
BIOINFORMATICS Vol. 17 Suppl. 1 2001
Pages S5–S12

An efficient algorithm for finding
short approximate non-tandem repeats

Ezekiel F. Adebiyi 1, Tao Jiang 2 and Michael Kaufmann 1

1Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Sand 13, Tübingen,
72076, Germany and 2Department of Computer Science and Engineering, College
of Engineering, University of California, Riverside, USA

Received on February 6, 2001; revised and accepted on April 2, 2001

ABSTRACT
We study the problem of approximate non-tandem repeat†

extraction. Given a long subject string S of length N over a
finite alphabet � and a threshold D, we would like to find
all short substrings of S of length P that repeat with at most
D differences, i.e., insertions, deletions, and mismatches.
We give a careful theoretical characterization of the set of
seeds (i.e., some maximal exact repeats) required by the
algorithm, and prove a sublinear bound on their expected
numbers. Using this result, we present a sub-quadratic
algorithm for finding all short (i.e., of length O(log N))
approximate repeats. The running time of our algorithm
is O(DN3pow(ε)−1 log N), where ε = D/P and pow(ε) is
an increasing, concave function that is 0 when ε = 0 and
about 0.9 for DNA and protein sequences.
Contact: adebiyi@informatik.uni-tuebingen.de

INTRODUCTION
Sequence motifs (i.e., special patterns in bio-molecular
sequences that are conserved over evolution) play an im-
portant role in the identification of novel functional units
(Hodgman, 1989). For example, the gene sequences of a
gene family may share short, conserved motifs that corre-
spond to meaningful domains in their protein structures
and may have regulatory elements containing the same
motif. A collection of such motifs as regular expressions
is given in PROSITE database (Bairoch, 1992). A useful
approach for identifying meaningful sequence motifs is to
find non-tandem approximately repeating patterns that oc-
cur more frequently than expected by chance. Thus, find-
ing unknown exact and approximate repeat is an important
problem in computational biology.

The problem of finding exact and approximate repeats
has been studied extensively in the mathematical and algo-
rithmic literature (see, e.g., (Gusfield, 1997; Kurtz et al.,
2000)). The approaches considered include combinatorial
methods, statistical modeling, and the use of suffix trees.

† Throughout the paper we only consider non-tandem repeats.

The problem of exact repeat extraction seems well settled,
since it has an optimal O(N) time algorithm (Gusfield,
1997). However, the problem of approximate repeat ex-
traction still remains a big challenge, since the nature of
the problem implies an exponential combinatorial com-
plexity in terms of the target length of approximate repeats
considered.

A popular strategy for finding approximate repeats is
to first search for exact repeats of small but appropriate
lengths and then use (some of) the exact repeats as seed
strings (or simply seeds) to form maximal approximate
repeats by expansion (Kurtz et al., 2000). The latter
step may take into account the target approximate repeat
length. Two types of exact repeats can be used as
seeds: maximal repeats and the supermaximal repeats. A
maximal repeat β in a string S is a substring of S such
that substrings aβc and bβd occur in S for some a �= b
and c �= d , a, b, c, d ∈ �. Note that a maximal repeat
might be a proper substring of another maximal repeat.
Therefore, a supermaximal repeat is a maximal repeat that
does not occur as a substring of any other maximal repeat.

In this paper, we

1. prove a sublinear upper bound of O(N2pow(ε)−1−d)

for some d < 1 on the expected number of
supermaximal repeats in a string of length N , where
ε = D/P , D is the maximum number of differences
allowed in the repeats, P is the length of the repeats,
and pow(ε) is an increasing, concave function that
is 0 when ε = 0 and less than 1 when ε is small
enough.

2. use the first result to design an O(N+DN3pow(ε)−1

log N) expected-time algorithm for the finding of
all short (i.e., of length O(log N)) approximate re-
peats. The algorithm is based on a delicate construc-
tion of seeds from supermaximal and maximal ex-
act repeats. In practice, the running time of the algo-
rithm is about O(N1.7 log N) for DNA and protein
sequences.

c© Oxford University Press 2001 S5

E.F.Adebiyi et al.

Our results are inspired by Myers’ work on approximate
keyword search. In (Myers, 1994), Myers presented a
sub-linear time algorithm for the problem of searching
for approximate keywords: Given (relatively) short query
string W of length P , a long subject string S of length
N , and a threshold D, find all substrings of S that align
with W with at most D differences. Myers’ algorithm is
based on the notion of the condensed D-neighborhood of
a string and uses an index structure containing information
regarding where approximate matches of keywords of
sizes up to log|�| N are to be found in string S. These are
among the key ingredients in our construction.

