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1 Introduction

Let E be a real Banach space, D a nonempty subset of E and φ : R+ = [0,∞)→
R+ be a continuous strictly increasing function such that φ(0) = 0 and limt→∞ φ(t) =
∞. We associate a φ-normalized duality mapping Jφ : E → 2E

∗
to the function φ

∗AMS Mathematics Subject Classification: 47H09; 47H10; 49M05; 54H25.
†e-mail: gaokeke1@yahoo.co.uk
‡e-mail: kanayo.eke@covenantuniversity.edu.ng

1



defined by

Jφ(x) = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖x‖φ(‖x‖) and ‖f ∗‖ = φ(‖x‖)} , (1.1)

where E∗ denotes the dual space of E and 〈., .〉 denotes the duality pairing.
We shall denote a single-valued duality mapping by jφ. If φ(t) = t, then Jφ reduces
to the usual duality mapping J.

The following relationship exists between Jφ and J, which can easily be shown.

Jφ(x) =
φ(‖x‖)
‖x‖

J(x) ∀ x 6= 0. (1.2)

The following definition was given in [10].
Let T : D(T ) ⊂ E → E be a mapping with domain D(T ) and F (T ) be the

nonempty set of fixed points of T.

Definition 1.1. [10]. T is said to be asymptotically φ-hemicontractive, if there
exists a sequence {kn}n≥0 ⊂ [1,∞) with limn→∞ kn = 1 and jφ(x− y) ∈ Jφ(x− y)
such that for some n0 ∈ N

〈T nx− y, jφ(x− y)〉 ≤ kn(φ(‖x− y‖))2 ∀ x ∈ D(T ), y ∈ F (T ), n ≥ n0. (1.3)

Definition 1.2. [21]. T is said to be asymptotically pseudocontractive mapping
in the intermediate sense if there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as
n→∞ such that

lim sup
n→∞

sup
x,y∈C

(〈T nx− T ny, x− y〉 − kn‖x− y‖2) ≤ 0. (1.4)

Put

τn = max

{
0, sup

x,y∈C
(〈T nx− T ny, x− y〉 − kn‖x− y‖2)

}
. (1.5)

It follows that τn → 0 as n→∞. Hence, (1.4) is reduced to the following:

〈T nx− T ny, x− y〉 ≤ kn‖x− y‖2 + τn,∀n ≥ 1, x, y ∈ C. (1.6)

Qin et al. [21] recently introduced the class of asymptotically pseudocontractive
mappings in the intermediate sense. We remark that if τn = 0 ∀n ≥ 1, then the
class of asymptotically pseudocontractive mappings in the intermediate sense is
reduced to the class of asymptotically pseudocontractive mappings. Olaleru and
Okeke [18] proved some strong convergence results of Noor type iteration for a
uniformly L-Lipschitzian and asymptotically pseudocontractive mappings in the
intermediate sense without assuming any form of compactness.
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Bruck et al. [3] in 1993 introduced the class of asymptotically nonexpansive
mappings in the intermediate sense as follows.
The mapping T : D → D is said to be asymptotically nonexpansive in the inter-
mediate sense provided T is uniformly continuous and

lim sup
n→∞

sup
x,y∈D

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0. (1.7)

Motivated by the facts above, we introduce the following class of nonlinear
mappings.

Definition 1.3. A mapping T : D → D is said to be asymptotically φ- hemicon-
tractive mapping in the intermediate sense, if there exists a sequence {kn}n≥0 ⊂
[1,∞) with limn→∞ kn = 1 and jφ(x− p) ∈ Jφ(x− p) such that for some n0 ∈ N

lim sup
n→∞

sup
x,p∈D×F (T )

(
〈T nx− p, jφ(x− p)〉 − kn(φ(‖x− p‖))2

)
≤ 0, ∀ n ≥ n0. (1.8)

Put

ξn = max

{
0, sup

x,p∈D×F (T )

(
〈T nx− p, jφ(x− p)〉 − kn(φ(‖x− p‖))2

)}
. (1.9)

It follows that ξn → 0 as n→∞. Hence, (1.8) is reduced to the following

〈T nx−p, jφ(x−p)〉 ≤ (kn+ξn)(φ(‖x−p‖))2, ∀x ∈ D, p ∈ F (T ), n ≥ n0. (1.10)

If ξn = 0 for all n ∈ N, then the class of asymptotically φ- hemicontractive
mappings in the intermediate sense reduces to the class of asymptotically φ-
hemicontractive mappings.

