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Abstract 

Optimisation of power generation and plant capacity are of primary significance for the 
improvement of power supplies, cost decisions and economics. This paper develops a robust predictive 
model for electric power generation and capacity utilisation and integrates the output from predictive 
models into a multi-objective model. The optimal solution was determined after comparing the 
performance of a Real Coding Genetic Algorithm (RCGA), Particle Swarm Optimisation (PSO) and Big-
Bang Big-Crunch Algorithm (BB-BC). Testing of the proposed model was carried out using data from a 
Nigerian electric power generation plant with a capacity of about 5 million Megawatt Hours (MWH) to 
test the presented methodology. Our findings indicate that the Auto-Regressive Integrated Moving 
average (ARIMA) model adequately predicts the power generation variables and compares favorably 
with literature results. The RCGA performed better than the BB-BC and PSO algorithms in terms of the 
quality of solutions for the proposed model. The outcome of this study suggests that computational 
complexity can be reduced in the evaluation of variables, yet producing a practical, simple and robust 
model. 
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Introduction 

There are critical global challenges associated with traditional grid systems, including poor 
operational performance in power generation and distribution, customers’ low access to electricity 
services, low system efficiencies, problems relating to affordability by consumers, plant reliability and 
quality-of-service related problems. These problems, which can be captured under technical and 
economic conceptualisations [1], coupled with the global governments’ concerns for increased access to 
power services by consumers and the need to stimulate economic growth make further intensive 
investigations on the traditional grid system a necessity and relevant. However, given these myriads of 
competing factors that should be considered, an investigation concerning power generation, plant capacity 
and cost decisions in an innovative, integrated manner must be carried out as a real contribution towards 
solving some of the aforementioned problems. Interestingly, the problem addressed in this article has 
been a concern of scholars worldwide but an integrated and innovative treatment as presented in the 
current work has not previously been reported in the literature. The research and development articles on 
power generation, reliability issues and plant capacity topics in the energy field fully appreciate these key 
challenges but the pool of existing knowledge are somehow disintegrated. Novel investigations have been 
documented on power generation on one hand, while on the other hand, noteworthy studies have been 
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concerned with plant reliability issues as related to plant capacity but the literature has ignored the 
possibility of these integrations with cost decisions. The integration of such important factors in a model 
is not sufficient as suboptimal results could lead to poor decisions based on such models. Therefore, a 
further advancement pursued in this study is to develop optimal conditions with the variables indicating 
optimal quantities to adopt. 

Optimal power generation, plant capacity and reliability issues as well as cost decisions are one of 
the most important and widely advocated concerns in the electric power economic literature. However, 
these were based on separate factor considerations. Nigeria, being the most populated country in Africa 
consumes a great deal of power supplies. In fact, the electric power system had to be privatized as a result 
of the challenges of inefficiency of electricity generation and supplies. With a huge investment recently 
channeled to the power industry in Nigeria through the deployment of highly technical resources and 
equipment of high magnitude of costs, the issue of optimisation of power generation and plant capacity in 
an integrated manner such that cost is optimised should be second to none in the priorities of researchers 
towards providing tools to and efficiency of power generation in Nigeria. 

Optimisation continues to be important in the maintenance of an efficiently and effectively 
maintained power generation plant. As such, optimisation of all the necessary variables that control power 
generation should be done [2-5]. Optimisation guarantees the proper functioning of the generation 
industry with the least pressure on the utilisation of resources of the power generation system. In spite of 
the increasing knowledge that optimisation of power plants could help in decision making, empirical 
models that address the power generation problem and plant reliability issues are scare. Furthermore, the 
rapidly changing landscape in optimisation has brought about excellent optimisation tools nowadays, 
which are not being fully tested in empirical studies. 

The use of soft computing tools like fuzzy models and Artificial Neural Network (ANN) models has 
been widely acknowledged as models that minimise the discrepancies between the actual and predicted 
values of variables in scientific literature and so may be useful for power generation issues. However, 
their applications in electric power plants have been sparsely reported in literature especially in 
developing countries. Similarly, other models like Auto-Regressive Integrated Moving Average 
(ARIMA) and robust regression models are statistical models that have also gained wide acceptance 
especially among researchers and industrial practitioners in the social sciences disciplines. But such 
knowledge could be extended to engineering with success. The benefit of applying these predictive 
models in electric power generating plants motivates the need for the current paper. Thus, an objective of 
this work is to apply a predictive model that has a high predictive capacity for electric power generation 
and capacity utilisation. This paper considers the ARIMA model and a robust regression model in 
carrying out its comparative analysis using Mean Absolute Percentage Error (MAPE) for comparative 
basis. The modification entails incorporating a fuzzy system as well as a meta-heuristics platform in the 
model for analysis. 