Note that the above results are based on the assumption
that the strings are randomly generated by Bernoulli trials.
It is known that many DNA sequences, are in fact, close to
being random according to statistical tests(Blumer et al.,
1989). We have also implemented our approach and tested
it on real DNA genomic sequences to justify its practical
efficiency.

Previous Work
A detailed, up-to-date survey of previous work on finding
approximate repeats can be found in (Kurtz et al., 2000).
Here, we only mention results that are directly related to
our results. Kurtz et al. (Kurtz et al., 2000) have recently
presented an algorithm for finding approximate repeats of
length P which runs in O(N + Dz) time for hamming
distance and in O(N + D3z) time for edit distance, where
z is the number of seeds and D is the maximum number
of mismatches or differences expected in the resulting
repeats. Their construction works by first computing all
seeds of lengths above a specific threshold and testing
whether each seed can be left or right maximally extended
to a D-(mismatch or differences) repeat. For the hamming
distance, they extend each seed by computing the length
of the longest common prefix of two substrings, while
for the edit distance, each seed is extended using a
combination of dynamic programming algorithm due to
Ukkonen (Ukkonen, 1985) and the longest common prefix
technique. They estimate that the expected number of
seeds required is O(N2(1/|�|s)), where s is the length
of the seed used. This is suitable for long approximate
repeats (that is, P is large), since the size of the pool of
seeds decreases as P increases. For short repeats, however,
the situation is different. If P = c · log N , where c > 1,
the running time would be O(N + D3 · N2− c

D+1) for edit
distance, which is worse than the running time of our
algorithm when D is modestly large.

Sagot (Sagot, 1998) designed an algorithm for finding
approximate repeats of length P using suffix trees and
the notion of D-neighborhood. Her algorithm runs in time
O(N P D |�|D), which is clearly inefficient for moderately
large values of P and D. Moreover, her algorithm
generates one D-neighborhood for each maximal repeat.

By the concept of condensed D-neighborhood and the use
of supermaximal repeats as seeds, both drawbacks can
be avoided. This will be discussed later more formally.
Furthermore, the concept of condensed D-neighborhood
even allows us to find approximate repeats using an
approximate common seed instead of an exact seed.

We note that maximal exact repeats have been used as
seeds in several previous constructions. For example, the
work of Kurtz et al. (Kurtz et al., 2000), Repeat-finder
(TIGR, 1999), MuMmer (Delcher et al., 1999), and RE-
Puter (Kurtz and Schleiermacher, 1999) all use maximal
repeats. However, in all these constructions, general maxi-
mal exact repeats are used as seeds without any distinction
from supermaximal repeats. Our construction will focus
on supermaximal repeats instead, and use additional (non-
super)maximal repeats only when it is necessary. This dis-
tinction between supermaximal seeds and general maxi-
mal repeats is a key to our design of the sub-quadratic al-
gorithm.

The rest of the paper is organized similar to the
structure of the algorithm. In the next section, we give a
characterization of the set of seeds from the set of maximal
exact repeats based on some properties. The maximal
exact repeats can be computed using the suffix tree of the
target string S. In section 3, we prove that the expected
number of seeds of length 2 log|�| N is O(N2pow(ε)−1−d)

for some d < 1, and discuss how to find all short
approximate repeats from these seeds using the sublinear-
time algorithm of Myers for approximate keyword search,
which is simply called SAM in this paper. In section 4, we
report some experimental results and discuss the practical
efficiency of our approach.

CHARACTERIZATION OF SEEDS
In this section, we present some properties of maximal
exact repeats which are useful in the construction of our
seeds. It is well-known (Gusfield, 1997) that there exists a
linear time algorithm to find maximal and supermaximal
exact repeats, since each of them can be represented by an
appropriate subtree of the suffix tree for string S.

As a first derivation, we give an estimate of the expected
length of a longest exact repeat in a string of length N . Let
L denote the expected length of a longest exact repeat.

LEMMA 1. Given a string of length N , the expected
length L of the longest repeat is 2 log N/ log |�| +
o(logN).

Proof. By standard probabilistic analysis. 2

Note that the above expected length bound also holds
for maximal and supermaximal repeats. It is clear (Kurtz
and Schleiermacher, 1999) that from the maximal repeats,
all the non-maximal repeats can be derived. It is also
true that from the supermaximal repeats, all the maximal

S6

Finding Short Approximate Non-Tandem Repeats

repeats that are not supermaximal repeats and non-
maximal repeats can be derived. This is stated in the
following lemma. Note that from now on, when we refer
to maximal repeats, we mean those maximal repeats that
are not supermaximal repeats.