Definition 1.4. A mapping A is called φ-strongly quasi-accretive in the inter-
mediate sense if there exists a sequence {kn}n≥0 ⊂ [1,∞) with limn→∞ kn = 1 and
jφ(x− p) ∈ Jφ(x− p) such that for some n0 ∈ N, x ∈ D(A), p ∈ N(A) and ξn as
defined in (1.10), then

〈Ax− Ap, jφ(x− p)〉 ≥ (kn + ξn)(φ(‖x− p‖))2. (1.11)

The following definitions will be needed in this study.

Definition 1.5. [22]. A map T : E → E is called strongly accretive if there
exists a constant k > 0 such that, for each x, y ∈ E, there is a j(x− y) ∈ J(x− y)
satisfying

〈Tx− Ty, j(x− y)〉 ≥ k‖x− y‖2. (1.12)
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Definition 1.6. [22]. An operator T with domain D(T ) and range R(T ) in E
is called strongly pseudocontractive if for all x, y ∈ D(T ), there exists j(x − y) ∈
J(x− y) and a constant 0 < k < 1 such that

〈Tx− Ty, j(x− y)〉 ≤ k‖x− y‖2. (1.13)

The class of strongly accretive operators is closely related to the class of strongly
pseudocontractive operators. It is well known that T is strongly pseudocontractive
if and only if (I − T ) is strongly accretive, where I denotes the identity operator.
Browder [2] and Kato [9] indepedently introduced the concept of accretive opera-
tors in 1967. One of the early results in the theory of accretive operators credited
to Browder states that the initial value problem

du(t)

dt
+ Tu(t) = 0, u(0) = u0 (1.14)

is solvable if T is locally Lipschitzian and accretive in an appropriate Banach space.
These class of operators have been studied extensively by several authors (see, e.g.
[4], [5], [10], [20], [16], [24], [25]).

In 1953, Mann introduced the Mann iterative scheme and used it to prove the
convergence of the sequence to the fixed points for which the Banach principle
is not applicable. Later in 1974, Ishikawa [8] introduced an iterative process to
obtain the convergence of a Lipschitzian pseudocontractive operator when Mann
iterative scheme failed to converge. In 2000 Noor [11] gave the following three-
step iterative scheme (or Noor iteration) for solving nonlinear operator equations
in uniformly smooth Banach spaces.
Let D be a nonempty convex subset of E and let T : D → D be a mapping. For
a given x0 ∈ D, compute the sequence {xn}∞n=0 by the iterative schemes

xn+1 = (1− αn)xn + αnTyn,
yn = (1− βn)xn + βnTzn,
zn = (1− γn)xn + γnTxn, n ≥ 0

(1.15)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0, 1] satisfying
some conditions.

In 1989, Glowinski and Le-Tallec [6] used a three-step iterative process to solve
elastoviscoplasticity, liquid crystal and eigenvalue problems. They established that
three-step iterative scheme performs better than one-step (Mann) and two-step
(Ishikawa) iterative schemes. Haubruge et al. [7] studied the convergence analysis
of the three-step iterative processes of Glowinski and Le-Tallec [6] and used the
three-step iteration to obtain some new splitting type algorithms for solving vari-
ational inequalities, separable convex programming and minimization of a sum of
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convex functions. They also proved that three-step iteration also lead to highly
parallelized algorithms under certain conditions. Hence, we can conclude by ob-
serving that three-step iterative scheme play an important role in solving various
problems in pure and applied sciences (see, e.g. [1], [12], [13], [15], [16], [17], [18],
[23]).

Rafiq [22] recently introduced the following modified three-step iterative scheme
and used it to approximate the unique common fixed point of a family of strongly
pseudocontractive operators.

Let T1, T2, T3 : D → D be three given mappings. For a given x0 ∈ D, compute the
sequence {xn}∞n=0 by the iterative scheme

xn+1 = (1− αn)xn + αnT1yn
yn = (1− βn)xn + βnT2zn
zn = (1− γn)xn + γnT3xn, n ≥ 0,

(1.16)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0, 1] satisfying
some conditions.

