A Functional Workbench for Anopheles gambiae Micro Array Analysis

Author(s)
Marion Adebiyi ; Josiah Oghuan ; Segun Fatumo ; Ezekiel Adebiyi ; Jason Rasgon

Abstract:
Insecticide resistance, a character inherited that encompasses alteration in one or more of insect’s genes is now a major public health challenge combating world efforts on malaria control strategies. Anopheles has developed heavy resistance to pyrethroids, the only World Health Organization (WHO) recommended class for Indoor Residual Spray (IRS) and Long-Lasting Insecticide Treated Nets (LLITNs) through P450 pathways. We used the biochemical network of Anopheles gambiae (henceforth Ag) to deduce its resistance mechanism(s) using two expression data (when Ag is treated with pyrethroid and when controlled). The employed computational techniques are accessible by a robust, multi-faceted and friendly automated graphic user interface (GUI) tagged ‘workbench’ with JavaFX Scenebuilder. In this work, we introduced a computational platform to determine and also elucidate for the first time resistance mechanism to a commonly used class of insecticide, Pyrethroid. Significantly, our work is the first computational work to identify genes associated or involved in the efflux system in Ag and as a resistance mechanism in the Anopheles.

Published in: Modelling Symposium (EMS), 2013 European

Date of Conference: 20-22 Nov. 2013

Date Added to IEEE Xplore: 31 March 2014

ISBN Information:

INSPEC Accession Number: 14210206

DOI: 10.1109/EMS.2013.24
Keywords

IEEE Keywords

Biochemistry, Immune system, Bioinformatics, Diseases, Feature extraction, Gene expression, Genomics

INSPEC: Controlled Indexing

medical computing, biochemistry, biology computing, diseases, genetics, graphical user interfaces, health care, Java, lab-on-a-chip

INSPEC: Non-Controlled Indexing

efflux system, functional workbench, Anopheles gambiae microarray analysis, insecticide resistance, insect genes, pyrethroid, public health challenge, malaria control strategies, World Health Organization, WHO, indoor residual spray, IRS, long-lasting insecticide treated nets, LLITNs, P450 pathways, biochemical network, graphic user interface, GUI, JavaFX Scenebuilder, computational platform

Author Keywords

and Features extraction, Anopheles gambiae, biochemical network, Microarray data, resistance mechanism

Authors

Marion Adebiyi
Dept. of Comput. & Inf. Sci., Covenant Univ., Ota, Nigeria

Josiah Oghuan
Dept. of Comput. & Inf. Sci., Covenant Univ., Ota, Nigeria

Segun Fatumo
Dept. of Comput. & Inf. Sci., Covenant Univ., Ota, Nigeria
Ezekiel Adebiyi
Dept. of Comput. & Inf. Sci., Covenant Univ., Ota, Nigeria

Jason Rasgon
Dept. of Entomology, Pennsylvania State Univ., University Park, PA, USA

Related Articles
Three Heuristic Clustering Methods for Haplotype Reconstruction Problem with Genotype Information
M-Hossein Moeinzadeh; Ehsan Asgarian; Amir Najafi-Ardabili; Sarah Sharifian-R; Mohammad-Sadegh Sheikhaei; Javad Mohammadzadeh

Accelerating Genome-Wide Association Studies Using CUDA Compatible Graphics Processing Units
Rui Jiang; Feng Zeng; Wangshu Zhang; Xuebing Wu; Zhihong Yu

A ground truth based comparative study on detecting epistatic SNPs
Li Chen; Guoqiang Yu; David J. Miller; Lei Song; Carl Langefeld; David Herrington; Yongmei Liu; Yue Wang

Genomic Signals for the Study of Multiresistance Mutations in M Tuberculosis
Paul Cristea; Rodica Tuduce; Dorina Banica; Karin Rodewald

A pageranking based method for identifying characteristic genes of a disease
Dang Thanh Hai; Wonjun Lee; Ha Quang Thuy

Developing a genomic-based point-of-care diagnostic system for rheumatoid arthritis and multiple sclerosis
Fanis G. Kalatzis; Nikolaos Giannakeas; Themis P. Exarchos; Leandro Lorenzelli; Andrea Adami; Massimiliano Declarli; Sara Lupoli; Fabio Macciardi; Sofia Markoula; Ioannis Georgiou; Dimitrios I. Fotiadis

Disease gene-fishing in molecular interaction networks: A case study in colorectal cancer
Hui Huang; Jiao Li; Jake Y. Chen

A Combinatorial Analysis of Genetic Data for Crohn's Disease
Weidong Mao; Jeonghwa Lee

The Application of Apriori-Gen Algorithm in the Association Study in Type 2 Diabetes
Weidong Mao; Jinghe Mao
Haplotype motifs: an algorithmic approach to locating evolutionarily conserved patterns in haploid sequences

R. Schwartz