where n= total number of 

dataset objects, k=cluster number and l= number of iterations. 

 

 
4.3 EXISTING K-MEANS CLUSTERING  ALGORITHM AND RELATED   

      WORKS 

 
The traditional k-means has evolved over time as many algorithm designers employ clever 

ways of redesigning k-means to improve its efficiency.  
 
4.3.1 FUZZY C-MEANS  

 This is also referred to fuzzy k-means. k-means clustering algorithm operates with a 

concept referred to as hard partitioning which implies that each data point is assigned to 

one and only one cluster. This is synonymous with what we have in a classical set where 

an element is either a member or a non-member of a set and as a result implements the 
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principle of no sitting on the fence.  However, in truth, points on the edge of a cluster or 

near another cluster may not be as much inside that cluster as points in the cluster center, 

hence the need for fuzzy clustering. Fuzzy clustering applies the technique of fuzzy logic 

to ensure that each data point does not belong to only one cluster but has a degree to 

which it also belongs to other clusters. This is called degree of membership. The Fuzzy c-

means is implemented using MATLAB and visual C++. Dembele and Kastner (2003) in 

their work focused on the method of choosing appropriate fuzzy parameter m for 

microarray data clustering, since the fixed value of m=2 failed to give a good result. 

Dembele and Kastner (2003), proposed an empirical method, based on the distribution of 

distances between genes in a given data set to determine an adequate value for m.  

 

4.3.2 K-MEDOIDS ALGORITHM 

 This iterative algorithm is similar in approach to k-means, but it imposes an additional 

constraint: that the centers that are used to represent the data are taken from the dataset 

itself. Thus a “medoid” is a datapoint that best represents a set of data. Because of this 

constraint, k-medoids can operate on data which do not live in a metric space, as long as 

the data can be described in terms of pairwise distances for the datapoints being clustered. 

However, the initial construction of the pairwise distance matrix D requires time O(dn2) 

and the search for a new medoid (each iteration) takes in expected time O(n2). Therefore, 

it is not a linear-time algorithm for clustering, and is of little practical interest for 

moderately-sized and large datasets (Hamerly, 2003). 

 
 
4.3.3 DENSITY OF POINTS CLUSTERING (DPC) 

DPC by Wicker et al. (2002) divide cluster and test whether it should be divided or not. If 

it is not divided, then there will be only one cluster in the data set, otherwise there are at 

least two clusters that will be further iteratively divided if necessary. The division is 

attempted through the k-means method with k = 2. The test is based on point density 

measures. When the density measure between two possible clusters is too small compared 

to the density measure inside both clusters, the two clusters are kept because they are not 

well connected to each other. 
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4.3.4 X-MEANS 

Pelleg and Moore (2000) proposed a scheme for learning k, which they call X-means. The 

algorithm searches over many values of k and scores each clustering model using the so-

called Bayesian Information Criterion. The user only specifies by guessing a range in 

which the true k will lie and X-means chooses the model with the best BIC score on the 

data. X-means improves the speed of a naïve k-means by embedding the dataset in a 

multiresolution kd-tree, storing sufficient statistics at the nodes. It also uses a fast 

algorithm that allows additional geometric computation, blacklisting, that maintains a list 

of just those centroids that need to be considered for a given region.  

 

4.3.5 OVERLAPPED AND ENHANCED K-MEANS  

Fahim et al. (2006) proposed what they called Overlapped and Enhanced k-means 

algorithm which uses a simple data structure to keep some information on each iteration 

for usage in the next iteration. For each data point, its distance to the centroid of its nearest 

member cluster is stored for that iteration so that there will be no need for its distance 

computation if it is near its centroid at the next iteration. The scheme can improve the 

computational speed of k-means algorithm by the magnitude in the total number of 

distance calculations and the overall computational time. Their k-means implementation is 

based on two functions called distance() and distance_new() used for each algorithm as 

follows: 

 

(1) Overlapped k-means: Obtained when these two functions are executed a number of 

times, one after the other, starting with distance() as first and followed by 

distance_new() alternatively so that there is overlap between these two functions.  

 

(2) Enhanced k-means:  This is obtained by executing the function distance() twice 

while function distance_new() is executed for the reminder of the iterations. 

 

The reader is referred to chapter 5 for more details, but briefly, the function distance () is 

similar to basic function of k-means algorithm but it has an additional feature of having a 

simple data structure to keep the distance between each point and its nearest cluster. The  
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distance new () encapsulates the decision for a point to either stay in its old cluster 

assigned to it  in the previous iteration or be reassigned to a new cluster if the computed 

distance is larger than the distance to the old centre. 

 

 

4.4 DRAWBACKS OF EXISTING K-MEANS METHODS 
 

Generally, k-means is known to converge at local optima as noted in Steinley (2003). 

However, the drawbacks of k-means include the following:  

1) Most k-means clustering tool performs poorly on large datasets, hence there is 

the need to cluster enormous amount of genomic data at a reasonable time 

shorter than the runtime of existing algorithms. 

 

2)  To the best of our knowledge, existing methods are not well equipped for 

analysing and extraction of useful knowledge from the vast amount of 

Malaria Microarray Data (MMD) for the purpose of finding a functional 

relationship of genes involved in malaria infection or understanding the 

complex biology of the parasite. 

 

3) Many clustering tools are developed based on some specific clustering goals 

in the mind of the developer at the time of their development, hence, different 

models and statistical assumptions were made. It means that we may not be 

very sure of the output obtained from an engineering-based clustering tool 

versus a social science based clustering tool or transcriptome-based clustering 

tool as they may give completely different results on the same data. 

 

4) Many of the clustering tools such as enhanced k-means lack effective 

evaluation of their cluster quality (Fahim et al., 2006). 
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CHAPTER FIVE 

 

REDUCING THE TIME REQUIREMENT OF K-MEANS ALGORITHM 

 

5.1 INTRODUCTION 

 

Clustering is the unsupervised grouping of objects into classes without any a priori 

knowledge of the datasets to be analyzed. In this case, there is no supervisor to teach the 

systems first on how to classify the known sets of data points. Given X n dataset points, 

x1,x2, x3,…,xn, contained in d-dimensional space Rd, the process of clustering can be 

formally stated as: to seek partitions X1, X2, X3, ..., Xk such that every xi , i = 1,2,3,...,.n , 

falls into one of these regions and no xi falls into two regions. Partitions X1, X2, X3,…, 

Xk satisfy the following:  X1 ∪X2 ∪  X3 … X∪ k = X   and     Xi    X∩ j = 0   ∀ i 

 j , where and  stand for union and intersection respectively.  The definition 

further stated that we are to cluster, or form into each class, data points x

≠ ∪ ∩
i that are as 

similar as possible, hence we need what is called a similarity measure (or dissimilarity 

measure) usually given in a numerical form to serve as an indicator of the degree of 

resemblance or natural association between a data and groups of data (Bow, 1984). The 

dissimilarity measure  (as used in k-means) is expected to satisfy the following: (xi,xi) 

= 0 and  (xi,xj) ≠  0  ∀ i  j. ≠

 

We define clustering from genomics point of view as a data analysis tool that puts genes 

into groups called clusters so that the degree of association is strong between gene 

members of the same cluster and weak between gene members of different clusters. 

Hierarchical algorithms create successive clusters using previously established clusters, 

whereas partitional algorithms determine all clusters at once.  For the hierarchical 

variants, we have the agglomerative and divisive clustering. However, in partitional 

clustering, we have QT (Quality Threshold) clustering (Heyer et al, 1999), Self 

Organising Map (SOM) (Tamayo et al., 1999) and Standard k-means (MacQueen, 

1967) which has been evolving in recent years for high dimensional data analysis.  

 

Formally, in k-means clustering, we are given a set of n data points in d-dimensional 

space Rd and an integer k. The problem is to determine a set of k points in Rd, called 
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centers, so as to minimize the mean squared distance from each data point to its nearest 

center (Kanungo et al., 2004; Fahim et al., 2006).   

 

The k-means method has been shown to be effective in producing good clustering 

results for many practical applications such as data compression and vector quantization 

(Duda and Hart, 1973) as well as pattern recognition and pattern classification (Gersho 

and Gray, 1992). It has also found application in data mining and knowledge discovery 

(Fayyad et al, 1996) image segmentation (Jain and Flynn, 1996; Hamerly and Elkan, 

2003) and gene expression (Baldi and Hatfield, 2002). The traditional k-means 

algorithm requires in expectation, O(nkl) run time where l is the number of k-means 

iterations. This time was said to be reduced in (Fahim et al., 2006) to O(nk) but we 

found their algorithm to still run in O(nkl) expectation time. Note that this can still be 

computationally expensive for large datasets, such as the microarray data, where we 

have large datasets with large dimension size d. 

 

For efficient and effective analysis of microarray data, we developed a novel Pearson 

correlation-based Metric Matrices k-means (MMk-means) with a better run-time O(nk2) 

than the Traditional k-means and other variants of k-means algorithm like Overlapped 

and Enhanced k-means algorithms developed in Fahim et al., (2006).  

 

 

5.2 PREVIOUS VARIANTS OF THE ALGORITHM 

 

The word “k-means” indicates that the algorithm takes as an input a user predefined 

number of clusters, which is the “k” from its name, while “means” stands for an average 

representing the average location of all the members of a particular cluster. There are 

two existing basic versions of k-means clustering, a non-adaptive version introduced by 

Lloyd (1957) and an adaptive version introduced by MacQueen (1967). A number of k-

means variants algorithms exist and they include fuzzy c-means (Bezdek, 1981), X-

means (Pelleg and Moore, 2000), G-means (Hamerly and Elkan, 2003), and PG means 

(Feng and Hamerly, 2006) and Fuzzy J-Means (Belacel et al., 2002; Belacel et al., 

2004). 
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A generalized pseudocode of Traditional k-means algorithm is given in Figure 4.3. An 

overview of the Traditional k-means algorithm and its recent variants was presented by 

(Fahim et al., 2006). Figure 4.3 in a more explicit format is given in Figure 5.1, where 

MSE denotes the mean squared error.  

 

 

//TRADITIONAL K-MEANS 
1 MSE=largenumber; 
2 Select initial cluster centroids mj // Randomly or first k genes; 
3 Do 
4  OldMSE=MSE; 
5  MSE1=0; 
6  For j=1 to k 
7   mj=0; nj=0; 
8 endfor 
9 For i=1 to n 
10   For j=1 to k 
11    Compute squared Euclidean  distance d2(xi, mj); 
12   endfor 
13  Find the closest centroid mj to xi; 
14  mj=mj+xi; nj=nj+1; 
15  MSE1=MSE1+d2 (xi, mj); 
16 endfor 
17  For j=1 to k  
18   nj=max(nj, 1); mj=mj/nj; 
19  endfor 
20  MSE=MSE1; 
21    while (MSE<OldMSE)  
 
 

Figure 5.1: Pseudocode of Traditional k-means                            (Fahim et al., 2006)                          

 

Fahim et al. (2006) designed two new variants of k-means algorithms noting that if the 

distance between a data point and the current centroid (new center) of the cluster that it 

was assigned to in the previous iteration is less than or equal to the distance of the data 

point to its previous centroid (old centre), then the point remains in that cluster and 

there is no need to compute its distance to the other k-1 centers. To do this, they 

introduced two arrays, namely Clusterid and Pointdis to keep track of the centroid to 

which each point is assigned to and the distance between this point and its centroid. 

They used two sub-procedures in Figure 5.2a and Figure 5.2b to design two variants of 

k-means algorithm in Fig5.3a and Fig5.3b respectively.  These algorithms are shown as 
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//Function distance()  
//assign each point to its nearest cluster 
1 For i=1 to n 
2  For j=1 to k 
3   Compute squared Euclidean distance d2(xi, mj); 
4  endfor 
5  Find the closest centroid mj to xi; 
6  mj=mj+xi; nj=nj+1; 
7  MSE=MSE+d2(xi, mj); 
8  Clusterid[i]=number of the closest centroid; 
9  Pointdis[i]=Euclidean distance to the closest centroid; 
10 endfor 
11 For j=1 to k 
12  mj=mj/nj; 
13 endfor  
  
                                                               
 
 

Figure 5.2a: Pseudocode of Function distance( )                             (Fahim et al., 2006)  
  

//Function distance_new() 
//assign each point to its nearest cluster 
1 For i=1 to n 
 Compute squared Euclidean distance d2(xi, Clusterid[i]); 
 If (d2(xi, Clusterid[i])<=Pointdis[i]) 
  Point stay in its cluster; 
2  Else 
3   For j=1 to k 
4    Compute squared Euclidean distance d2(xi, mj); 
5   endfor 
6  Find the closest centroid mj to xi; 
7  mj=mj+xi; nj=nj+1; 
8  MSE=MSE+d2(xi, mj); 
9  Clustered[i]=number of the closest centroid; 
10  Pointdis[i]=Euclidean distance to the closest centroid; 
11 endfor 
12 For j=1 to k 
13  mj=mj/nj; 
14 endfor   
 
 
 
 

Figure 5.2b: Pseudocode of Function distance_new( )                 (Fahim et al., 2006) 
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1 MSE=largenumber; 
2 Select initial cluster centroids; // Randomly or //first k elements  
3  Do 
4   OldMSE=MSE; 
5   MSE1=0; 
6   For j=1 to k 
7    nj=0; 
8  endfor 
9     distance() 
10   distance_new()   
11   MSE=MSE1; 
12   while (MSE<OldMSE 
 
 
 
Figure 5.3a: Pseudocode of Overlapped k-means 
 
 

1MSE=largenumber; 
2 iteration=0 
3 Select initial cluster centroids; // Randomly or  //first k elements                                                          
4  Do 
5      iteration+=1 
6   OldMSE=MSE; 
7   MSE1=0; 
8   For j=1 to k 
9    nj=0; 
10  endfor 
11  if(iteration≤2) 
12      distance(); 
13    else 
14     distance_new();   
15   MSE=MSE1; 
16      while (MSE<OldMSE) 
 
 

Figure 5.3b: Pseudocode of Enhanced k-means 
 

Fahim et al., used n   to estimate the total number of data points for each 

iteration that moved from their clusters during the number of k-means iterations, l. They 

showed that the cost of using an enhanced k-means algorithm is approximately O(nk). 

We observed that the total number of data points for each iteration that moved from its 

clusters during the k-means iterations is not strictly monotonically decreasing and thus 

the Overlapped and Enhanced k-means algorithm eventually still costs O(nkl) run time 

in expectation. 