Yang et al. [26] in 2010 introduced the following three step iterative scheme.
Let E be a normed space, D be a nonempty convex subset of E. Let Ti : D → D,
(i = 1, 2, 3) be given asymptotically nonexpansive mappings in the intermediate
sense. Then for a given x1 ∈ D and n ≥ 1, compute the iterative sequences {xn},
{yn}, {zn} defined by

xn+1 = (1− an1 − bn1 − cn1 − en1)xn + an1T
n
1 yn + bn1T

n
1 zn + en1T

n
1 xn + cn1un,

yn = (1− an2 − bn2 − cn2)xn + an2T
n
2 zn + bn2T

n
2 xn + cn2vn,

zn = (1− an3 − cn3)xn + an3T
n
3 xn + cn3wn,

(1.17)
where {ani}, {cni}, {bn1}, {bn2}, {en1}, {an3+cn3}, {an2+bn2+cn2} and {an1+bn1+
cn1 + en1} are appropriate sequences in [0,1] for i = 1, 2, 3 and {un}, {vn}, {wn}
are bounded sequences in D. The iterative schemes (1.17) are called the modified
three-step iterations with errors.

If T1 = T2 = T3 = T and bn1 = bn2 = cn1 = cn2 = cn3 = en1 ≡ 0, then
(1.17) reduces to the Noor iteration defined in [11]. If bn1 = en1 = cn1 = bn2 =
cn2 = cn3 ≡ 0, then (1.17) reduces to (1.16). This means that the modified Noor
iterative scheme introduced by Rafiq [18] is a special case of the modified three-step
iterations with errors introduced by Yang et al. [26].

Rafiq [22] in 2006 introduced the modified Noor iterative scheme (1.16) and
obtained some fixed point results for a family of three strongly pseudocontractive
self maps in Banach spaces. However, His proof was incorrect. Xue and Fan [25]
in 2008 obtained the corrected results for Rafiq [22].
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In this study, we approximate the common fixed points of a family of three
asymptotically φ-hemicontractive mappings in the intermediate sense using the
three step iterative scheme (1.17) introduced by Yang et al. [26]. Our results
improves and generalizes the results of Kim and Lee [10], Xue and Fan [25], Yang
et al. [26] and several others in literature.

The following lemmas will be needed in this study.

Lemma 1.1. [10]. Let Jφ : E → 2E
∗

be a φ-normalized duality mapping. Then
for any x, y ∈ E, we have

‖x+ y‖2 ≤ ‖x‖2 + 2
‖x+ y‖

φ(‖x+ y‖)
〈y, jφ(x+ y)〉 ∀ jφ(x+ y) ∈ Jφ(x+ y).

We remark that if φ is an identity, then we have the following inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉 ∀ j(x+ y) ∈ J(x+ y).

Lemma 1.2. [24]. Let {ρ}∞n=0 be a nonnegative sequence which satisfies the
following inequality:

ρn+1 ≤ (1− λn)ρn + σn, n ≥ 0,

where λn ∈ (0, 1), n = 0, 1, 2, · · · ,
∑∞

n=0 λn =∞ and σn = o(λn). Then ρn → 0 as
n→∞.

2 Main Results

Theorem 2.1. Let E be a real Banach space and D be a nonempty closed con-
vex subset of E. Let T1, T2 and T3 be asymptotically φ-hemicontractive mappings
in the intermediate sense self maps of D with T1(D) bounded and T1, T2 and T3
uniformly continuous. Let {xn}∞n=0 be defined by (1.17), where {ani}, {cni}, {bn1},
{bn2}, {en1}, {an3+cn3}, {an2+bn2+cn2} and {an1+bn1+cn1+en1} are appropriate
sequences in [0,1] for i = 1, 2, 3 and {un}, {vn}, {wn} are bounded sequences in
D satisfying the conditions: {an1}, {an2}, {bn1}, {bn2}, {cn1}, {cn2}, {en1} → 0 as
n → ∞ and

∑∞
n=0 an1 = ∞. If F (T1) ∩ F (T2) ∩ F (T3) 6= ∅, then the sequence

{xn}∞n=0 converges strongly to the common fixed point of T1, T2 and T3.