To develop the various predictive models in this paper, electric power generation and capacity 
utilisation models are developed using 3 inputs variables (plant reliability index, breakdown maintenance 
index and generation unit cost). In order to improve the management of an electric power plant, the 
developed predictive model for the electric power plant is used and formulated as an optimisation model 
which is subjected to the input as variable bounds. We consider the objective of minimising unit cost of 
electric power generation while maximising the plant availability index. Also, the future worth of the 
power plant was maximised. An attainment of optimal value input variables will provide decision makers 
with information that can be used during the allocation of business resources. The proposed optimisation 
model is solved using meta-heuristics by formulating a weighted fuzzy goal programming model as a 
means of handling electric power generating and capacity utilisation objectives. 

The remaining sections of this paper are organised as follows: In section 2, a literature survey is 
presented while the description of the various prediction models considered in this paper is contained in 
Section 3. The application of the various predictive models is in Section 4 and Section 5 presents the 
discussion of the results. The conclusions of this paper are in Section 6. 
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Literature review 

This literature survey presents information on research and development status of power generation 
and plant capacity as they relate to cost. A thorough literature survey of papers in the energy research area 
is presented, showing the latest findings and key challenges as they relate to power generation and plant 
capacity issues in a cost orientation. 

The models of power systems have grown substantially over time due to the contribution of several 
researchers across the globe. A great deal of study has been carried out globally with specific local 
variables considered in models in the various countries; Europe and UK [6], India [7], Belgium, France, 
Germany and the Netherlands [8], Poland [9], Turkey [10], Malaysia [11], Australia [12], Ireland [13], 
Libya [14] are country-specific studies that are at the frontier of knowledge on power generation. A 
prominent theme of some of these studies is the need for optimisation of electric power generation [4,15]. 
Some authors have also linked optimisation to reliability of the plants [16]. As such, the last years have 
seen a growing concession in the energy field that electrical power generation and plant reliability cum 
capacity issues must be pursued. On one hand, substantial literature has promoted plant reliability matters. 
These have placed compelling pressure on the management of power generating firms [2,4,5,15]. Since 
priorities have been given to optimisation and plant reliability issues in the energy research arena [5,16-
18], a close look at the maintenance function as well as on unit cost of power generation would drive us 
towards achieving our optimality goals. 

Electric power generation and its effective distribution to consumers is one of the most challenging 
tasks in the power generation industry [15,19]. A related article by Pettinau et al. [20] aimed at bringing 
down the capital and operating costs for commercial power generation plants. A shortcoming of the work 
is the absence of optimisation analysis in it. The implication is the possible weakness in decisions made 
based on sub-optimal values of decision variables. 

There are several indices utilised in evaluating the capacity utilisation of industrial plants. However, 
most of these indices have been solely utilised for manufacturing systems while sparse information is 
available on their applications for electric power generation plants. A second problem is the disjointed 
treatment of electric power generation concept [5,19] as well as the concept relevant to capacity 
utilisation [15] index. It makes sense to have a holistic treatment of electric power generation and 
capacity utilisation problems and such information would provide a sound basis for management 
decisions. Electric power generation problems are a common issue across the globe [10,11,13,21]. This is 
evident in large amounts of research work available in the literature. 

When studying electricity-related problems, different aspects in which improvements are achievable 
have been pursued in the literature. One of such aspects is the use of renewable forms energy as an 
alternative and supplement to existing sources of generating electric power. For instance, Liu et al. [22] 
investigated the possibility of incorporating wind energy into China’s energy system while Hossain and 
Badr [23] examined the potential of using renewable energy as a complement to existing electric power 
generation methods in Bangladesh. Also, a similar inquiry was conducted in Libya by Mohammed et al. 
[14]. Their study focused on wind and solar energy as forms of renewable energies. Furthermore, a study 
was carried out in Brazil which considered the use of fuel cells development and hydrogen production as 
supplements to non-renewable energy [24]. 

Electric power generation problems have resulted in regional investigations in seeking ways 
forward to solving common problems in electricity generations and distributions [6,8], although, 
researchers are more interested in addressing country-wide problems [9,15,21,25]. Tasdoven et al. [21] 
studied electricity efficiency in Turkey. 