∑
=

l

i
i

1
/1
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5.3 METHODOLOGY 

 

5.3.1 BASIC DEFINITIONS 

For simplicity of our algorithm, the following basic definitions were adduced: 

 

(a) Notation 

||.|| denotes the Euclidean norm of a vector. The trace of a matrix X, i.e., the sum of its 

diagonal elements, is denoted as trace (A). The Frobenius norm of a matrix 

. In denotes identity matrix of order n. 

(b) Centroid: Centriod, sometimes called centre, is an artificial point in the space of 

data and it represents an average location of a particular cluster. The coordinate of this 

centroid point is an average of attribute values of all data that belong to the cluster. 

 

(c) Correlation (r): A measure of relationship between two or more sets of data. 

Correlation is of two types namely Spearman rank correlation coefficient that uses 

ordinal values (ranked) while Pearson product moment correlation coefficient uses 

interval or ration value. Types of correlation relationship can be positive ( 0< r ≤1) , 

negative (0 > r ≥ -1) or no correlation r = 0. 

 

(d) Metric Matrix: A kxk matrix corresponding to values of the correlation coefficient 

(r) between the centroids of the previous (pmj) and current (mj) iterations respectively, 

where 0 < j ≤ k.  

 

(e) Ding-He Threshold: It is an interval determined by Ding and He (2004), used in 

our new k-means algorithm to determine whether a cluster must remain  without further 

clustering or be subjected to further clustering. 

 

(f) Minimum MMk-means Iteration (MMI): The minimum number of k-means 

iteration times required   before the Ding-He interval is applied in our new k-means 

algorithm. 
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(g) diffj: An absolute value obtained from the subtraction of the current iteration 

eigenvalues (ej) from  the previous iteration eigenvalues (pej) and it serves as an 

indicator to terminate clustering for each cluster.  Each eigenvalues set is obtained from 

the corresponding Metric Matrix. 

 

(h) Some Set Notations:  

      set[j]:  1≤ j≤ k  is the set referring to cluster j. 

      add[i]: Is a function to add data point into a cluster, where i is the index of a data  

                   point. 

      set[j].nj : Is the size of cluster  j, that is number of data points in a cluster  j. 

 

 

5.3.2 ALGORITHM DESIGN FOR OUR NEW MMK-MEANS 

 

Our MMk-means algorithm (see Figure 3.4) runs like the traditional k-means algorithm 

except that it is equipped with a mechanism to determine when a cluster is stable, that 

is, its membership data points will always remain in the same cluster in each subsequent 

iteration. This is an improvement on the Overlapped and Enhanced variants of k-means 

algorithms introduced by Fahim et al., (2006). They equipped their algorithms with the 

ability to detect the stability of a data point but MMk-means is equipped with the 

mechanism to detect the stability of a cluster representing a whole bunch of data points. 

 

To do this, we use a simple data structure to indicate when a data point belongs to a 

stable cluster. We use the recently established relationship between principal component 

analysis and k-means clustering to design a mechanism for determining when the whole 

data points in a cluster are stable. We create a covariance matrix (r), computing the 

Pearson product moment correlation coefficient between the k centroids of the previous 

and current iterations and then deduce k previous and current iterations eigenvalues. 

The difference of these eigenvalues for each cluster is computed and checked to see if it 

satisfies (that is, lies within) the Ding-He interval. If it does, the corresponding cluster is 

considered stable and there is no need to compute its data point distances with the 

current centroid of the cluster or the rest k-1 centroids.  
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The mechanism so explained is prescribed in the subprocedure Compute_MM of Figure 

5.5 and this function is being executed when the current total iterations number is 

greater than MMI-1.  
 

1     m=Compute_multiplier(k, d, X)// or Compute_factor(k, d, X) 
2     compute_eigenvalues=false; check_stability=false 
3     iteration = 0 
4     MSE=large number; 
5       Select initial cluster centroids   //  Randomly or first k genes 
6      Initialise  
7      adj_x[i].bool=0 
8      adj_x[i].dist=0 
9      adj_x[i].j=0 
10    Do    
11      iteration += 1 
12   OldMSE=MSE; 
13  MSE=0; 
14     For j=1 to k 
15           pmj=mj; nj=0; 
16       endfor 
17     For i=1 to n 
18               if(adj_x[i].bool == ‘F’ {         // ‘F’ = False 
19                    For j=1 to k 
20                Compute distance d2(xi, mj); 
21            endfor 
22                      Find the closest centroid mj to xi; (Store in dist=   
                                                            d2(xi, mj)) 
23                                   adj_x[i].dist= dist; 
24           adj_x[i].j=j 
25     set[j]= add[i] 
26            mj=mj+xi; nj= nj+1; 
27                          } else {     // point stays in its cluster  
28                                                  dist = adj_x[i].dist 
29          } 
30                MSE1=MSE1+dist  
31   endfor  
32     For j=1 to k 
33          nj=max(nj, 1); mj=mj/nj; // nj can only be max between 0 and 1 
34     endfor 
35                    if (iteration>1) {  
36                                if (compute_eigenvalues==true) 
37                                           check_stability=true 
38                                if((1-mMSE1/MSE)*100≤0.7) 
39                                            compute_eigenvalues=true 
40                    }  
41    Compute_MM(pmj, mj, iteration)    
42       while (MSE<OldMSE) 
 

Figure 5.4: Pseudocode of Our Main Program for MMk-means 
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1  Compute_MM(pmj, mj, iteration){ 
2          if (compute_eigenvalues==true){ //if (iteration > MMI-1) is implemented here 
3  Compute r using pmj  and mj  
4  Compute its eigenvalue into ej   
5                  if (check_stability==true){ //if(iteration > MMI) is also implemented here 
6                               For j=1 to k {   
7    diffj= | pej-ej|        
8     if (diffj <Ding-He H1 && diffj > Ding-He L0) { 
9                     For(i=1 to set[ j ].nj) 
10                                     adj_x[set[ j ][i]].bool= 1 
11    } 
12   } 
13  } 
14  pej = ej
15            } 
16   } 
 
 

Figure 5.5: Pseudocode of our Compute MM Sub-program for MMk-means 

 

For any n dataset points, given the total number of k-means iteration l required, we can 

actually set MMI = l/2, but note that l is unknown until a traditional k-means algorithm 

is executed. We know that for a given clustering procedure, k-means algorithm aims at 

minimizing the first Mean Squared Error (MSE1), through a number of iterations, l, 

distributing all data points into clusters, to arrive at an optimal (minimized) Mean 

Squared Error (MSEl). Therefore, we estimate the required Minimum MMk-means 

Iteration (MMI) to be bounded by 0< MMI ≤ MSE1.k/MSEl.   For a given set of n data 

points, the first iteration of a traditional k-means algorithm can be used to determine 

MSE1 in O(nk) time. For the given n dataset points, we can form the d-by-n matrix X = 

[x1,…, xn]. Centring each data point around the origin, such that yi=xi-  and  =∑i xi/n,  

Ding and He (2004) showed that:  

Theorem 1.  

The optimal Mean Squared Error (MSEl) is tightly bounded from below and above by 

 < MSEl < ,  (1) 
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where  and  are the eigenvalues of the covariance matrix 

.  

Therefore, using equation (1) above, we can compute MSEl in O(n) time. Empirical 

testing followed by personal communication (Ding, 2008) shows that equation (1) 

above does not hold for large k and data with high dimensional (d). So equation (1) will 

not estimate MSEl for all k and d as we desire in our new k-means algorithm.  

 

It is also obtained in Zha et al. (2002) that: 

 

Theorem 2. 

The optimal Mean Squared Error (MSEl) is bounded from below by 

 

MSEl ≥                      (2) 

where  is the i largest singular value of X and A is an arbitrary orthonormal 

matrix. 

 

Ding and He (2004) indicated that the lower bound in theorem 2 is not asymptotically 

tight as in theorem 1. From theorem 2 above, we observed that although the equation 

does not correspondingly estimate  for large k and high d, it possesses a 

distribution that mimics the series needed to estimate  for large k and high d.  

Using this observation, we are able to estimate approximately a multiplier we called m, 

that is useful in the prediction of   from MSE1 and consequently determine MMI.  

 

 

 

 

  74



Observation 1. 

From equation (2), we can estimate  

and consequently find MSEl ≅ m . Note that σi (X) is the i largest singular value of 

X. We encapsulate the computation of the multiplier m in an implicit subprocedure 

Compute_multiplier. 

 

Observation 2. 

For each iteration, given  ≅ mMSE1, we can determine MMI, by estimating the 

distance of the current iteration MSE away from the final and optimal MSE,  and 

when 

(1-mMSE1/current iteration MSE)*100% ≤ 0.7%, MMI is equal to the current total 

iterations number. 

 

 

 

5.3.3 ALGORITHM CORRECTNESS AND COMPLEXITY ANALYSIS 

 

To prove the correctness of our new and novel k-means algorithm, we will need the 

following definitions and theorem from Kumar et al. (2004) and Fan (1949) 

respectively. 

 

Definition 1. Given a set of k points K, which we also denote as centers, define the k-

means cost of X, set of n points in d-dimensional space Rd, with respect to K, , 

as  

 
where d(x, K) denotes the distance between x and the closest point to x in K. 
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Definition 2. For a set of points X, define the centroid, C(X), of X as the point  

 

. For any point , it follows that 

 

An important result, that we shall see soon, how it relates centroid of each partition Xj to 

an eigenvalue, is given by Fan (1949) and stated as: 

 

Theorem 3. Let H be a symmetric matrix with eigenvalues , and the 

corresponding eigenvector . Then 

 
Moreover, the optimal A* is given by  with Q an arbitrary orthogonal 

matrix. 

Let the centroids at each k-means iteration be , where  is the 

total number of k-means iterations. Now, we will also need the following lemma. 

Lemma 1. For a partition  at a t-iteration let ,  if Ding-

He  Ding-He  then  for . 

Proof. Note that r in sub-procedure Compute_MM of figure 7, which is the key 

mechanism we used to identify stable partitions, is the k x k correlation coefficient 

matrix generated between the centroids of the previous and current iterations of the k-

means algorithm. Note further that r is a covariance matrix (Rodgers et al., 1988). 

 

Zha et al. (2002) in their attempt to prove theorem 2 (stated above) showed that 

theoretically 
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          =                                     (3) 

where A is an n x k orthonormal matrix given by 

 
e is a vector of appropriate dimension with all elements equal to one and  

are numbers of data points in each cluster. Note that the minimization of equation (3) is 

equivalent to 

 

 
It is also shown in Zha et al. (2002) that 

                                                       (5) 

Equations (3) and (5) relate minimized MSE to maximizing the sum of the centriods. 

Note also that theorem 3 above relates centroids of each partition to an eigenvalue. 

Iteratively, r in Compute_MM relates centroids of previous and current iterations 

respectively and therefore from equation (5) and theorem 3, its eigenvalues characterize 

the iterative minimized MSE of each partition and  is an estimate of how close is 

the minimized MSE for a partition (in terms of its centroid)  to the optimal one.  Since 

Ding and He [2] had shown an upper and lower bound to expect this, then if Ding-

He   Ding-He , the centroid of the corresponding partition Xj virtually 

does not change in subsequent iterations.  

 

This translates to  for  from definition 2.                                                  

 

  77



We now prove the correctness of MMk-means algorithm in the theorem that follows. 

 

Theorem 4. Given a point set X, MMk-means returns a k-means solution on input X. 

Proof. We should note that our algorithm maintains the following loop invariant: 

 Invariant: Let  

(1)  

(2) The set X is a subset of  

It is straight forward to note that for i=0, the invariant holds. Now, let’s assume that the 

invariant holds for some fixed i=p, it remains to show that the invariant holds for i=p+1 

as well, then we are done. 

Based on our assumption, for i=p, 

                            (6) 

For i=p+1, we have to show for every j that it is either 

                           (7)     or 

                            (8) 

Note that for a partition Xj, if  from (1) above then using 

lemma 1,  for all iterations later on. This proves (7) 

above.  

Now if  from (6), it remains to prove that 

i)  or 

ii) . 

Lemma 1 indicates the condition to expect ii), so we are done as regards this. If this 

condition is not valid for a particular partition Xj then . From definition 1, 
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        (9) and 

        (10) 

for any point . Note that for our MMk-means algorithm and infact any other k-

means algorithm, if , then  and therefore from 

equations (9) and (10), . This completes the proof for 

(8) above. 

 

It now remains to show that for each iteration i in our MMk-means algorithm, the input 

set X is a subset of . This is actually straight forward. Note that for an 

iterations i, , there exists only one closest  centroid to x from M for a particular 

partition , such that . This shows that all   belongs to a partition  for 

and therefore X is a subset of .   

 

 

Theorem 5. Our new and novel MMk-means algorithm runs in O(nk2) expected time. 

Proof. 

Using the devices enumerated under the algorithm design section above, our new k-

means algorithm is presented in Figures 6 and 7. Based on the value of MMI, the 

number of our MMk-means total iterations is O(k), so that our new k-means algorithm 

runs in O(nk2) expectation time.                                                                                                   
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5.3.4 EXPERIMENTAL DATA USED 

To compare the efficiency and effectiveness of our algorithm, in comparison to the 

Traditional k-means, the Overlapped and Enhanced k-means algorithms, we tested them 

using both biological and non-biological data. Details of these files are given next. 

 

5.3.4.1 Biological Data (Malaria Microarray Data) 

We tested the algorithms using normalized microarray expression data at varying 

timepoints for P. falciparum microarray experiment data from Bozdech et al. (2003a) 

and Le Roch et al (2003) as depicted in Table 5.1.  

 
Table 5.1 - Short statistics on the three microarray experimental data used in the testing of our algorithm 

      and the other three variants of k-means algorithm 

P.f Microarray Experimental data Total No Of Genes Time points 

Bozdech  et al, (2003a)-  3D7 strain data 4596  53 

Bozdech et al., (2003a) – HB3 strain data 4313 48 

Le Roch et al, (2003) 3D7 strain data 5159 16 

 

The source of P. falciparum for the microarray experiment (Bozdect et al., 2003a) is 

from a large-scale lab culture grown using parasitisized Red Blood Cells (RBC). From 

Table 5.1, Bozdech et al. (2003a) microarray experiment described a complete asexual 

intraerythrocytic developmental cycle (IDC) of 3D7 and  HB3 strains of P. falciparum 

such as  early ring stage, late ring stage, early trophozoite stage, late trophozoite stage, 

early schizont stage, late schizont stage and gametocyte stage.   By analyzing the IDC 

transcriptome of the 3D7 strain and HB3 strain of P. falciparum, they were able to 

demonstrate that at least 60% of the genome is transcriptionally active. Le Roch et al., 

(2003) investigated nine (9) developmental stages by extracting  total RNA from 

sporozoites; from six periodic intracellular asexual blood stages (grown in culture and 

synchronized by means of two  independent methods, a 5% D-sorbitol treatment and a 

temperature cycling incubator); and from merozoites and mature stage IV and V 

gametocytes. This design allowed one of the 367,226 probes to be placed, on average, 

every 150 bases on both DNA strands and they used robust k-means to cluster their 3D7 

strain P. falciparum microarray data. 
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5.3.4.2 Non-Biological Data  

In order to determine clearly the behaviour of our algorithm on non-biological data, we 

decided to deploy them using Fahim et al. (2006), datasets as in Table 5.2. 