LEMMA 2. Each maximal or non-maximal repeat is
contained in some supermaximal repeat.

The following definitions taken from (Myers, 1994) will
lead us to another property concerning the relationship
between supermaximal repeats and maximal repeats. Let
δ(V , W) denote the edit distance between two strings V
and W .

DEFINITION 1. (Myers, 1994) The D-neighborhood of
a string W is the set of all strings with edit distance at most
D from W , i.e., ND(W) = {V : δ(V , W) ≤ D}.

DEFINITION 2. (Myers, 1994) The condensed D-
neighborhood of W is the set of all strings in the
D-neighborhood of W that do not have a prefix in the
neighborhood, i.e., ND(W) = {V : V ∈ ND(W) and no
prefix of V is in ND(W)}.

A repeat family is defined to be the approximate
repeats in a D-neighborhood of some supermaximal
(exact) repeat. The only approximate repeats that may
not be in any repeat family are those that are extendable
from maximal repeats of lengths less than L − D.
They may be significant, since not all positions where
there exist supermaximal repeats represent maximal repeat
substrings of a supermaximal repeat. A simple way to
detect them is to sequentially fish out maximal repeats
whose length are less than L − D, but a more rigorous
approach is the following further refinement, based on
Lemma 2, of a ‘supermaximal’ repeat family via a
covering by the corresponding ‘maximal’ repeats with a
smaller neighborhood of radius D̂. A formal definition is
given below.

DEFINITION 3. For a supermaximal repeat W , we
call the set of approximate repeats in the condensed
D-neighborhood ND(W) the extended repeat family
E(D, W) for W .

DEFINITION 4. Given a maximal repeat w which is
a substring of a supermaximal repeat W and distances
D and D̂ with D̂ ≤ D, we define the set of approximate
repeats in ND̂(w) to be the condensed repeat family

C(D̂, w).

Intuitively, the relationship between E(D, W) and
C(D̂, w) can be observed as the covering of the elements

of E(D, W) by some smaller sets around some central
elements w. In essence, what we need to break E(D, W)

into C(D̂, w) is to find these central elements and let
D̂ be the edit distance between w and the elements of
E(D, W) which are the closest to w. We identify these
central elements w as the set of maximal repeats in
E(D, W). Therefore, W and w, respectively, are called
the central elements or representatives of the correspond-
ing repeat families E(D, W) and C(D̂, w). By definition,
C(D̂, w) ⊆ E(D, W). The subset property of C(D̂, w)’s
in E(D, W) implies a coverage property, so that for each
supermaximal repeat, we can compute D̂ by a binary
search on D̂, 1 ≤ D̂ ≤ D, until D̂ is minimized but
∪ C(D̂, w) = E(D, W). The relationship between D and
D̂ indicates this new relation between the sets of maximal
repeats and supermaximal repeats.

From the above results that show the ability to break
E(D, W) into several C(D̂, w)’s, we give again another
important property that enables our use of all supermax-
imal repeats as seeds to be robust enough to capture all
other significant repeated patterns. Therefore, our set of
seeds is a combination of the set of all supermaximal re-
peats (denoted as U) and the set of some significant max-
imal repeats (denoted as M ′).

We will show how to obtain these maximal repeats
in the next section. Note that the locations of those
maximal repeats, whose positions are not covered by
supermaximal repeats but have lengths greater than L−D,
will be located as approximate re-occurrences of patterns
extendable from some supermaximal exact repeats. In
the following, ξ(D̂, D) denotes the average number of
condensed repeat families C(D̂, w) in E(D, W).

FINDING SHORT APPROXIMATE REPEATS
Using the result of Lemma 1 of section 2 and the
sublinear time algorithm of Myers for finding approximate
keywords, SAM (Myers, 1994), we prove in this section a
significantly sub-quadratic time algorithm for finding all
short approximate repeats, that is, approximate repeats of
length O(log N). This is derived by executing SAM for
each of the seeds with a given edit distance D. To prove
this, we begin with an overview of some relevant results
in (Myers, 1994). Next, we prove a sublinear bound on the
number of supermaximal repeats and, finally, show how
to extract from the set of maximal repeats, all significant
maximal repeats . The construction of the sub-quadratic
algorithm then follows.

An Upper Bound on the Expected Number of
Supermaximal Repeats
Here, we prove an upper bound on the expected number
of supermaximal repeats using techniques from (Myers,
1994). We state first an upper bound by Myers for

S7

E.F.Adebiyi et al.

generating the strings in ND(W). Let Pr(T, D) be the
maximum probability of matching a string in a condensed
D-neighborhood of a string W of length T at a given
position of the subject string.

