CALL FOR PAPERS

IFE JOURNAL OF THEORY AND RESEARCH IN EDUCATION (IJOTRE)

NOTES TO CONTRIBUTORS

The Institute of Education Journal of Theory and Research in Education (IJOTRE) disseminates information derived from research findings and theoretical topics in the areas of Nursery, Primary, Secondary, and Higher Education. The Journal is published bi-annually and is peer-reviewed. It aims to improve educational status.

IJOTRE is a bi-annual and peer-reviewed journal. Articles are expected to focus on any of the following topics:

1. Contributions on theoretical, methodological, and practical teaching aspects of education.
2. Research notes and projects reports.
3. Articles representing scholarly opinions on contemporary issues and trends stemming from any aspects of education.
4. Book reviews that are significant in the field of education.

Guidelines for Papers Submission

- Articles should not be longer than 15 A4-sized pages using Times New Roman, font size of 12. Longer articles will attract an additional publication fee.
- Reference style should conform to the American Psychological Association format (6th Edition). This should be arranged in alphabetical order according to the surname of the authors.
- Footnotes are not allowed.
- Manuscripts' cover should include the title of the paper, author(s) name(s), institution, affiliation, and E-mail address.
- Abstract should not be more than 250 words.
- Two hard copies of the manuscripts should be submitted for review. Articles can also be submitted by post to The Managing Editor, IJOTRE, Institute of Education, Obafemi Awolowo University, Ile-Ife, Nigeria or electronically via e-mail to hajayib@oaufe.edu.ng.
- Assessment fee of N3,000 ($30). It is a condition for publication that a manuscript submitted to IFE Journal of Theory and Research in Education (IJOTRE) has not been published and will not be simultaneously submitted or published elsewhere. Submissions that do not conform to these guidelines may not be considered for publication.

Bi - Annual
Ife Journal of Theory and Research in Education

EDITORIAL BOARD
Dr. B.A. Adeyemi (Reader) (Editor-in-Chief)
Prof. J. Lade Adeyanju
Prof. E.O. Aladegbade
Prof. P.O. Jegede
Dr. C.O. Odejobi
Dr. A. G. Adeleke (Managing Editor)

EDITORIAL CONSULTANTS
Prof. S.A. Adeyanju - Dept. of Physical and Health Education, Obafemi Awolowo University, Ile-Ife.
Prof. M.A. Adelabu - Dept. of Educational Management, Obafemi Awolowo University, Ile-Ife.
Prof. E.R.I. Afolabi - Dept. of Educational Foundations and Counseling, Obafemi Awolowo University, Ile-Ife.
Prof. O.O. Obilade - Dept. of Adult Education and Life Long Learning, Obafemi Awolowo University, Ile-Ife.
Prof. B.L. Popoola - Dept. of Educational Foundations and Counseling, Obafemi Awolowo University, Ile-Ife.
Prof. J.A. Akande - Dept. of ALL, Obafemi Awolowo University, Ile-Ife.
Prof. B.A. Omotoso - Dept. of Educational Foundations and Counseling, Obafemi Awolowo University, Ile-Ife.
Prof. A. Ajibade - Dept. of Arts and Social Science Education, Obafemi Awolowo University, Ile-Ife.
Prof. M.A. Adeleke - Dept. of Science and Technology Education, Obafemi Awolowo University, Ile-Ife.
Dr. A. Adeleke - Dept. of Educational Technology and Library Studies, Obafemi Awolowo University, Ile-Ife.
Prof. M.E.M. Kolaowo - Dept. of English, Obafemi Awolowo University, Ile-Ife.
Prof. J.O. Faluyi - Dept. of Botany, Obafemi Awolowo University, Ile-Ife.
Prof. D. Okunwoye - Dept. of English, Obafemi Awolowo University, Ile-Ife.
Dr. E.T.O. Babalola - Dept. of English, Obafemi Awolowo University, Ile-Ife.
Prof. M.A. Ajayi - Dept. of Human Kinetics and Health Education, University of Ibadan.
Prof. J.B. Bilesanmi - Dept. of Curriculum Studies and Instruction Technology, Olabisi Awoderu Onabanjo University, Ago-Iwoye.
Dr. J.A. Adegbile - Institute of Education, University of Ibadan.
TABLE OF CONTENTS

 Ogurinade D. O. A 1-10

2. Relationship Between Science Students' Entry Grade and Academic Performance in an Opened Distance Learning Institute In Nigeria
 Adeniyi, Comfort Olawumi (Ph.D.) & Nwachukwu, Victoria Precious 11-18

3. Teacher Professional Development and Pedagogical Skills as Correlates of Secondary School Students' Achievement In English Language in Ibadan Metropolis
 E.O. Babatunde (Ph.D) & J.A. Abijo, (Ph.D) 19-29

4. Effectiveness of Improvised Porter Wheel Instructional Medium on Senior Secondary Students Visual Arts Instruction in Ipetumodu Town, Nigeria
 Odeewumi Michael Olubunmi (Ph. D) 30-39