 
Table 5.2  - Non-Biological data used in the testing of our algorithm and the other three variants of k-

      means algorithm 

Dataset No of Records No of Attributes 

Abalone 4177 7 

Wind 6574 12 

Letter 20000 16 

 

In Table 5.2, Abalone dataset described with 8 attributes represents physical 

measurements of abalone (sea organism). Wind dataset described by 12 attributes 

represents measurements on wind from 1/1/1961 to 31/12/1978. Letter dataset 

represents the image of English capital letters. The image consists of a large number of 

black-and-white rectangular pixel displayed as one of the 26 capital letters in the 

English alphabet. The character images were based on 20 different fonts and each letter 

within these 20 fonts was randomly distorted to produce a file of 20000 unique stimuli. 

Each stimulus was converted into 16 primitive numerical attributes (statistical moments 

and edge counts) which were then scaled to fit into a range of integer values from 0 

through 15. 

 

5.4 EXPERIMENTATION EXPERIENCE AND RESULTS  
 

The number of genes in Table 5.2 ranges from 4313 – 5159 while the number of time-

points is from 16-53. We executed our algorithms on both biological and non-biological 

data with the following values of k  to include 15, 17, 19, 20, 21, 23, 25. The system 

used is a DeLL computer on MS Windows Vista OS, INTEL® CORE™ DUO CPU 

T2300 @1.66GHz, 512 RAM, 80GB HDD. The results obtained were plotted. The plots 

of minimized Mean Standard Error (MSE) versus k values help to measure clusters 

quality (that is effectiveness) and run time (in sec) versus k helps to measure each 

algorithm efficiency empirically. For our three malaria microarray data, these plots are 

shown in Figure 5.6a – 5.6b. 
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 5.4.1 MEASURE OF QUALITY USING MSE AND SPEED VIA RUNTIME  

The Figures 5.6 show the results obtained when we measured cluster quality, using 

obtained MSE vs k plots. We also recorded the speed of the algorithms comparatively 

using the empirical run time vs k plots. The result description for each plot is given 

under each figure. 
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Figure 5.6a: Quality of Clusters (Bozdech et al. (2003a) 3D7 Microarray Dataset) 

 

The qualities of clusters for the four algorithms are similar. The MSE decreases gradually as the number 

of clusters increases except for k=21 that has a higher MSE than its preceding cluster, k = 20. 
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Figure 5.6b: Execution Time (Bozdech et al. (2003a) 3D7 Microarray Dataset) 

 

The plot shows that our MMk-means has the fastest run-time for tested number of clusters, 15 ≤ k ≤ 25. 

Comparatively, k=20 took the longest run-time for all the four algorithms, implying that this is a function 

of the nature of the data used.  
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Figure 5.7a: Quality of Clusters (Le Roch et al. (2003) 3D7 Microarray Dataset)  

 

Effective and efficient clustering was achieved only for k=15 while higher values of k create inefficient 

clustering as many empty clusters are created in the process because k ≥ d where d is the dimension of the 

test microarray data.   
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Figure 5.7b: Execution Time (Le Roch et al. (2003) 3D7 Microarray dataset)  

 

Our MMk-means performed best only at k=15 as traditional k-means performed slightly better at other 

values of k because k ≥ d. Overlapped and Enhanced were the slowest in all cases. 
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Figure 5.8a: Quality of Clusters (Bozdech et al. (2003a) HB3 Microarray Dataset)  

 

The qualities of clusters for the four algorithms are comparatively similar. The MSE decreases gradually 

as the number of clusters increases throughout all values of k used in the testing for the four algorithms. 
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Figure 5.8b: Execution Time (Bozdech et al. (2003a) HB3 Microarray Dataset) 

 

The plot shows that our MMk-means have the fastest run-time for all tested k values, 15 ≤ k ≤ 25 while 

Overlapped and Enhanced k-means are the slowest.  

 

It was observed that eigenvalues of the correlation coefficient matrix r decreases along 

the diagonal matrix from top to bottom for all iterations before the last iteration and 

changes interestingly at the last iteration by increasing from top to bottom. It should be 

noted that the stability condition for clustering as measured by diffj of line 7 in Figure 

5.5 does not apply appropriately to negative gene expression values we have in Le Roch 

et al. (2003) data. The theoretical reason is given in Ding and He (2004). We observed 

that nevertheless our new algorithm quality of clustering compared excellently with the 

Traditional k-means. 
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We found out that the algorithms of Fahim et al. (2006) were slower than the 

Traditional k-means contrary to the claim of the authors. Whenever k (number of 

clusters) < d (dimension or timepoints), effective clustering is achieved for the four 

algorithms and our MMk-means has the best empirical runtime. Overlapped and 

Enhanced k-means are the slowest in all cases. Results are displayed in the Figures 

below. Empty clusters are created by all the algorithms if k > d as the clustering 

becomes irregular, similar to results for 15 > k > 25 using Le Roch et al. (2003) data 

exemplified in Figure 5.7a-b above.  

 

5.4.2 MEASURE OF QUALITY VIA CLUSTER COUNT DISTRIBUTION 

 

However, the histograms in Figure 5.8a-g are to help us study if each cluster count 

maintains a similar distribution for different k values for the four algorithms. It shows 

that in all cases, their distributions are closely similar, supporting the argument of 

comparable cluster quality created by our MMk-means and the other algorithms. 
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Fig 5.9a-g: Distribution of Cluster size for four k-means algorithms on Bozdech et al. (2003a) 3D7 

       Microarray Dataset  

 

These plots help us to study if each cluster membership count maintains a similar distribution for different 

k values for the four algorithms. It shows that for all cases, their distributions are closely similar, 

supporting the argument of comparable cluster quality created by our MMk-means and the other 

algorithms. 

 
 

To demonstrate the biological characteristics of our new algorithm against other well 

known k-means clustering algorithms, in Osamor et al. (2009), we compared three 

different k-means algorithms (Robust, Traditional and MM k-means respectively) 

results from an in-vitro microarray data of Le Roch et al. (2003) with the classification 

from an in-vivo microarray data of Daily et al. (2007). Our aim was to perform a 

comparative functional classification of P. falciparum genes with a view to obtaining 

further knowledge on many P. falciparum genes. Interestingly, we discovered a new 

functional group for some set of genes. 
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5.4.3 MEASURE OF QUALITY VIA THE HUBERT – ARABIE ADJUSTED 

RAND INDEX (ARIHA) 
 

It has been noted that the plots of MSE do not provide a compelling arguments about 

the similarity of the solutions of two or more clustering algorithms (Steinley, 2004; 

Steinley, 2006). To further ascertain the quality of our new algorithm on the three 

microarray data of Table 5.1, we assessed the quality of its clusters against the clusters 

of the known structure using the Hubert-Arabie Adjusted Rand index (ARIHA) (Steinley, 

2004). The result of this assessment is given in Table 5.3(a). 

 

Table 5.3(a): ARIHA Computation for Biological data  

 

Traditional k-means Enhanced k-means  

Bozdech et 

al.(2003)-

3D7 strain 

Bozdech et 

al.(2003)-

HB3 strain 

Le Roch et al. 

(2003) 

Bozdech et 

al.(2003)-

3D7 strain 

Bozdech et 

al.(2003)-

HB3 strain 

Le Roch et 

al. (2003) 

 k=15 k=20 k=15 k=20 k=10 k=15 k=15 k=20 k=15 k=20 k=10 k=15 

    MMk-    

     means 

0.9480 0.9170 0.9068 0.6488 0.9352 0.6643       

  Enhanced 

   k-means 

0.9935 1.0000 0.9901 0.9967 0.9717 0.9728       

Overlapped 

   k-means 

0.9635 1.0000 0.9707 0.9920 0.8837 0.8682 0.9636 1.0000 0.9720 0.9917 0.8891 0.8916 

 

For each data, Bozdech et al. (2003a) 3D7 and HB3 strains (Bozdech et al., 2003a) and 

Le Roch et al. (2003), we used two values of k to demonstrate the effect of changing k 

values on the clusters quality of the clustering algorithms. We considered the structure 

of the Traditional k-means as the known structure and compared the clusters of MM, 

Enhanced and Overlapped k-means respectively with it. In a separate column, we also 

compared the structure of Enhanced k-means with that of Overlapped k-means. This is 

to assess the two k-means algorithms presented in Fahim et al. (2006). We found out 

that Enhanced and Overlapped k-means respectively produced similar clusters and their 

structures were similar to that of the Traditional k-means. For MMk-means, this is also 

the case and we found categorically that when k is close to d, the quality of its clusters 
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is good (ARIHA > 0.8) and when k is not close to d, the quality is excellent (ARIHA > 

0.9). 

 

To test the behavior of our new algorithm on non-biological data, we used the data, 

Fahim et al. (2006), deployed their implementations in their experimental experience. 

These include a Letter image, an Abalone and a Wind datasets. Details on these datasets 

are given in Table 5.2. We assessed also here the quality of our new k-means algorithm, 

that of Enhanced and Overlapped k-means respectively using the Hubert-Arabie 

Adjusted Rand index (ARIHA) (Steinley, 2004). We set the Traditional k-means 

algorithm clusters from these datasets as the known ones. The result of this exercise is 

given in Table 5.3(b). 

 

Table 5.3(b) ARIHA  Computation for Non-Biological data 
Traditional k-means Enhanced k-means  

 Abalone  Wind  Letter Abalone   Wind  Letter 

 k=5 k=7 k=5 k=12 k=5 k=10 k=5 k=7 k=5 k=12 k=5 k=10 

MMk-

means 

0.8472 0.6045 1.0000 0.9205 0.8623 0.8015       

Enhanced 

k-means 

0.9454 0.9837 0.9992 0.9997 0.9930 1.0000       

Overlapped 

k-means 

0.9540 0.9004 0.9895 0.9821 0.9875 1.0000 0.9544 0.9064 0.9904 0.9818 0.9879 1.0000 

 

 

Table 5(b) shows Hubert-Arabie Adjusted Rand Index (ARIHA) Cluster Quality 

Computation Result for Non-biological data. For each data, Abalone and Wind, Letter 

Image of Fahim et al. (2006), we used two values of k to demonstrate the effect of 

changing k values on the clusters quality of the clustering algorithms. We considered 

the structure of the Traditional k-means as the known structure and compared the 

clusters of MM, Enhanced and Overlapped k-means respectively with it. In a separate 

(last) column, we also compared the structure of the Enhanced k-means with that of 

Overlapped k-means. 

 

The quality of MMk-means clusters is similar to what we observed from that of the 

biological data. 
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5.5 DISCUSSION ON IMPLEMENTATION ISSUES 
 

Using C++, we implemented the three variants of k-means algorithms, namely, the 

Traditional, Overlapped and Enhanced k-means following Fahim et al. (2006) design. 

We also implemented a fourth one, our MMk-means algorithm using C++ and 

MATLAB. They are available under the GNU open-source license. Please see 

<http://sourceforge.net> for more details. From (Ding and He, 2004), we used their 

experimentally determined interval: 0.5 – 1.5%, which indicates when a cluster is 

optimally equal to the expected ones. 

 

In computing distance as stated in Figure 3.4, line 19, we use Pearson correlation which 

fits best for microarray data since we are interested in coexpressed and coregulated 

genes. When we say that genes are co-expressed (referring to co-expressed genes), we 

mean that such sets of genes have similar expression patterns for some biological 

processes or functions. There are two reasons for interest in coexpressed genes. First, 

there is evidence that many functionally related genes are coexpressed.  For example, 

genes coding for elements of a protein complex are likely to have similar expression 

patterns which ultimately can be used to identify previously uncharacterized genes. The 

second reason for interest in coexpressed genes is that coexpression may reveal much 

about the genes' regulatory systems. For example, if a single regulatory system controls 

two genes, then we might expect the genes to be coexpressed, which gives a good clue 

of the organism’s regulatory network. In general, there is likely to be a relationship 

between coexpression and coregulation (Heyer et al., 1999). 
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5.6 CONCLUSION  

A major contribution of this work so far, has been the development of a novel Metric 

Matrices k-means. The efficiency of our algorithm maintains a better result than 

Traditional, Overlapped and Enhanced k-means algorithms. Its effectiveness is quite 

comparable to results obtained by these other variants of k-means algorithm for most 

values of k as demonstrated in Osamor et al. (2009) and also in this work.  

 

In this work, emphases are on the reduction of the time requirement of the k-means 

algorithm and its application to microarray data due to the desire to create a tool for 

malaria research. However, the new clustering algorithm can be used for other 

clustering needs as long as an appropriate measure of distance between the centroids 

and the members is used. This was demonstrated above on three non-biological data of 

Table 5.2. 
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CHAPTER SIX 

 

COMPARATIVE FUNCTIONAL CLASSIFICATION OF PLASMODIUM 
FALCIPARUM GENES USING K-MEANS CLUSTERING  

 

6.1 INTRODUCTION  
 

The complete P. falciparum lifecycle revolves around three major developmental stages, 

namely, the mosquito, human liver and human blood stages. The Intraerythrocytic 

Development Cycle (IDC) represents all of the stages in the development of P. falciparum 

responsible for the symptoms of malaria. It has long been a goal to understand the regulation 

of gene expression throughout each developmental stage. The P. falciparum 

Intraerythrocytic Development Cycle (IDC) begins with merozoite invasion of red blood 

cells (RBCs) and is followed by the formation of the parasitophorous vacuole (PV) during 

the ring stage. This stage transforms to the trophozoite stage characterized by the parasite 

entering into a highly metabolic maturation phase, prior to parasite replication. During the 

schizont stage, the cell prepares for reinvasion of new RBCs by replicating and dividing to 

form up to 32 new merozoites. In preparation for sexual developmental stage development, 

some of these merozoites differentiate into the gametocytes stages which are taken up by 

female Anopheles gambiae mosquito during blood feed from an infected patient resulting in 

the formation of sporozoites that migrate into the salivary gland. Using these sporozoites, 

female Anopheles gambiae is able to transmit malaria to an uninfected person through its 

bite for onward commencement of the human liver and RBC asexual stages.  