LEMMA 3. (Myers, 1994) For T = log|�| N and

D ≤ T and given that |ND(W)| ≤ c
(c−1)

Bnd(T, D, c)

and Pr(T, D) ≤ c
(c−1)

Bnd(T,D,c)
|�|T for c > 1, where

Bnd(T, D, c) = (c+1
c−1)T cD|�|D , |ND(W)| < 2N pow(ε)

and Pr(T, D) < 2N pow(ε)−1, where ε = D/T ,
pow(ε) = log|�|(c + 1)/(c − 1) + ε log|�| c + ε and

c = ε−1 +√1+ ε−2.

LEMMA 4. (Myers, 1994) For any string s ∈ S, the
strings in ND(s) can be generated in O(DN pow(ε))
worst-case time, where ε = D/T , pow(ε) = log|�|(c +
1)/(c− 1)+ ε log|�| c + ε, and c = ε−1 +√1+ ε−2.

Using this bound and a covering list concept, the
sublinear algorithm, SAM, was proved in the following
lemma.

LEMMA 5. Given that the string of length N is
the result of equi-probable Bernoulli trials and that
pow(ε) < 1, the approximate keyword search problem
can be solved in expectation in O(DN pow(ε) log N + P)

time.

Using the expected bound for the length of the longest
repeat proved in section 2, we can extend the lemmas
above concerning the size of ND(W), Pr(T, D) and the
efficiency of the generation of |ND(W)| for strings W .

LEMMA 6. For T ≈ 2 · log|�| N and D ≤ T ,
|ND(W)| < 2N2pow(ε) and Pr(T, D) < 2N2pow(ε)−2

where ε = D/T , pow(ε) = log|�|(c + 1)/(c − 1) +
ε log|�| c + ε and c = ε−1 +√1+ ε−2.

The proof of the lemma closely follows the original
proof of Myers. With this information, the following
lemma gives the expected number of supermaximal
repeats.

THEOREM 7. For T � 2 · log|�| N and D ≤ T , in
expectation, the number of supermaximal repeats(R) is
O(N (2pow(ε)−1−d)) for some d < 1.

Proof.(Sketch) Note that the number of occurrences of
any words w in the neighborhood of a given word W
is at most N Pr(T, D). Then, the number (N

N Pr(T,D)
) of

such words W in the database is less than 1/Pr(T, D),
assuming that neighborhoods are kept disjoint. Hence,
based on the results of Lemma 2 and definitions 3-
4 of section 2, assuming that E(D, W) neighborhoods

are kept disjoint, the number of neighborhoods R =
O(1/Pr(T, D)).

To overcome the assumption of disjointness, because the
generation of words in the neighborhood of W is tailored
towards an arbitrary word and does not take into consid-
eration similarity or edit distance between words W , we
give the following proof. Let IE P (δ(W1, W2), |l2 − l1|)
(henceforth IE P) be the expected number of elements that
form the intersection subset between any two extended re-
peat families E(D, W1) and E(D, W2). We estimate that
IE P = c · Nd for suitable constants c and d ≤ 1. A more
precise analysis of IE P is deferred to the full version of
the paper.

In expectation, the number of substrings of length T of
string S where the substrings are counted more than once
because they are in the intersection subsets is

N + R2

2 IE P .

Hence, each word is counted
N+ R2

2 IE P

N times on average.
Therefore, R can be estimated by

R = N
N Pr(T,D)

· N+ R2
2 IE P

N .

Simplifying the above leads to a quadratic equation in the
unknown variable R. That is,

IE P R2 − 2N Pr(T, D)R + N = 0.

Solving this quadratic equation shows that R ≤
2N Pr(T,D)

IE P
. Thus,

R = O(N (2pow(ε)−1−d)) for some d < 1.

2

Observing that ξ(D̂, D) is in fact a constant, ξ(D̂, D)R
(which represents the expected number of maximal re-
peats) is also O(N (2pow(ε)−1−d)).

Extracting Significant Maximal Repeats
Next, we show how to use the approach given in the pre-
vious subsection to precisely compute all elements of M ′,
the set of significant maximal repeats. The procedure to
find significant maximal repeats FINDSIGMR(U, M) is
encapsulated in Fig. 1 below, given the sets of supermax-
imal repeats (U) and maximal repeats (M) in a string of
length N .

