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10.1 � INTRODUCTION
Carbon occurs in many forms, and their properties, depending on each form of its special structure, 
make carbon a truly unique building block for nanomaterials. Nanocarbon materials are defined so that 
not only is their primary particle size on a nanometer scale, but also their structures and/or textures are 
controlled on a nanometer scale [1]. Either the nanosize or nanostructure of the carbon materials have 
to be deliberately controlled to govern their properties and functions [2]. In the last two decades, novel 
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nanostructures have emerged, such as fullerenes, carbon nanotubes (CNTs), and graphene [3]. The flat 
monolayer of sp2 carbon atoms are tightly packed into two dimensional honeycomb-like lattices which 
are the building blocks for graphene. Carbon has been used in various areas of nanosize research, such 
as electronics, sensors, super capacitors, batteries, fuel cells, and biosensors [4–9] because of its re-
markable mechanical, optical, thermal, magnetic, and electronic [10–14] properties.

CNTs are known as allotropes of carbon with a cylindrical nanostructure and have novel properties 
that make them potentially useful in a wide variety of applications in nanotechnology. Their appearance 
is that of rolled tubes of graphite, such that their walls are hexagonal carbon rings, and they are often 
formed in large bundles. The ends of CNTs are domed structures of six-membered rings, capped by a 
five-membered ring [15]. Graphene is very similar to CNTs; they are both composed of carbon atoms 
linked together. The difference is that graphene is a flat layer of carbon, only one atom thick, where 
nanotubes are carbon atoms rolled up into a tube shape. The great strength that nanotubes are known 
for is as a result of the bonds between carbon atoms. Those same bonds ensure that graphene is also a 
very strong material. Nanotubes are members of the fullerene structural family; their name was derived 
from their long, hollow structure with the walls formed by one atom thick sheet carbon called graphene. 
These sheets are rolled at specific and discrete “chiral” angles and the combination of the rolling angle 
and the radius decides the nanotube properties (whether the individual nanotube shell is metal or semi-
conductor). CNTs can be classified as single-walled CNTs (SWCNTs), individual cylinders consist-
ing of a single rolled graphene sheet and multiwalled CNTs (MWCNTs), a “Russian doll” structure 
constituting several concentric graphene cylinders, with weak Van der Waals forces binding the tubes 
together [15,16]. The various ways of rolling graphene into tubes are described by the tube chirality, 
i.e., the angle of the orientation of graphene sheet relative to the axis of the tube. The wall of CNTs is 
composed of one or multiple layers of graphene sheets; thus, it is possible to discriminate these materi-
als in SWCNTs, formed by rolling up of a single graphene sheet and MWCNTs, formed by rolling up 
of more than one graphene sheet. Both SWCNTs and MWCNTs are capped at both ends of the tubes 
in a hemispherical arrangement of carbon networks called fullerenes warped up by the graphene sheet 
as shown in Figure 10.1 [17]. The interlayer separation of the graphene layers of MWCNTs is about 
0.34 nm on average, each one forming an individual tube and the outer diameter ranging from 2.5 to 
100 nm, while for SWCNTs this value ranges from 0.6 to 2.4 nm. The chemical bonding of nanotubes 
is made up of sp2 bonds, which are similar to those of graphite.

FIGURE 10.1

Molecular structure of graphene sheet, SWCNTs and MWCNTs [17].
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10.2 � DIFFERENT CATEGORIES OF CARBON NANOSTRUCTURE
The categories of nano-sized materials are quite challenging because of the intensive heterogeneity 
of their compositions and shapes. Different approaches can be used to classify carbon nanostructures; 
the suitable classification devise solely depends on the field of application of the nanostructures. One 
approach assumes as the basis of classification the characterization of the size of nanostructured. This 
approach covers not only nano but also microscopic carbon materials, such as carbon fiber [18]. One 
can also, for example, base a classification on an analysis of the dimensionalities of the structures 
[19–21], which in turn are connected with the dimensionality of quantum confinement and, thus, 
are related to nanoelectronic applications [21]. The entire range of dimensionalities is represented in 
the nanocarbon world, beginning with zero dimension structures (fullerenes, diamond clusters) and 
includes one-dimensional structures (nanotubes), two-dimensional structures (graphene), and three-
dimensional structures (nanocrystalline diamond, fullerite) [22]. Stone and Glass [23] reported a clas-
sification of carbon nanostructures based on the dimensional organization of their edge structures. 
Morphological benchmarks of the classification are provided, including a novel graphenated CNT 
hybrid which increases the linear edge density of nanostructured carbons by an order of magnitude. 
Geometric consideration of the dimensional nature of the edge organization enables quantification of 
the edge density per unit nominal area. By classifying nanostructures based on linear edge density, a 
deeper understanding of materials performance can be obtained and a more informed comparison of 
nanostructures is enabled.

10.3 � CNT AND GRAPHENE REINFORCED POLYMER COMPOSITE
Composites consist of a high-modulus fiber in a low-modulus matrix, where the fiber toughens and 
strengthens the binding material, or matrix. Due to their exceptional mechanical properties, SWCNT 
are commonly used as the reinforcing fiber in CNT composite [24,25]. CNTs have various chiralities in 
the graphene lattice which define the tube structure (see Figure 10.2) [26]. The angle of twist is directly 
related to the chiral vector (C

h
) which is defined by the vector addition of two normalized (unit) vectors, 

a
1
 and a

2
, and their respective indices (m, n) as shown in Equation (10.1):

(10.1)

CNTs (cylindrical nanostructures of carbon) and graphene (a single atomic layer of graphite) 
are revolutionizing technology and nanotechnology. Carbon-based nanofillers, such as carbon black, 
exfoliated graphene (EG), CNT, and carbon nanofiber (CNF) have recently been introduced to the 
preparation of polymer nanocomposites [27–34,11,35–43] with a suitable polymer matrix. The dif-
ferent shapes and structures of these conductive fillers and the morphologies of their dispersion will 
affect the ability to construct an effective conductive network, which is aimed at increasing the electri-
cal conductivity of the polymer-filler composites. Among nanofillers, CNTs have proven to be very 
effective as conductive fillers [37,44–47]. The only drawback of CNTs as nanofiller is their higher 
production cost [48]. The mass production of CNT-based functional composite materials is thus very 
difficult.