Apart from the aforementioned electric power generation and management problems, other 
problems have been studied and solved using different methodologies. Bazmi and Zahedi [5] examined 
the applications of optimisation modeling approach in electric power generation and system. A hybrid 
electric power system was proposed by Paska et al. [26] for managing primary energy sources. Wurg et 
al. [19] proposed the use of simulation models for dealing with the household demands for electric power 
while Papatopoulos and Karaqiannidis [3] described how decentralised energy systems can be optimised 
using a multi-criteria method (Electre III). Wurg et al. [4] proposed the use of small-scale embedded 
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generators in addressing electric power shortage in developing countries. The prospect of using large 
scale solar power generation system in addressing electric power shortage was investigated by Rao et al. 
[27].  

Furthermore, the use of a thermoelectric cogeneration system for electric power generation was 
proposed by Zheng et al. [28] while Cormos et al. [29] studied fossil fuel power generation plants in 
order to evaluate quantities of water and construction materials consumptions. Saver et al. [25] estimated 
the energy efficiency and power quality from an uninterrupted power system. Akdaq and Guler [30] 
considered the cost of electric power generation when using wind energy. Augutis et al. [17] addressed 
electrical power transient stability assessment problem using a Bayesian technique. Analysis of electric 
power marginal outage costs was conducted by Ghajar and Billinton [16] using the reliability technique. 

From the studies that were reviewed, we observe trends of case-specific approaches to the electric 
power generation problem. The 2-domain trends are electric power generation sources and country-wide 
approaches in studying power generation problems. The current paper draws its case study from Nigeria. 
Although few studies [15,18] were identified that were conducted in Nigeria in the papers reviewed, none 
of these studies considered electric power generation and capacity utilisation indices in problem 
prediction. 
 
Research methodology 

In this section, the structure of the research scheme adopted is shown in Figure 1, this summaries 
the main steps of the technical analysis carried out in order to obtain near-optimal results for the electric 
power system studied. 
 

ARIMA model 
The ARIMA model is a predictive model that integrates auto-regressive and moving averages in 

mapping sets of independent variables to desired values of a dependent variable. The nomenclature of 
ARIMA is given as (p,d,q), where p represents the degree of autoregressive, d is the degree of integrated 
difference and q stands for the degree of moving averages. Mathematical expressions for autoregressive, 
integrated differences and moving average in ARIMA [31,32] are expressed using Eqs. (1) to (3), 
respectively. 
 

tptpttt xxxy    2211
              (1) 
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             (2) 
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where, yt is the value of the dependent variable at time t, αi and βi are the coefficients to be estimated, εt is 
known as the error term at time t and μ is a constant mean of a process. B is known as the backshift and 
(1-B) is called the differencing operator. 

A model that contains only p and q is called ARMA. Such a model does not have differencing. An 
application of ARIMA during prediction is often considered when there exists non-stationarity in datasets 
that are used for forecasting. For datasets whose average is stable over time (i.e., stationary), ARIMA is 
applied instead of ARMA. Correlogram is used in the evaluation of the global and partial autocorrelations 
that will be utilised in determining the values of p and q for particular datasets. 
 

Robust regression model 
Robust regression models are statistical models that are used in addressing the problem on non 

normal regression errors that cannot be captured with linear least-squares estimation [33]. A common 
example of a robust regression model is M-estimation. This approach selects a β that will be minimised. 
The equation to be minimised [34] is expressed as follows; 
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Figure 1 Research scheme. 
 
 

By introducing weights into a least-square estimate, the normal least-square equation becomes Eq. 
(5). 
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Identify the independent and dependent variables for electric power plant evaluation 

Select the different forecasting models 

Partition the datasets into in-sample and out-samples datasets 

Select the statistical measures to be used in evaluating the performance of the predictive models 

Design the membership functions for classifying the predictive model performance 

Select the defuzzification method 

Formulate the optimisation model based on best predictive model outputs and bounds 
on decision variables 

Generate the optimal values for selected electric power plant decision variables using weight 
fuzzy goal programming and meta-heuristics 

Define the objective functions to be optimised 
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By differentiating the M-estimate criterion with respect to βj, Eq. (5) becomes Eq. (6).  
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Fuzzy classification of prediction model overall performance  
In this paper, the MAPE that is Eq. (7), is used in evaluating the performance of each of the 

predictive models considered in this work. The decision on which of the predictive models considered in 
this paper is the most preferable is based on the concept of fuzzy modelling. Partitioning of the overall 
performance of the predictive model is based on the conversion of Lewis’s classification of MAPE, as 
reported by Ofori et al. [35].  
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An integration of the MAPE from the electric power generation index and the plant capacity 

utilisation index is achieved using the weighted average fuzzy method [36], as shown in Eq. (8). The 
input value for a membership function in Eq. (8) is obtained using Figure 2. The expressions for the 
various membership functions in Figure 2 are given as Eqs. (9) - (12). 
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Figure 2 Memberships function for MAPE. 
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where μ(H) represents the high accuracy membership function, μ(G) is the membership function for good 
prediction, μ(R) stands for membership function for reasonable prediction, and μ(I) represents the 
membership function for inaccurate predictions. 
 