 

The genome of P. falciparum indicates the presence of approximately 5,400 genes spread 

across 14 chromosomes, a circular plastid genome and a mitochondrial genome. P. 

falciparum is the causative agent of the deadly form of human malaria, affecting 200–300 

million individuals per year worldwide. Insights into the biochemical function and 

regulation of these genes will provide the foundation for future drug and vaccine 

development efforts towards eradication of this disease (Bozdech et al., 2003b). The need to 

elucidate P. falciparum gene functions has been hampered by the fact that majority of these 

genes are uncharacterized and have no homology to other species since more than 60% of 
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the predicted open reading frames (ORFs) lacks orthologs in other genomes. As this fact 

underscores the need to elucidate functional roles of genes, many tools that have facilitated 

the study of model organisms remain elusive or inefficient in Plasmodium. Genome-wide 

expression profiling by microarray technology provides an easy alternative for the functional 

genomic exploration of P. falciparum (Bozdech et al, 2003a). Since the IDC is responsible 

for the symptoms of malaria, it has become the target for the vast majority of antimalarial 

drugs and vaccine strategies.  

 

A dependable classification of P. falciparum genes into functional and life cycle stages is 

from the in-vitro miocroarray experiment data of Le Roch et al. (2003). Daily et al. (2007) 

used the non negative matrix factorization (NMF) algorithm (Brunet et al., 2004) to classify 

the samples expression profiles obtained from the in-vivo microarray experiments of the 

parasites from venous blood samples of 43 patients residing in Senegal into three distinct 

clusters. They tried to use (Le Roch et al., 2003) and other existing in-vitro classifications to 

explain these three clusters. They found that the profiles of samples in the second cluster 

were similar to early ring-stage profiles of the 3D7 strain grown in-vitro (Le Roch et al., 

2003) and that the other two clusters were not observed in-vitro.  

 

They later interpreted these three clusters biological bases by comparing them with an 

extensive compendium of expression data in the yeast Sacchromyces cerevisiae. This 

comparison showed that the three states resemble, first, active growth based on glycolytic 

metabolism, second, a starvation response accompanied by metabolism of alternative carbon 

sources, and third, an environmental stress response. It, therefore, showed that the glycolytic 

state (depicted by the second cluster) is highly similar to the known profile of the ring state 

in-vitro, but the other two states have not been observed in-vitro, and this revealed a 

previously unknown physiological diversity in the in-vivo biology of the malaria parasite, in 

particular, evidence of a functional mitochondrion in the asexual-stage parasite. 

  

In this work, our original intention is to further validate the effectiveness of our new and 

novel MMk-means (Osamor et al., under review) algorithm, presently under publication 

consideration review, by comparing three different k-means algorithms (including MMk-
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means) results on Le Roch et al. (2003) in-vitro microarray data with the in-vivo microarray 

data of Daily et al. (2007). We achieved our aim and found that the three algorithms in-vitro 

clusters against the in-vivo clusters distribution are similar. We however, also found that 

while the starvation response state (depicted by the first cluster) was not observed in the in-

vitro microarray data, our comparative analysis showed that the environmental stress 

response state (depicted by the third cluster) can be painted from the in-vitro data. Our 

results had been published in Osamor et al. (2009). 

 

 

6.2 METHODOLOGY AND RESULTS 

We enumerate next the data and the algorithms employed.  

 

 6.2.1 DATA USED  

Daily et al. (2007)  data were obtained using venous blood samples from P. falciparum-

infected patients in Senegal. This cohort consisted of patients who presented to the district 

hospital in Velingara, Senegal, with fever and symptoms suggestive of malaria.  Le Roch et 

al. (2003) used lab cultured samples of P. falciparum and reported that 2235 genes were 

significantly expressed. This is shown in row 1 of Table 6.1 below. Daily et al. (2007) data 

has 5159 genes in each of the 3 clusters with samples of 8, 17 and 18 respectively. We use 

SAM (Significant Analysis of Microarray)  software (Tusher et al., 2001) to extract the list 

of significant genes from the three clusters of Daily et  al. (2007) as listed in row 2 of Table 

6.1.  
 
Table 6.1: Short statistics on P. falciparum microarray experimental data used in our comparative analysis.       
   

P. falciparum 

Microarray 

Experiment data  

Total No of Genes Timepoints List of Significant genes 

Le Roch et al.  5159  16  2235  

Daily et 

al.  

Cluster 1  

Cluster 2  

Cluster 3  

5159  

5159  

5159  

8  

17  

18  

1471  

3195  

3004  
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6.2.2 ALGORITHMS USED  
 

6.2.2.1 SAM (Significant Analysis of Microarrays)  

 

SAM, as proposed by Tusher et al., (2001) is a statistical technique for finding significant 

genes in a set of microarray experiments. The software implementation allows input to SAM 

in form of gene expression values from a set of microarray experiments. SAM computes a 

statistic di for each gene i, measuring the strength of the relationship between gene 

expression and the response variable. It uses repeated permutations of the data to determine 

if the expression of any genes is significantly related to the response. The cut-off for 

significance is determined by a tuning parameter delta (∆), chosen by the user based on the 

false positive rate. SAM outputs a list of significant genes and considers not only false 

positive rates, but also false negative rates. For this purpose, a miss rate table is also printed. 

It gives an estimated false negative rate for genes that do not make the list of significant 

genes. SAM is a licensed software that executes on Windows 2000 or higher, R 

programming and Excel 2000 or higher as an Excel add-in.  

 

6.2.2.2 Traditional k-means Clustering Algorithm  

 

In k-means clustering, we are given a set of n data points in d-dimensional space Rd and an 

integer k. The problem is to determine a set of k points in Rd, called centers, so as to 

minimize the mean squared distance from each data point to its nearest center. To solve this 

problem, the traditional k-means algorithm was implemented as a gradient descent 

procedure, which begins at starting cluster centroids (or centers) and iteratively updates 

these centroids to decrease the mean squared distance from each data point to its nearest 

center. The asymptotic expected run time for this algorithm is O(nkl), where l is number of 

iterations.  

 

 

6.2.2.3 Robust k-means Clustering Algorithm  

The robust k-means clustering algorithm was first used in Le Roch et al. (2003). The robust 

k-means clustering algorithm runs on top of the standard k-means clustering algorithm. 
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Using the Pearson correlation coefficient as the similarity measurement, data were clustered 

by the standard k-means clustering algorithm independently for 1000 runs. Based on this 

1000 results obtained, a probability matrix that any two genes belong to the same cluster is 

compiled and the run that best approximate the probability matrix is selected. An optimal 

solution on any given k is obtained as this algorithm eliminates the arbitrariness of any 

individual k-means run. In Le Roch et al. (2003), trials were made for k=10, 15, 20, 25, and 

30. k=15 was found to produce meaningful classification. Le Roch et al. (2003) used 

expression values of 2235 significantly expressed genes across the 16 lifecycle 

measurements as input and reported that using a k value greater than 20 often yielded 

clusters with similar expression patterns suggesting that the clusters were over fragmented 

while on the contrary, the use of k=10 grouped unrelated genes.  

 

 

6.2.2.4 Metric Matrices k-means (MMk-means) Clustering Algorithm  

 

A new and novel MMk-means algorithm was developed by us in Osamor et al. (under 

review) and it is simple but more efficient (theoretically and at practical setting via our 

implementations) than the traditional k-means and the recent enhanced k-means algorithm of 

Fahim et al. (2006). The new algorithm is based on the recently established relationship 

between principal component analysis and the k-means clustering (Ding and He, 2004). In 

MMk-means, we create a covariance matrix (r) computing the Pearson product moment 

correlation coefficient between the k centroids of the previous and the current iterations and 

then deduce also k previous and current iterations eigenvalues. Using the Ding and He 

(2004) computed threshold (when it is computationally wise from our new theoretical 

derivatives), we are able to determine which of the k clusters is optimally equal to the 

expected ones; in other words, stable (that is, its members will always remain in the same 

cluster in subsequent iterations). Using the above methods, the new k-means algorithm saves 

significant computation time at each iteration and thus arrives at an O(nk2) expected run 

time algorithm. Results obtained from testing the algorithm on five different types of 

microarray data (Osamor et al., under review) also indicate that the new MMk-means 

clustering algorithm is empirically faster than other known k-means algorithms.  

 100



From our previous work (Osamor et al., under review), we implemented the traditional and 

MMk-means algorithms respectively. First, we deployed them to clusters, for k=15, P. 

falciparum microarray data containing 5159 genes and 16 timepoints arising from the work 

of Le Roch et al. (2003). The traditional k-means algorithm is set a gold standard and is used 

to validate MMk-means algorithm while the Robust k-means clustering results in Le Roch et 

al. (2003) for k=15 serves as a benchmark to compare the effectiveness of the two 

algorithms.   

 

We performed analysis on the clusters output from MMk-means and traditional k-means as 

depicted in Table 6.2. To map genes (in clusters) of traditional k-means and MMk-means 

algorithms to their robust k-means counterpart, we employed Relational Database 

Management System (RDBMS) using Microsoft Access 2003 to design a database involving 

schema and table relationships for query generation and database interrogation. This data 

mining allowed us to compare and contrast traditional k-means and MMk-means from their 

percentage similarity with Le Roch et al. (2003) clusters (as recorded in columns 9 and 10 

in Table 6.2). The correlation coefficient of these data similarity is computed to be 0.7.  

 

To further consolidate the validation of our MMk-means algorithm, we carried out 

comparative analysis of clusters results on Le Roch et al. (2003) data as generated by the 

three (3) algorithms on Daily et al. data. Daily et al. used Non-negative Matrix 

Factorisation (NMF) algorithm to cluster their data into three clusters. We ran Significant 

Analysis of Microarray (SAM) (Tusher et al., 2001) at the settings of delta (∆) = 0, data 

type = One Class, to extract a list of significant genes that are highly expressed for each of 

the three clusters (see Table 6.1). Delta setting of 0 ensures that all the significantly 

expressed genes are extracted. However, we also obtained the same number of significantly 

expressed genes for cluster 1 with 0≤ ∆ ≤ 11.866, beyond this range, the list of significant 

genes reduces. 

  

We compared clusters 1-15 from Le Roch et al. data for each of the three k-means 

algorithms with each cluster of Daily et al. and computed the percentage number of genes 

common to both. This resulted in three tables. These are given in Tables 6.3 – 6.5. 

 101



We placed via venn diagrams the results of the three different k-means algorithms from the 

in-vitro microarray data of Le Roch et al. (2003) on the classification from the in-vivo 

microarray of Daily et al. (2007). The resulting three venn diagrams are similar. Fig. 6.1 

shows the results of our MMk-means. Fig. 6.2 depicts that of Robust k-means and Fig. 6.3 

gives the venn diagram describing the results of Traditional k-means algorithm from the in 

vitro microarray data of Le Roch et al (2003) on the classification from the microarray of 

Daily et al (2007). Note that, to avoid over clustering each venn diagram, except for cluster 

2 of Daily et al. We represented only clusters that pass the following similarity constraint: 

n(X ∩Daily cluster) ≥ 40%, where ‘X ’ represents any cluster obtained from the runs of 

Robust, Traditional and MMk-means respectively and ‘∩’ is a set notation that captures the 

number of elements in the intersection. 
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Figure 6.1a-c: Venn diagram of MMk-means Clustered data of Le Roch et al., 2003 and NMF clustered data 

of Daily et al., 2007.  

 

MMkCluster is the Cluster created by MMk-means, DailyCluster is the resulting cluster from Daily et al., 

2007. R=Ring stage, T=Trophozoite, S=Sporozoite, Sch=Schizont, G= Gametocyte, and M= Merozoite. 

Except in DailyCluster 2, an MMkCluster is represented in Venn diagram if its meet the similarity criterion of 

≥40% of its gene content present in DailyCluster. This criterion is to avoid over cluttering of the Venn 

diagram. DailyCluster 2 representation had four Clusters indicted for ring stage parasite without the use of 

this criterion. (a) Two clusters MMkClusters 11 and 15 had ≥ 40% of entire genes in their cluster present in 

DailyCluster 1 of 1471 genes. (b) Only MMkClusters 3, 4, 8 and 14 indicted for Ring stage parasites are 

represented here irrespective of ≥ 40% similarity criterion of genes in DailyCluster 2 with 3195 genes. (c) 

Eleven MMkClusters have ≥ 40% of their genes content represented in DailyCluster 3 with 3004 genes.  
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Figure 6.2a-c: Venn diagram of Robust k-means clustered data of Leroch et al., (2003) and  NMF clustered data of Daily           
                         et al. (2007).   
 
Except for DailyCluster 2, a LerochCluster is represented in venn diagram if number of genes found at intersection of 
each Leroch et al. cluster with any DailyCluster is ≥ 40% . Only DailyCluster 2 representation had four clusters indicted 
for ring stage parasite and represented without considering the criterion of ≥40%.  DailyCluster 1 and 3 representation 
follows the ≥40% number of genes at each intersection of LerochCluster and DailyCluster. LerochCluster = Cluster 
created by Robust k-means, R=Ring stage, T=Trophozoite, S=Sporozoite, Sch=Schizont, G= Gametocyte, M=Merozoite.  
% = Proportion of the total number of genes in each cluster found at the intersection of that LerochCluster and 
DailyCluster multiply by 100.  (a) Two clusters MmkCluster 11 and 12 had ≥40% of entire genes in their cluster present 
in DailyCluster 1 of 1471 genes. This criterion is to allow for a clear comparison and avoid clustering of diagrams.  (b) 
Only LerochClusters 4, 5, 6, 7 are the four Robust k-means clusters indicted for Ring stage parasites and represented here 
irrespective of criterion ≥ 40%  of genes in their specific cluster being present in  DailyCluster 2 with 3195 genes. (c)  
Eleven LerochClusters have ≥ 40% of their gene content were represented in DailyCluster  3 with 3004 genes. 
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Figure 6.3a-c: Venn diagram of Traditional k-means clustered data of Leroch et al. (2003) and NMF clustered data of 
Daily et al. 2007.  
 
Except in DailyCluster 2, for a TradCluster to be represented in Venn diagram, it will require the criterion of ≥ 40% 
gene content of each TradCluster to be present in DailyCluster. Only DailyCluster 2 representation had four Clusters 
indicted for ring stage parasite without considering the criterion of >=40%.  DailyCluster 1 and 3 representation 
follows the >=40% gene content of each TradCluster to be present in DailyCluster. TradCluster= Cluster created by 
Traditional k-means, R=Ring stage, T=Trophozoite, S=Sporozoite, Sch=Schizont, G= Gametocyte, M=Merozoite. % 
= Proportion of the total number of genes in each cluster found at the intersection of that TradCluster and 
DailyCluster multiplied by 100. (a) Only TradCluster 11 had ≥40% of 129 entire genes in its cluster present in 
DailyCluster 1 of 1471genes. This criterion is to allow for clear comparison and avoid cluttering of diagram.  (b) 
Only TradClusters 3, 4, 8, 14 are the four traditional kmeans clusters indicted for Ring stage parasites and represented 
here irrespective of criterion ≥40%  of genes in their specific cluster being present in  DailyCluster 2 with 3195 genes.  
(c)  Eleven TradClusters has ≥40% of their gene content represented in DailyCluster 3 with  3004 genes. 
  