Investigations have shown that polymer composite with single-walled carbon nanotubes (SWCNTs) 
as filler provides −40 dB electromagnetic interference (EMI SE) at 10 GHz [49]. Literature reveals that 

C na mah = +1 2
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short-carbon-fiber-filled composites also yielded −40 dB (EMI SE) at 10 GHz and it was reported to be 
more effective than MWCNTs and carbon black filled composites [50]. Carbon black and CNTs have been 
simultaneously introduced into polymer matrices through conventional processing techniques [32,47,51–
53]. The application of coiled CNTs has been found to be more effective than the use of conventional 
CNTs, giving only −15 dB at 8 GHz [54]. From the survey of polymer-based nanocomposites, results are 
varying dependent on several factors from the type of the polymer matrix to filler type and amount.

In nanocomposites, graphene improves the strength and conductivity of many thermosetting poly-
mers. It is considered a two-dimensional carbon nanofiller with a one-atom-thick planar sheet of sp2 
bonded carbon atoms that are densely packed in a honeycomb crystal lattice. It is also regarded as the 
“thinnest material in the universe” with tremendous application potential [55]. Graphene is predicted 
to have remarkable properties, such as high thermal conductivity, superior mechanical properties and 
excellent electronic transport properties [56–58]. Some researchers studied EMI shielding of exfoli-
ated graphite in a polymer matrix at different frequency ranges and produced different shielding 
efficiencies [59–63]. The excellence properties of graphene when compared to polymers are also 
shown in polymer/graphene nanocomposites. Polymer/graphene nanocomposites possess high elec-
trical, thermal, mechanical, gas barrier, and flame retardant properties when compared to polymer 
[33,63–70].

Some researchers reported that the improvement of electrical and mechanical properties of  
graphene-based polymer nanocomposites performs better in comparison to that of clay or other carbon-
filler-based polymer nanocomposites [71–73]. Although CNTs show comparable mechanical prop-
erties compared to graphene, still graphene is a better nanofiller than CNT in certain aspects, such 
as thermal and electrical conductivity (see Table 10.1) [55]. However, an improvement in the physi-
cochemical properties of the nanocomposites depends on the distribution of graphene layers in the 
polymer matrix as well as interfacial bonding between the graphene layers and the polymer matrix. 
Interfacial bonding between graphene and the host polymer dictates the final properties of the graphene 
reinforced polymer nanocomposite [55].

Polymer nanocomposite development has been a sensitive area of research and has evolved signifi-
cantly over the last two decades because of the ability of nanoscale reinforcements to create remarkable 

m = 10

n = 10

a2

a1

Ch

FIGURE 10.2

(10, 10) Armchair nanotube chiral vector diagram [26].
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property enhancements at relatively low filler concentrations, compared to conventional composites. 
The growth of different types of nanomaterials such as nanoclays, CNFs, CNTs, graphenes, nano-
oxides like nanoalumina, nanosilica, titanium dioxide has resulted in the development of composites 
with exceptionally attractive macroscopic multifunctional properties in most circumstances depend-
ing on their inherent characteristics. Excellent electrical, thermal, mechanical, optical, fire-retardant, 
barrier, antibacterial, and scratch resistant properties of these composites have been reported and the 
results are only getting better with time [64–69]. The high surface-area-volume ratio of these fillers 
facilitates the attainment of desired macroscopic functionality at substantially lower filler loading frac-
tions [74]. The relationship between processing, structure, and property of polymer/CNT composite 
materials and polymer/graphene composite materials will be discussed

10.3.1 � RELATIONSHIP BETWEEN PROCESSING, STRUCTURE, AND PROPERTY  
OF POLYMER/CNTs COMPOSITE MATERIALS

There are remarkable improvements in the electrical and mechanical properties of composite materi-
als, when CNTs are used as fillers instead of other conventional materials. CNTs performs better than 
the other carbon-based fillers like CNFs which require higher filler loading fractions to exhibit similar 
levels of electrical conductivity. Continuously lowering costs of CNTs, especially MWCNTs together 
with increases in demand and production capabilities augments favorably for a huge polymer-CNT 
nanocomposite market [74]. When discussing polymer/CNT composites, two major classes come to 
mind. First, the CNT nanofillers are dispersed within a polymer at a specified concentration, and the 
entire mixture is fabricated into a composite. Secondly, as-grown CNTs are processed into fibers or 
films, and this macroscopic CNT material is then embedded into a polymer matrix [75]. The four ma-
jor fiber-spinning methods used for polymer/CNT composites from both the solution and melt include 
dry-spinning [76–78], wet-spinning [79], dry-jet wet spinning/gel-spinning [80], and electrospinning 
[81,82] is shown in Figure 10.3.