Proof. Since T1, T2, T3 are asymptotically φ-hemicontractive mappings in the
intermediate sense, there exists a sequence {kn}n≥0 ⊂ [1,∞) with limn→∞ kn = 1
and jφ(x− p) ∈ Jφ(x− p) such that for some n0 ∈ N

〈T ni x−p, jφ(x−p)〉 ≤ (kn+ξn)(φ(‖x−p‖))2, ∀x ∈ D, p ∈ F (T ), n ≥ n0, i = 1, 2, 3.
(2.1)
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where {ξn} and {kn} is as defined in (1.10). Let p ∈ F (T1) ∩ F (T2) ∩ F (T3) and

M1 = ‖x0 − p‖+ supn≥0 ‖T n1 yn − p‖+ supn≥0 ‖T n1 zn − p‖
+ supn≥0 ‖T n1 xn − p‖+ supn≥0 ‖un − p‖. (2.2)

Clearly, M1 is finite. We now show that {xn − p}n≥0 is also bounded. Observe
that ‖x0 − p‖ ≤M1. It follows that

‖xn+1 − p‖ = ‖(1− an1 − bn1 − cn1 − en1)(xn − p) + an1(T
n
1 yn − p)

+bn1(T
n
1 zn − p) + en1(T

n
1 xn − p) + cn1(un − p)‖

≤ (1− an1 − bn1 − cn1 − en1)‖xn − p‖+ an1‖T n1 yn − p‖
+bn1‖T n1 zn − p‖+ en1‖T n1 xn − p‖+ cn1‖un − p‖

≤ (1− an1 − bn1 − cn1 − en1)M1 + an1M1 + bn1M1

+en1M1 + cn1M1

= M1, (2.3)

using the uniform continuity of T3, we obtain that {T n3 xn} is bounded. Denote

M2 = max

{
M1, sup

n≥0
{‖T n3 xn − p‖}, sup

n≥0
{‖wn − p‖}

}
, (2.4)

then we have:

‖zn − p‖ ≤ (1− an3 − cn3)‖xn − p‖+ an3‖T n3 xn − p‖+ cn3‖wn − p‖
≤ (1− an3 − cn3)M1 + an3M2 + cn3M2

≤ (1− an3 − cn3)M2 + an3M2 + cn3M2

= M2. (2.5)

Recall that T2 is uniformly continuous, so that {T n2 zn} is bounded. Let

M = sup
n≥0
‖T n2 zn − p‖+ sup

n≥0
‖T n2 xn − p‖+ sup

n≥0
‖vn − p‖+M2,

then M is finite. Since {xn − p}n≥0 is bounded and φ is a continuous strictly
increasing function, M∗ := supn≥0 φ(‖xn+1 − p‖) is also finite. Using Lemma 1.1,
(1.17) and (2.1), then for n ≥ 0 and jφ(xn+1 − p) ∈ J(xn+1 − p), we have:
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‖xn+1 − p‖2 = ‖(1− an1 − bn1 − cn1 − en1)(xn − p) + an1(T
n
1 yn − p)

+bn1(T
n
1 zn − p) + en1(T

n
1 xn − p) + cn1(un − p)‖2

≤ (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2
+2〈an1(T n1 yn − p) + bn1(T

n
1 zn − p) + en1(T

n
1 xn − p)

+cn1(un − p), ‖xn+1−p‖
φ(‖xn+1−p‖)jφ(xn+1 − p)〉

= (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2

+2an1

〈
T n1 yn − p,

‖xn+1−p‖
φ(‖xn+1−p‖)jφ(xn+1 − p)

〉
+2bn1

〈
T n1 zn − p,

‖xn+1−p‖
φ(‖xn+1−p‖)jφ(xn+1 − p)

〉
+2en1

〈
T n1 xn − p,

‖xn+1−p‖
φ(‖xn+1−p‖)jφ(xn+1 − p)

〉
+2cn1

〈
un − p, ‖xn+1−p‖

φ(‖xn+1−p‖)jφ(xn+1 − p)
〉

= (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2
+2an1

‖xn+1−p‖
φ(‖xn+1−p‖) 〈T

n
1 yn − T n1 xn+1 + T n1 xn+1 − p, jφ(xn+1 − p)〉

+2bn1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 zn − T n1 xn+1 + T n1 xn+1 − p, jφ(xn+1 − p)〉

+2en1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 xn − T n1 xn+1 + T n1 xn+1 − p, jφ(xn+1 − p)〉

+2cn1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈un − p, jφ(xn+1 − p)〉
= (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2

+2an1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 yn − T n1 xn+1, jφ(xn+1 − p)〉

+2an1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 xn+1 − p, jφ(xn+1 − p)〉

+2bn1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 zn − T n1 xn+1, jφ(xn+1 − p)〉

