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ABSTRACT

In this work, effect of magnetic field on the entropy generation rate of a reactive couple stress fluid
through porous medium is investigated. The equations governing the fluid flow are formulated, non-
dimensionalised and solved using the rapidly convergent semi-analytical Adomian decomposition
method (ADM). The obtained velocity and temperature profiles are utilised to compute the entropy
generation rate, irreversibility ratio and Bejan number. The effects of pertinent flow parameters on

velocity, temperature, entropy generation rate and Bejan number are analyzed graphically.
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1. INTRODUCTION

Over the past centuries, analysis of magnetohydrodynamics flow has received much attention owing to
its applications in nuclear reactor, MHD generators, purifications of metal from non-metal enclosures,
plasma studies, geothermal energy extractions, polymer technology and metallurgy. Magnetic fields
induce many complex phenomena in an electrically conducting flow regime which includes Hall
currents, ion slip effects (at higher strength magnetic fields), Joule (Ohmic heating), Alfven waves in
plasma flows, etc. Cramer et al (1973). Such effects can have a considerable influence on heat transfer
and flow dynamics. For example in ionized gases with low density subjected to a strong magnetic field,
the electrical conductivity perpendicular to the magnetic field is lowered owing to free spiraling of
electrons and ions about the magnetic lines of force prior to collisions; a current is thereby induced
which is mutually perpendicular to both electrical and magnetic fields, constituting the Hall current effect.
Under very high magnetic fields, in ionized plasmas, the diffusion velocity of ions becomes significant
and ion slip effects arise. Hall current effects however tend to be more dominant. In magnetic material
fabrication applications, porous media are frequently used to regulate flow regimes Beg et al. (2009).

The main origin of MHD dates back to pioneering discoveries of Northrup, Hartmann, Alfven, and others
in the first half of the twentieth century Molokov et al.(2007). A considerable number of studies on
electrically conducting fluid has been reported in literature, these include: Batchelor (1949) who
investigated the spontaneous magnetic field in a conducting liquid in turbulent motion, Moffatt (1970)
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considered the Turbulent dynamo action at low magnetic Reynolds number while Hunt et al.(1971)
investigated magnetohydrodynamics at high Hartmann number. Some extremum principles for pipe
flow in magnetohydrodynamics was presented by Smith, he argued that with appropriate choices for
the extrema, an asymptotic expansion for the mass-flow rate at large Hartman number can be
constructed, later Sloan (1973) extended it to extremum principles for magnetohydrodynamic channel
flow. Other important work on hydromagnetic fluid flow include Seth et al. (1982), Chandran et al.(1992),
Gbadeyan et al. (2005, 2006), Adesanya et al. (2012,2015a) and Khan et al. (2015).

Analysis of a reactive fluid has been carried out by numerous researchers over the past years.
According to Hassan et al. (2015), a reacting material which undergoes an exothermic reaction
generates heat in accordance with Arrhenius rate law if reactant consumption is neglected. The heat
produced in such reactions has attracted the attention of numerous researchers studying reactive
hydromagnetic flows; due to its importance in many engineering applications. Significant among such
studies include: Makinde (2013) who considered thermal stability of a reactive third-grade fluid in a
channel with convective cooling the walls. Adesanya (2013) investigated thermal stability of a reactive
hydromagnetic third-grade fluid through a channel with convective cooling. Gbadeyan et al.(2012)
reported on the multiplicity of solutions for a reactive variable viscous Couette flow under Arrhenius
kinetics. Hassan et al. (2014) investigated thermal stability of a reactive hydromagnetic Poiseuille fluid
flow through a channel. Other related studies are Jha et al. (2015, 2013).

Entropy generation determines the optimal performance of thermal systems; researchers over the past
years have undertaken various investigations into the causes of entropy generation. Some of the
causes include heat transfer, fluid friction, magnetic field, etc. In view of the above, Bejan (1980, 1996)
reported that entropy generation minimisation should be taken into consideration in the following
different situations; when there is thermodynamic irreversibility, heat transfer through finite temperature
gradient, convective heat transfer characteristics, viscous effects etc. Bejan (1982, 1996) also
pioneered the application of second law of thermodynamics in predicting the performance of
engineering processes. Thereafter, numerous researchers have investigated entropy generation under
various flow configurations. Notable among them are Ajibade et al. (2011) who studied entropy
generation under the effect of suction/injection. Makinde et al. (2013) presented effects of convective
heating on entropy generation rate in a channel with permeable wall. Adesanya et al. (2015c)
considered the effects of couple stresses on entropy generation rate in a porous channel with
convective heating. Also, Adesanya (2015b) studied entropy generation analysis for a reactive couple
stress fluid flow through a channel saturated with porous material while Opanuga et al. (2016) analysed
the effect of thermal radiation on the entropy generation of MHD flow through porous channel.