The first three sub-procedures in FINDSIGMR(U, M)
implement the specification given in definitions 3-4
above, where we need to partition maximal repeats into
classes, i.e., E(D, W)’s, where the members (i.e, max-
imal repeats) of each class are proper substrings of the
supermaximal repeat representing the class. Specifically,
in sub-procedure IDCLASSMR(U, M), we concatenate
supermaximal repeats, separated by special symbols for

S8

Finding Short Approximate Non-Tandem Repeats

1. procedure FINDSIGMR(U ,M)

2. { M ←− I DC L ASS M R(U, M)

3. Sort M

4. Ei(D, Wi)←− P ART M R(M), i = 1...R

5. for Wi , i = 1...R do

6. M ′ ←− C O LT S I G M R(Ei (D, Wi)) }

Fig. 1. Finding maximal repeats whose lengths are less than L − D
and whose positions are not covered by a supermaximal repeat.

recognition, to form a string and build a suffix tree for this
string. We call this suffix tree the supermaximal repeats
suffix tree (SST). The next task is to fish out the indices
where each maximal repeat exists in SST. From these
indices, we can find out which supermaximal repeat(s)
contains a particular maximal repeat. Note that a maximal
repeat may occur in more than one supermaximal repeats
but, in this analysis, we make use of only one of its oc-
currences. In PARTMR(M), we partition maximal repeats
into classes Ei(D, W), i = 1...R. The last sub-procedure
in FINDSIGMR(U, M) is COLTSIGMR(Ei (D, W)),
i = 1...R. This sub-procedure collects into M ′ all maxi-
mal repeats whose length are less than L − D and whose
positions are not covered by a supermaximal repeat.

LEMMA 8. Given the sets of supermaximal repeats (U)
and maximal repeats (M) in a string of length N , the
running time of FINDSIGMR(U, M) in expectation is
O(N2pow(ε)−1−d log N) for some d < 1.

Proof. The procedure FINDSIGMR(U, M) include sub-
procedures IDCLASSMR(U, M), Sort M , PARTMR(M),
and COLTSIGMR(Ei (D, Wi)), i = 1...R.

The running time of IDCLASSMR(U, M) in-
cludes the time to concatenate supermaximal repeats
to form a string and building a suffix tree, SST, in
O(N (2pow(ε)−1−d) log|�| N) and decide for each maximal
repeat, for which supermaximal repeat is the maximal
repeat a substring in O(N2pow(ε)−1−d log|�| N) for some
d < 1.

The time to sort M and for PARTMR(M) is at most
O(N2pow(ε)−1−d log|�| N) for some d < 1.

To estimate the running time of COLTSIGMR(Ei (D, Wi
)), i = 1...R, requires that we know how many maximal
repeats are in each supermaximal repeat based class
E(D, W). Extending the proof of Lemma 6 and using
the estimation for the length of supermaximal repeat,
a technical analysis shows that the running time of
COLTSIGMR(Ei (D, Wi)), i = 1...R, is

O(N2pow(ε)(logN log|�| N2+1)−3−d log N) for some d < 1.

1. procedure FINDSAPPR(D, P, U ∪ M ′, N)

2. { For Wi , i = 1...|U ∪ M ′| do

3. Wl ,Wr ←−SPLITW(Wi)

4. H ←−SAM(Dl , Wl)

5. for each Hi , i = 1...|H | do

6. S A←−ADDWR(Dr , Hir , P) }

Fig. 2. Finding short approximate repeats by extenping seeds.

Noting the dominating term, we can write that the run-
ning time of FINDSIGMR(U, M) is O(N (2pow(ε)−1−d)

log N) for some d < 1. 2

Procedure FINDSAPPR(D, P, U ∪ M ′, N) finds all
short approximate repeats using SAM that are obtain-
able by expanding seeds in the set U ∪ M ′. Noting
that |U ∪ M ′| is the number of seeds found in string
S and |H | is the number of locations returned into H ,
FINDSAPPR(D, P, U ∪ M ′, N) and its complexity
analysis are described below.

We assume here that P = c · log N for a constant c > 0.
If c ≤ 1, a direct application of SAM solves the problem.
For c > 1, we do the following:

Basically, given D, for each seed W , we split W into
a left and right part Wl and Wr , where |Wl | = log|�| N .
Next, using SAM, we find all locations of all approximate
repeats W ′l of Wl . Their right indices are stored in set H .
Next, we check whether we can extend W ′l to the right
to get approximate repeat for W = Wl Wr . Therefore,
for every index Hi in H corresponding to a word Wli
with differences Di , we consider the word Wri starting
from Hi and having length P − log|�| N . Let EW denote
the set of possible rightward extensions of Wr to a word
of length P − log|�| N . Note that |EW | is the number
of occurrences of the seed W in string S, which is,
fortunately, at most |�| for supermaximal repeats and even
constant in expectation, if we restrict W to be of length
approximately 2 log N . Therefore, |EW | will be neglected
in the following analysis. Furthermore, note that for c = 2,
no extension is necessary. We just take Wr .