5. Influence of Gender, Location, Religious belief and ethnic background of Secondary School Students' Achievement In Multicultural Concepts in Social Studies in Nigeria
 S. O. Ajitoni, (Ph.D) 40-52

 Makinde B. O. (Ph.D) and Akindayo O. A. 53-59

7. Teaching And Teacher Education: A Case Study Of National Teachers' Institute Postgraduate Diploma In Education Programme.
 Oyinlola A. B. (Ph.D) 60-67

8. Teachers' Perceived Impact of Information Technology Devices on the Teaching and Learning of Mathematics in Senior Secondary Schools, Ogun State
 Asanre Akorede A. & Abiodun Taiwo O. 68-72

9. Effect of Concrete-Representational-Abstract Instructional Strategy on Senior Secondary School Students' Attitude to Mathematics
 Akinoso, S. O. 73-81

10. Promoting EFL Learning through Group Dynamics
 Oladunjoye, S. A Oluwayomi (Ph.D.) 82-87

 Akinjide Gabriel Akintonide (Ph.D) 88-97

 Alade, I. C; (Ph. D) & Ogunyemi, F. T.(Ph. D) 98-106

 Olugbenga Timothy Ajadi (Ph.D) 107-115

14. The Place of Vocational and Technical Education in Economic Diversification
 Onofonmwan, Godwin Osaro (Ph.D) 116-120

15. Improving the Academic Performance of Pupils in Social Studies through Play-Way Teaching Method
 Adediran, Y. O.; Eweniyi, I. T & Olaifa, O. B. 121-129

Abstract

There is no gainsaying that packaged, made available, uprightness in Nigeria and violence. This is evident in the lives of the citizenry - money mongering, indiscipline, etc. Music is a powerful tool of societal reformation. Music is a powerful tool of societal reformation. Songs. This paper examines the impact of music that egg on and the society. The paper then seeks to promote music that is needed for societal reformation societal reformation.

Keywords: Popular Music, Governance, National Development

Introduction

"Music is an instrument of destruction and judgment worse".

Music is an instrument of destruction and judgment worse. Since the early days of music, musical themes have been used to convey messages, Their audience, and the companies, thereby making us often neglect the positive aspects of music.
Abstract

Until recently, the last decade has witnessed massive economic growth in Nigeria, but the literature has proved that the growth has not been inclusive in nature. This is because, in spite of the level of growth recorded overtime, the poverty rate is still very high. This study investigates the relationship between human capital (education) and inclusive growth in Nigeria between the sample period of 1981 to 2013. The Johansen co-integration method and Error Correction Mechanism (ECM) were adopted. The result reveals that human capital has a positive and significant long run relationship with inclusive growth in Nigeria. While, it showed a negative and significant relationship for public capital expenditure on education and a negative, it was not having significant relationship with public recurrent expenditure and education. The study however suggest that, for the Nigerian economy to maximise the benefits from human capital and public expenditure on education, the government must initiate policies that will drive not only quantity and quality education, but that is all inclusive, so as to create more employment opportunities. An increase in employment will therefore increase income and standard of living, which will in turn reduce poverty and inequality.

Keywords: Education; Inclusive Growth; Economic Growth; Poverty and Inequality.

Introduction

The research on the role of human capital in economic growth cannot be overemphasized in the study of the economies of the developed and developing countries. Following Becker (1962) and Schultz (1961), human capital can be defined as the set of knowledge, skills, competencies, and abilities embodied in education and migration. investments that various and various am growth (Lawai's theoretical point of view).

All the endogenous growth theory argues that increase in the accumulation of capital output increases stock. Consequently, Van Reenen (2000) argued that increases labor productivity in endogenous growth. The former argue that increase in the accumulation of knowledge allows for long-run economic growth. Barro and Sala-i-Martin (1995) demonstrated that policies that facilitate economic participation among the population of a country.

Meanwhile, the literature (see Schultz, 1961) has proved that the recorded overtime decrease in the percentage of people out of poverty in growing economies in Africa (117% in 2014) has been due to the increase in the percentage of people out of poverty in growing economies in Africa (117% in 2014). Additionally, it is observed that economic prosperity has come with income inequality gap.

Adediran, Oluwasogo S.
Corresponding Author: Department of Economics and Development Studies, College of Development Studies, Covenant University, Ota, Ogun.
E-mail: oluwasogo.adediran@covenantuniversity.edu.ng
08067427261

Amoda, Bisola M.
Business Education Department
Tai Solarin University of Education,
Ijagun, Ijesha – Ode, Ogun State.
amodabisola@gmail.com
08055418653

Adebayo, Adekunle A.
Department of Economics
Michael Otedola College of Primary Education,
Naforija, Ijebu, Lagos State.
mayanalytics@gmail.com
able abilities embodied in individuals and acquired, for example, through education, training, medical care, and migration. Therefore, education is considered as one of the most significant human capital investments that a nation can embark upon. It plays an important role in the process of economic growth and various amounts of researches have been undertaken to access the link between education and growth (Lawal and Iyiola, 2011; Ndiyo, 2007, Benos and Zotou, 2014). Looking at this nexus from the theoretical point of view, economic models have emphasized the role of education in determining returns on education that ultimately foster economic growth (Lucas 1988; Rebelo 1991 and Romer, 1994).