Motivated by Adesanya et al. (2015b), the objective of this paper is analysis of the effect of magnetic
field on the entropy generation of a reactive couple stress fluid, owing to the enormous applications of
hydromagnetic couple stress fluid. Furthermore, authors apply the rapidly convergent semi-analytical
technique of ADM instead of the regular perturbation technique used in Adesanya et al. (2015b); this is
due to the fact that approximate solution by perturbation technique is valid for the small values of the
parameters used. However, ADM is easy to apply, highly accurate and rapidly converges to the exact
solution, see the following Refs. (Adesanya et al.2013, Opanuga et al. 2015, 2015, 2017). The rest of
the paper is organised as follows: section two presents problem formulation and non-
dimensionalization, section three gives the solution to the boundary value problems by Adomian
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decomposition method. In section four, results are graphically discussed, while section five states the

concluding remarks.

2. MATHEMATICAL FORMULATION

Consider the steady and thermally developed flow of an incompressible reactive couple stress fluid
placed between two parallel impermeable plates with isothermal boundary conditions under the

influence of a transverse magnetic field strength B, . It is assumed that the fluid motion is induced by

applied axial pressure gradient. Neglecting the consumption of the reactant, then the governing
equations for the momentum, heat balance and entropy generation rate can be written as Adesanya et
al. (2015b)

dp v dW oBW
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In the equations above, u” is the axial velocity, p is the fluid density, ¢, is the specific heat at constant
pressure =~ O is the electrical conductivity of the fluid, P is the fluid pressure, T’is the absolute
temperature, 7 is the geometry wall temperature, k is the thermal conductivity of the fluid, K is the
porous permeability of the medium, Q is the heat of reaction, A is the rate constant, £ is the activation
energy, R is the universal gas constant, ¢, is the initial concentration of the reactant species, / is the

channel width, (x,y) is the distance measured in the axial and normal directions, respectively, u is
the combustible material dynamic viscosity coefficient, 7 is the fluid particle size effect due to couple

stresses, B0 is the uniform transverse magnetic field, EG is the local volumetric entropy generation

rate.
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using equation (5) in equations (1-3), we obtain the boundary value problems and the dimensionless
entropy generation expression
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and the boundary conditions are
1" (0)=u(0)=u"(1)=u(1)=0
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where u is the dimensionless velocity, A is the Frankkameneskii parameter, € is the activation energy
parameter, J is the viscous heating parameter, /3 is the porous permeability parameter, Da is the
Darcy number, ¥ is the couple stress inverse parameter, /is a function of molecular dimension of the
fluid, His the magnetic field parameter, Ns is the dimensionless entropy generation rate, @is the

dimensionless temperature Be and Bi, , are the Bejan number and Biot numbers respectively and

G is the axial pressure gradient.

3. METHOD OF SOLUTION

3.1 Solution via ADM
Writing equation (6) in the integral form, we obtain

vy oy oy

3 f‘z yyYy d2u 5
u(y)—f1y+—y +j/‘([2[.!.(l; 1 Tz u—HudYdYdYdY (10)
where f;, f, are the parameters to be determined later.
The infinite series solution of ADM is of the form
u(y):;un(y)a 9()’)=§9n()/) (11)

Applying (11) in (10) yields
yyyy oo oo oo
Zu ()= fy+—y +7 j”{nz o ﬂZZun—HZZun}deYdeY
000 n=0

0 n=0

(12)

From equation (12), the zeroth order term can be written as
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while other terms can be determined using the recurrence relations below
[ yyyy
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Also, equation (7) in the integral form can be written as
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wheref3 is to be determined later. Applying (11) in (15) gives
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and the zeroth order term can be written as

2.6 =1, (17)
n=0
other terms can be determined using the recurrence relations
e,
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00
and the non-linear term in equation (18) is written as
36,0
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Some of the Adomian polynomials A4, 's from (19) are given as
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Using equations (20-21) in equation (18), we obtain
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All calculations associated with equations (13, 14, 17 and 22) are carried out by coding the equations
in an algebra symbolic package-Mathematica. We present only the graphical results in Figures 1-15
due to large size of the computational solution. To verify the accuracy of these computations, the
approximate solution of the velocity profile obtained via ADM is compared with exact solution in Table
1.