We compute the pairwise alignments of Wri with all
elements E j of EW and, if the difference between two
strings is at most D′i = D − Di , then the extension
works and we can add Wi = Wli Wri to the output list S A
for the short approximate repeats. We call this procedure
ADDWR(D′i , Li , P). A pseudo-code for FINDSAPPR is
given in Fig. 2.

LEMMA 9. Given the sets of seeds U ∪ M ′, where the
length of each seed is approximately 2 log|�| N , all short

S9

E.F.Adebiyi et al.

1. procedure LISTSAPPR(D, P, N)

2. { build a suffix tree for S

3. S, M ←−FINDSMR(N)

4. //ComputeD̂(D)//

5. M ′ ←−FINDSIGMR(U, M)

6. FINDSAPPR(D, P, U ∪ M ′, N) }

Fig. 3. The complete algorithm for finding all short approximate
repeats.

approximate repeats of size O(log N) can be found in
an O(DN (3pow(ε)−1) log N) expected time algorithm for
D ≤ 2 log|�| N .

Proof. The subprocedure SPLITW can be done for each
seed in constant time. SAM running time for each seed is
O(DN pow(ε) log N).

Note that using Lemma 3, the size of indices in set L
is at most O(N pow(ε)). Therefore, since in expectation
the length of Wr is log|�| N , ADDWR requires for all

indices in L at most O(N pow(ε) log2|�| N) time. Hence,
the running time of FINDSAPPR(D, U ∪ M ′, N) for all
seeds where |U ∪M ′| is at most O(N2pow(ε)−1) is at most
O(DN3pow(ε)−1 log N), at least for all practical values of
N and �. 2

Using all of the details above, the algorithm
LISTSAPPR(D, P, N) that lists all short approxi-
mate repeats and its expected time is encapsulated in Fig.
3 and the theorem below.

THEOREM 10. Given a string of length N , the expected
time require to find all short approximate repeats is O(N+
DN3pow(ε)−1 log N) for D ≤ 2 log|�| N .

Proof. The time to build a suffix tree for string S and
find supermaximal and maximal repeats in a string of
length N , which is done in FINDSMR(N), is O(N + m),
where m is the number of the maximal exact repeats found.
Note that we have shown in Lemma 7 that m = ξ R =
�(N (2pow(ε)−1−d)) for some d < 1. The supermaximal
and maximal repeats are output into sets U and M .

In procedure FINDSAPPR(D, P, U∪M ′, N), we need
the significant approximate repeats as seeds. As noted
earlier on, to locate maximal repeats whose length are
less than L − D and whose positions are not covered
by a supermaximal repeat, we make use of procedure
FINDSIGMR(U, M) and store these significant exact
maximal repeats in variable M ′. The expected running
time of FINDSIGMR(U, M) is given in Lemma 8.

Note that the running time of FINDSAPPR(D, P, U ∪
M ′, N) proved in Lemma 9 is within the bound of the the-

orem. Therefore, the overall expected time for procedure
LISTSAPPR(D, P, N) is O(N + DN (3pow(ε)−1) log N).
2

PRACTICAL EXPERIMENTS
We have implemented our algorithm in C to determine
its practical efficiency. We find the supermaximal and
maximal repeats using suffix tree. Based on some practical
observations, we implemented FINDSIGMR(U, M) using
only one of the two filtering constraints for significant
maximal repeats discussed before. Recall that from the set
of all maximal repeats, we extract the maximal repeats
whose length are less than L − D, where L is the
length of the longest supermaximal repeat, and whose
positions are not covered by a supermaximal repeat. We
found in practice that the first condition is sufficient to
extract reasonable maximal repeats (see Table 1, column
4, #max sig). To avoid the multiple extension of the same
approximate repeats from a supermaximal repeat (W) and
the maximal repeats in E(D, W), we simply ignore using
as seed an instance occurrence of a maximal repeat whose
left boundary is at most D away from the left boundary
of W ; this combination is faster in practice (see Table 1,
column 5, for the number of maximal repeats #max usd,
used as seed by our algorithm on some genomes). In
procedure FINDSAPPR(D, P, U ∪ M ′, N), we direct
the search for an approximate repeats in the extension
phase in subprocedure ADDWR(Dr , Hir , P) using the
idea of progressive computation of the corresponding rows
of the dynamic programming matrix. This idea is also
used by (Myers, 1994) to tackle the problem of generating
the words in the condensed D-neighborhood of a word.
We also extracted maximal repeats using the filtering
constraint given by Kurtz et al. (Kurtz et al., 2000). This
constraint is stated in the lemma below:

LEMMA 11. (Kurtz et al., 2000) Every maximal D-
difference repeat R of length P contains a maximal exact
repeat of length ≥ � P

D+1�, which is used as a seed.