In spite of these processing techniques, many parameters need to be well controlled in or-
der to develop high-quality fibers. Generally, all spinning procedures involve (i) fiber formation,  
(ii) coagulation/gelation/solidification, and (iii) drawing/alignment. The even dispersion of the CNT 
within the polymer solution or melt is very important for all these processes. To date, controlled disper-
sion of CNTs in a solution or a composite matrix remains a challenge, due to the strong Van der Waals 

Table 10.1  Properties of Graphene, Carbon nanotube, Nano-Sized Steel, and Polymers [55]

Materials Tensile Strength
Thermal Conductivity at 
Room Temperature (W/mk) Electrical Conductivity (S/m)

Graphene 130 ± 10 GPa (4.84 ± 0.44)*103 to 
(5.30 ± 0.48)*103

7200

Carbon nanotube 60-150 GPa 3500 3000-4000

Nano-sized steel 1769 MPa 5-6 1.35 × 106

Plastic (HDPE) 18-20 MPa 0.46-0.52 Insulator

Rubber (natural rubber) 20-30 MPa 0.13-0.142 Insulator

Fiber Kevlar 3620 MPa 0.04 Insulator
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binding energies associated with the CNT aggregates [83]. However, in terms of achieving excellent 
axial mechanical properties, alignment and orientation of the polymer chains and the CNT in the com-
posite is necessary. Fiber alignment is accomplished in postprocessing such as drawing/annealing and 
is the key to increasing crystallinity, tensile strength, and stiffness [84].

10.3.1.1 � The uses of CNTs as nucleating agent in polymer composite fibers
The nucleating agents can be mainly divided into three kinds: inorganic additives, organic additives, 
and polymers [85]. Nucleating agents for polymer crystallization is a very important aspect in the 
processing of polymer/CNT fibers. The nucleating effect on polymer crystallization depends on sev-
eral aspects, such as the size and the geometry of the particles, the surface structure, and interfacial 
interactions with the polymer matrix. CNTs are the best nucleating agent, particularly SWCNT. The 
fabricating polymer/CNT composites initially focused on achieving mechanical properties based on 
the rule of mixture [86]. Here, the content of CNT used in the polymer matrix was 60 wt%. The abso-
lute properties of the composites, especially mechanical properties were not as high as expected. This 
was attributed to poor CNT dispersion, impurity in the CNT and poor interfacial strength between the 
polymer and the CNT. However, a good-to-excellent tensile property composite can be obtained when 
high purity nanotubes are well dispersed and exfoliated in the polymer matrix [87–90]. It well known 
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FIGURE 10.3

Schematics representing the various fiber processing methods (a) dry-spinning, (b) wet-spinning, (c) dry-jet 
wet or gel-spinning, and (d) postprocessing by hot-stage drawing [75].
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that when a small quantity of carbon nanotube, particularly SWCNT, are dispersed and exfoliated in 
polymer matrix, the polymer orientation, and crystallization can be affected [91–97]. A faster crystal-
lization rate occurs with the application of CNTs at higher temperatures. The study of isothermal crys-
tallization of polyethylene/SWNT composites has shown that onset of crystallization can occur earlier 
in the composites than the neat polymer, and the crystallization rate is faster in the composite [98].

10.3.1.2 � Dispersion and structural control of CNTs
Dispersion of CNTs is one of the major factors that strongly influence the properties of nanocomposites. 
These nanomaterials have a strong tendency to agglomerate due to the presence of attractive forces (Van 
der Waals), originating from their polarizable extended π-electron systems [99]. Infiltration of agglomer-
ates with matrices is very difficult, thus their presence is the source of potential defects in nanocompos-
ites. Factors responsible for dispersion are continuous detachment of small fragments at a comparatively 
lower stress level (erosion) and abrupt splitting up of agglomerates into small fragments under high stress 
(rupture). The dispersion behavior of CNF and CNT depends on a few critical factors, such as length of 
nanomaterials, their entanglement density, volume fraction, matrix viscosity, and attractive forces [99].

In the polymer nanocomposites CNTs are dispersed in the polymeric matrix [100]. The dispersion 
and arrangement of CNTs in the matrix (including their potential uniaxial alignment) hold central roles 
in controlling the properties of the resulting composites [83]. The inherent properties of CNT assume 
that the structure is well preserved, such as having large-aspect-ratio and no defects. Furthermore, the 
first step to the effective reinforcement of polymers using nanofillers is the achievement of a uniform 
dispersion of the fillers within the hosting matrix, and this is also related to the as-synthesized nanocar-
bon structure. Again, effective interfacial interaction and stress transfer between CNT and polymer is 
very important for improved mechanical properties of the fiber composite. Lastly, the excellent intrinsic 
mechanical properties of CNT similar to polymer molecules can be fully exploited only if an ideal uni-
axial orientation is achieved [75]. Thus, during the fabrication of polymer/CNT fibers, four key areas 
need to be addressed and understood in order to successfully control the microstructural development in 
these composites. The key areas which are (i) CNT pristine structure, (ii) CNT dispersion, (iii) polymer-
CNT interfacial interaction, (iv) orientation of the filler and matrix molecules is shown in Figure 10.4.

Polymer/CNT
composite fibers

(1)
CNT structure

(2)
Dispersion

of  CNT

(3)

Polymer-CNT
interfacial

microstructural
development

(4)
Polymer and CNT

orientation

FIGURE 10.4

Four major factors affecting the microstructural development in polymer/CNT composite fiber during 
processing [75].
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10.3.1.3 � Methods of homogeneous dispersion of carbon nanomaterials
The common strategies to disperse CNTs fall into two general categories: chemical functionalization 
and noncovalent surface modification [101]. In order to achieve homogeneous dispersion of carbon 
nanomaterials in water and various polymers, different chemical methods have been used to date. 
The methods are use of solvents, surfactants, functionalization with acids, amines and the fluorines, 
plasma, microwave, and matrix moieties. Some researchers used noncovalent functionalization, block 
polymers, wrapping conjugated polymers, and other methods. Some of these methods will be discussed 
in this section.