Optimisation model 
Some of the notations used in presenting the proposed optimisation model are as follows; 

 
bk Aspiration level for k-th goal  

3x  breakdown maintenance index 

F future worth 
i interest rate  

Lix  lower limit of decision variable i 

p  percentage difference between unit cost and sales price of electric current 

1x  plant reliability index 

P present worth 

tQ1  quantity of electric current produced in period t  
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tQ2  quantity of electric current sold in period t  

kR  quantity of tolerance for fuzzy goal k 

n total number of years 

Ct total cost of electric power at period t  
C total installed capital cost  

St total sales of electric power at period t  

2x  unit cost price of electric current 

Uix  upper limit of decision variable i 

2x  unit sales price of electric current 

t  Year 

   
Development of predictive models has helped in avoiding complex mathematical expressions for 

interrelationships among variables in a system while trying to generate realistic value for the variables of 
interest. Given that in an electric power plant, electric power generation index (Z1) is to be maximised 
while the plant capacity utilisation (Z2) is being maximised, the developed mathematical equations for 
electric power generation and plant capacity utilisation indices prediction can be used in obtaining the 
optimal values for the plant reliability index and unit cost of generation of electric power. Since large 
values of electric power generation and plant capacity utilisation indices are desirable, the electric power 
generation index constraint is given by Eq. (13) and the plant capacity utilisation constraint index is 
expressed as Eq. (14).  
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The coefficients ( 32221231211100 ,,,,,,,  ) in Eqs. (13) and (14) can be obtained using a 

suitable predictive model. Furthermore, Eqs. (13) and (14) can be substituted with non-linear 
interrelationships in models that accept these as inputs (e.g., artificial neural network and support vector 
machines). 

The third objective (Z3) considered is the maximisation of the future worth of the power plant (Eq. 
(15)). By considering Eqs. (16) and (17), the need to determine the operation hours and capacity of the 
plant is eliminated. This is because the quantity of electric power generated is a function of a plant’s 
capacity and operation time. Thus, our interest is in the optimal unit cost of electric power generation. 
Figure 3 shows the cash-flow diagram of sales and cost of electric power at different periods. The worth 
of the plant at any period t is expected to be less than its worth at period t-1, give that inflation does not 
occur at period t. One reason for the reduction of the future worth of the plant at period t is depreciation 
of installed equipment, which may be due to wear and tear of machine (turbines) parts. Depreciation cost 
is usually included during the analysis of the cost of electric power generation. For this study, depression 
cost is considered to be part of the unit cost of electric power generation. Furthermore, it is assumed that 
cost interest and repayment is part of the unit of producing electricity. 
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Figure 3 Cash-flow diagram. 
 
 

To further constrain the values of the decision variables, a benefit-cost ratio of cash inflow and 
outflow is considered (Eq. (19)). This is necessary in order to ensure that the proposed model generates 
values for the plant that are viable at each period. 
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Other sets of constraints considered are the bounds on x1, x2 and x3 and are defined as follows; 
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Meta-heuristics 
Meta-heuristics are solutions methods for solving mathematical (linear and non-linear) models; 

these models can either be constrained or unconstrained models. Two commonly used meta-heuristics 
groups in the artificial intelligence domain are evolutionary algorithms (genetic algorithm, differential 
evolution) and swarm algorithms (particle swarm algorithm, bat algorithm). Other meta-heuristics which 
are gaining recognition are the big-bang big-crunch algorithm [37], firefly algorithm [38], simulated 
annealing [39], harmony search algorithm [38] and ant colony optimisation algorithm [40]. The stochastic 
search attribute of meta-heuristics have given them edge over conventional optimisers like Newton-
Raphson, big-M and branch and bound methods. 
 