+2bn1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 xn+1 − p, jφ(xn+1 − p)〉

+2en1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 xn − T n1 xn+1, jφ(xn+1 − p)〉

+2en1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈T
n
1 xn+1 − p, jφ(xn+1 − p)〉

+2cn1
‖xn+1−p‖

φ(‖xn+1−p‖) 〈un − p, jφ(xn+1 − p)〉
≤ (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2 + 2an1‖xn+1 − p‖‖T n1 yn − T n1 xn+1‖

+2an1(kn + ξn)‖xn+1 − p‖φ(‖xn+1 − p‖) + 2bn1‖xn+1 − p‖‖T n1 zn − T n1 xn+1‖
+2bn1(kn + ξn)‖xn+1 − p‖φ(‖xn+1 − p‖) + 2en1‖xn+1 − p‖‖T n1 xn − T n1 xn+1‖
+2en1(kn + ξn)‖xn+1 − p‖φ(‖xn+1 − p‖) + 2cn1‖xn+1 − p‖‖un − p‖

≤ (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2 + 2an1‖xn+1 − p‖‖T n1 yn − T n1 xn+1‖
+2an1(kn + ξn)M∗‖xn+1 − p‖+ 2bn1‖xn+1 − p‖‖T n1 zn − T n1 xn+1‖
+2bn1(kn + ξn)M∗‖xn+1 − p‖+ 2en1‖xn+1 − p‖‖T n1 xn − T n1 xn+1‖
+2en1(kn + ξn)M∗‖xn+1 − p‖+ 2cn1‖xn+1 − p‖‖un − p‖

≤ (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2 + 2an1(kn + ξn)M∗‖xn+1 − p‖
+2bn1(kn + ξn)M∗‖xn+1 − p‖+ 2en1(kn + ξn)M∗‖xn+1 − p‖
+2M1{an1‖T n1 yn − T n1 xn+1‖+ bn1‖T n1 zn − T n1 xn+1‖
+en1‖T n1 xn − T n1 xn+1‖+ cn1‖un − p‖}

= (1− an1 − bn1 − cn1 − en1)2‖xn − p‖2 + 2an1(kn + ξn)M∗‖xn+1 − p‖
+2bn1(kn + ξn)M∗‖xn+1 − p‖+ 2en1(kn + ξn)M∗‖xn+1 − p‖+ 2δn, (2.6)
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where

δn = M1{an1‖T n1 yn − T n1 xn+1‖+ bn1‖T n1 zn − T n1 xn+1‖
+en1‖T n1 xn − T n1 xn+1‖+ cn1‖un − p‖}. (2.7)

Using (1.17), we have
‖yn − xn+1‖ = ‖yn − xn + xn − xn+1‖

≤ ‖yn − xn‖+ ‖xn − xn+1‖
= ‖(1− an2 − bn2 − cn2)xn + an2T

n
2 zn + bn2T

n
2 xn + cn2vn − xn‖

+‖xn − {(1− an1 − bn1 − cn1 − en1)xn + an1T
n
1 yn + bn1T

n
1 zn

+en1T
n
1 xn + cn1un}‖

= ‖ − an2(xn − T n2 zn)− bn2(xn − T n2 xn)− cn2(xn − vn)‖
+‖an1(xn − T n1 yn) + bn1(xn − T n1 zn) + cn1(xn − un)
+en1(xn − T n1 xn)‖

= ‖ − an2(xn − p+ p− T n2 zn)− bn2(xn − p+ p− T n2 xn)
−cn2(xn − p+ p− vn)‖+ ‖an1(xn − p+ p− T n1 yn)
+bn1(xn − p+ p− T n1 zn) + cn1(xn − p+ p− un)
+en1(xn − p+ p− T n1 xn)‖

≤ an2‖xn − p‖+ an2‖p− T n2 zn‖+ bn2‖xn − p‖+ bn2‖p− T n2 xn‖
+cn2‖xn − p‖+ cn2‖p− vn‖+ an1‖xn − p‖+ an1‖p− T n1 yn‖
+bn1‖xn − p‖+ bn1‖p− T n1 zn‖+ cn1‖xn − p‖+ cn1‖p− un‖
+en1‖xn − p‖+ en1‖p− T n1 xn‖

≤ 2Man2 + 2Mbn2 + 2Mcn2 + 2Man1 + 2Mbn1 + 2Mcn1 + 2Men1
= 2M (an2 + bn2 + cn2 + an1 + bn1 + cn1 + en1) . (2.8)