Note that this notion of seeds is different from the one
we used.

We report some test results on our algorithm, in
comparison with that of Kurtz et al., on some real genomes
taken from the NCBI database in the following table.
Because our algorithm, partially, and the algorithm of
Kurtz et al. run in time proportional to the number of
seeds, we focus foremost on the number of seeds required
by each algorithm. Note that we do not need to consider
all supermaximal or maximal repeats, but just those of
lengths larger than or equal to �2 · log|�| N� (see Table 1,
column 4). This shows the significance of our theoretical
estimation of 2 · log|�| N as the expected maximum length
of maximal repeats.

S10

Finding Short Approximate Non-Tandem Repeats

Table 1. Experimental results on the number of supermaximal, maximal repeats, the number of seeds and the number of approximate repeats found with the
corresponding running time used. In this table, 2 · log|�| N < P ≤ 30 and D ≤ 4. The number in the second column is the number of bases in each genome
in megabases (MB). Column 3 give the numbers of supermaximal and maximal repeats in each genome and the total number of supermaximal and maximal
repeats used as seeds in REPfind. Column 4 shows the total number of supermaximal used as seeds in our algorithm. #max sig is the number of maximal
repeats, whose lengths are ≥ �2 · log|�| N�. On the long run, the number of maximal repeats used in our algorithm as seeds is given in column 5. Column 6
and 7 give the number of approximate repeats found in each genome and the running time in seconds used to find them. Our program was run on a SUN-Sparc
computer under Solaris 2.5.1 with a 366 MHz-Processor and 360Mbytes of main memory.

REPfind Ours Ours Ours Ours

Genome N (MB) #sup usd / #max usd #sup usd / #max sig #max usd #appr.rep run time (sec)

pNGR234 .46 90996 / 37471 442 / 0 0 329 1003.35
Mgen .50 95008 / 38055 380 / 3 2 513 867.61
Uure .64 120060 / 46417 202 / 1 0 201 525.51
Mpneu .70 132181 / 54932 944 / 16 10 1629 1914.66
Bbur .78 152881 / 59800 105 / 0 0 94 260.63
Ctra .89 187080 / 76619 92 / 0 0 91 214.44
CtraM .92 192460 / 77997 63 / 0 0 66 155.68
Rpxx .95 191575 / 75925 54 / 0 0 29 215.73
Tpal .98 203499 / 83244 245 / 1 0 260 613.84
CpneuA 1.05 220777 / 89634 183 / 0 0 201 576.63
Cpneu 1.05 219967 / 90282 124 / 2 1 128 373.94
Cjej 1.41 266843 / 105161 629 / 0 0 482 2617.57
Aaeo 1.43 295649 / 119698 183 / 13 3 325 683.25
Mjan 1.43 277985 / 107694 574 / 39 19 993 2609.25
Hpyl 1.43 276973 / 111685 609 / 1 1 674 2263.31
Mthe 1.50 305620 / 124248 577 / 46 14 865 2086.84
Pabyssi 1.51 317188 / 128042 191 / 8 3 167 1143.23
Hinf 1.57 314207 / 127524 795 / 5 3 964 3038.26
Aful 1.9 383030 / 155826 430 / 27 7 603 1848.13
Drad1 2.27 434270 / 170850 751 / 22 14 1398 3385.79
Synecho 3.06 626017 / 255746 887 / 22 15 1577 4176.41
Bsub 3.61 752332 / 305426 818 / 1 1 1251 4160.21
Mtub 3.78 744838 / 300892 1795 / 64 37 4368 13001.30
Ecoli 4.6 934209 / 380851 683 / 54 36 1488 4892.36

Column 6 and 7 of the table below shows the number
of short approximate non-tandem repeats found in each
genome we considered and the running time in seconds
that our algorithm spent to find them. RePfind compute
also all approximate, non-tandem repeats, but uses every
available seeds (supermaximal and maximal repeats) to do
so. As we stated earlier on, this is practical for finding
long approximate repeats but quite impractical for find
short approximate repeats. We ran REPfind on genome
pNGR234. It used 80552.73 secs ≈ 22 hours to find the
approximate repeats, whose lengths are between 19 and
30, while D ≤ 4. We ran also REPfind on genomes
Mgen, Uure, Mpneu and Bbur. We broke the operation of
REPfind on each genome after it ran for 10 hours. The
other genomes even have more maximal repeats such that
REPfind is expected to have an even higher runtime in
these cases. The foregone arguments clearly conclude the
practical efficiency of our approach.

