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ABSTRACT 

Sorting involves rearrangement of items into ascending or descending order. 

There are several sorting algorithms but some are more efficient than others in 

terms of speed and memory utilization. Shellsort improves on Insertion sort by 

decreasing the number of comparisons made on the items to be sorted.  

This paper presents an Improved Shellsort algorithm that further decreases 

the number of comparisons made on the items to be sorted through a modified 

diminishing increment sort.  

The results obtained from the implementation of both Shellsort and the 

proposed  algorithm shows that the proposed algorithm has a fewer number of 

comparisons made for all input sizes of the best and worst cases and for input size 

of twenty or less for the average case.  

By implication, this means that the proposed algorithm is faster in these 

situations. The strength of the algorithm however diminishes for only the average 

case of input size greater than twenty. 
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1. Introduction 

For computer to serve as a 

problem solving machine, it must be 

directed what steps to follow in order 

to get the problem solved. An 

algorithm is a finite sequence of 

instructions, each of which has a clear 

meaning and can be performed with a 

finite amount of effort in a finite 

amount of time [1]. Algorithms are 

paramount in computer programming. 

An algorithm could be of no use even 

though it is correct and gives a desired 

output if the resources like time and 

storage it needs to run to completion 

are intolerable.  

To say that a problem is 

solvable algorithmically means, 

informally, that a computer program 

can be written that will produce the 

correct answer for any input if we let it 

run long enough and allow it as much 

storage space as it needs [2]. 

In an algorithm, instructions 

can be executed any number of times, 

provided the instructions themselves 

indicate repetition. However, no matter 

what the input values may be, an 
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algorithm terminates after executing a 

finite number of instructions. Thus, a 

program is an algorithm as long as it 

never enters an infinite loop on any 

input [2]. 

An algorithm can either be 

correct or incorrect. A correct 

algorithm is one that halts with a 

correct output while an incorrect 

algorithm halts with an incorrect 

output or may not halt at all. An 

algorithm has five important features 

[3]: 

(i) teness: An algorithm must always 

terminate after a finite number of 

steps; 

(ii) Definiteness: Each step of an 

algorithm must be precisely 

defined; the actions to be carried 

out must be rigorously specified for 

each case; 

(iii)Input: An algorithm has zero or 

more inputs- quantities that are 

given to it initially before the 

algorithm begins, or dynamically 

as the algorithm runs. These  inputs  

are taken from specified sets of 

objects; 

(iv) Output: An algorithm has one or 

more outputs- quantities that have a 

specified relation to inputs; 

(v) Effectiveness: An algorithm is also 

generally expected to be effective, 

in the sense that its operations must 

all be sufficiently basic that they 

can in principle be done exactly 

and in a finite length of time by 

someone using pencil and paper. 

An algorithm can be described using a 

computer language. It can also be 

specified using pseudocode. 

Pseudocode provides an alternative 

step between an English language 

description of an algorithm and an 

implementation of this algorithm in a 

programming language [4]. Different 

kinds of problems can be solved by 

algorithms: sorting, searching, 

determining the subsequences of the 3 

billion chemical base pairs that make 

up human DNA, etc. There are also a 

group of problems christened ‘hard 

problems’. These are problems for 

which no efficient solution is known 

[5]. NP-Complete problems are a 

subset of hard problems and are 

interesting because although no 

efficient algorithm has been found for 

them, no one has ever proved that an 

efficient algorithm for one cannot 

exist. They also have the property that 

if an efficient algorithm exists for any 

one of them, then efficient algorithms 

exist for all of them. This paper 

examines only sorting algorithms and 

specifically Insertion Sort and 

Shellsort and improves on the latter for 
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the worst-case, best-case and a subset 

of the average-case scenario. 

Arrangement of the Paper 

2. Objective of the Research 

Shellsort improves on Insertion 

sort by decreasing the number of 

comparisons made and hence the time 

taken to complete the sorting, the main 

of objective of this work is the 

development an algorithm that also 

improves on Shellsort by further 

decreasing the number of comparisons 

made on the items to be sorted in order 

to know the position each item will 

occupy. By implication, the time taken 

to run an algorithm to completion also 

decreases with a decreased number of 

comparisons. 