A. Real Coding Genetic algorithm 
RCGA is a meta-heuristic modelled after the concept of evolution, and it hinges on the concept 

of survival of the fittest  )( t
ixf  among individuals in a population [41]. The basis procedure of RCGA 

involves mutation, reproduction (crossover) and selection operations. During the early introduction of 
RCGA, its coding is done using binary strings. Recent studies have showed that the coding of Genetic 
Algorithm (GA) using a real-coding method has the benefits of generating improved solutions over binary 
coding method [42]. The first operation deals with the generation of mutant vector (Eq. (21)). The 
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decision on whether to allow a selected parent ( t
ix ) to undergo mutation is determined using the concept 

of flipping an unbiased coin, and this depends on the relationship between a random number (0,1) and 

mutation rate. The value of t
ix  is increased when a head occurs and decreased when a tail occurs [42].  
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where  is a constant parameter that lies between (0,1).  
 

Trial vectors are generated during the reproduction operation. To achieve this, 2 parents ( 1t
ix ) are 

randomly selected from the selection pool  iP  and then used in reproducing 3 off-springs ( t
ix ), as 

expressed in Eq. (22). Among the 3 offspring, the best 2 are selected and allowed to compete with the 
existing individuals in the population for survival to the next generation.  
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In the third operation, determinations of individuals which will survive to the next generation are 

evaluated. The selection process is usually between 1t
ix  in the selection pool and t

ix . For a minimisation 

problem, a simple selection criterion is expressed as Eq. (23). 
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The value of t  decreases with an increase in the iteration step and it is estimated at each iteration 

step using Eq. (24). 
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where B is a constant parameter that the lies between (1,5), t is the current iteration step value, T is the 
maximum iteration step attainable, and r is a random number that lies between 0 and 1 [42]. 
 

B. Particle Swarm Optimisation (PSO) algorithm  
PSO algorithms are population-based stochastic algorithms which have the capacity in generating 

near-optimal solutions for linear and non-linear models. It was originated based on the characteristics of 
swarms (fish, bird) in relating with one another [41]. To achieve the task of generating near-optimal 
solutions for a problem of interest, the positions and velocities of the particles in a swarm are updated at 
each iteration step. In the standard PSO algorithm [43], the velocity of a particle is updated using the 

particle cognitive (personal best solution) knowledge ( p
ix ), social (global solution) knowledge ( g

ix ) of 
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the swarm, its previous velocity ( 1t
iv ) and position ( 1t

ix ), inertia weight (wt) and other constant 

parameters. The combination of these parameters is expressed as Eq. (25). 
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where 1c  and 2c are constant parameters, 1r  and 2r  are random parameters whose value lies between 

(0,1), tmax is the total number of iterations, wmax is maximum value of inertia weight and wmin is minimum 
value of inertia weight. 
 

In order to control the exploitative and explorative capacity of PSO algorithms, the velocity of 
particles are usually capped, this allows each particle velocity in a swarm to oscillate between a minimum 

( min
iv ) and a maximum ( max

iv ) velocities. The values of min
iv  and max

iv  are problem dependent (Rini et 

al. 2011), and may be estimated using Eqs. (27) and (28). 
 

 minmaxmax
iii xxv                     (27) 

 

 maxminmin
iii xxv                                                (28) 

 
where   is a constant parameter that lies between (0,1).  
 

Engelbrencht [41] reported that a simple velocity capping scheme is expressed as Eq. (29). 
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The generations of new positions for the particles in a swarm are obtained by combining the values 

of t
iv  and 1t

ix  (Eq. (30)). 

 
1 t

i
t
i

t
i xvx                (30) 

 
C. Big-Bang Big-Crunch (BB-BC) algorithm 
The BB-BC algorithm mimics the evolution of the universe using the concept of attraction of 

particles (big-crunch) and the disintegration of particles (big-bang). The application of BB-BC algorithm 
involves the determination of the center of mass in generating new particles. In the BB-BC literature, the 
center of mass [44,45] is computed after the end of each generation using Eq. (31). However, some 

researchers take the center of mass ( c
igx 1 ) as the value of the global solution in a particular generation. 

The value of the new decision variables are determined using a random number (R) that lies between        
(-1,1), the range of the decision variables, the constant parameter ( ̂ ), step-size (g) and the center of mass 
of decision variables [45], as shown in Eq. (31). 
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The novelty of the proposed integrated power generation and capacity model can be studied as 

follows: (1) the model has the ability to monitor uncertain attributes of the variables of concern (such 
uncertainties including fluctuations in the machine breakdown, generation unit cost); (2) a simple, 
practical and novel approach that compares the performance of 2 predictive methods, ARIMA and a 
robust regression model has been explored for the first time; (3) the integration of cost decisions variables 
with plant reliability measures and power generation variables in new and not previously studied way 
from an in-sample and out-sample perspective. 
 