 
 
 

Table 6.2: MMk-means and Traditional k-means clusters with their equivalent corresponding clusters in Le Roch et al., (2003). 
(See page 112 for table description)  

 

Cluster ID 

(k=15) 

MMk-

means 

Member 

Count 

MMk-

means 

Diff. Exp 

count (a) 

Tradk-

means 

Member 

Count 

Tradk-

means 

Diff. Exp 

count (b) 

No of MMk-

means   Genes 

in Equiv. Le 

Roch cluster (c) 

No of Tradk-

means   Genes 

Equiv.  Le 

Roch cluster 

(d) 

Approx. 

Corresp. Le 

Roch Cluster 

ID 

Mmk-means % 

Similarity with 

Le Roch Clusters 

(c/a) 

Tradk-means % 

Similarity with 

Le Roch Clusters 

(d/a) 

1          478 165 443 157 101 100 1 61% 64%

2          233 100 347 134 40 61 9 40% 46%

3          574 236 383 142 116 93 6 49% 65%

4          178 75 166 67 66 60 4 88% 90%

5          743 334 678 322 146 152 10 44% 47%

6          147 18 137 10 4 4 1 22% 40%

7          290 149 366 184 68 92 12 46% 50%

8          163 64 167 66 24 24 7 38% 36%

9          350 204 342 176 116 62 15 57% 35%

10          142 64 176 84 51 62 2 80% 74%

11          172 95 216 129 69 56 14 73% 43%

12          442 175 456 195 67 100 8 38% 51%

13          655 412 627 395 212 209 3 51% 53%

14          426 79 440 99 44 52 5 56% 53%

15          166 65 215 75 45 35 12 69% 47%

  5159 2235 5159 2235 

108 

 
 
 
 

 108



  
Table 6.3: Analysis of traditional k-means Clustered data of Le Roch et al. 2003 and NMF clustered data of Daily et al. 2007 

(See page 112 for table description)  
 

DAILY07_CLST1 vs 
tradkmeansLEROCH03 

DAILY07_CLST2 vs 
tradkmeansLEROCH03 

DAILY07_CLST3 vs 
tradkmeansLEROCH03 

TRADk
-means 
Cluster 

ID 

Traditio
nal k15 

Diff 
Exp 

Gene 
count 

(a)  

Stages 

No of 
Genes 

Present in 
DailyCLS

T1 (b) 

No of 
Genes 
Absent 

in 
DailyC
LST1 
(a-b)   

% age of  
Genes 

Present in 
DailyCLS
T1 (b/a)  

No of 
Genes 

Present in 
DailyCLS

T2 (c) 

No of 
Genes 

Absent in 
DailyCLS
T2  (a-c)   

% age of  
Genes 

Present in 
DailyCLST

2 (c/a)  

No of 
Genes 

Present in 
DailyCLS

T3 (d) 

No of 
Genes 

Absent in 
DailyCLS
T3 (a-d)  

% age of  
Genes 

Present in 
DailyCL
ST3 (d/a) 

1            157 Sporozoite 55 102 35% 102 55 65% 91 66 58%

2 
134  

          
Trophozoite,
Gametocyte 44 90 33% 86 48 64% 86 48 64%

3 
142  

          
Ring,

Trophozoite 33 109 23% 73 69 51% 48 94 34%

4 
67  

         
Ring,Schizont,

Merozoite 16 51 24% 14 53 21% 9 58 13%

5 
322  

          
Trophozoite,
Gametocyte 101 221 31% 196 126 61% 206 116 64%

6            10 Sporozoite 3 7 30% 2 8 20% 1 9 10%
7            184 Trophozoite 67 117 36% 113 71 61% 106 78 58%

8 
66  

          
Ring,

Trophozoite 12 54 18% 18 48 27% 15 51 23%
9            176 Schizont 60 116 34% 109 67 62% 111 65 63%

10 
84  

         
Sporozoite,
Gametocyte 22 62 26% 53 31 63% 50 34 60%

11 

129  

          

Sporozoite,
Schizont, 

Gametocyte 55 74 43% 82 47 64% 75 54 58%

12 
195  

          
Trophozoite,
Gametocyte 59 136 30% 111 84 57% 114 81 58%

13            395 Gametocyte 106 289 27% 255 140 65% 221 174 56%

14 
99  

          
Ring,Early

Trophozoite 33 66 33% 56 43 57% 48 51 48%
15            75 Trophozoite 28 47 37% 43 32 57% 50 25 67%
  2235   694 1541   1313     1231     

109 
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Table 6.4 : Analysis of Mmkmeans Clustered data of Le Roch et al. 2003 and NMF clustered data of Daily et al. (2007) 
(See page 113 for table description)  

 

DAILY07_CLST1 vs MMk-meansLeroch03 DAILY07_CLST2 vs Mmk-
meansLeroch03 

DAILY07_CLST3 vs Mmk-
meansLeroch03 

MMk-
means 
Cluster 

ID 

MMk-
means k15 
Diff Exp 

Gene count 
(a) 

Stages 

No of Genes 
Present in 

DailyCLST1 
(b) 

No of Genes 
Absent in 

DailyCLST1 
(a-b)   

% age of  
Genes 

Present in 
DailyCLST1 

(b/a)  

No of 
Genes 
Present 

in 
DailyC
LST2 

(c) 

No of 
Genes 
Absent 

in 
DailyC
LST2  
(a-c)   

% age of  
Genes 

Present in 
DailyCLS
T2 (c/a)  

No of 
Genes 
Present 

in 
DailyC
LST3 

(d) 

No of 
Genes 
Absent 

in 
DailyC
LST3 
(a-d)   

% age 
of  

Genes 
Present 

in 
DailyC
LST3 
(d/a)  

1           165 Sporozoite 58 107 35% 107 58 65% 101 64 61%

2 
100  

         
Trophozoite,
Gametocyte 35 65 35% 66 34 66% 59 41 59%

3            236 Ring, Trophozoite 67 169 28% 116 120 49% 87 149 37%

4 
75 

         
Ring,Schizont,
Merozoite 

 
20 55 27% 14 61 19% 11 64 15%

5 
334  

    
Trophozoite,
Gametocyte 102 232 31% 197 137 59% 207 127 62%

6            18 Sporozoite 5 13 28% 8 10 44% 5 13 28%
7            149 Trophozoite 51 98 34% 90 59 60% 87 62 58%
8            64 Ring, Trophozoite 12 52 19% 17 47 27% 14 50 22%
9           204 Schizont 76 128 37% 134 70 66% 128 76 63%

10 
64  

          
Sporozoite,
Gametocyte 18 46 28% 39 25 61% 42 22 66%

11 
95  

         
Sporozoite, Schizont,
Gametocyte 38 57 40% 57 38 60% 53 42 56%

12 
175  

        
Trophozoite,
Gametocyte 53 122 30% 108 67 62% 119 56 68%

13            412 Gametocyte 109 303 26% 268 144 65% 230 182 56%

14 
79  

          
Ring,Early
Trophozoite 22 57 28% 47 32 59% 42 37 53%

15 65           Trophozoite 28 37 43% 45 20 69% 46 19 71%
  2235   694     1313     1231     

110 

 110
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Table 6.5: Analysis of Robust k-means Clustered data of Le Roch et al. 2003 and NMF clustered data of Daily et al. 2007 
(See page 113 for table description)  

DAILY07_CLST1 vs robustLEROCH03 DAILY07_CLST2 vs 
robustLEROCH03 

DAILY07_CLST3 vs 
robustLEROCH03 

Le 
Roch 
Clust
er ID 

Gene 
Coun
t (a) 

  
  
  

Stages 

No of 
Genes 

Present in 
DailyCLST

1 (b) 

No of Genes 
Absent in 

DailyCLST1 
(a-b)   

% age of  
Genes 

Present in 
DailyCLST

1 (b/a)  

No of 
Genes 

Present in 
DailyCLST

2 (c) 

No of 
Genes 

Absent in 
DailyCLST

2  (a-c)   

% age of  
Genes 

Present in 
DailyCLST

2 (c/a)  

No of Genes 
Present in 

DailyCLST3 
(d) 

No of 
Genes 
Absent 

in 
DailyC
LST3 
(a-d)   

% age 
of  

Genes 
Present 

in 
DailyC
LST3 
(d/a)  

1          108 Sporozoite 33 75 31% 73 35 68% 65 43 60%

2           152
Sporozoite, 
Gametocyte 60 92 39% 104 48 68% 98 54 64%

3          218 Gametocyte 42 176 19% 126 92 58% 115 103 53%

4          95 
Ring,Schizont, 

Merozoite 23 72 24% 19 76 20% 12 83 13%

5           109
Ring,Early 

Trophozoite 34 75 31% 67 42 61% 53 56 49%
6         167 Ring, Trophozoite 47 120 28% 76 91 46% 65 102 39%
7         93 Ring, Trophozoite 17 76 18% 44 49 47% 28 65 30%

8          125
Trophozoite, 
Gametocyte 37 88 30% 68 57 54% 81 44 65%

9           120
Trophozoite, 
Gametocyte 32 88 27% 82 38 68% 71 49 59%

10          226
Trophozoite, 
Gametocyte 67 159 30% 136 90 60% 145 81 64%

11           110

Sporozoite,Trophoz
oite,Schizont, 
Gametocyte 46 64 42% 53 57 48% 68 42 62%

12          238 Trophozoite 99 139 42% 160 78 67% 145 93 61%

13           181
Schizont, 

Gametocyte 54 127 30% 116 65 64% 113 68 62%

14          163

Sporozoite, 
Schizont, 

Gametocyte 59 104 36% 111 52 68% 99 64 61%
15          130 Schizont 44 86 34% 78 52 60% 73 57 56%
  2235   694     1313     1231     
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Description of Tables 6.2-6.5 
 
Table 6.2: MMk-means and Traditional k-means clusters with their equivalent corresponding clusters in Le Roch et 

al., (2003).  

This table portrays the similarity of mm and traditional k-means respectively to Robust  k-means. The MMk-means 

and Traditional k-means have the same Cluster ID. For example, cluster 2 above has 100 and 134 highly expressed 

genes from MMk-means and traditional k-means respectively. Out of this  number, 40 and 61 of these genes from 

MM and Traditional k-means respectively are same with those found in Le Roch cluster 9. Column 1 contains 

Cluster ID (clusters 1-15 created by MMk-means and traditional k-means for k=15), column 2 contains MMk-

means clusters membership count, column 3 contains number of only differentially expressed genes found in each 

cluster for MMk-means, column 4 contains tradk-means clusters membership count, column 5 contains number of 

only differentially expressed genes found in each cluster for Traditional k-means, column 6 contains number of 

genes in each MMk-means cluster mapped to same gene id in same or different cluster of Robust k-means, column 

7 indicates number of genes in each Traditional k-means cluster mapped to same Gene ID in same or different 

cluster of Robust  k-means, column 8 indicates approximate corresponding Le Roch cluster id to each Cluster ID of 

the Traditional and MM k-means respectively (based on each Robust k-means cluster having the maximum number 

of genes mapped to a particular Traditional k-means and MMk-means cluster, we assigned an approximate 

corresponding cluster number as Le Roch cluster). Column 9 indicates MMk-means cluster % similarity with Le 

Roch cluster (c/a) (percentage of genes common to both mmk-means cluster and Robust  k-means cluster for only 

the highly expressed  genes), column 10 indicates Tradk-means cluster % similarity with Le Roch cluster (d/a) 

(Percentage of genes common to both Traditional k-means cluster and Robust k-means cluster for only the highly 

expressed genes). The Correlation coefficient between Traditional and MMk-means percentage similarity with Le 

Roch et al. clusters respectively (columns 9 and 10) shows positive correlation with a value of 0.7.  

 

Table 6.3: Analysis of traditional k-means Clustered data of Le Roch et al. 2003 and NMF clustered data of Daily et 

al. 2007.  

This table portrays the percentage of genes from traditional k-means clustering analysis for in-vitro Le Roch et al.  

data compared to that  present in NMF clustered Daily et al. in-vivo data. Col= Column, CLST = Cluster, 

tradkmeansLEROCH03= Clusters obtained from Traditional k-means on Le Roch et al. data, DAILY07_CLST= 

Daily et al. clusters. Col 1= TRADk-means Cluster ID (15 clusters from Traditional k-means), Col 2 = Traditional 

k15 Diff Exp Gene count (a) (No of genes in each cluster for only 2235 highly expressed genes), Col 3=Stages ( 

Prevailing parasite stages description for each cluster), Col 4= DAILY07_CLST1 vs tradk-meansLEROCH03 

(Containing No of genes present in both Traditional k-means clustered Le Roch et al. data and Daily et al. Cluster 1, 

also percentage No of genes from Traditional k-means Clusters present in Daily Cluster 1) , Col 5= 

DAILY07_CLST2 vs tradk-meansLeroch03 (containing No of genes present in both Traditional k-means clustered 
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Le Roch et al. data and Daily et al. cluster 2, also percentage No of gene from Traditional k-means clusters from Le 

Roch et al. data present in Daily Cluster 2), Col 6= DAILY07_CLST3 vs tradkmeansLEROCH03 (Containing No 

of genes present in both Traditional k-means clustered Le Roch et al. data and Daily et al.  cluster 3, similarly, 

percentage No of genes from Traditional k-means on Le Roch data Clusters and present in Daily Cluster 3). 

 
 

Table 6.4 : Analysis of Mmkmeans Clustered data of Le Roch et al. 2003 and NMF clustered data of Daily et al. 

(2007). 