Ausman et  al. [102] performed a systematic study in order to find an appropriate medium for  
solubilization/dispersion of pristine SWCNTs. Five solvents, all featuring high electron pair donicity 
(â) and low hydrogen bond parameter (R) demonstrated the ability to readily form stable dispersions. 
To evaluate representative samples of each solvent category as determined by UV/visible spectros-
copy, single drops of the centrifuged dispersions of SWCNT material in dimethylformamide (DMF), 
4-chloroanisole, and toluene were dried overnight on glass microscope slides. These substrates were 
then imaged by noncontact atomic force microscopy (AFM). The DMF dispersion showed a high den-
sity of SWCNTs and ropes intertwined on the glass surface, confirming that the majority of the material 
dispersed was in fact nanotube material (see Figure 10.5).

Vaisman et al. [103] formed a uniform, multi-walled nanotubes (MWNTs) distribution in water- 
soluble (poly(ethylene glycol)) and water-insoluble (polypropylene) polymers. In order to understand 
the surface-charge-related stability of the treated nanotubes solutions, zeta-potential measurements 
were applied. Quantification of the state of the MWNT dispersion was derived from particle-size analy-
sis, while visual characterization was based on optical and electron microscopy. In order to estimate the 
nucleating ability of the surface-modified CNTs, the temperature of crystallization and the degree of 
crystallinity were calculated from differential scanning thermograms.

FIGURE 10.5

Noncontact AFM image of SWCNT material dispersed on a glass substrate from DMF dispersion [102].
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The dispersive power of a wide range of surfactants was tested, in an attempt to improve the poor 
dispersion of pristine CNTs in a hydrophilic polyethylene glycol (PEG) solution shown in Figure 10.6a. 
Oxidized CNTs showed high-quality dispersion within the PEG matrix (see Figure 10.6b); this is due 
to a lowered tendency of the filler to aggregate, which can be attributed to the electrostatic repulsion 
effect. As shown in Figure 10.6c, tween-80 (poly(ethylene oxide) (20) sorbitan monooleate promotes 
the processing of highly homogenized MWNT/PEG composites. The incorporation of pluronic sur-
factants showed no improvement in CNT dispersion, and large, ∼30 μm sized aggregates were formed 
(see Figure 10.6d). The insufficient block copolymer dispersive efficiency is probably associated with a 
bridging mechanism-long polymeric molecules of the surfactant adsorbed onto the surfaces of adjacent 
nanotubes, bridging them together, and creating a loose network. The findings shown in Figure 10.6e 
contradicted their expectations, and demonstrated a highly homogenized dodecyltrimethylammonium 
bromide (DTAB)-assisted dispersion of CNTs. According to the researchers [103], this phenomenon 
could be attributed to the adsorption of additional surfactant molecules by the interaction of their hy-
drophobic groups with those of previously adsorbed DTAB and with its hydrophilic groups oriented 
toward the PEG solution. Chen et al. [104] report the dispersion of MWCNTs using trifluoroacetic 
acid (TFA) as a cosolvent. Their study demonstrated that MWCNTs can be effectively purified and 
readily dispersed in a range of organic solvents including DMF, tetrahydrofuran (THF), and dichloro-
methane when mixed with 10 vol% TFA. The dispersed CNTs in TFA/THF solution were mixed with 
poly(methyl methacrylate) (PMMA) to fabricate polymer nanocomposites and a good dispersion of 
nanotubes in solution and in polymer matrices was observed and confirmed by scanning electron mi-
croscopy (SEM), optical microscopy, and light transmittance study (Figure 10.7). X-ray photoelectron 
spectroscopic analysis revealed that the chemical structure of the TFA-treated MWCNTs remained 
intact without oxidation. Few representative images of MWCNT/PMMA and MWCNT/P3HT/PMMA 

FIGURE 10.6

Optical microscope images of 1 wt% MWNT/PEG composite films. The CNT dispersion was governed by either 
surface modification via COOH functionalization, or by surfactant adsorption: (a) MWNT/PEG, (b) oxidized 
MWNT/PEG, (c) MWNT/PEG with Tween-80, (d) MWNT/PEG with Pluronic P-65, and (e) MWNT/PEG  
with DTAB [103].
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FIGURE 10.9

X-ray photoelectron spectra of (a) untreated MWCNTs, (b) MWCNTs treated by TFA, (c) MWCNTs treated by 
nitric acid [104].

composite films with different loading ratios of MWCNTs are shown in Figure 10.8. Overall, CNTs are 
uniformly distributed through the polymer matrix at the loading ratios as shown. Two peaks were iden-
tified from X-ray photoelectron spectroscopy (XPS) spectrum of received MWCNTs (Figure 10.9a): a 
major peak at 284.7 eV, which is assigned to the conjugated C in CNTs, and a minor peak at 287.7 eV, 
which is attributed to impurity carbon in the form of COH. After purification of the MWCNTs by 

2 µm 2 µm 10 µm5.0 kV × 5000 5.0 kV × 4300 5.0 kV × 900

FIGURE 10.7

SEM images of type 1 MWCNTs suspended or dispersed in THF and then deposited on graphite substrates. 
(a) MWCNTs suspended in pure THF. (b) The as-obtained MWCNTs dispersed in 10 vol% TFA in THF.  
(c) MWCNTs after purification by multiple cycles of washing with 10 vol% TFA/DMF solvent and redispersed  
in 10 vol% TFA/THF solvent [104].

20 µm 20 µm 20 µm 20 µm

FIGURE 10.8

Optical images revealing the distribution of MWCNTs (aspect ratio: 100) in composite films. (a) MWCNT/
PMMA film with 0.25 wt% of MWCNTs, (b–d) MWCNT/P3HT/PMMA film with (b) 0.07 wt%, (c) 0.13 wt%, and 
(d) 0.19 wt% of MWCNTs.
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mixed TFA/DMF solvent, the major peak at 284.7 eV remains the same, but the minor peak at 287.73 eV 
diminished almost completely (see Figure 10.9b). As a comparison, the XPS spectrum of nitric acid-
treated MWCNTs is shown in Figure 10.9c. A peak corresponding to oxidized carbon at 289.1 eV in 
the form of COOH groups was clearly seen.