Table 1: Computation showing convergence of solution when

y=H=1,=0.1
14 Abs. error
v UEXACT ZUADM

0 0 0 0
0.1 0.003678164 0.003678164 2.10448E-12
0.2 0.006955122 0.006955122 4.08814E-12
0.3 0.009517005 0.009517005 5.82758E-12
0.4 0.011142114 0.011142114 7.19439E-12
0.5 0.011698431 0.011698431 8.05267E-12
0.6 0.011142114 0.011142114 8.25621E-12
0.7 0.009517005 0.009517005 7.64618E-12
0.8 0.006955122 0.006955122 6.04804E-12
0.9 0.003678164 0.003678164 3.26987E-12

1 3.45E-17 -9.0182E-13 9.01855E-13

3.2 ENTROPY GENERATION

The expression for entropy generation in equation (3) suggests five sources of entropy
production. The first term is irreversibility due to heat transfer, the second, third, fourth and fifth terms
are irreversibility due to fluid friction, porosity, couple stresses and the effect of magnetic field.

k(drY i du ’ w” n(d ' GBW®
Ei=—s| = |+ 5 | +5—+ 2| = | +——
r'\dy) T\d') TK T\dy T

o
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The dimensionless form in equation (8) can be written

2 2 ) 2
E,= a9 +ﬁ aul L d—f +pu’ + Hw’
dy e (\dy y\ dy

We now set

2 2 P 2
N, = a9 N, _ oA | du AL d—b; + B+ Hu?
) and e \dv) rldy

where N, is irreversibility due to heat transfer and N, represents fluid friction irreversibility with

(23)

magnetic field. To describe the contribution of heat transfer irreversibility to the overall entropy
generation, the Bejan number Be is employed. It gives the ratio of heat transfer and viscous dissipation
with magnetic field within the channel as

pooi_ 1
N, 1+® (24)

N.
where ® = —2 is the irreversibility ratio.

1

Equation (24) indicates that Bejan number takes values between 0 and 1. i.e 0 < Be<1. The value
Be =1 signifies the limit at which heat transfer dominates entropy generation, Be = 0 gives the limit
at which viscous dissipation and magnetic field dominates and Be = 0.5 represents equal contribution
of both heat transfer and viscous dissipation to entropy production.

4. RESULTS AND DISCUSSION

In this present study, effect of magnetic field on entropy generation rate of a reactive couple stress fluid
flow through porous medium has been investigated using the rapidly convergent Adomian
decomposition method. The velocity and temperature profiles are obtained and utilized to compute the
entropy generation rate. The effects of various flow parameters on velocity, temperature, entropy
generation and Bejan number are discussed to provide insight to the problems, and the results are
graphically displayed in Figs. 1-15.

41 Effect of Parameters Variation on Velocity Profile

In Figs. 1-3 we present the variations of velocity for different flow parameters. Figure 1 displays the
effect of variations in magnetic field intensity on fluid velocity. The Figures indicates that velocity of the
fluid reduces with increasing value of magnetic field due to the retarding effect of Lorentz force present
in the flow. Figure 2 is the plot of porous medium permeability parameter variations on fluid velocity; it
is shown from the plot that increase in porous medium term corresponds to reduction in fluid velocity.
This is due to the fact that increase in porous medium parameter always results to reduction in porous
medium permeability of the fluid. Figure 3 shows the graph of couple stress inverse parameter on fluid

1
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temperature. From the plot, we observed that increase in couple stress inverse increases fluid velocity,
meaning that couple stresses will retard fluid velocity due to increased fluid thickness.
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Figure 1: Effect of magnetic field on fluid velocity
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Figure 2: Effect of porous medium parameter on fluid velocity
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Figure 3: Effect of couple stress inverse parameter on fluid velocity