All these models have explained the important distinction between neo-classical and endogenous growth theories regarding the linkage between human capital and economic growth. The former argue that a one-off permanent increase in the stock of human capital results in a one-off increase in the economy’s growth rate until the economy reaches the new higher steady-state. Moreover, there are two strands of new growth theories, which focus on the impact of (a) human capital accumulation and (b) human capital stock respectively. A one-off rise in human capital causes a one-off output increase in human capital accumulation and a permanent increase in growing human capital stock. Consequently, the social benefits of education are much greater in the latter case (Sianesi and VanReenen, 2003).

Theoretical contributions also emphasized different mechanisms through which education affects economic growth. First, education increases the human capital of the labor force, which increases labor productivity and transitional growth toward a higher equilibrium output level. Second, in endogenous growth theories, education increases the innovative capacity of the economy, knowledge of new technologies, products and processes, and thus promotes growth (Hanushek and Woessmann, 2008). From the empirical point of view, studies have shown that education and the policies that facilitate the process of innovation and knowledge creation have profound effects on the long-run economic growth and development patterns of an economy (Barro, 1991; Rebelo, 1991 and Barro and Sala-i-Martin, 1998). Hence, the benefits of information and knowledge diffusion in facilitating economic transactions, productive arrangements, social interactions and political participation are also widely acknowledged (Sen, 1999 and Masino and Nino-Zarazua, 2016).

Meanwhile, the last decade has witnessed massive economic growth in Nigeria, but the literature (see Sodipe and Ogunrinola, 2011; Oseni and Oseni, 2015 and Ayinde and Yinusa, 2016) has proved that the growth has not been inclusive in nature. This is because, in spite of the level of growth recorded overtime, the poverty rate is still very high. While, economic growth is a perfect way to lift people out of poverty into gainful employment and higher incomes that would increase personal spending on education and health (Bhagwati, 2011). With the economy of Nigeria being one of the fastest growing economies in the world, in terms of nominal Gross Domestic Product (GDP) and the largest economy in Africa with an average annual growth rate of 6.2 percent and nominal GDP of $568 billion (World Development Indicator, 2015). Nigeria accounts for around 55 percent of the West African GDP, 35 percent of Sub-Saharan Africa’s GDP and one-fifth of the African population. With these facts, it is evident that the economy is buoyant, prosperous and growing. However, this level of economic prosperity has not shown much visible impact on a large percentage of the participants in the economy. Hence, as the economy is growing, poverty and unemployment are increasing and the inequality gap is widening.
Looking at these issues raised, several of the empirical literature reviewed confirmed that a positive relationship exists between human capital and economic growth, but studies testing the relationship between human capital and inclusive growth is still scanty in Nigeria and this study attempts to fill that gap by introducing new variable to measure inclusive growth. Also, in the empirical literature for Nigeria, many studies only relates human capital to economic growth and neglected the sustainability of growth or how human capital development can solve the growth without development problem of Nigeria. This study attempt to fill that gap.

The rest of the paper is organized as follows. Section 2 gives some stylized facts on the relationship between education expenditure and economic growth. Section 3 presents the proxies employed to measure education and growth and describe the methodology. Section 4 presents the model specification and technique of estimation. Section 5 analyzes the results and main findings. Finally, Section 6 concludes with the policy implications and recommendations.

2. Some Stylized Facts

Until 2016, the GDP of Nigeria has been growing at an average of 6.2 percent per annum, but with this growth, most Nigerians are still below poverty line of spending less than $2 a day. The Gini index that is used to measure inequality has been ranging from 0.4 to 0.47 since 1980. The unemployment rate has equally been higher above 24 percent, according to official figure by the National Bureau of Statistics. Nigeria’s poverty rate, inequality rate and unemployment rate are high and correlates with growth rate. The economy is seen as growing outside its people as only the economy is experiencing buoyancy and success, while the people are not so catered for as far as the growth is concerned. The expectation is that as an economy is growing, there should be creation of employment opportunities that will reduce the unemployment rate. An increase in employment will therefore increase income and standard of living, which will in turn reduce poverty and inequality.