Mao et al. [105] recently reported noncovalent dispersion of CNTs in organic liquids with extremely 
high loading (2 mg mL−1) using polyvinylferrocene (PVF). They showed that PVF can noncovalently 
disperse CNTs to individualized tubes with extremely high concentrations of organic solvents. They fur-
ther demonstrated that PVF's redox-tunable affinity for organic solvents, together with its stable attach-
ment to the nanotubes during redox transformation, allowed for controllable dispersion and aggregation 
of nanotubes. This opens up new avenues for tailoring CNT dispersion behavior via external stimuli, 
with potential applications in nanotube-based responsive systems, such as switching devices. This be-
havior further provides an electrochemically controlled approach to generating CNT-functionalized 
surfaces of different shapes, which can be used for sensing and catalysis. Noncovalent functionalization 
of nanotubes is of particular interest because it does not compromise the physical properties of CNTs, 
but improves solubility and processability [106].

10.3.2 � RELATIONSHIP BETWEEN PREPARATION, STRUCTURE, AND PROPERTY  
OF POLYMER/GRAPHENE COMPOSITE MATERIALS

Graphenes show great promise as stronger, conductive fillers in polymer nanocomposites than CNTs; 
however, the persistent problem for graphene-based nanocomposites is the difficulty in achieving dis-
persion quality and interfacial strength between filler and matrix. Furthermore, attaining a large pro-
duction volume of these materials is still challenging. Efforts have been made to develop high-quality 
graphene in large quantities for both research purposes and with a view to possible practical appli-
cations. Graphene can be prepared by the following methods: electrochemical exfoliation, chemical 
oxidation/exfoliation, and mechanical exfoliation followed by reduction of graphene derivatives such 
as graphene oxide (GO). Other methods are epitaxial growth on SiC and other substrates, chemical 
vapor deposition (CVD), chemical molecular assembly method, and arc discharging methods. All these 
methods have their advantages and disadvantages. Some of these methods will be discussed in this sec-
tion. Both epitaxial growth and CVD techniques can also produce high-quality graphene with excellent 
physical properties. But, with these approaches, it is difficult to obtain a high enough yield to satisfy 
the need for its use as a composite filler [107]. At present, the most viable route to produce graphene in 
considerable quantities is reduction of graphite oxide. Graphite oxide is generally synthesized though 
oxidation of graphite using strong mineral acids and oxidizing agents [107].

10.3.2.1 � Exfoliated graphite fillers
Exfoliation of graphite is a phase transition process that involves the vaporization of intercalate in the graph-
ite. The exfoliation of graphite is a process in which graphite expands by up to hundreds of times along the c 
axis, resulting in a puffed-up material with a low density and a high temperature resistance [108]. Again, the 
compression of exfoliated graphite leads to a material with a high lubricity and flexibility. Exfoliated graph-
ite could also be sued as fillers in composite even carbon fiber under appropriate conditions. However, the 
dispersion of graphene in common solvents is challenging due to the fact that exfoliation from graphite 
is inhibited by the strong, attractive Van der Waals forces holding the sheets together. Even after the 
initial process of exfoliation and dispersion, same attractive forces cause graphene to reaggregate.
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Weak physical interactions (Van der Waals forces) are involved in the natural graphite, and mate-
rial cohesion is possible only because of the very large number of interactions simultaneously acting 
among neighboring carbon sheets. Thus, the graphite structure is made of perfectly piled flat carbon 
sheets touching each other to allow induction of instantaneous dipoles among the neighbor carbon 
planes. Such a well-ordered structure is the basic condition for cohesion in graphite and the disordering 
of this piled structure significantly decreases the material cohesion [109]. Due to the high thermody-
namically stable chemical structure, graphite is an inert substance, and only a few chemical reactions 
are possible using graphite as a reactant. Graphite flakes can be chemically modified by treatment with 
very strong oxidizing species leading to a chemical compound known as graphite oxide [56,110–112].

Chemically derived graphene is usually produced through oxidation graphite to graphite oxide with 
a hydrophilic layered structure. This is then exfoliated into the GO in aqueous media or polar solvents, 
possibly by mechanical shearing [113–115]. Due to the nature of the hydrophilic GO, it is not easily 
dispersed in weakly polar organic solvents, and polymers [116]. Reduction of GO always results in 
serve aggregation of the reduced GO (rGO) [73]. A lot of efforts have been made to disperse chemi-
cally derived graphene in low polarity organic media by functionalization of GO, but using aqueous 
dispersion of GO to fabricate graphene-based composite is more attractive. Aqueous dispersion of GO 
to fabricate graphene-based composite can be easily combined with water-soluble polymers and then 
reduced to rGO [117] without using organic solvents or chemical functionalization which can be toxic 
and/or costly [118,119]. Gudarzi and Sharif [120] proposed that by proper functionalization and mix-
ing strategy of graphene, its dispersion, and bonding to the polymeric matrix can be improved. They 
applied this strategy to graphene-epoxy system by amino functionalization of GO (see Figure 10.10). 

FIGURE 10.10

(a) Schematic representation of diamine bonding to GO. (b) Schematic illustration of transferring GO sheets 
from water to epoxy phase after functionalization [120].
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The process included two phase extraction, and resulted in better dispersion and higher loading of 
graphene in epoxy matrix. Rheological evaluation of different graphene-epoxy dispersions showed a 
rheological percolation threshold of 0.2 vol% which was an indication of highly dispersed nanosheets 
(see Figure 10.11). As shown in Figure 10.12, the observation of the samples SEM showed dispersion 
homogeneity of the sheets at micro- and nanoscales. Study of graphene-epoxy composites showed 
good bonding between graphene and epoxy. Mechanical properties of the samples were consistent with 
theoretical predictions for ideal composites indicating molecular level dispersion and good bonding 
between nanosheets and epoxy matrix.
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FIGURE 10.11

Results of rheometery for uncured epoxy-fGO mixtures with different fGO content (0-0.26 vol%) as a function 
of frequency at room temperature, (a) complex viscosity and (b) storage modulus [120].