Using the condition that {an1}, {an2}, {bn1}, {bn2}, {cn1}, {cn2}, {en1} → 0 as n→
∞, we obtain from (2.8)

lim
n→∞

‖yn − xn+1‖ = 0. (2.9)

Using the uniform continuity of T1, we have

lim
n→∞

‖T n1 yn − T n1 xn+1‖ = 0. (2.10)

Similarly, limn→∞ ‖T n1 zn − T n1 xn+1‖ = limn→∞ ‖T n1 xn − T n1 xn+1‖ = 0. Hence, we
have that limn→∞ δn = 0.

Furthermore, we have

‖xn+1 − p‖ = ‖(1− an1 − bn1 − cn1 − en1)(xn − p) + an1(T
n
1 yn − p)

+bn1(T
n
1 zn − p) + en1(T

n
1 xn − p) + cn1(un − p)‖

≤ (1− an1 − bn1 − cn1 − en1)‖xn − p‖+ an1‖T n1 yn − p‖
+bn1‖T n1 zn − p‖+ en1‖T n1 xn − p‖+ cn1‖un − p‖

≤ (1− an1 − bn1 − cn1 − en1)‖xn − p‖
+(an1 + bn1 + en1 + cn1)M. (2.11)
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Since {an1}, {an2}, {bn1}, {bn2}, {cn1}, {cn2}, {en1} → 0 as n→∞, for every ε > 0
there exists k ∈ N such that (an1 + bn1 + cn1 + en1) ≤ ε for all n ≥ k. Let
{tn} = {an1 + bn1 + cn1 + en1}. Substituting (2.11) into (2.6), we have

‖xn+1 − p‖2 ≤ (1− tn)2‖xn − p‖2 + 2M∗(kn + ξn)(an1 + bn1 + en1)‖xn+1 − p‖
+2δn

≤ (1− tn)2‖xn − p‖2 + 2M∗(kn + ξn)(an1 + bn1 + en1)
×{(1− tn)2‖xn − p‖+ tnM}+ 2δn

≤ (1− tn)2‖xn − p‖2 + 2M∗tn(kn + ξn){(1− tn)‖xn − p‖+ tnM}
+2δn

= (1− tn)2‖xn − p‖2 + 2M∗tn(kn + ξn)(1− tn)‖xn − p‖
+2MM∗t2n(kn + ξn) + 2δn

≤ (1− tn)2‖xn − p‖2 + 2M∗tn(kn + ξn)(1− tn)
×{(1− tn−1)‖xn−1 − p‖+ tn−1M}+ 2[MM∗t2n(kn + ξn) + δn]

≤ (1− tn)2‖xn − p‖2 + 2M∗(kn + ξn)tn(1− tn)(1− tn−1)‖xn−1 − p‖
+2[M∗(kn + ξn)tn(1− tn)tn−1M +MM∗t2n(kn + ξn) + δn]

= (1− tn)2‖xn − p‖2 + 2M∗tn(kn + ξn)(1− tn)(1− tn−1)‖xn−1 − p‖
+2 [MM∗(kn + ξn)tn{(1− tn)tn−1 + tn}+ δn]

≤ · · ·
≤ (1− tn)2‖xn − p‖2 + 2tn(kn + ξn)

∏n
j=k(1− tj)M∗‖xk − p‖

+2{t2nMM∗(kn + ξn)

+tn(kn + ξn)MM∗∑n−1
j=k

(
tn−1−j

∏n−1
j=k (1− tn−j)

)
+ δn}

≤ (1− tn)2‖xn − p‖2 + 2{t2n(kn + ξn)
∏n

j=k(1− tj)MM∗

+t2nMM∗(kn + ξn)

+tn(kn + ξn)MM∗∑n−1
j=k

(
tn−1−j

∏n−1
j=k (1− tn−j)

)
+ δn}

≤ (1− tn)2‖xn − p‖2 + 2θn, (2.12)

where

θn =
[
tn
∏n

j=k(1− tj) + tn +
∑n−1

j=k

(
tn−1−j

∏n−1
j=k (1− tn−j)

)]
tn(kn + ξn)MM∗

+δn. (2.13)