In contrast to this, Nigeria is yet to experience such transforming growth as the economy is plagued with increasing unemployment and stagnant low incomes. The presence of stagnant and low income has prevented an increase in expenditure, especially on education. Although, there has been an improvement in the access to education in Nigeria, the quality has continued to decline as a result of poor funding in the recent time (see Ahmed, 2015). For instance in 2010, 2011 and 2012, the allocations were N234.8b representing 6.40 percent, N306.3b (7.69 percent) and N400.15b (10.0 percent) of the total budget respectively. With the following allocations for the subsequent years: 2013-N426.53b (8.70 percent), 2014-N493b (10.5 percent) and 2015-N392.2b (9.5 percent), still far below the expected mark of 26 percent of the total budget recommended by UNESCO.

Inclusive growth entails the participation of the people in the growth of their economy and the ability to enjoy equally the proceeds from this growth. Researchers have done extensive research on this issue as it pertains to inclusive growth. They gave various barriers and constraints to poor people's participation in growth in Nigeria, these include geography; human capital; access to credit; economic insecurity; and health amongst others. Some of the literature argues that facilitating access of the poor to growth is insufficient to obtain inclusive growth; attention must also be paid to the quality of their participation.

3. Methodology

The standard neoclassical growth model primary focuses on the role of human capital in growth. The human capital, at its primary objectives of it is a measure of the stock of knowledge (Pezzolo, 2001). This opens for co-integrating these variables, the economic growth is obtained using the following equation:

\[
Y = A \cdot T^{b} \cdot K^{a} \cdot L^{c} + \epsilon
\]

where; \(Y\): output, \(A\): technological progress, \(T\): time, \(K\): physical capital, \(L\): labour, \(\epsilon\): error term. The model we are concerned about is as follows:

\[
Y = A \cdot T^{b} \cdot K^{a} \cdot L^{c} + \epsilon
\]

This model reflects the endogenous growth model of the economy that contains the technological progress. Hence, the growth rate of \(Y\) is fully explained by \(A\), \(T\), \(K\) and \(L\).

The expectations here are that the coefficients \(A\), \(T\), \(K\) and \(L\) should be positive. We are concerned with the coefficients of \(T\), \(K\) and \(L\), the coefficients of \(A\) and \(b\) are not of concern in our analysis. The coefficients \(A\), \(b\) and \(c\) are estimated using the following equations:

\[
A = \left(\frac{d}{dT} \ln Y \right)_{(0,0)} \quad b = \frac{\ln (Y_{2} / Y_{1})}{\ln (T_{2} / T_{1})} \quad c = \frac{\ln (Y_{2} / Y_{1})}{\ln (L_{2} / L_{1})}
\]

The expectations are that the exponents \(b\) and \(c\) should be positive. The number of periods \(T\) should be greater than 2. Hence, the growth of \(Y\) is explained by the growth of \(K\), \(L\) and \(T\).

4.1 Model Specification

The standard neoclassical growth model is specified as follows:

\[
Y = A \cdot T^{b} \cdot K^{a} \cdot L^{c} + \epsilon
\]

where; \(Y\): output, \(A\): technological progress, \(T\): time, \(K\): physical capital, \(L\): labour, \(\epsilon\): error term. The model we are concerned about is as follows:

\[
Y = A \cdot T^{b} \cdot K^{a} \cdot L^{c} + \epsilon
\]

This model reflects the endogenous growth model of the economy that contains the technological progress. Hence, the growth rate of \(Y\) is fully explained by \(A\), \(T\), \(K\) and \(L\).

The expectations here are that the coefficients \(A\), \(b\) and \(c\) should be positive. We are concerned with the coefficients \(A\), \(b\) and \(c\) are estimated using the following equations:

\[
A = \left(\frac{d}{dT} \ln Y \right)_{(0,0)} \quad b = \frac{\ln (Y_{2} / Y_{1})}{\ln (T_{2} / T_{1})} \quad c = \frac{\ln (Y_{2} / Y_{1})}{\ln (L_{2} / L_{1})}
\]

The expectations are that the exponents \(b\) and \(c\) should be positive. The number of periods \(T\) should be greater than 2. Hence, the growth of \(Y\) is explained by the growth of \(K\), \(L\) and \(T\).
3. Methodology

The study employed the Lucas endogenous growth model, which is an extension of the neoclassical growth model, but incorporates the positive externalities related to the accumulation of human capital such as knowledge. It also uses a number of techniques of estimation in achieving the objectives of the study. This includes performing a unit root test to test for stationarity, Johansen to test for co-integration and the VECM for short run dynamics. The model and estimation procedures are further explained below. The data employed by this study are annual data (see appendices I) from 1981-2013 sourced from the World Bank’s World Development Indicators (2015) and the Central Bank of Nigeria’s Statistical Bulletin (2015).

4.1 Model Specification

A standard production function for primal neoclassical growth model, which applies to the endogenous growth model (Lucas, 1988) is specified as follows:

\[Y = f(A, K, L) \]

(4.1.1)

where: \(Y \): output
\(A \): technological change
\(K \): physical capital input
\(L \): labor capital input.