FIGURE 10.12

SEM images of fracture surface of (a, b) neat resin and (c–e) composite containing 0.2 vol% fGO at different 
magnifications [120].
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Notarianni et al. [121] produced graphene by electrochemically exfoliating highly oriented pyro-
lytic graphite (1 × 1 cm2) in a 150 mL aqueous solution containing 0.15 M Na

2
SO

4
 and 0.01 M sodium 

dodecyl sulfate. A Pt wire was used as a cathode and the voltage was set to be 5-6 V. The setup was 
placed in a sonicator during the electrochemical exfoliation process, which resulted in a final product 
consisting of mostly bilayer graphene. By using AFM to scan a number of graphene sheets randomly 
dispersed onto a mica substrate, statistics of the graphene flake thickness were obtained. They found 
that the thin graphene film with a thickness of <1 μm can greatly increase the capacitance. For compos-
ite applications, excellent dispersion is not enough; one must also have excellent interfacial adhesion 
for efficient stress transfer from the graphene to the polymer matrix.

10.3.2.2 � Structure of exfoliated graphite
As explained in the previous section, graphene is a single layer of carbon atoms packed densely in a 
honeycomb crystal lattice. Exfoliated graphite exhibits a honeycomb microstructure because of the gas 
bubbles. The surface area of exfoliated graphite varies from one intercalate to another, e.g., nitric acid is 
an intercalate, which leads to a considerable bursting of the gas bubble, while bromine is an intercalate 
which does not burst. Thus, nitric acid yields exfoliated graphite with a much higher surface area than 
exfoliated graphite-bromine [108]. The carboncarbon bond (sp2) length in graphene is found to be ap-
proximately 0.142 nm [122,123]. The graphene layer thickness ranges from 0.35 to 1 nm relative to the 
SiO

2
 substrate depending on the investigation [124].

The properties and structure of graphite oxide depend on the specific synthesis method and the 
degree of oxidation. Intercalation of graphite by a mixture of sulfuric and nitric acid produces a higher-
stage GIC that can be exfoliated by the rapid heating or microwave treatment of the dried down pow-
der, producing a material commonly referred to as expanded graphite (EG) [30]. EG retains a layered 
structure but has slightly increased interlayer spacing relative to graphite, consisting of thin platelets 
(30-80 nm), which are loosely stacked [30]. Lueking et al. [125] structurally characterized exfoliated 
graphite nanofibers (EGNFs) with transmission electron microscopy (TEM) and high-angle annular 
dark-field-scanning TEM (HAADF-STEM). Their investigation indicated that exfoliation has led to 
structural expansion along the fiber axis, with discrete domains of graphitic nanocones separated by 
gaps ranging from 50 to 500 Å (see Figure 10.13). Image contrast in HAADF-STEM demonstrated that 
structural expansion dominates over chemical etching (see Figure 10.14). Raman spectroscopy shown 
in Figure 10.15 indicated that the EGNF is more graphitic than the precursor, and the disappearance of 
the characteristic defect (D) peak with multi-wavelength excitation is inconsistent with the presence 
of amorphous carbon. The highly expanded EGNF structure oxidizes at two distinct rates at 750 °C in 
CO

2
, leading to a highly disordered graphitic fiber, with apparent collapse of the expanded structure 

as no gaps or discrete graphitic domains are observed after oxidation. Variation in the heat input per 
intercalant mass during thermal shock leads to changes in fiber morphology, including the extent of 
fiber expansion, the number of defects and pores observable within the fiber via TEM, and the surface 
area measured by nitrogen adsorption [125].

After incorporation of graphite into polymer, the state of dispersion needs to be adequately deter-
mined in order to evaluate the reinforcement efficiency. Among various methods used for character-
izing dispersion of layered nanocomposites, electron microscopy, and X-ray diffraction have been most 
widely used [126]. Imaging with TEM provides real space morphological information [125]. However, 
TEM only visualizes a small area. On the other hand, X-ray scattering yields structural information 
averaged over a larger sample volume.
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FIGURE 10.13

TEM analysis of EGNF-1000. Dark and light regions are observed in the fibers (a and b) after exfoliation. Certain 
fiber regions (arrows) with large expansion indicate fiber rupture. (c) SAED pattern of the nanofiber in  
(b), (002), (100), and (110) diffraction planes can be observed. The inset is a schematic model of the cup-
stacked crystalline structure of the fiber after exfoliation; those segments of the fiber keeping the graphite spacing 
between cups (∼3.35 Å) are responsible for the (002) diffraction spots observed in the SAED pattern [125].

FIGURE 10.14

HAADF-STEM of EGNF-1000: (a–c) are different examples of individual fibers. (d) Higher magnification of 
(b). Straight gaps (dark contrast) symmetrically distributed around the fiber axis (center) suggest expansion 
(arrows in (a) and (b)) and gaps with asymmetric shapes suggest chemical etching (arrows in (d)). The 
appearance of bands in HAADF-STEM imaging is inconsistent with the presence of amorphous carbon [125].
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10.4 � GRAPHENATED CNTs
Graphenated CNTs are relatively new nanostructures in the carbon nanomaterial family that combines 
graphitic foliates grown along sidewalls of MWCNTs or bamboo style CNTs. Different methods are 
available for the preparation of graphene-CNT hybrid; two simple methods that are often used are: (1) 
preparation of GO-CNT hybrid by ultrasonication of GO and CNT mixture, and (2) subsequent reduction 
of GO-CNT hybrid to graphene with some specific post treatments [127–129]. Yen et al. [130] reported 
a two-step solution-based method at room temperature for the preparation of graphene-MWCNT hybrid 
material comprising graphene and acid-treated MWCNT (see Figure 10.16). The preparation methods 
involve synthesis of GO from graphite by Staudenmaier's method and consequent thermal reduction to 
graphene at 1050 °C followed by mixing of graphene with acid-treated MWCNTs and ultrasonication 
to get the final hybrid. A noncovalent π-π stacking interaction operating between graphene sheets and 
CNTs were revealed, which help to avoid the aggregation of individual graphene sheets.