Case study 

The case study used in this paper is drawn from an electric power generation plant located in the 
western part of Nigeria. At the time in which the datasets used in this paper were collected from the plant, 
the annual electricity generated stood at approximately 5.4 million Megawatt Hours (MWH) while the 
achieved amounts of electricity sent out from the plant was approximately 5 million MWH. The 
differences in the amounts of electricity generated and the energy sent out constitute the amounts of 
electric energy utilised within the plant. Datasets for 3 consecutive years were collected from the plant 
and this accounted for a total of 36 datasets used in this paper. These datasets consist of information on 
monthly unit electric power generation cost, plant reliability index, breakdown maintenance index, 
electric power generation index and the plant capacity utilisation index. 

To improve the quality of results from the predictive models used in this study, 26 randomly 
selected datasets (in-sample) were used in developing 2 prediction equations. The remaining datasets, 
which serve as the out-sample datasets, were used in validating the performance of the developed 
predictive models. 

Using expert modeller in the SPSS software on the in-sample datasets, the ARIMA model for 
electric power generation index (y11) was (0 0 0) and the predictive equation obtained for this ARIMA 
model is represented in Eq. (33). The robust regression model is implemented using the STATA software 
and Eq. (34) was obtained as the predictive equation for the electric power generation index (y12). 
 

32111 478.0395.17233.0647.145 xxxy                           (33) 

 

32112 202.0406.6431.0869.1 xxxy                         (34) 

 
when Eqs. (32) and (33) were applied to the in-sample and out-sample datasets, Figures 4 and 5 were 
obtained. 
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Figure 4 Comparison of prediction values for the electric power generation index using the in-sample 
datasets. 
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Figure 5 Comparison of prediction values for the electric power generation index using the out-sample 
datasets. 
 
 

For the electric power plant capacity index, ARIMA (0 0 0) was obtained from the expert modeller 
in the SPSS software. The prediction equation obtained using this ARIMA model was observed to be 
approximately the same as that of the robust regression model. Figures 6 and 7 were obtained when the 
generated equations from the developed ARIMA and robust regression models were utilised in computing 
the prediction values for the in-sample and out-samples electric power plant capacity index datasets. 
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Figure 6 Comparison of prediction values for the plant capacity utilisation index using the in-sample 
datasets. 
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Figure 7 Comparison of prediction values for the plant capacity utilisation index using the out-sample 
datasets. 
 
 

We utilized the MAPE in evaluating accuracy of the developed ARIMA and robust regression 
models in this paper, as presented in Table 1. The application of Eqs. (9) - (12) generates the linguistic 
values in Table 1. 
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Table 1 Mean absolute percentage errors for predictive models. 
 

  Electric power generation Index Plant capacity utilization index 
  ARIMA model Robust regression model ARIMA model Robust regression model 
In-sample 
datasets 

Crisp value 17.06 21.66 0.02 0.03 
Linguistic value Good 

forecasting 
Reasonable 
forecasting 

Highly accurate 
forecasting 

Highly accurate 
forecasting 

Out-sample 
datasets 

Crisp value 20.13 28.01 10.75 10.71 
Linguistic Reasonable 

forecasting 
Reasonable 
forecasting 

Good 
forecasting 

Good 
forecasting 

 
In order to determine the overall performance of the developed predictive models, the weighted 

average defuzzification method was used in combining the MAPE for electric power generation and plant 
capacity utilisation indices. The crisp values obtained for the 2 prediction models are depicted in Table 2. 
The interpretation of these values in linguistic terms is presented in Table 2, achieved using Figure 2. 
 
 
Table 2 Overall performance of the predictive models. 
 
  ARIMA model Robust regression model 
In-sample 
datasets 

Crisp value 8.82 10.86 
Linguistic value Good forecasting Reasonable forecasting 

Out-sample 
datasets 

Crisp value 10.36 19.40 
Linguistic value Reasonable forecasting Reasonable forecasting 

 
 

From the above results presented in Tables 1 and 2, the ARIMA models are selected in generating 
the coefficient in Eqs. (13) and (14). The handling of the multi-objective is carried out using the weighted 
fuzzy goal programming approach. The membership functions in Figures 8 - 10 are designed for the 3 

objective functions in the proposed model [46]. In Figures 8 and 9, iL and iG  are the lower and upper 

limit of the i-fuzzy goal, respectively. i  is the membership function for the i-fuzzy goal. 
 
 

 
Figure 8 Membership function for the plant reliability index. 
 