This table portrays the percentage of genes from MMk -means clustering analysis of in-vitro Le Roch data that are 

present in Daily et al. in-vivo data. Col= Column, CLST = Cluster, MMk-meansLeRoch03= Clusters from  MMk-

means on Le Roch data, DAILY07_CLST= Daily et al. clusters. Col 1= MMk-means Cluster ID (15 clusters from 

MMk-means), Col 2= MMk-means k15 Diff Exp Gene count (a) (No of genes in each cluster for only 2235 highly 

expressed genes), Col 3=Stages ( Prevailing parasite stages description for each cluster), Col 4= DAILY07_CLST1 

vs MMk-meansLeroch03 (Containing No of genes present in both MMk-means clustered Leroch data and Daily 

Cluster 1 and percentage No of gene from MMk-means Clusters present in Daily Cluster 1) , Col 5= 

DAILY07_CLST2 vs Mmk-meansLeroch03 (containing No of genes present in both MMk-means clustered Le 

Roch et al. data and Daily et al. cluster 2, also percentage No of gene from MMk-means Clusters from Le Roch data 

present in Daily Cluster 2), Col 6= DAILY07_CLST3 vs MMk-meansLeroch03 (Containing No of genes present in 

both MMk-means clustered Le Roch et al. data and Daily cluster 3, similarly, percentage No of genes from MMk-

means Le Roch data Clusters present in Daily Cluster 3). 

 

Table 6.5: Analysis of Robust k-means Clustered data of Le Roch et al. 2003 and NMF clustered data of Daily et 

al. 2007. 

This table portrays the percentage of genes from Robust k-means clustering analysis of in-vitro  Le Roch et al. data 

that are present in Daily et al. in-vivo data. Col= Column, CLST = Cluster, robustLEROCH03= Clusters from 

Robust k-means, DAILY07_CLST= Daily et al. clusters. Col 1= Le Roch Cluster ID (15 clusters from Robust k-

means), Col 2= Gene count(a) (No of genes in each cluster for only 2235 highly expressed genes), Col 3=Stages ( 

Prevailing parasite stages description for each cluster), Col 4= DAILY07_CLST1 vs robustLEROCH03 

(Containing No of genes present in both Leroch and Daily cluster 1 and percentage No of gene form Le Roch 

Clusters present in Daily Cluster 1) , Col 5= DAILY07_CLST 2 vs robustLEROCH03 (containing No of genes 

present in both Leroch and Daily cluster 2 and percentage No of gene from Le Roch Clusters present in Daily 

Cluster 2), Col 6= DAILY07_CLST3 vs robustLEROCH03 (Containing No of genes present in both Leroch and 

Daily cluster 3 and percentage No of genes from Le Roch Clusters present in Daily Cluster 3). 
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6.3  DISCUSSION  

 

The correlation coefficient of 0.7 computed from Table 6.2 results indicates that the MMk-

means and the Traditional k-means algorithms comparison to Robust k-means shows similar 

effectiveness. In the same vein, the results of the venn diagrams are similar (see Figure 6.1a-c 

to 6.3a-c), furthering the authentication of the accuracy of MMk-means algorithm.  

 

Based on the average of 0.54 spearman rank correlation, Daily et al. (2007) reported that the 

in-vivo profiles of Cluster 2 samples were similar to early ring-stage profiles of the 3D7 strain 

grown in-vitro by Le Roch et al. (2003). We obtained this as shown in Figure 6.1b, where we 

obtained 20%, 61%, 46%, and 47% similarity respectively for each of the 4 clusters indicated 

to contain genes that coded for the ring-stage of the parasite.  

 

We also verified Daily et al. (2007) claim that the in-vivo expression profiles of samples in 

clusters 1 & 3 were not similar to those of rings (0.12 & 0.26) or late stages (0.06 & 0.01) of 

the asexual parasite life cycle in-vitro, but were only weakly similar to the profiles of other 

developmental states such as gametocytes (0.31 & 0.23) or sporozoite (0.35 & 0.33). For 

cluster 1, this is evident in Figure 6.1a as only 1 out of 15 in-vitro clusters formed a 

reasonable intersection with it. However, cluster 3 comparison with the in-vitro clusters is not 

in accordance with their claim (see Figure 6.1c), because 11 clusters out of 15 in-vitro clusters 

formed a reasonable intersection with cluster 3, showing that the physiological state (the 

environmental stress response) of P. falciparum in the selected malaria-infected patients 

observed in cluster 3 actually exists in the in-vitro profiling data of Le Roch et al. (2003)  

 

 

6.4  CONCLUSION  

 

This work authenticates our new and novel MMk-means algorithm and also delivers a 

biological viable result that is missing in Daily et al. (2007) results.  
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CHAPTER SEVEN 
 
 

EXPLORING PCR-BASED DETECTION OF MALARIA 
 INFECTION AT THE LIVER STAGE 

 
7.1 INTRODUCTION 

Waiting for the detection of malaria at the blood stage can lead to delayed treatment that 

may engender serious complication and death. The attachment of erythrocytes infected with 

Plasmodium falciparum to the microvessels of the brain leads to a pathological condition 

known as cerebral malaria that can result in death.  There are no effective therapeutic 

means for alleviating this pathology (Land et al., 1995) as adhesin proteins on the surface 

of the parasite-infected red blood cell aid malaria disease complication.  It is therefore 

imperative to note that many lives will be saved if these parasites can be detected and 

treated at the asymptomatic liver stage instead of waiting till the disease manifestation at 

blood stage.  Having introduced the concept of Polymerase Chain Reaction (PCR) in 

chapter 3, in this chapter, we explored the basis of using PCR to detect malaria at the liver 

stage.  

 

Malaria transmission involves three different developmental stages namely: the human 

liver stage, the human blood stages and the mosquito stage. Symptoms of malaria are 

expressed at the human blood stage.  Generally, there is no doubt that there are some 

available drugs that can cure the diseases, but the problem in most cases is poor or late 

diagnoses resulting in complications and even death.  The rationale for this study is to 

explore a diagnostic technique for detecting malaria at the liver stage, so that timely 

intervention can be made to alleviate the problem of the disease.   Diagnostics on biochip 

has been making in-road into modern healthcare at a faster pedestal especially Point-of-

Care than the lab-based diagnostics. The ultimate breakthrough may be to translate the 

result to a liver-based malaria diagnostics chip comparable to diagnostic chip used for 

detecting other diseases like HIV. 

 

The use of microscopic examination of Giemsa-stained blood smears remains the cheapest 

and most commonly used method for the malaria diagnosis at the blood stage. Microscopy 
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has its own bottle-necks in that its sensitivity is limited particularly when parasitaemia is 

low or when parasite morphology is altered. It is also time-consuming (Coleman et al., 

2002) and requires a highly technical expert. There is no way to determine early invasion 

and infection since malaria diagnosis is carried out at the human blood stage of the parasite 

which accompanies the manifestation of the symptom for reported cases. Since the human 

liver stage is asymptomatic and precedes the blood stage, early diagnosis of the parasite at 

the liver stage will help intercept the havoc timely, through the use of some vaccines / 

drugs to abort the progression from liver stage to blood stage and thereby eradicate the 

malaria parasite at liver stage. 

 

In-vivo experimental access to liver stages of human malaria parasites is practically 

prohibited and therefore rodent model malaria parasites have been used for in-vivo studies.  

However, genome-wide liver stage (LS) gene expression was profiled by using Green 

fluorescent protein-tagged Plasmodium yoelii (PyGFP) to efficiently isolate Liver Stage 

infected hepatocytes from the rodent host (Tarun et al., 2008). Our interest is to use this 

only known microarray information on liver stage of P. yoelli to find orthologue genes in P. 

falciparum, which can be used to develop a PCR experiment useful for the detection of 

malaria at the liver stage. 

 

7.2 COMPILATION OF PROTEINS RELEVANT FOR THE PARASITE 

SURVIVAL AT LIVER STAGE 

 

The compilation of the proteins that has been described to date as being relevant for the 

parasite’s survival and development in the hepatic stage is represented either in the 

micronemes/rhopteries or surface of the sporozoite as shown in  Figure 7.1 (Garcia et al., 

2006). These include: 

(1) Circumsporozoite (CS),  

(2) Thrombospondin-Related Anonymous Protein (TRAP) 

(3) Sporozoite Threonine-And Asparagine-Rich Protein (STARP)  

(4) Liver-Stage Antigen 1 (LSA-1)  

(5) Liver-Stage Antigen (LSA-3)  
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(6) Sporozoite And Liver-Stage Antigen (SALSA) 

(7) Sporozoite Microneme Protein Essential For Cell Transversal (SPECT), 

(8) Spect2/Plasmodium Perforin-Like Protein 1 (PPLP)  

(9) Apical Membrane 3 Antigen/ Membrane Apical Erythrocyte Binding-like 
     Erythrocyte Binding-Like Protein (MAEBL) 

(10) P. falciparum Secreted Protein with Altered Thrombospondin Repeat (PfSPATR)  

 

 
Source: (Garcia et al., 2006)  

Figure 7.1: Diagram of Internal Structure of a Sporozoite.  

 

The micronemes and surface at the anterior region contains TRAP, SPECT MAEBL and PPLPs while the 

surface abdominal region contains CSP, SALSA, LSA-3, SPATR, PxSR, PfEMP.  LSA-1, LSA-3 and 

STARP are found in the parasitophorous vacuole 

 

Liver stage parasite protein regions that are able to induce an immune cellular response 

have been reported; some high-binding-activity peptide (HABP) sequences identified in 

these proteins contain T epitopes. Proteins such as CS, LSA-1, LSA-3, SALSA, STARP, 
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and TRAP possess T epitopes and could be relevant in inducing an effective immune 

response against the parasite (Garcia et al., 2003; Garcia et al., 2004; Garcia et al., 2006, 

Lo´pez et al.,2001; Lopez, et al. 2003; Puentes, et al. 2004; Suarez, et al. 2001).  

 

We give details as regards each as follows: 

 

Circumsporozoite (CS): The CS protein is found in all the different Plasmodium parasites 

and is localized on the sporozoite surface. The genes encoding the CS protein are localized 

in P. falciparum genome chromosome 3 and have been clearly characterized (Ancsin and 

Kisilevsky, 2004). CS protein is an important multifunctional molecule for the parasite, 

fulfilling different roles (depending on the developmental stage) that are vital for the 

parasite’s development. It has been reported that the CS protein is involved in the invasion 

of a mosquito’s salivary glands sporozoite binding to liver cells and inactivating host cell 

protein synthesis machinery. 

 

Thrombospondin-Related Anonymous Protein (TRAP): TRAP belongs to a family of 

functionally homologous proteins involved in parasite mobility due to gliding and cell 

penetration, suggesting that it could be a mediator for parasite ligand interactions with 

substrate receptors involved in parasite mobility and with host receptors involved in 

invasion. TRAP has a cytoplasmatic tail whose primary sequence is not conserved in the 

different P. falciparum isolates but shows special characteristics: it is acid residue rich (18 

to 30%) and contains tryptophan in the penultimate or antepenultimate residue. Besides, 

TRAP is liberated onto the substrate during locomotion due to gliding, and during this 

movement. 

 

Sporozoite Threonine-And Asparagine-Rich Protein (STARP): STARP is a molecule 

that is consistently expressed on sporozoite surface and was identified and cloned for the 

first time in P. falciparum laboratory strains and field isolates (Fidock et al., 1994) obtained 

from a broad range of regions where malaria is endemic. It is also present in other 

Plasmodium species and has a highly conserved structure (Garcia et al., 2006). 

Immunofluorescence and immunoelectron microscopy assays using immune sera directed 
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against the protein’s central and C-terminal regions have revealed that STARP is expressed 

on the sporozoite surface during the intrahepatic stage and has also been detected in early 

ring stages. 

 

Liver-Stage Antigen 1 and 3: The LSA-1 protein has a molecular mass of 240 kDa and 

contains 1,909 amino acids. The LSA-1 protein is expressed during early trophozoite and 

mature parasite stages (Garcia et al 2006). It is localized around developed schizont and is 

found in the parasitophorous vacuole surrounding exoerythrocytic merozoites. The P. 

falciparum LSA-3 protein LSA-3 was the first preerythrocytic-stage protein used to test 

immunological responses among volunteers immunized with irradiated sporozoites. While 

the immunised volunteers became protected, unimmunised people were not protected from 

the disease (Daubersies et al., 2000). LSA-3 has a 200-kDa molecular mass and has 1,786 

amino acids. The LSA-3 protein is expressed in sporozoites and is present both in the 

parasitophorous vacuole and on the periphery of mature hepatic merozoites. 
 
Sporozoite And Liver-Stage Antigen (SALSA): Garcia et al., (2006) reported that 

SALSA protein synthesis begins during the sporozoite stage, possibly during the 

maturation process in a mosquito’s salivary glands; its production increases during hepatic 

schizogony. Bottius et al. (1996), using the PCR DNA amplification technique for the gene 

encoding SALSA in seven culture-adapted strains  (five Asiatic and two African strains) 

and 16 isolates from Senegal, suggested that the SALSA protein is completely conserved 

among P. falciparum isolates and pointed out the scarce homology between SALSA and 

other P. falciparum antigens.  

 

Sporozoite Microneme Protein Essential For Cell Transversal (SPECT): However, 

SPECT is a protein that has been involved in sporozoite infection of liver cells and 

localized on sporozoite micronemes, suggesting that it is possibly involved in sporozoite 

mobility during invasion. In vitro cell invasion assays have shown that sporozoites 

containing a deletion of the gene encoding SPECT (spect-disrupted parasites) completely 

lose their ability to pass through Kupffer cells; however, these sporozoites preserve their 

normal ability to infect hepatocytes, suggesting that SPECT is involved in the ability of 

sporozoites to pass through cells. Disruption of the gene encoding SPECT does not affect 
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parasite proliferation during the intraerythrocyte stage or a mosquito’s development (Ishino 

et al., 2004). 

 

Plasmodium Perforin-Like Protein 1: SPECT2/Plasmodium Perforin-Like Protein 1 is 

localized on sporozoite micronemes, suggesting that this protein could be involved in 

invasion (Ishino et al., 2004). Immunofluorescence assays have suggested that this 

protein’s expression is restricted to the salivary gland sporozoite stage. Interrupting the 

gene encoding the SPECT2 protein in sporozoites does not affect parasite development in 

the mosquito or the number of sporozoites residing in its stomach and salivary glands 

(Ishino et al., 2004).  

 

Membrane Apical Erythrocyte Binding-like Erythrocyte Binding-Like Protein 

(MAEBL) and  P. falciparum Secreted Protein with Altered Thrombospondin Repeat 

(PfSPATR) :  Blair et al., (2002) noted that MAEBL protein is localized on the salivary 

gland sporozoite surface, in free merozoites, and in late-stage schizonts. Parasites that have 

the disrupted gene encoding P. berghei MAEBL lose their ability to infect salivary glands. 

However, they maintain their mobility due to gliding, indicating that MAEBL is not 

essential for in-vitro mobility (Kariu et al., 2002). PfSPATR immunoelectron microscopy 

studies have shown that PfSPATR protein is localized on the sporozoite surface and around 

the parasite’s rhoptries during the erythrocyte asexual stage and on the infected erythrocyte 

membrane (Chattopadhyay, 2003).  