Quite a number of exciting properties and applications of this novel carbon material have been re-
ported in the literature [131,132]. Yu et al. [133] did some investigation on chemically bonded leaves 
growing alongside walls of CNT. They reported on a brand-new, three-dimensional carbon nanostruc-
ture comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp2 car-
bons, resembling plant leaves (FLGs) growing on stems (CNTs). The evolution of FLG sheets on CNTs 
was tracked by high-resolution TEM (see Figure 10.17). Distinct from a random mixture of CNTs and 
graphene sheets (CNT + G) suffering from poor CNT-graphene contacts, their CNT-FLG structure has 
intrinsic chemical bonding between the two constituent components. They further showed that the re-
sulting CNT-FLG structure exhibits remarkable optoelectronic and gas-sensing properties superior to 
its CNT or CNT + G counterparts.

FIGURE 10.15

Multi-wavelength Raman of EGNF-1000 with excitation wavelength of (a) 633 nm, (b) 514 nm, and  
(c) 257 nm. Horizontal bars denote full-width half-maxima for the peaks, and the dotted line is drawn to guide 
the eye for the background fit that was used in the calculation of the peak intensity [125].
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Tian et al. [134] provided simultaneous growth of graphene and SWCNTs, leading to the formation 
of three-dimensional interconnected networks. They also brought the intrinsic dispersion of graphene 
and CNTs and the dispersion of N-containing functional groups within a highly conductive scaffold. 
Their hybrid material presented high catalytic activity towards oxygen evolution reaction, rendering 
them high-performance heap catalysts for both oxygen reduction reaction and oxygen evolution reac-
tion. Wimalasiri and Zou [135] combined SWCNTs with GO nanosheets in aqueous dispersion and 
then chemically reduced it to form the carbon nanotube/graphene (CNT/G) composite as electrodes 
for capacitive deionization (CDI). The structure of the CNT/G composite was highly porous, with 
SWCNTs sandwiched between graphene sheets that functioned as spacers and provided diffusion paths 
for smooth and rapid ion conduction. The associated increase in the electrical double-layer capacitance 
enhanced CDI performance. Pham et al. [136] reported the direct growth of a unique all-carbon hierar-
chical graphene-carbon nanotube (G-CNT) hybrid structure on Toray carbon paper using CVD meth-
ods. The morphological characterization in Figure 10.18 shows that the graphene was directly grafted 
onto the CNT scaffold. The hybrid possesses an ultra-high density of exposed graphene edges while 
retaining the porous structure of CNT scaffold. Using the G-CNT hybrid in the magnetron sputtering 

FIGURE 10.16

The schematic diagram representing the mechanism for the preparation of graphene-CNT hybrid material 
[130].
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FIGURE 10.17

TEM and HRTEM (right column) images from two locations (Location 1: left column; Location 2: middle and 
right columns) in Sample A. (a–c) Pristine CNTs, (d–f) CNTs after being treated in Ar plasma for 10 s, (g–i) 
CNTs after a subsequent PECVD process for 1 min FLG growth [133].

FIGURE 10.18

Morphological characterization of the G-CNT hybrid on carbon paper. SEM micrographs of the hybrid at (a) 
medium magnification, (b) lower magnification, and (c) higher magnification [136].
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electrocatalyst preparation technique, an integrated, polytetrafluoroethylene binder-free cathode (Pt/G-
CNT) with an ultra-low Pt loading of 0.04 mg cm−2 was obtained. This cathode showed superior polar-
ization performance compared to a commercial carbon black-supported Pt catalyst.

The advantage of integrating graphene to CNTs structure is the high surface area three-
dimensional framework of the CNTs coupled with the high edge density of graphene. The nature 
of graphene edges determines the structural properties of the material of interest. Graphene edges 
determine the optical, magnetic, electrical, and electronic properties of graphene [137]. Graphene 
edges provide significantly higher charge density and reactivity than the basal plane, but they are 
difficult to arrange in three-dimensional, high-volume-density geometry. CNTs are readily aligned in 
high-density geometry, but lack high-charge-density surfaces. The sidewalls of the CNTs are similar 
to the basal plane of graphene and exhibit low-charge density except where edge defects exit [138]. 
When compared to another carbon nanostructure, the deposition of a high density of graphene foli-
ates along the length of aligned CNTs cab greatly increases the total charge capacity unit of nominal 
areas [139].

10.5 � CURRENT APPLICATIONS OF CNTs AND GRAPHENE
CNTs, graphene and their compounds possess exceptional electrical properties for organic materials, 
and they have a huge potential in electrical and electronic applications, such as photovoltaics, sen-
sors, semiconductor devices, display devices, conductors, smart textiles, and energy conversion devices 
(e.g., fuel cells, harvesters, and batteries). CNTs and graphene can greatly contribute to sustainable 
energy supplies and they are widely used in biomedicine.