This model provides the theoretical foundations for this study, as it links human capital to economic activities. Hence;

\[Y = A, K, L, a + \beta \]

(4.1.2)

The coefficients \(a \) and \(\beta \) represents the allocation of human and physical capital factor payment in total production. The model assumes an increasing returns to scale on production, in that \(a + \beta > 1 \).

There are two main assumptions on which the model stands. The first assumption is that there are two sectors in the economy; where one is the education sector that uses existing human capital such as teachers to produce new human capital, while the other is the goods sector that depends on human and physical capital inputs to produce output (Mandlebe, 2014).

The second assumption is that of increasing returns to scale on production, this means that factor payments do not use up all the output, with a fraction of the rent spillover appearing in research and development, and knowledge. The spillover, in turn, affects the quantity of output only through technological change (\(A \)), rather than through capital-using or labor-saving route (Easterly and Levine, 2001). Equation (4.1.2) is of the assumption that the technological progress is neutral to labour and capital, thereby leaving the marginal rate of substitution unchanged at a given capital-labor ratio.

This equation indicates that the time path of capital and labour determines the time path of real output. Hence, the growth of output is halfway between that of physical capital and human capital (Mandlebe, 2014). The natural logarithm of all variables was used so as to make the variables more comparable. The variables were also transformed and are expected to grow exponentially. While, the model is specified using the cobb-douglas production function.
Given this theoretical relationship, the model is specified as follows:

$$\text{PCIG}_t = f(\text{TEDU}_t, \text{PED}_t, \text{CEE}_t, \text{REE}_t, \text{GCF}_t)$$

(4.1.3)

Where

- **PCIG**: Per Capita Income Growth (Proxy for Inclusive Growth Rate)
- **TEDU**: Tertiary School Enrolment Rate
- **PED**: Public Expenditure on Education
- **CEE**: Capital Expenditure on Education
- **REE**: Recurrent Expenditure on Education
- **GCF**: Gross Fixed Capital Formation

The functional form of the model is:

$$\text{LPCIG}_t = \beta_0 + \beta_1 \text{LTEDU}_t + \beta_2 \text{LPED}_t + \beta_3 \text{LGFCF}_t + \beta_4 \text{LCEE}_t + \beta_5 \text{LREE}_t + \text{U}_t$$

(4.1.4)

Table 4.1a: Variables and Apriori Expectations

<table>
<thead>
<tr>
<th>Variables</th>
<th>Definition</th>
<th>Measurement</th>
<th>Apriori Expectations</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGR</td>
<td>Inclusive growth</td>
<td>Composite Inclusive growth index</td>
<td></td>
</tr>
<tr>
<td>TEDU</td>
<td>Tertiary School Enrolment rate</td>
<td>Tertiary School Enrolment rate [gross %]</td>
<td>$\beta_1 > 0$</td>
</tr>
<tr>
<td>PED</td>
<td>Public Expenditure on Education</td>
<td>Ratio of public expenditure on education to total government expenditure [%]</td>
<td>$\beta_2 > 0$</td>
</tr>
<tr>
<td>GFCF</td>
<td>Gross Fixed Capital Formation</td>
<td>Gross fixed capital formation (annual % growth)</td>
<td>$\beta_3 > 0$</td>
</tr>
<tr>
<td>CEE</td>
<td>Public Capital Expenditure on Education</td>
<td>Total Capital Expenditure of Government on Education (in millions naira [N])</td>
<td>$\beta_4 > 0$</td>
</tr>
<tr>
<td>REE</td>
<td>Public Recurrent Expenditure on Education</td>
<td>Total Recurrent Expenditure of Government on Education (in billions naira [N])</td>
<td>$\beta_5 > 0$</td>
</tr>
</tbody>
</table>

Source: Author’s computation

4.2 Technique of Estimation

The technique of estimation adopted for the study is the co-integration technique alongside Vector Error Correction Model (VECM). Co-integration is used to estimate and test for stationarity in linear or co-integration relationships; it ensures stationarity in the linear combination of variables. A regression analysis based on time series data may be unreliable, as it independently assumes that all values are stationary, which may not always be the case. Hence, the regression of a non-stationary time series data will lead to a spurious regression and misleading results. Thus, the estimation procedure in the study begins with a unit root test to test for stationarity or otherwise in the variables. This is followed by a Co-integration test which measures the long run equilibrium relationship between these variables. Finally, a Vector Error Correction Mechanism was conducted. This is to check for an Error Correction Mechanism between time series variables in the short run. It is also known as the speed of adjustment.

4.3 Presentation

The AIC, such that, the null hypothesis of the ADF test is less, the null hypothesis is rejected. The variables tested for integration state is ADF I(1), the ADF test is percent respecti-
A Priori Expectations

\[\beta_0 > 0 \]
\[\beta_1 > 0 \]
\[\beta_2 > 0 \]
\[\beta_3 > 0 \]

4.3 Presentation and Discussion of Results

The Augmented Dickey-Fuller (ADF) test was employed in this study. The rule of thumb is such that, the null hypothesis that the variables are non-stationary will be rejected if the absolute value of the ADF test statistics is greater than the critical value 1 percent, 5 percent and 10 percent and if it is less, the null hypothesis is accepted.