We give some observations based on the experiments:

1. For finding short approximate repeats, the algorithm

of Kurtzet al. requires a lot more seeds than ours,
see columns 3 and 4 of the table above. Therefore,
our algorithm is much more efficient.

2. In the extension phase, the algorithm of Kurtz et
al. actually considers pairs of maximal repeats,
different from our approach. Hence, their running
time might actually grow quadratic in the number of
maximal repeats, but our algorithm’s running time
is a linear function of the number of supermaximal
repeats.

3. Their algorithm might consider the same approx-
imate repeats of a specific length up to D times,
namely if it contains D exact repeats of appropri-
ate length. Our method avoids this by extending the
seeds only in one direction.

One would expect the running time of our algorithm to
increase as the size of the genome increase as it occurred
in REPfind. Instead it depends majorly on the number
of seeds found in each genome, which does not always

S11

E.F.Adebiyi et al.

increase as the genome size increases. There is a natural
explanation for this. For example, the number of genes
in a genome does not always increase with the genome
size, as evidenced in genomes pNGR234 and Pabyssi or
Mtub and Ecoli. The second factor on the running time
of our algorithm is the number of instances, |EW |, of a
maximal repeat used as seed. This also does not depend
in any way on the size of the genome, as observed in
genomes pNGR234 and Mgen for example. The last factor
is the total number of elements of set H considered for
extension in the attempt to extend a seed to an approximate
repeat. This is the prominient factor on the running time
of our algorithm on genomes Mpneu and Cjej, where
we used 1914.66 secs to find 1629 approximate repeats
in one genome but used 2617.57 secs to find only 482
approximate repeats in the other. These are some of the
dynamic attributes of our algorithm that makes it efficient
in practice.

CONCLUSION
We proved a significantly sub-quadratic algorithm for
finding non-tandem approximate short repeats. The
improved performance of the algorithm is not only
theoretically proved, but also shown to be true in practice.
This is because of the small number of seeds the algorithm
chooses to use. Our theoretical characterization shows that
such a small number of seeds are enough for finding all
short approximate repeats. Several further improvements
are possible as observed in the comparision of our work
with that of Kurtz et al. (Kurtz et al., 2000), and will be
attempted in our future work.

Acknowledgments
We thank Jop Sibeyn for some discussions on the analysis
of the expected length of the longest repeat. We also
thank Stefan Kurtz and Gene Myers for providing us with
their program codes for building the suffix tree, for the
executable codes of REPfind, and for mailing the code
of the sublinear algorithm, which we named SAM in
this paper. Ezekiel F. Adebiyi was supported by DAAD
Scholarship Grant. Tao Jiang has been partially supported
by a UCR startup grant and NSF grants CCR-9988353 and
ITR-0085910.

REFERENCES
Bairoch, A. (1992). Prosite: a dictionary of sites and patterns in

proteins. Nucleic Acids Res. 20(Suppl), 2013–2017.
Blumer, A., A. Ehrenfeucht, et al. (1989). Average size of suffix

trees and dawgs. Discrete Applied Mathematics 24, 37–45.
Delcher, A., S. Kasif, et al. (1999). Alignment of whole genomes.

Nucleic Acids Research 27(11), 2369–2376.
Gusfield, D. (1997). Algorithms on strings, trees and sequences.

Cambridge University Press, New York.

Hodgman, T. (1989). The elucidation of protein function by
sequence motif analysis. Comput. Applic. Biosci. 5, 1–13.

Kurtz, S., E. Ohlebusch, et al. (2000). Computation and visualiza-
tion of degenerate repeats in complete genomes. ISMB Conf.,
228–238.

Kurtz, S. and C. Schleiermacher (1999). Reputer: fast computation
of maximal repeats in complete genomes. Bioinformatics 15(5),
426–427.

Myers, E. (1994). A sub-linear algorithm for approximate keyword
matching. Algorithmica 12(4-5), 345–374.

Sagot, M.-F. (1998). Spelling approximate repeated or common
motifs using a suffix tree. LNCS 1380, 111–127.

TIGR (1999). Repeat-finder. http://www.tigre.org/tdb/rice
/repeatinfo-MUMmer.shtml.

Ukkonen, E. (1985). Algorithms for approximate string matching.
Information and Control 64, 100–118.

S12