Seo et al. [140] recently reported the growth of high-quality GaN layer on SWCNTs and graphene 
hybrid structure (CGH) as an intermediate layer between GaN and sapphire substrate by metal-organic 
chemical vapor deposition (MOCVD) and fabrication of light-emitting diodes (LEDs) using them. 
The SWCNTs on graphene act as nucleation seeds, resulting in the formation of kink bonds along 
SWCNTs with the basal plane of the substrate. The high crystalline quality of GaN layers grown on 
CGH/sapphire was observed to be due to the reduced threading dislocation and efficient relaxation 
of residual compressive strain caused by lateral overgrowth process. When applied to the LED struc-
ture, the current-voltage characteristics and electroluminescence (EL) performance exhibit that blue 
LEDs fabricated on CGH/sapphire well-operate at high injection currents and uniformly emit over the 
whole emission area. We expect that CGH can be applied for the epitaxial growth of GaN on various 
substrates such as Si and MgO, which can be a great advantage in electrical and thermal properties of 
optical devices fabricated on them.

Dye-sensitized solar cells (DSSCs) are prominent photovoltaic technology with both low costs and 
good efficiency. The cathode used in most DSSCs is fluorine-doped tin oxide glass coated with a Pt 
film, which is both expensive and brittle and thus limits the flexibility and large-scale implementation 
of this positive technology. Dong et  al. [141] recently showed that flexible, seamlessly covalently 
bonded, three-dimensional vertically aligned few-walled CNTs (VAFWCNTs)/graphene on metal foil 
can act as a novel cathode free from transparent conducting oxide and Pt for application in DSSCs. 
This cathode has a lower charge transfer resistance and lower contact resistance between the catalyst 
and the substrate than the conventional combination in a brittle Pt/fluorine-doped tin oxide cathode. 
The covalently bonded graphene and VAFWCNTs ensure excellent electron transport through the 
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electrode and the large surface area of the hybrid carbon materials rivals the catalytic capability of the 
Pt analogue. The combination of VAFWCNTs/graphene on metal foil is a novel, inexpensive, high-
performance, flexible cathode for application in solar cells. Pham et al. [136] also recently reported 
the direct growth of a unique all-carbon hierarchical G-CNT hybrid structure as catalyst support for 
high-performance proton exchange membrane (PEM) fuel cells on Toray carbon paper using CVD 
methods.

A wide range of materials such as graphene and other carbon nanocompounds which have 
different physical and chemical properties can be expected to react differently upon contact with 
biomolecules, cells, and tissues [142]. CNTs and graphenes have shown great promise for ad-
vancing the fields of biology and medicine. Fan et  al. [143] reported a green and facile pro-
cedure of synthesizing a graphene nanosheet-carbon nanotube-iron oxide nanoparticle hybrid 
(GNCNTFe

3
O

4
) as a promising platform for the loading and delivery of anticancer drugs. The 

obtained GNCNTFe
3
O

4
 hybrid exhibited super paramagnetic properties with the saturation mag-

netization of 19.824 emu g−1. This hybrid nanostructure possesses the superior capability of bind-
ing the anticancer drug 5-fluorouracil (5-FU) with a high loading capacity of up to 0.27 mg mL−1 
with a 5-FU concentration of 0.5 mg mL−1, and also possesses a pH-activated release profile. Their 
studies show that the resulting GNCNTFe

3
O

4
 hybrid can be internalized efficiently by HepG2 

cells. In vitro cytotoxicity tests suggested that the obtained GNCNTFe
3
O

4
 hybrid was nontoxic 

for Chang liver cells, even at the high concentration of 80 μg mL−1; however, the 5-FU-loaded 
GNCNTFe

3
O

4
 hybrid showed significant cytotoxic effects in HepG2 cells. The results showed 

that the novel three-dimensional hybrid is a promising candidate for anticancer drug-delivery 
systems.

10.6 � CONCLUSION
The discussion of nanotechnology perspectives in this chapter is centered on carbon-based nanostruc-
tures (CNTs and graphenes). To a considerable degree, the popularity of carbon nanostructures is due 
to fullerenes and nanotubes, other members of the carbon family are also steadily gaining attention. 
Diamond, graphite, tubes, and newly discovered graphene are the most studied allotropes of the carbon 
family. Due to the chemical inertness of graphitic walls, functionalization of CNTs, and graphene is 
usually the key step required in the applications of these materials. For a successful CNT/composite 
development, good mechanical properties must be achieved in a cost-effective manner and CNTs must 
then be processed in such a way as to ensure that a homogeneous dispersion is obtained within the ma-
trix, whilst developing an appropriate degree of interfacial bonding. The dispersion of nanomaterials 
in polymeric matrices also plays an important role in determining the final properties of the composite 
materials.

Graphene has recently attracted considerable scientific interest because of its unique mechanical, 
electrical, and thermal properties which may enable a range of advanced materials and devices includ-
ing nanocomposites thin conductive films. Dispersion of graphene in nano scale, and especially in 
single layers, provides the best opportunity for bonding.

The relationship between preparation, structure, and property of polymer/graphene composite ma-
terials is discussed in this chapter. Some graphenated CNTs were also discussed. Some recent advances 
on graphene CNTs hybrid were discussed.
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10.7 � RECOMMENDATION
Advances in computational materials science in general will continue to facilitate the understanding of 
CNTs and graphene materials together with their processing. Therefore, the prediction of properties, 
materials behavior and the design of these new materials and phases will facilitate the application of 
science and engineering to developing more sophisticated and innovative processes.

The complex interactions in polymer composites influence the nanostructure formation, thereby 
influencing their properties. It is also known that the properties of the nanostructured polymer com-
posites can be tailored through control of various molecular interactions. Many parameters need to  
be well controlled in order to develop high-quality materials; thus, multiscale molecular modeling can 
be successfully applied in process system applications in science and engineering for the estimation of 
the properties of pure components and mixtures of CNT and graphene, in order to successfully control 
the properties and interaction parameters of the nanostructured materials. In the polymer nanocompos-
ites, CNTs, and graphenes are dispersed in the polymeric matrix, therefore homogeneous dispersion of 
these carbon nanomaterials in water and various polymers can also be successfully achieved with the 
use of molecular modeling.
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