 

Generally, it should be observed that some of the proteins found in the hepatic stage of the 

parasite life cycle may also occur at the invertebrate host stage as well as the red blood cell 

stage. An investigator on one stage-specific protein that could be useful for PCR must first 

identify proteins that occur or are highly expressed at only one stage of the parasite 

development. Oyedeji et al., (2007) identified three genes which express themselves at 

blood stage of malaria infection for their PCR-based comparative malaria diagnosis. 
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7.3 EXISTING MALARIA DIAGNOSTIC TOOLS 

 

The limitations of diagnosing malaria by light microscopy of Giemsa-stained smears have 

led to the development of several new techniques (Hänscheid, 1999) that aim to simplify 

and speed up diagnosis and increase sensitivity. Results have been obtained using 

fluorescent dyes (eg. with the quantitative buffy coat, QBC®) (Levine et al., 1989) and 

simple dipstick tests to detect various antigens (World Health Organisation, 1996; Makler 

et al.,1998)  as well as with PCR, regarded as the new reference method because of its 

superior sensitivity and specificity (Oyedeji et al. 2007; Snounou et al., 1993).   

 

Tham et al., (1999) described a sensitive and reliable two-step PCR-based amplification 

assay for the diagnosis of malaria at blood stage. Plasmodium infections were diagnosed by 

use of a genus-specific primer set, with two distinct primer sets designed to specifically 

detect either P. falciparum or Plasmodium vivax. Quantitative Buffy Coat (QBC; Becton 

Dickinson) analysis for malaria, which is a fluorescent microscopic examination of 

capillary-centrifuged blood, was performed in tandem with the thick-film Giemsa stain 

analysis. Their blood samples were also assayed with two commercially available test kits 

ParaSight-F (Becton Dickinson) and ICT Malaria Pf (ICT Diagnostics). Both test kits are 

based on immunological detection of the P. falciparum histidine-rich protein 2 and PCR 

performed beter as it recorded no false positive or false negative.  

 

Tham et al., (1999) strategy for the PCR amplification was the detection of a malaria 

infection with genus-specific primers made from the conserved large-subunit rRNA gene, 

and detection of P. falciparum and P. vivax, done with primers made from the coxI gene. 

These primers were then used in a multiplex PCR system. The 18S rRNA gene has been 

used as a DNA target for the differentiation of plasmodial species by nested PCR 

(Snounou, 1996; Tahar et al., 1997) and reverse transcription-PCR. Other DNA targets 

such as the circumsporozoite protein gene  (Sethabutr et al., 1992; Tahar et al., 1997) have 

also been investigated for species-specific regions. Tan et al. (1997) demonstrated that the 

large-subunit rRNA gene is extensively conserved within Plasmodium species and is 

suitable as a genus-specific DNA target region.  
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Hänscheid et al., (2000) noted that, all the above stated tests have the inherent disadvantage 

that they have to be specifically requested by an alert clinician who suspects the presence of 

disease. Absence of this suspicion is a main reason for high numbers of misdiagnoses (Kain 

et al., 1998). Standard automated laboratory tests such as automated full blood counts, 

(FBCs), routinely performed in the analysis of febrile patients in many countries, have not 

been found to help significantly in a specific diagnosis of malaria (Marshall et al., 1990; 

Giacomini et al., 1991). Of concern is the number of false positives with the FBC analyser, 

due to persisting haemozoin-containing white blood cells (WBCs) in the circulation 

(Hänscheid et al., 2000).  

 

A number of P. falciparum polymorphic genetic markers namely merozoite surface protein 

1 (MSP-1), merozoite surface protein 2 (MSP-2) and glutamine rich protein (GLURP) are 

the most widely used in PCR, but several different protocols have been independently 

developed. It is known that differences in protocols (sample collection, storage, DNA 

extraction, amplification conditions and detection of product) can influence the specificity 

and sensitivity of the PCR  amplification. Thus comparison of results from different 

studies is at present limited (Björkman et al., 1998). 

 

Results from the PCR-based assay indicate that the stevor gene amplification is the most 

sensitive technique for detection of P. falciparum (Oyedeji et al., 2007). Oyedeji et al. 

(2007) conducted PCR of stevor, SSUrRNA (Small Subunit rRNA)  and MSA2 (Merozoite 

Surface Antigene) genes for comparison and assessment of PCR-based detection of 

P.falciparum. It was reported that stevor gene amplification has the highest sensitivity 

hence the most sensitive technique for the parasite detection (Oyedeji et al., 2007).  

 

Silvie et al., (2008) did not work directly on malaria diagnosis but investigated the 

conserved Plasmodium asparagine-rich protein specifically expressed in sporozoites and 

early liver stage, and was therefore termed SLARP (Sorozoite and Liver stage Asparagine-

Rich Protein). Using PCR, Silvie et al. (2008), showed that SLARP controls the initiation 

of Plasmodium liver stage development.  

 

 122



Bruna-Romerio et. al., (2001) adapted a real-time PCR to develop an assay for detection 

and quantification of the liver stage of P. yoelli parasite in mice infected through the bite of 

a single Anopheles mosquito. Bruna-Romerio et al. (2001) was unable to compare his result 

with a similar assay done by McKenna et al. (2000) due to the unfortunate absence of basic 

information regarding the sequence of primers and probes, as well as reaction conditions. 

 

In view of the limitation of Bruna-Romerio et al. (2001), determination of important genes, 

is key before primers and probes can be produced for successful PCR that can be used for 

malaria detection at liver stage. Notwithstanding the importance of early and accurate 

diagnosis in malaria treatment discovery, most of the existing diagnostics gave little 

attention to malaria detection at the liver stage, hence the need to explore detection at this 

level of the parasite life cycle.   

  

 

7.4 METHODOLOGY AND RESULTS 

 

Not much microarray work has been done on the liver stage of Plasmodium parasite. 

However, one promising microarray work was done by Tarun et al. (2008) on the liver 

stage of P. yoelli parasite in mice. To deeply analyse the behavior of parasite genes at liver 

stage, we employed the use of the microarray data of Tarun et al. (2008) and searched for 

their orthologues in P. falciparum using the orthoMCL algorithm in PlasmoDB (Kissinger 

et al., 2002). Our interest is to further analyse the behaviour of these liver stage genes using 

some knowledge obtained from blood stage of P. falciparum 3D7 and HB3 strains from the 

microarray data of Bozdech et al. (2003a). This idea lends credence to the role of 

orthologues in functional genomics, as genes in a different species that evolved from a 

common ancestral gene by speciation, retain the same function in the course of evolution 

(Lewis, 2009). 
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7.4.1 DATA USED 

 

We used the data listed in Table 7.1 below. Tarun et al. (2008) isolated liver stage-infected 

hepatocytes from P. yoelli Green florescent Protein (PyGFP)-infected mice and Sporozoites 

from P. yoelii-infected A. stephensi mosquitoes were isolated from midguts at day 10 and 

from salivary glands at day 15 after infectious blood meal. Tarun et al. (2008) represented 

1985 genes on a microarray slide and performed a high-throughput experiment on P. yoelli 

under 18 different experimental conditions.  Since our interest is to study the behaviour of 

P. falciparum genes at the liver stage whose orthologues are represented in P. yoelli data 

(Tarun et al., 2008), we employed the expression data of Bozdech et al. (2003) for 3D7 and 

HB3 strains. This is to identify P. falciparum genes that have an extensively different 

behaviour at the liver stage from what is obtained at the blood stages. 

 

Bozdech et al. (2003a) microarray experiment used lab cultered P. falciparum as in section 

5.3.4.1 to describe a complete asexual intraerythrocytic developmental cycle (IDC) of 3D7 

and HB3 strains such as early ring stage, late ring stage, early trophozoite stage, late 

trophozoite stage, early schizont stage, late schizont stage and gametocyte stage.   By 

analyzing the IDC transcriptome of the 3D7 strain and HB3 strain (Llinás et al., 2005) of P. 

falciparum  for 4596 and 4313 genes respectively, they were able to demonstrate that at 

least 60% of the genome is transcriptionally active. 
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Table 7.1: Microarray data of P. yoelli and P. falciparum with P.yoelli orthologues 

Experimental data 
 

Total No Of Genes Time points

Bozdech  et al, (2003)-  P. falciparum 3D7 strain data 
 

4596  53 

Bozdech et al., (2003) – P. falciparum HB3 strain data
 

4313 46 

Tarun et al, (2008)- P. yoelli data 
 

1985 18 

P.yoelli orthologue in P. falciparum  3D7 
 

1180 53 

P.yoelli orthologue in P. falciparum  HB3  
 

1163 46 

 
Bozdech et al. (2003a) microarray experiment described a complete asexual intraerythrocytic developmental 
cycle (IDC) of 3D7 and HB3 strains of P. falciparum such as  early ring stage, late ring stage, early 
trophozoite stage, late trophozoite stage, early schizont stage, late schizont stage and gametocyte stage.   By 
analyzing the IDC transcriptome of the 3D7 strain and HB3 strain of P. falciparum  for 4596 and 4313 genes 
respectively, they were able to demonstrate that at least 60% of the genome is transcriptionally active. Tarun 
et al., (2008) represented 1985 genes on a microarray slide and performed a high-throughput experiment on P. 
yoelli. Searching PlasmoDB for the orthologues of these 1985 genes, we obtained 1180 for  P. yoelli 
orthologue in P. falciparum  3D7 and 1163 P. yoelli orthologue in P. falciparum  HB3 from Bozdech et al., 
(2003a). 
 

 

 7.4.2 SEARCHING AND MAPPING GENES FOR ORTHOLOGUES 

 

7.4.2.1 Preliminary Search for Genes that Code for Specific Liver Stage Proteins 

A preliminary search on the PlasmoDB for genes that code for each protein responsible for 

parasite survival and development in the liver stage as discussed in section 7.2 was 

conducted. The result produced the following genes and/or orthologues depicted in Table 

7.2. Each protein was searched individually and no gene retrieved for SALSA and 

SPEC2/PPLP. This may be that no corresponding gene was submitted to the gene bank 

repository or the orthoMCL algorithm failed to retrieve the concerned genes. 

 

The associated genes that code for Plasmodium proteins were verified to assess the level of 

their representation on Tarun et al. (2008) microarray slide. Surprisingly, many of the 

retrieved genes were not represented on the array. 
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Table 7.2: Liver Stage Plasmodium Proteins and their Coding Genes 
 PLASMODIUM  PROTEINS ASSOCIATED GENES FROM 

PLASMODB 
1 Circumsporozoite (CS) PY01663,  PY03168,  PY07368 
2 Thrombospondin-Related Anonymous Protein 

(TRAP) 
PY01828, PY02417, PY02475, 
PY03378,  PY04302,  PY05174. 

3 Sporozoite Threonine-And Asparagine-Rich 
Protein (STARP) 

PY00217, PY05105 

4 Liver-Stage Antigen 1 (LSA-1) PF10_0356 (PY02217, PY02913, 
PY03361, PY04214, PY04691, 
PY05279) 

5 Liver-Stage Antigen 3 (LSA-3) PFB0915w 
6 Sporozoite And Liver-Stage Antigen 

(SALSA) 
None 

7 Sporozoite Microneme Protein Essential For 
Cell Transversal (SPECT) 

PF13_0197 (PY02149), PFC0755c 
(PY00154), PFF1325c (PY04641), 
PFF1370w,   (PY05545) 

8 Spect2/Plasmodium Perforin-Like Protein 1 
(PPLP) 

None 

 
9 Apical Membrane 3 Antigen/ Membrane 

Apical Erythrocyte Binding-like 
Erythrocyte Binding-Like Protein (MAEBL) 

PY01844, PY02049, PY03020, 

PY03552,  PY04797 

 
10 P. falciparum Secreted Protein with Altered 

Thrombospondin Repeat (PfSPATR) 
PY02498, PY02991, PY04732 

 
Each protein name is used as a search keyword on the PlasmoDB website. Many of the proteins retrieved 
more than one genes that code them, signifying that more than one gene is responsible for coding a protein. 
 

7.4.2.2 Multiple Search for Orthologues Using Gene List  

We searched PlasmoDB for the orthologues of 1985 P. yoelli genes represented on Tarun et 

al., (2008) microarray and obtained 1459 P. yoelli orthologues in  P. falciparum 3D7, HB3 

and Dd2 strains.  We mapped and extracted the expression values of these P. yoelli 

orthologues from  Bozdech et al., (2003a) data and obtained 1180 genes for  P. yoelli 

orthologue in P. falciparum  3D7 and 1163 genes for P. yoelli orthologue in P. falciparum  

HB3. We did not use Dd2 strain because the extracted orthologues were very few. 
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In addition, the P. yoelli orthologues found were represented in a venn diagram (Osamor et 

al., 2009) as depicted in Figure 7.2. It shows that 1139 genes were found to be represented 

in both P. falciparum 3D7 and P. falciparum HB3 strains. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Venn Diagram Showing The Number of Common Genes for P.yoelli orthologues in Two Strains 
of P. falciparum.   

Common genes 
 

1139 41 
24 

P.yoelli orthologue in 
P. falciparum  3D7 

(1180) 

P.yoelli orthologue 
in P. falciparum  

Hb3 (1163) 

 
Using the P. yoelli genes represented on microarray data of Tarun et al. (2008), P. yoelli orthologues in P. 
falciparum 3D7 and HB3 strains were retrieved from the microarray data of Bozdech et al. (2003a). 
 
 

7.4.3 TRADITIONAL K-MEANS CLUSTERING AND GENES EXPRESSION   

          SIGNIFICANCE TEST 

 

The Traditional clustering algorithm implemented in Osamor et al., (under review) and in 

chapter five was deployed and used to cluster the 1985 genes of Tarun et al., (2008) 

microarray data and 1139 P. falciparum 3D7 genes and 1139 P. falciparum HB3 genes 

from Bozdech et al., (200a3) microarray data independently. Using guilty by association 

(GBA) principle (Le Roch et al. (2003), genes in the same cluster are expected to be 

functionally related and orthologues of Tarun et al. (2008) genes in the same cluster using 

P. falciparum 3D7 and HB3 strains expression are expected to be key genes that maybe 

 127



useful for designing a PCR experiment for the detection of malaria at the liver stage. The 

number of cluster input was set at k = 15 and the resultant output was exported to MS 

Access relational database management system (RDBMS) for further analysis and query. 