μ1 

      L1 g1 
0 

1 

 

 

   

 






















11

111
11

11

11

1

 If                      0

  If       

 If                       1

gxZ

gxZL
Lg

LxZ

gxZ

x  



Optimal Cost of Electric Power Generation Desmond Eseoghene IGHRAVWE and Sunday Ayoola OKE

http://wjst.wu.ac.th 

Walailak J Sci & Tech 2017; 14(6)
 

478

 
Figure 9 Membership function for the plant capacity utilisation index. 
 
 

Using the weighted fuzzy goal programming model, the summary of the proposed model is 
presented as follows; 
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Figure 10 Membership function for the future worth of the plant. 
 
 

During the testing of the proposed model, i is taken as 20 %, and n as 5 years. The quantities of 
electric power expected to be generated for 5 consecutive periods is simulated around the quantities of 
electric power generated between 2 historical quantities of electric power that was generated from the 
plant (3,383,990.3 and 5,385,475.96 MWH). The range of electric power sent-out to prospective 
customers is between 93 and 97 %. The plant consists of 6 gas turbines that were installed at different 
periods. The average capacity of the turbine is 220 MW and this gives a plant rating of 1320 MW. The 
approximate cost of a plant rating of this size in 2012 is about N 297 billion, which is about $1.1 billion 
[47]. Some of the gas turbine are fired using natural gas while others are fired using low pour fuel oils 
(LPFO) or high pour fuel oils (HPFO).We desired that the worth of the plant at the end of period n should 
be at least 60 % (N 178.2 billion) of the total installed capital cost of the plant. 

The minimum and maximum values for x1, x2 and x3 datasets that are utilised in applying the 
proposed optimisation model are shown in Table 3. Similarly, the partition of membership functions for 
the 3 objective functions are contained in Table 3. The simulated values for the quantities of electricity 
generated and sent-out to prospective customers are depicted in Table 4. Currently, the size of the 
maintenance crew of the plant is about 194 workers and their annual expense is about N 500 million. Man 
power utilisation of the plant is between 83.79 and 95.75 %. The major maintenance work in the plant are 
repair of the cold reheat pipes, tap-off steam pipes, hydraulic snubbers, boilers and valves (1/AS-V-251, 
2/FW-V-252, 4/FW-V-213B2 and 4/MV-V-1). The volume utilisation efficiency of the plant per year is 
between 0.0110 and 0.0118. The plant has a value of between 6.16 and 7.96 % as energy utilised by the 
generating station. 
 
 
Table 3 Decision variables settings. 
 

Variables Minimum Maximum 
X1 31.96 98.38 
X2 0.644   4.61 
X3 63.67 97.72 
L1 and G1 40 and 70 
L2 and G2 40 and 80 
L3 and G3 N 1500 billion and N 4000 billion 
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Table 4 Expected quantities of electricity generated and sent-out. 
 

Years 
Expected power to 

be generated annually (MWH) 
Proportion of power 

to be sent-out 
Expected power to be sent-out 

annually (MWH) 
1 4,135,185 94.50 3,907,802.40 
2 4,656,856 95.54 4,449,339.50 
3 3,724,124 93.68 3,488,750.90 
4 3,488,924 93.21 3,252,016.30 
5 5,199,283 96.63 5,023,957.30 

 
         To evaluate the performance of the BB-BC algorithm, we selected the particle swarm optimisation 
(PSO) algorithm and GA as 2 other solution methods for comparative purposes. The weights for objective 
functions are taken as 0.3, 0.3 and 0.4 for plant reliability index, generation unit cost and the future worth 
of the plant, respectively. The mutation rate for the RCGA was 45 %, while crossover rate was 15 %. The 
value for C1 in the PSO was 1.2 and C2 was 0.7. The maximum inertia weight in the PSO was 0.9, while 
the minimum inertia weight was 0.4. The total number of iterations for each of the algorithm was 300, 
while the population size was 50. The evaluation of the algorithm was based on the quality of solution 
and execution time. The evaluation of the different meta-heuristics performance is based on 50 different 
runs (Figure 11). 
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Figure 11 Values of objective function using different solution method at different runs. 
 

The performance analysis of these solution methods are shown in Table 5.  
 
 

Table 5 Analysis of the selected solution methods performance. 
 