 

3. Methodologies 

Improved Shellsort algorithm 

was developed based on the concept of 

dividing items to be sorted into 

subsequences and the subsequences 

sorted just like Shellsort does but using 

a different approach. Shellsort and 

Improved Shellsort algorithms were 

implemented on the same platform 

with different sets of numbers of 

varying input sizes for the best case, 

average case and the worst case 

situations and the results of the number 

of comparisons made in each situation 

which also affects the running time 

were compared and tabulated.  

 

4. Sorting Algorithms 

Given a list of input elements 

or objects, sorting arranges the 

elements either in ascending order or 

descending order and produces a sorted 

list as the output. The elements to be 

sorted need to be stored in a data 

structure for manipulation. Among the 

various data structures usually used for 

sorting are: arrays, linked list, heap, 

etc. Sorting can either be internal or 

external. Internal sorting is the type of 

sorting that requires all the elements to 

be sorted to be in the main memory 

throughout the sorting process while an 

external sorting allows part of the 

elements to be sorted to be outside the 

main memory during the sorting 

process [6].  Examples of internal 

sorting algorithms are: Insertion Sort, 

Selection Sort, Bubble Sort, Shellsort, 

etc. There is no known “best” way to 

sort; there are many best methods, 

depending on what is to be sorted, on 

what machine and for what purpose 

[3]. What needs to be done is to learn 

the characteristics of each sorting 

algorithm and make a good choice for 

a particular problem. 

 

4.1     Insertion Sort 
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Insertion Sort assumes the first 

element in the array is sorted, so we 

start with the second element. The 

second element is compared with the 

first. If it is less than the first, the two 

swap positions. The third element is 

picked and compared with the second, 

if it is less, it is swapped with the 

second. Otherwise, it remains where it 

is. Suppose it has been swapped with 

the second element, it now occupies 

the second position. It is still further 

compared with the first element and 

necessary action taken. The fourth 

element is taken and the same 

operations performed until all the 

elements have been sorted. The 

algorithm is presented below: 

insertionsort(A, size:int) 

Begin 

1) for i =2 to size of A [A is the 

array, while size is the length of 

the array A]  

 begin 

2) temp = A[i]  [ temp is a 

temporary storage] 

 [insert A[i] into the sorted 

sequence a[1…i-1] 

3) j = i -1 [j is 1 position less than 

the current position of i] 

4) while (j > 0 and a[j] > temp)  

  begin 

5) A[j + 1] = A[j] [Store A[j] in 

position (j + 1) ] 

6) j = j - 1 

         end 

7)  A [j + 1] = temp 

   end 

End 

The actions performed by the 

algorithm given the list of numbers 

below to be sorted in ascending order 

of magnitude are shown diagram-

matically below: 

Given list:16 13 15 17  12 14 

16  13  15  17  12  14 

 

13  16  15  17  12  14 

 

13  15  16  17  12  14 

 

13  15  16  17  12  14 

 

12  13  15  16  17  14 

 

12  13  14  15  16  17 

 

4.2     Shellsort 

Shellsort proposed by Donald 

L. Shell improves on Insertion Sort by 

reducing the number of comparisons 

made. It sorts an array A with n 

elements by dividing it into 

subsequences and sorts the 

subsequences. Any sequence s1, s2, 

s3,…, sn can be used for the 
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subsequences in as much as the last 

subsequence is 1. In the first pass, 

elements that are s1 distance apart are 

sorted using insertion sort starting from 

the first on the list. For the second 

pass, elements that are s2 distance apart 

are sorted using Insertion sort also by 

starting from the first. This continues 

until elements that are 1 distance apart 

are sorted using straight Insertion Sort. 

Integer division is carried out on s1 to 

get s2, integer division also carried out 

on s2 to get s3 and so on. Shellsort is 

also called Diminishing Increment 

Sort. The elements to be sorted are 

assumed to be stored in an array.  

Consider the worst-case 

problem of sorting the following 

elements in ascending order: 

51  35  17  9  6  4  2  1  

Let us take s1 = 4 to be the initial 

value. 

 

First Pass 

For the first pass, numbers that 

are 4 distance apart are sorted. They 

are sorted in ascending order as follow: 

51  35  17  9 6  4  2 1 

 

 

6  35  17  9  51  4  2  1 

 

6  4  17  9  51  35  2  1 

 

6  4  2  9  51  35  17  1 

 

6  4  2  1  51  35  17  9 

 

Second Pass  

s2 = s1 ÷ 2 = 4  ÷  2 = 2 

For the second pass, numbers 

that are 2 distance apart are sorted. 