Based on a simple select query and crosstab query generated from the cluster output, we 

obtained the information contained in Table 7.3, which is a 15 x 15 matrix comparing and 

counting the number of genes common to each pair of clusters for P. falciparum 3D7 and 

HB3 strains expression data as extracted above. The diagonal elements represent the 

number of genes in two clusters (Osamor et al., 2009; Osamor et al., under review) when 

the cluster  ID’s are the same.  

 
Table 7.3 Common Genes Matrix for P. yoelli orthologues in P. falciparum  3D7 and HB3 Strains Clusters 

 
P. falciparum HB3 Orthologue Clusters 

 

 Clust
er No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Total 
Of  

Gene 
ID 

1 63 24 1 2 3 3 1 1  33 1 1 7 140
2 20 27 1 1 1 4 32 1  7 5 1 12 112
3 3 2 1 3 5 1 3 5 1 1 2 1 1 29
4 4 1 4 1 3  4 2 19
5 2  30 4 3 2 4 2  2 1 1 1 52
6 3  3 25 14 1 3  7 2 58
7 7 2 2 1 3 8 3 32 4 6 60 11 10 149
8 26 2 2 1 5 1 2 2 67 2 2 2 114
9   1 1 2 1 1 3 1 3  1 14

10 10 10 3 6 1 6 4 2 42
11 3 2 5 1 4 1 2 3 38 6 31 4 1 10 111
12 3 2 1 3 3 1 2 5 2 3 4 5 34
13   1 5 2  2 1 11
14 9  2 14 12 3 3 1 1 55 2 1 1 104

 
 
 
 
 
 
 

P.falciparum 
 3D7  

Orthologues 
Clusters 

15 3 5 2 3 1 3 5 3 1 26  29 65 4 150
 
Using the genes represented in Tarun et al. (2008), P. yoelli orthologues in P. falciparum Pf3D7 and HB3 strains 
were retrieved from microarray data of Bozdech et al. (2003) and classified into 15 clusters using traditional k-means 
implemented in Osamor et al. (under review). This resulted in a 15x15 matrix showing the number of common genes 
in every two clusters of P. falciparum 3D7 and P. falciparum HB3 orthologues.  The diagonal elements represent the 
number of common genes in two clusters with equal ID number.  
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Table 7.4: Comparative Table for P. yoelli orthologues in P.falciparum 

 

Clusters of P.yoelli 
from  

Tarun et al.   

P.y orthologues  
in P.f 3D7 of Bozdech 

et al. 

P.y orthologues  
in P.f HB3 of  
Bozdech et al. 

 
     
 

TRAD
k-

means 
Cluster 

ID 

No of 
Genes 

Present/ 
Cluster 

Percenta-
ge of  

Genes 
Present 

(T1) 

No of 
Genes 

Present/ 
Cluster 

(T2) 

Percenta-
ge of  

Genes 
Present 

using the   
Total Gene 
clustered 

No of 
Gene

s 
Prese
-nt/ 

Clust
er 

(T3) 

Percenta-
ge of  

Genes 
Present 

using the 
Total 
Genes 

clustered 

No of 
Genes 

Commo
n to 

3D7 & 
HB3 

Percenta-
ge of 

Genes 
Present 

using the 
Totality 
of the 

Genes in 
this 

Category 
 

1 167 8.41 140 12.29 156 13.70 63 45 
2 64 3.22 112 9.83 77 6.76 27 19 
3 81 4.08 29 2.55 52 4.57 1 1 
4 213 10.73 19 1.67 52 4.57 0 0 
5 192 9.67 52 4.57 70 6.15 3 2 
6 57 2.87 58 5.09 13 1.14 0 0 
7 137 6.90 149 13.08 21 1.84 3 2 
8 226 11.39 114 10.01 93 8.17 1 1 
9 142 7.15 14 1.23 54 4.74 3 2 

10 107 5.39 42 3.69 24 2.11 0 0 
11 65 3.27 111 9.75 74 6.50 31 22 
12 65 3.27 34 2.99 197 17.30 2 1 
13 148 7.46 11 0.97 110 9.66 0 0 
14 166 8.36 104 9.13 103 9.04 1 1 
15 155 7.81 150 13.17 43 3.78 4 3 

Total  1985  1139  1139  139  

 
The table illustrates the P. yoelli orthologues in both 3D7 and Hb3 strains with their various percentage 
score. Column 9 indicates the number of common genes in two clusters with the same ID number from 
3D7 and HB3 strains. Relatively high percentage score was obtained for cluster 1, 2 and 11 giving an 
indication that each of these 3 clusters is closely similar in both strains (3D7 and HB3) and may make a 
good choice for a gene to be used for PCR detection of malaria parasite at liver stage.  More explanation 
is given for these genes in column 10 as to the choice of PF13_0227, PFL1700C, PF13_0227 and 
PF13_0358. 139 genes were found to be in corresponding clusters for both 3D7 and HB3. 

 

The result of clustering expression values of P. yoelli (Tarun et al., 2008),  P. falciparum 

3D7 and HB3 (Bozdech et al., 2003a)  is presented in Table 7.4 with the number of genes 

assigned to each  corresponding clusters stated. The table further illustrates the P. yoelli  

orthologues in both 3D7 and HB3 strains with their various percentage score based on the 

number of genes per cluster. In Table 7.4 (row 9), the number of common genes ie the 
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intersection of 3D7 and HB3 is recorded per cluster.  This makes a total of 139 genes. We 

extracted the expression values for only the 139 genes found to be in corresponding 

clusters for both 3D7 and HB3 strains as shown in Table 7.4 (column 8).  

 

Next, using R programming,  we performed a Wilcoxon statistical test significance test to 

extract from these 139  P. falciparum genes, those that are highly similar (p-values ≥ 0.5). 

From these 139 genes, we found that only 54 are highly similar. We find the P. yoelli 

orthologues for these 54 genes using PlasmoDB and seek from  Tarun et al. (2008) 

microarray expression data, the expression values of these orthologues at the liver stage. 

We could not locate one of these 54 genes on Tarun et al. (2008) microarray experimental 

data and we are left with potential 53 viable candidates for PCR test. Finally, we compare 

the expression values of the 53 genes at the liver and blood stages. The idea behind this is 

that the genes that have highly dissimilar gene expression at the liver and the blood stages 

will be the theoretical/statistical viable candidate. Doing this we arrived at 29 genes set. 

Due to intellectual property right, we will not be able to list these genes.  
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7.5 DISCUSSION 

 

Plasmodium proteins responsible for the parasite survival and development at the liver 

stage and their associated genes were verified to assess the level of their representation on 

Tarun et al. (2008) microarray slide. Surprisingly, many of the genes retrieved for each 

protein were not represented on the array.  It is arguably right to say that the key genes used 

already for PCR testing at the liver stage seem missing in Tarun et al. (2008) microarray 

data. We therefore propose a call for a better robust microarray that will incorporate the 

missing genes. 

 

On searching the PlasmoDB using Tarun et al. (2008) gene list containing 1985 genes, our 

search for P. yoelli orthologues retrieved only 1459 genes as P. falciparum orthologues. 

This indicates that not all P. yoelli genes have orthologues in P. falciparum and possibly 

some genes may have more than one orthologue.  It is also important to note that the 

absence of orthologues in some species does not mean that the ortholog does not exist, it 

may not have been detected by the OrthoMCL algorithm used in EuPathDB (Omar and 

Kissinger, 2009). 

 

In the output from traditional k-means clustering, we obtained a relatively high percentage 

score for common genes in cluster 1, 2 and 11 (see table 7.4, column 10) giving an 

indication that genes of 3D7 and HB3 strains for these 3 clusters are highly functionally 

related and confirmed to be important based on their presence in the two strains.  Using R 

programming and Wilcoxon significance statistical test available on this platform, we 

arrived at 29 P. falciparum / P.yoelli gene that are highly statistical viable candidates to 

setup a PCR for the detection of malaria at the liver stage. 
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7.6 CONCLUSION 

 

PCR diagnostic assay can easily be developed for mass screenings through automation and 

could thus be an effective diagnostic tool that is sensitive, specific, and less labour 

intensive than the current methods being used. We would like to take advantage of this 

system for the development of a simple, predictive and reliable test of the diagnosis of 

malaria at the liver stage. Here we have reported the application of a PCR-based test for the 

diagnosis of malaria infections in a clinical environment with emphasis on the choice of 

suitable genes for diagnosis. However, owing to little liver stage microarray expression 

data for the parasite transcriptome and the absence of key genes on the array of Tarun et al., 

(2008) liver stage transcriptome analysis, we propose a call for better and robust microarray 

that will incorporate the missing genes. 
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CHAPTER EIGHT 
 

CONCLUSION AND FUTURE WORK 
 
The high rate of morbidity and mortality occasioned by malaria devastation in many 

African countries, parts of America and Asia, has attracted great attention to public health. 

Africa suffers infrastructural decay and poverty occasioned by malaria burden which seems 

to have persisted over time. A keen observation around most hospitals in Nigeria and 

Africa in general show that many patients are plagued by malaria compared to other 

diseases. The recent alarming statistics given by Bathurst (2008) on the global social and 

economic impact of malaria has generated attention on malaria problem. With affliction of 

more then 1/3 of the human population and recording 1 million deaths per year, malaria 

challenge costs up to 40% of total public health expenditure and an annual lost Gross 

Domestic Product (GDP) of $15 billion in Africa. Many global initiatives currently 

addressing the malaria issues include Millennium Development Goals (MDG), Medicine 

for Malaria Venture (MMV), Roll Back Malaria (RBM), Global Malaria Control Strategy 

(GMCS) with support from Gates foundation. 

 

Malaria control activities in Nigeria are planned and implemented through the Primary 

Health Care (PHC) system (Federal Ministry of Health, 2005). However, the use of health 

centres, as the first resort for malaria management has been shown to be low in many 

African studies including Nigeria. The option of malaria treatment at PHC is delayed till 

the advent of complication and near death. This was attributed to difficulty with access to 

health centre, scarcity of affordable drugs including antimalarial drugs, perceived 

deficiencies in the performance of formal health services including poor clinical skills, 

attitude of health personnel and cultural beliefs (World Health Organisation/ United 

Nations International Children’s Emergency Fund, 2003; Feyisetan, et al., 1997).  Some 

current malaria intervention strategies are HMM (home management of malaria), ITNs 

(insecticide treated nets), IPT (intermittent preventive treatment) and ACT (Artemesinin-

based combination drug). Due to development of resistance in the parasite, lack of licensed 

vaccine, fundamental complexity (2 hosts and intricate life cycle with complex gene 

regulatory mechanisms) inherent in the parasite, multiple drug strategies - novel and 

combination or optimization therapies using analogues has been demonstrated to be useful. 
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Following local intensified effort against malaria in 2004, Nigeria evolved a national policy 

on malaria treatment by dropping chloroquine as first line drug treatment and adopted the 

combination therapy of artemether and lumefantrine (Coartem), artesunate and 

amodiaquine (Adeneye et al., 2007). Again, there is increasing fear that the parasite will 

soon show prevalence of resistance on the new artemisinin-based drugs despite its 

expensive cost relative to chloroquine.  A new approach is desirable hence the challenging 

need to eradicate malaria in endemic Sub-Saharan African nations and other endemic 

regions through the application of functional genomics and computational tools capable of 

evolving new malaria treatment strategies.  

 

We developed recently a new and novel Metric Matrics k-means (MMk-means) clustering 

algorithm to cluster genes according to their functional roles with a view to obtaining 

further knowledge on many P. falciparum genes. Using Pearson correlation as the distance 

metric, Ding and He threshold (Ding and He, 2004) and our new theoretical derivation, we 

are able to determine which of the k clusters as a bunch are stable (with its data members in 

the same cluster retained in subsequent iteration). Using the above methods, in our new k-

means algorithm, we were able to save significant computation time at each iteration and 

thus arrived at an O(nk2) expected run time. Applying the technique of PCA and its 

relationship to k-means in MMk-means, we present a k-means algorithm with improved 

runtime while maintaining good cluster quality as evaluated using Hubert-Arabie Adjusted 

Rand Index (ARIHA).  The result from ARIHA was demonstrated for both biological and 

non-biological data. We also proved theoretically that our new and novel k-means 

algorithm is correct. 

 

By using the in-vitro microarray data  of Le Roch et al. (2003) and with  the classification 

from an in-vivo microarray data of Daily et al. (2007), we performed a comparative 

functional classification of P. falciparum genes and further validated the effectiveness of 

our MMk-means algorithm. We were able to deliver improved cluster quality using our 

MMk-means. 
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However, Daily et al.’s (2007) claim, that the physiological state (the environmental stress 

response) of P. falciparum in selected malaria-infected patients observed in one of their 

clusters cannot be found in any in-vitro clusters, was not observed in this work, as our 

analysis reveals many in-vitro clusters representation in that their in-vivo cluster.  The 

implication of this result in malaria treatment is that the wide difference between in-vitro 

and in-vivo reports on P. falciparum infection and virulence may not be largely different in 

reality.  This will be a good lead for drug design and diagnostics especially at the clinical 

trial stage comparative to whatever result investigators must have obtained in-vitro.  The 

gene clusters identified should be closely studied further for drug and diagnostic purposes.   

 
The scarcity of technology required to detect malaria infection at the liver stage could lead 

to early intervention at the asymptomatic stage and quick recovery. However, waiting for 

the detection of malaria at the blood stage can lead to delayed treatment that may engender 

serious complication and death. In addressing the challenges faced with the identification of 

useful genes and possible primer information, our in-silico prediction points to suggest a 

new exploratory experimental study for possible PCR-based detection of malaria infection 

at the liver stage.  Using our method and the concept of orthology, we predicted some key 

genes that will be useful for malaria diagnosis at the liver stage. Due to intellectual property 

right, we were unable to list these twenty nine genes here. 

 

In future work, we will incorporate an added capability of fitting adequate number of gene 

clusters required for a given microarray input data set and deploy our MMk-means to the 

analysis of an in-vivo malaria microarray data. Due to little work as regards the liver stage 

microarray expression data for the parasite transcriptome and the absence of key genes on 

the array of Tarun et al. (2008) liver stage transcriptome analysis, we propose a call for 

better and robust microarray that will incorporate the missing genes. 

 

Data used for part of this work, were obtained from simultaneous gene expression studies 

carried out in 2003 with different deoxyribonucleic acid (DNA) microarray technologies 

(Le Roch et al., 2003; Bozdech et al., 2003a), during the early days of genome sequencing 

of P. falciparum.  Probe and primer designs were challenging due to scarcity of sequence 

information for most high throughput technologies like DNA microarray and Polymerase 
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Chain Reaction (PCR). With the current technological advancement, we recommend a fresh 

microarray experiment to obtain a more reliable data for further analysis.  
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