Observe that {θn}n≥0 converges to 0 as n→∞. Clearly,∏n
j=k(1− tj) ≤ e−

∑n
j=k tj −→ 0 as n→∞ and

n−1∑
j=k

{
tn−1−j

n−1∏
j=k

(1− tn−j)

}
≤

n−1∑
j=k

ε→ 0

as ε → 0. Let ρn = ‖xn − p‖2, λn = tn and σn = 2θn. Using the fact that
limn→∞ θn = limn→∞ δn = 0 and Lemma 1.2, we have from (2.12) that

lim
n→∞

‖xn − p‖ = 0. (2.14)
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The proof of Theorem 2.1 is completed. �

Remark 2.2. Theorem 2.1 improves and generalizes the results of Yang et al.
[26], Xue and Fan [25] which in turn is a correction of the results of Rafiq [22].

Theorem 2.3. Let E be a real Banach space, T1, T2, T3 : E → E be uniformly
continuous and φ-strongly quasi-accretive in the intermediate sense operators with
R(I−T1) bounded, where I is the identity mapping on E. Let p denote the unique
common solution to the equation Tix = f, (i = 1, 2, 3). For a given f ∈ E, define
the operator Hi : E → E by Hix = f + x− Tix, (i = 1, 2, 3). For any x0 ∈ E, the
sequence {xn}∞n=0 is defined by

xn+1 = (1− an1 − bn1 − cn1 − en1)xn + an1H1yn + bn1H1zn + en1H1xn + cn1un,
yn = (1− an2 − bn2 − cn2)xn + an2H2zn + bn2H2xn + cn2vn,
zn = (1− an3 − cn3)xn + an3H3xn + cn3wn,

(2.15)
where {ani}, {cni}, {bn1}, {bn2}, {en1}, {an3+cn3}, {an2+bn2+cn2} and {an1+bn1+
cn1+en1} are appropriate sequences in [0,1] for i = 1, 2, 3 and {un}, {vn}, {wn} are
bounded sequences in D satisfying the conditions: {an1}, {an2}, {bn1}, {bn2}, {cn1},
{cn2}, {en1} → 0 as n → ∞ and

∑∞
n=0 an1 = ∞. Then the sequence {xn}∞n=0 con-

verges strongly to the unique common solution to Tix = f (i = 1, 2, 3).

Proof. Clearly, if p is the unique common solution to the equation Tix = f (i =
1, 2, 3), it follows that p is the unique common fixed point of H1, H2 and H3. Using
the fact that T1, T2 and T3 are all φ-strongly quasi-accretive in the intermediate
sense operators, then H1, H2 and H3 are all asymptotically φ-hemicontractive map-
pings in the intermediate sense. Since Ti (i = 1, 2, 3) is uniformly continuous with
R(I − T1) bounded, this implies that Hi (i = 1, 2, 3) is uniformly continuous with
R(H1) bounded. Hence, Theorem 2.3 follows from Theorem 2.1. �

Remark 2.4. Theorem 2.3 improves and extends Theorem 2.2 of Xue and Fan
[25] which in turn is a correction of the results of Rafiq [22].

Example 2.5. Let E = (−∞,+∞) with the usual norm and let D = [0,+∞).
We define T1 : D → D by T1x := x

2(1+x)
for each x ∈ D. Hence, F (T1) =

{0}, R(T1) = [0, 1
2
) and T1 is a uniformly continuous and asymptotically φ-

hemicontractive mapping in the intermediate sense. Define T2 : D → D by
T2x := x

4
for all x ∈ D. Hence, F (T2) = {0} and T2 is a uniformly continuous and

strongly pseudocontractive mapping. Define T3 : D → D by T3x := sin4 x
4

for each
x ∈ D. Then F (T3) = {0} and T3 is a uniformly continuous and asymptotically
φ-hemicontractive mapping in the intermediate sense. Set {ani} = {cni} = 1

n4 ,
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{bn1} = {en1} = {bn2} = 1
n3 , {kn} = 1, {ξn} = 1

n2 for all n ≥ 0 and φ(t) = t2

2

for each t ∈ (−∞,+∞). Clearly, F (T1) ∩ F (T2) ∩ F (T3) = {0} = p 6= ∅. For an
arbitrary x0 ∈ D, the sequence {xn}∞n=0 ⊂ D defined by (1.17) converges strongly
to the common fixed point of T1, T2 and T3 which is {0}, satisfying Theorem 2.1.
This means that Theorem 2.1 is applicable.
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