The variables LPCIG, LTEDU, LPED, LCEE, LREE and LGFCF, when integrated of order 1(1), the ADF test statistics in absolute value are greater than their critical values at 1 percent and 5 percent respectively. Hence, we say they are stationary at first difference. The hypothesis of co-integration states that only a linear combination of series that are integrated of the same order should be attempted. The unit root at first difference was adopted in this study because all variables are stationary at first difference.

<table>
<thead>
<tr>
<th>Variable</th>
<th>ADF Test Statistic with Constant and Linear Trend</th>
<th>5% Critical Value</th>
<th>Order of Integration</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPCIG</td>
<td>-6.796268</td>
<td>-2.960411</td>
<td>I(1)</td>
<td>Stationary</td>
</tr>
<tr>
<td>LREE</td>
<td>-5.198528</td>
<td>-2.971853</td>
<td>I(1)</td>
<td>Stationary</td>
</tr>
<tr>
<td>LCEE</td>
<td>-8.281376</td>
<td>-2.960411</td>
<td>I(1)</td>
<td>Stationary</td>
</tr>
<tr>
<td>LTEDU</td>
<td>-4.544821</td>
<td>-2.960411</td>
<td>I(1)</td>
<td>Stationary</td>
</tr>
<tr>
<td>LGFCF</td>
<td>-3.902149</td>
<td>-2.960411</td>
<td>I(1)</td>
<td>Stationary</td>
</tr>
<tr>
<td>LPED</td>
<td>-5.130745</td>
<td>-2.971853</td>
<td>I(1)</td>
<td>Stationary</td>
</tr>
</tbody>
</table>

Source: Author’s Computation using E-view 7.

The Johansen Co-integration test is used to determine the co-integrating rank and number of common stochastic trends in the system. The test is carried out to specify the nature of the long run relationship between inclusive growth based on a question this study seeks to answer. The result of the co-integration rank test present below reveal that there is three co-integration equations for the Trace statistic at the 5 percent level. The result also revealed that there are one co-integration equations for the Maximum-Eigenvalue statistic at the 5 percent level. This study is employs the use of the Maximum-Eigenvalue statistics in interpretation.

The results from the Johansen co-integration test are displayed below in Table 4.1. The T-statistic is used to show the significance of the independent variable in the long run. If the T-statistic is approximately equal to 2 or greater than 2, the variable is statistically significant but however, if the T-statistic is less than 2, the variable is not statistically significant.

Trace Statistic

<table>
<thead>
<tr>
<th>Hypothesised No. of CE(s)</th>
<th>Eigenvalue</th>
<th>Trace Statistic</th>
<th>0.05 Critical Value</th>
<th>Prob.**</th>
</tr>
</thead>
<tbody>
<tr>
<td>None*</td>
<td>0.798803</td>
<td>126.4560</td>
<td>107.3466</td>
<td>0.0016</td>
</tr>
<tr>
<td>At most 1</td>
<td>0.561461</td>
<td>76.74832</td>
<td>79.34145</td>
<td>0.0772</td>
</tr>
<tr>
<td>At most 2</td>
<td>0.528594</td>
<td>51.19485</td>
<td>55.24578</td>
<td>0.1085</td>
</tr>
<tr>
<td>At most 3</td>
<td>0.385960</td>
<td>27.88172</td>
<td>35.01090</td>
<td>0.2353</td>
</tr>
<tr>
<td>At most 4</td>
<td>0.317316</td>
<td>12.76317</td>
<td>18.39771</td>
<td>0.2561</td>
</tr>
<tr>
<td>At most 5</td>
<td>0.029547</td>
<td>0.929758</td>
<td>3.841466</td>
<td>0.3349</td>
</tr>
</tbody>
</table>

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level.

Max-eigenvalue

<table>
<thead>
<tr>
<th>Hypothesised No. of CE(s)</th>
<th>Eigenvalue</th>
<th>Trace Statistic</th>
<th>0.05 Critical Value</th>
<th>Prob.**</th>
</tr>
</thead>
<tbody>
<tr>
<td>None*</td>
<td>0.798803</td>
<td>49.70765</td>
<td>43.41977</td>
<td>0.0092</td>
</tr>
<tr>
<td>At most 1</td>
<td>0.561461</td>
<td>25.55347</td>
<td>37.16359</td>
<td>0.5490</td>
</tr>
<tr>
<td>At most 2</td>
<td>0.528594</td>
<td>23.31312</td>
<td>30.81507</td>
<td>0.3104</td>
</tr>
<tr>
<td>At most 3</td>
<td>0.385960</td>
<td>15.11856</td>
<td>24.25202</td>
<td>0.4874</td>
</tr>
<tr>
<td>At most 4</td>
<td>0.317316</td>
<td>11.83341</td>
<td>17.14769</td>
<td>0.2510</td>
</tr>
<tr>
<td>At most 5</td>
<td>0.029547</td>
<td>0.929758</td>
<td>3.841466</td>
<td>0.3349</td>
</tr>
</tbody>
</table>

Max-eigenvalue

Table 4.2: Unrestricted Co-integrating Rank Test

Source: Author's Computation using E-views 7.