They are sorted in ascending order as 

follow: 

6  4  2 1  51  35  17 9 

 

2  4  6 1  51  35  17  9 

  

2  1  6 4  51  35  17  9 

  

2  1  6 4  51  35  17  9 

  

2  1  6 4  51  35  17  9 

 

2  1  6 4  17  35  51  9 

 

2  1  6 4  17  9  51  35 

 

Third Pass  

s3 = s2 ÷ 2 = 2  ÷  2 = 1 

Numbers that are 1 distance 

apart are sorted as shown below. 

2   1  6 4  17   9  51  35 

 

 

After sorting each one with 

straight Insertion Sort we will have the 

following sorted list: 



 78 

1  2  4  6  9  17  35  51 

For the average-case, consider 

the problem of sorting the same set of 

numbers with the following 

arrangement: 

51  17  35  9  4  1  2  6 

 

First Pass 

For the first pass, numbers that 

are 4 distance apart are sorted. They 

are sorted in ascending order as follow: 

51  17  35  9  4  1  2  6 

 

4  17  35  9  51  1  2  6 

 

4  1  35  9  51  17  2  6 

 

4  1  2  9  51  17  35  6 

 

4  1  2  6  51  17  35  9 

 

Second Pass  

For the second pass, numbers 

that are 2 distance apart are sorted. 

They are sorted in ascending order as 

follow: 

4  1  2  6  51  17  35  9 

 

2  1  4  6  51  17  35  9 

 

2  1  4  6  51  17  35  9 

 

2  1  4  6  51  17  35  9 

 

2  1  4  6  51  17  35  9 

 

2  1  4  6  35  17  51  9 

 

2  1  4  6  35  9  51  17 

 

Third Pass 

2  1  4  6  35   9  51  17 (*) 

 

After sorting each one with 

straight Insertion Sort we will have the 

following sorted list: 

1  2  4  6  9  17  35  51 

The algorithm is presented below: 

shellsort(A,size:int) 

Begin 

1. increment = size/2 [ increment 

here represents s1, s2, …, 1 

described above] 

2. while(increment ≥ 2) 

 begin 

3. i = 1 

4. while(i+increment) ≤  size 

  begin 

5. if array[i] > array[i + increment] 

swap the two 

6. i=i+1 

  end 

7. increment = increment / 2 

 end 

 [call insertion sort function to 

sort the array with increment =1 ] 

8. insertsort(A, size:int) 

End 
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Insertsort function in line 8 of the 

algorithm above applies insertion sort 

on the whole array when increment is 

1. In this algorithm, we have assumed 

that for each array to be sorted, 

elements that are (size/2) distance apart 

are first sorted. The constant 2 used 

can be changed.  

 

4.2.1 Different Sequences Proposed 

for Shellsort 
 

The sequence originally proposed 

by Shell is [N/2], [N/4], [N/8],….But, 

it has been found out that this sequence 

is not good enough and as such, 

different researchers have proposed 

different sequences: Hibbard proposed 

the sequence is 1,3,7,…,2
K
-1 [7,8]. 

The sequence 2
K
+1 was proposed by 

Papernov and Statsevich. Other 

sequences proposed are: (2
k
- (-1)

k
/3 

and (3
k
-1)/2, Pratt-like sequences 

{5
p
11

q
} and {7

p
13

q
}, Fibonacci 

numbers, the Incerpi Sedgewick’s 

sequences for ρ =2.5 and ρ=2 as well 

as his sequence  {1,5,19,41,109,…} in 

which the terms are either of the form 

9.4
i
 – 9.2

i
 +1 or 4

i
 - 3.2

i
 + 1  and N. 

Tokuda’s sequence h0 = 1, hs+1 = 

2.25hs +1 [9,10]. 

 

4.3    Improved Shellsort  

Improved Shellsort is the 

proposed sorting algorithm which is an 

improvement over the Shellsort 

algorithm. This proposed sorting 

algorithm also divides the elements to 

be sorted into subsequences just like 

Shellsort does but by first of all 

comparing the first element with the 

last. If the last is less than the first, the 

two swap positions, otherwise, they 

maintain their positions. Later, the 

second element is compared with the 

second to the last, if the second to the 

last element is smaller than the second, 

they are swapped. Otherwise, they 

maintain their positions. This process 

continues until the last two consecutive 

middle elements are compared or until 

it remains only one element in the 

middle. After this, straight Insertion 

Sort is applied to sort the elements that 

are 1 distance apart just as Shellsort 

does. This approach reduces the 

number of comparisons made for the 

whole sorting process compared with 

when Shellsort is used for the worst-

case, the best-case and small input size 

for average-case. 