92



International Journal of Applied Mathematics and Statistics

4.2 Effect of Parameters Variation on Temperature Profile

The influences of different governing parameters on temperature are presented in Figs. 4-7. The effect
of magnetic field parameter on fluid temperature is shown in Fig. 4. The plot shows a rise in fluid
temperature as magnetic field parameter increases. The Lorentz heating effect is attributed to the rise
in fluid temperature. In Figure 5, effect of viscous heating parameter on temperature is depicted. Fluid
temperature is enhanced by increasing viscous heating parameter due to the additional heat generated
by the conversion of fluid kinetic energy to internal energy. Also, Figure 6 displays the effect of variation
in Frank-Kameneskii parameter (1) on fluid temperature. It is observed from the plot that there is a
rise in fluid temperature with increase in Frank-Kameneskii parameter, this is caused by increase in the
initial concentration of the reactant species (c,) within the flow channel. From Figure 7, we observed

an increase in fluid temperature with increase in couple stress inverse parameter. This indicates that
fluid temperature will decrease with increase in couple stress parameter because of the rise in fluid
dynamic viscosity which results in the drop of fluid temperature.

fe=015=1,6=19=10,2 =1}

o10f H=

005 =1
. X : ; ¥
02 04 0.6 08 1.0
Figure 4: Effect of magnetic field parameter on fluid temperature
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Figure 5: Effect of viscous heating parameter on fluid temperature

93



International Journal of Applied Mathematics and Statistics

fe=01, =1 y=02 H=146=1}

0.04

0.03

002

02 04 0.6 0.8 1.0 ’
Figure 6: Effect of Frank-Kameneskii parameter on fluid temperature
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Figure 7: Effect of couple stress inverse parameter on fluid temperature

4.3 Effect of Parameters Variation on Entropy generation rate

In Figures 8-11, we present the effects of variation of some governing parameters on entropy generation
rate. Figure 8 indicates the effect of magnetic field parameter on entropy generation. We found that
entropy production registers an increase as magnetic field parameter increases. This is caused by
increased temperature (as indicated in Fig.4) which increases the rate of disorderliness of the flow. Also
in Figure 9 we observed that an increase in viscous heating parameter results in higher entropy
production due to increased heat generated by the conversion of fluid kinetic energy to internal energy
(see Figure 5). Furthermore, entropy generation increases significantly at the walls of the channel with
increase in Frank-Kameneskii parameter as shown in Figure 10. This is due to increase in heat
generated by the rise in concentration of the reactant species. In Figure 11, the effect of variation in
couple stress inverse parameter is displayed, the plot indicates that increase in couple stress inverse
corresponds to a significant rise in entropy generation at the center of the channel, meaning that couple

stresses will lead to reduction in entropy generation.
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Figure 8: Effect of magnetic field on entropy generation
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Figure 9: Effect of viscous heating on entropy generation
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Figure 10: Effect of Frank-Kameneskii parameter on entropy generation
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Figure 11: Effect of couple stress inverse on entropy generation

4.4 Effect of Parameters Variation on Bejan number

We present the influence of parameters variation on Bejan number in Figs.12-15. Figures 12 and 13
depict the effect of magnetic field intensity parameter and viscous heating parameter on Bejan
number. The plots show a decrease in Bejan number as magnetic field and viscous heating
parameters varied. This is an indication that irreversibility due to viscous dissipation is the dominant
contributor to entropy generation. Finally Figures 14 and 15 present the plots of Frank-Kameneskii
and couple stress parameters on Bejan number. The plots display an increase in Bejan number as
Frank-Kameneskii and couple stress parameters increase. They show that irreversibility due to heat
transfer dominates over viscous dissipation.
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Figure 12: Effect of magnetic field intensity on entropy generation
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Figure 13: Effect of viscous heating parameter on Bejan number
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Figure 14: Effect of Frank-Kameneskii parameter on Bejan number
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Figure 15: Effect of couple inverse parameter on entropy generation
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5. CONCLUSIONS

In this work, we have investigated entropy generation of hydromagnetic reactive couple stress fluid
through a channel filled with porous medium. The non-linear governing equations of momentum and
energy are solved numerically by Adomian decomposition method. The results are used to compute
the non-dimensional entropy generation and Bejan number. Conclusions of the study are as follows:
e Increase in magnetic field reduces fluid velocity but increases the temperature and entropy
generation rate
e Increase in viscous heating parameter increases both the temperature and entropy generation
of the fluid
e Increase in Frank-Kameneskii parameter increases fluid temperature and entropy generation

e Increase in couple stresses reduce fluid velocity, temperature and entropy generation
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