Co-integration Result

<table>
<thead>
<tr>
<th>Error Correction:</th>
<th>(D(LPCIG))</th>
<th>(D(LTED))</th>
<th>(D(LREE))</th>
<th>(D(LCEE))</th>
<th>(D(LPED))</th>
<th>(D(LGFCF))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CointEq1</td>
<td>-0.887855</td>
<td>0.012877</td>
<td>0.528297</td>
<td>0.170648</td>
<td>0.370989</td>
<td>-0.161552</td>
</tr>
<tr>
<td></td>
<td>(0.15071)</td>
<td>(0.01919)</td>
<td>(0.46210)</td>
<td>(0.36694)</td>
<td>(0.29997)</td>
<td>(0.17548)</td>
</tr>
<tr>
<td></td>
<td>[-5.89113]</td>
<td>[0.67107]</td>
<td>[1.14228]</td>
<td>[0.46596]</td>
<td>[1.26676]</td>
<td>[-0.92063]</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.754933</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj. R-squared</td>
<td>0.665818</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-statistic</td>
<td>8.471424</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.3: Co-integration Result.

The normalised co-integration result is written in its implicit form, hence to make it explicit; it is rewritten by changing the signs as follows:

\[LPCIG = 2.200579 \cdot TEDU - 0.151454 \cdot RREE - 0.412561 \cdot LCEE + 0.705494 \cdot PED + 0.000804 \cdot LGFCF \]

The result above implies that there is a positive and significant relationship between human capital and inclusive growth in the long run. A one percent increase in human capital leads to a more than proportionate increase in inclusive growth by about 2.2 percent. This means that a positive long run relationship exists.

Then expenditure on education expenditure percent. This is expected to have a positive effect on the education investment.

The result above implies that there is a positive and significant relationship between fixed capital formation and inclusive growth in the long run. This means that a positive and significant relationship exists between fixed capital formation and inclusive growth in the long run.

4.4 Vector Error Correction Model

The restricted VAR specification of the relationship between the long-run expenditure and education and inclusive growth is expected to be

\[\quad \text{Adj. R-squared: 0.665818} \]

The result above implies that there is a positive and significant relationship between fixed capital formation and inclusive growth in the long run. A one percent increase in fixed capital formation leads to a more than proportionate increase in inclusive growth by about 2.2 percent. This means that a positive long run relationship exists.

The normalised co-integration result is written in its implicit form, hence to make it explicit; it is rewritten by changing the signs as follows:

\[LPCIG = 2.200579 \cdot TEDU - 0.151454 \cdot RREE - 0.412561 \cdot LCEE + 0.705494 \cdot PED + 0.000804 \cdot LGFCF \]

The result above implies that there is a positive and significant relationship between human capital and inclusive growth in the long run. A one percent increase in human capital leads to a more than proportionate increase in inclusive growth by about 2.2 percent. This means that a positive long run relationship exists.

Then expenditure on education expenditure percent. This is expected to have a positive effect on the education investment.

The result above implies that there is a positive and significant relationship between fixed capital formation and inclusive growth in the long run. This means that a positive and significant relationship exists between fixed capital formation and inclusive growth in the long run.
run relationship between human capital and inclusive growth exists in Nigeria. This goes in line with a priori expectation, as human capital and inclusive growth is supposed to have a positive long term relationship.

There is a negative and insignificant relationship between public recurrent education expenditure and inclusive growth in the long run. A one percent increase in the public recurrent education expenditure will lead to a less than proportionate decrease in inclusive growth by about 0.15 percent. This goes against a priori expectation, as an increase in public recurrent education expenditure is expected to bring a positive change to inclusive growth.

The result above implies that there is a negative and insignificant relationship between public capital expenditure on education and inclusive growth in the long run. A one percent increase in public capital expenditure on education leads to a less than proportionate decrease in inclusive growth by about 0.41 percent. This goes against theory and a priori expectation, as capital expenditures such as building additional schools, is expected to have a positive relationship with inclusive growth, especially in the long run.

There is a positive and significant relationship between the total government education expenditure as a ratio of total government expenditure and inclusive growth in the long run. A one percent increase in the ratio of government education expenditure to total government expenditure will lead to a more than proportionate increase in inclusive growth by about 0.71 percent. This goes in line with the a priori expectation that an increase in the proportion of total public expenditure allocated to the education sector will promote inclusive growth.