Methods BB-BC PSO GA 
Quality of solution  153,082,209.00 95,001,716.00 94,999,855.53.00 
Execution time (s) 94.60 115.57 376.39 
 

 
Discussion of results 

The information presented in Figures 3 and 4 show that the performance of the ARIMA model in 
predicting electric power generation index is more satisfactory than that of the robust regression model. 
The lower performance of the developed robust regression model may be attributed to uneven distribution 
of power generation index obtained from the case study. However, it could still be used as an alternative 
to ARIMA. It can be seen that the developed robust regression model was able to predict some of the data 
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points closely for the in-sample datasets as shown in Figure 4. This implies that the developed regression 
model may generate satisfactory results from datasets within the limits of the in-sample datasets. Figure 5 
shows that the 2 predictive models are not able to predict the electric power generation index for the out-
sample datasets. Since the MAPE presented in Table 1 are classified as being reasonable, it can be 
inferred that neither of the predictive models can be used to predict out-sample electric power generation 
indices. 

Some operational measures that could improve the performance of the plant are listed as follows: 
 The introduction of a policy that will award bonuses to teams that are able to rectify the largest 

amounts of defects reported during a particular time interval. This will improve the breakdown 
maintenance indices; 

 A well coordinated information management system between maintenance and planning sections. 
This will enhance planning decision on allocations of available resources for maintenance activities;  

 Improvement in spare parts management. This will reduce shutdown of installed facilities as a 
result of shortage in spare parts; 

 Periodic training of maintenance personnel. This will reduce the dependence on expatriates during 
maintenance activities especially overhaul activities;  

 Establishment of improved monitoring teams. This will improve the quality of maintenance work 
in the plant; and 

 Improvement in supply of natural gas and HPFO to the electric power plants within the study area 
will boost electric power generation.  
 

The results presented in Figures 6 and 7 show that the predictive capacity of ARIMA and modified 
roust regression models developed in this study are close. The improved performance of the developed 
robust regression model could be attributed to less fluctuation in the plant capacity utilisation index 
datasets obtained from the case study. The prediction error using out-samples datasets showed that the 
robust regression model performed better than the ARIMA model (Table 1). A reverse experience was 
observed for the in-sample datasets. However, the conversion of the crisps predictive value errors into 
linguistic values show that ARIMA model is a model suitable model for plant capacity utilisation index 
prediction. Thus, it may be inferred that the selection of predictive model for electric power generation 
plant performance should be based on at least 2 error values for different performance indices in an 
electric power generating plant. This will minimise the mistake of selecting a less accurate model as 
shown in Table 2. 

From the application of the proposed model, it has been observed that the RCGA algorithm 
performed better than the BB-BC and the PSO algorithms in terms of the quality of the solution. In terms 
of execution time, the BB-BC algorithm has the lowest execution time, while the RCGA has the highest 
execution time (Table 5). Given that the quality of the solution is more important than the execution time 
of the algorithms, the RCGA algorithm was the best solution method for the proposed model (Table 6). 
 
 
Table 6 Pareto solution for decision variables. 
 

Electric power variables Optimal values 
Objective function 9.50 
Plant reliability index (x1) 72.16 
Generation unit cost (x2) N 1.16 
Breakdown maintenance index (x3) 66.06 
Electric power generation index (Z1) 77.04 
Plant capacity utilisation index (Z2) 50.00 
Future worth of the plant (Z3) N 1500 billion 

  $1 = N 270 
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These results show that there is need for the plant to be operated at a high level of plant’s reliability 
and breakdown indices. To improve the plant generation capacity index, certain operational measures will 
have to be put in place. Such measures should be able to reduce the unit cost electric power generation 
and increase plant reliability indices. 
 
Conclusions 

In this paper, we have successfully carried out an empirical study on 2 selected prediction models 
that can be used for estimating electric power generation and plant capacity utilisation. Based on the 
MAPE and fuzzy logic modelling approach, the ARIMA model was identified as the most suitable 
predictive model for the case study considered. However, the robust regression model developed yielded 
satisfactory results that were close to the practical datasets obtained from the case study. We also 
proposed a multi-objective optimisation model using the 2 developed predictive equations for electric 
power generation and plant capacity utilisation indices and the future worth of the power plant as 
objective functions to be maximised. Furthermore, RCGA was selected as a suitable optimiser for the 
proposed model based on a comparative study with PSO and BB-BC algorithms performance. The results 
from the proposed optimisation model provide insights into the optimal values of electric power 
generation and plant capacity utilisation indices that should be expected at near-optimal values of 
breakdown maintenance index, unit cost of electric power generation and plant capacity utilisation index. 
There is the possibility of extending the work presented using more data and other predictive models like 
artificial neural networks and fuzzy logic models. The effects of opportunity cost when running the plant 
at a partial load on the performance of the model can be investigated as a further study. 
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