The result above implies that there is a positive and significant relationship between gross fixed capital formation and inclusive growth in the long run. A one percent increase in gross fixed capital formation leads to a more than proportionate increase in inclusive growth by around 0.0008 percent. This means that a positive long run relationship between gross fixed capital formation and inclusive growth exists in Nigeria. This goes in line with a priori expectation, as gross fixed capital formation and inclusive growth are supposed to have a positive long term relationship. This means that an increase in the physical capital of Nigeria has a positive effect with inclusive growth.

4.4 Vector Error Correction Model

The presence of at least one co-integrating relationship between the variables means that the restricted VAR (VECM) should be used for the estimation. The VECM is used to estimate the relationship that exists between the variables in the short run, and reconciles the short run behaviour with the long run equilibrium. In other words, it restricts the long run behaviour of endogenous variables to incorporate short run disequilibria. The short run deviations are corrected through series of adjustments. The stability condition of the VECM can only be satisfied when the coefficient is negative sign and lies between 0 and 1, with a t-statistic that is greater than two to ensure statistical significance. The coefficient of the error term has a negative sign and is statistically significant for this model. This shows that there a long run convergence between inclusive growth and the independent variables.

Note: T-statistic values are in []

Source: Author’s Computation using Eviews 7.

DOTRE B1 – Annual Vol. 17, Nos. 2, 2016. 93
The results of the estimation give the short run relationships among the variables. The result reveals that though the coefficient of all the independent variables lie between 0 and 1, only LPCIG and LGFCF are negative. It also reveals that of all the independent variables, none is statistically significant. This implies there is no meaningful error correction taking place in the isolated independent variables; LTEDU, LREE, LCEE, LPED and LGFCF. The result confirms the positive relationship between LTEDU, LCEE, LPED, LREE, LGFCF and inclusive growth. The result showed that a positive relationship exists in LTEDU in relation to inclusive growth in the short run. The coefficient shows that 88.7 percent of errors in the current period will be corrected in the subsequent period respectively which implies a more than average speed of adjustment. The result of the estimation shows that the explanatory variables account for about 75.49 percent of the variations in inclusive growth.

Summary of Findings

The analysis was carried out mainly to investigate the relationship between education expenditure and inclusive growth in Nigeria. All variables were revealed to be stationary at first difference. The Johansen co-integration and VECM results reveal that there is a positive and significant relationship between human capital and inclusive growth in the long run, which goes strongly in line with a priori expectations. Gross fixed capital formation and ratio of public expenditure on education to total government expenditure also showed a positive relationship, while total recurrent expenditure of government on education and total capital expenditure of government on education showed a negative relationship in the co-integration.

Tertiary enrolment rate, total recurrent expenditure of government on education, total capital expenditure of government on education, gross fixed capital formation and ratio of public expenditure on education to total government expenditure also showed a positive relationship in the VECM. In the VECM, none of the independent variables were significant. This means that human capital positively influences inclusive growth in both the short and long run, while total capital expenditure of government on education and total recurrent expenditure of government on education negatively influences inclusive growth in the long run, but positively influences growth in the short run. The results also showed that gross fixed capital formation and ratio of public expenditure on education to total government expenditure positively influence inclusive growth both in the short and long run. While working papers on inclusive growth have claimed that a positive relationship exists between human capital and inclusive growth, this research accepts that inference and supports government's expenditure on education as well as the human capital itself. Hence, all the null hypotheses of this study should be rejected.

6. Policy Implications and Recommendation

The positive impact of human capital on inclusive growth conforms to the Lucas endogenous growth theory. This study emphasised quantity and quality of human capital. Hence, human capital is an important factor for the attainment of inclusive growth in Nigeria. Nigeria has the potentials and opportunity due to the high revenue from oil, but has not engaged these potentials and opportunities into creating an inclusive growth. These include standard of living academic courses; increasing the tertiary enrollments and promote development center.

The result shows that education and total recurrent expenditure on education exists between to inclusive growth. Actual and opponents of primary education exist at all levels. Hence, remarkable changes in the standard and quality of human capital are recommended.

References

It's not factor accumulation.

UOTRE Bi - Annual Vol. 17, Nov. 2, 2016. 94
The result only LPCIG and is statistically in the isolated terms the positive result showed short run. The subsequent result of the variations in the...

...variables. The result shows a negative and significant relationship between public capital expenditure on education and inclusive growth, while a negative and insignificant relationship between public recurrent expenditure on education and inclusive growth. Also, a positive and significant relationship exists between total government education expenditure as a ratio of total government expenditure and inclusive growth. As earlier stated, access to education does not necessarily guarantee enrolment. Actual and opportunity costs have great impact on tertiary level education in Nigeria. Though the goal of primary education for all is yet to be achieved, the policy has contributed to the increase in enrolment at all levels. Hence, if this policy is introduced at the secondary and tertiary level, it may bring a remarkable change. These policies if properly applied to the economy will spur an increase in the level and quality of human capital in the economy, which will translate to inclusive growth.

References

Easterly, W. & Levine, R. (2015). What have we learned from a decade of empirical research on growth?