Consider the worst-case 

scenario of sorting the following 

elements used for Shellsort in 

ascending order: 

51  35  17  9  6  4  2  1 

The algorithm works like this: 

51  35  17  9  6  4  2  1 
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1  35  17  9  6  4  2  51 

 

 

1  2  17  9  6  4  35  51 

  

1  2  4  9  6  17  35  51 

 

1  2  4  6  9  17  35  51 

The Improved Shellsort for the 

worst-case scenario as can be seen 

performs better than Shellsort when the 

number of comparisons made in the 

two cases are compared.  

For the average-case of sorting 

the same set of numbers used for 

Shellsort above, consider the 

following: 

51  17  35  9  4  1  2  6 

51  17  35  9  4  1  2  6 

 

 

6  17  35  9  4  1   2  51 

 

 

6  2  35  9  4   1  17  51 

  

6  2  1  9  4  35  17  51 

 

6  2  1  4  9  35  17  51 

A call is now made to straight 

Insertion sort to sort these last 

numbers. 

 

6   2  1   4  9  35  17  51       (**) 

 

After sorting each one with 

straight Insertion sort we will have the 

following sorted list: 

1  2  4  6  9  17  35  51 

It is worthy of note that in the 

average-case scenario of both 

algorithms before straight Insertion 

sort is called, three boldened numbers 

are already in their correct positions in 

the case of Improved Shellsort and 

only two in the case of Shellsort when 

(*) and (**) above are compared. It is 

obvious that when the total number of 

comparisons made are compared in the 

two cases after performing straight 

Insertion sort on both (*) and (**), 

Improved Shellort performs better.  

The algorithm is presented below: 

improvedShellSort( array, size) 

Begin 

1. i = 1 

2. j = size 

3. while( i < j) do 

 begin 

4. if  array[i] > array[j] swap( array, 

i, j) 

5. i =  i + 1 

6. j = j – 1 

 end 

 [call insertion sort function to 

sort the array with increment =1 ] 

7.  insertsort(A, size:int) 

End 
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5. Performance Analysis of 

Algorithms 
 

 The most important attribute of a 

program/algorithm is correctness. An 

algorithm that does not give a correct 

output is useless. Correct algorithms 

may also be of little use. This often 

happens when the algorithm/program 

takes too much time than expected by 

the user to run or when it uses too 

much memory space than is available 

on the computer [11]. Performance of a 

program or an algorithm is the amount 

of time and computer memory needed 

to run the program/algorithm. Two 

methods are normally employed in 

analyzing an algorithm: 

i. Analytical method 

ii. Experimental method 

 In analytical method, the factors 

the time and space requirements of a 

program depend on are identified and 

their contributions are determined. But 

since some of these factors are not 

known at the time the program is 

written, an accurate analysis of the 

time and space requirements cannot be 

made. Experimental method deals with 

actually performing experiment and 

measuring the space and time used by 

the program. Two manageable 

approaches to estimating run time are 

[11]: 

i. Identify one or more key 

operations and determine the 

number of times they are 

performed; 

ii. Determine the total number of 

steps executed by the program. 

 

5.1      Worst-case, Best-case and 

Average-case Analysis of 

Sorting Algorithms 
 

The worst-case occurs in a 

sorting algorithm when the elements to 

be sorted are in reverse order. The 

best-case occurs when the elements are 

already sorted. The average–case may 

occur when part of the elements are 

already sorted. The average-case has 

data randomly distributed in the list 

[12]. The average–case may not be 

easy to determine in that it may not be 

apparent what constitutes an ‘average’ 

input. Concentration is always on 

finding only the worst-case running 

time for any input of size n due to the 

following reasons [5]: 

i. The worst-case running time of an 

algorithm is an upper bound on the 

running time for any input. 

Knowing it gives us a guarantee 

that the algorithm will never take 

any longer. We need not make 

some educated guess about the 

running time and hope that it never 

gets much worse. 
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ii. For some algorithms, the worst-

case occurs fairly often. For 

example, in searching a database 

for a particular piece of 

information, the searching 

algorithm’s worst-case will often 

occur when the information is not 

present in the database. In some 

searching applications, searches for 

absent information may be 

frequent. 

iii. The “average-case” is often 

roughly as bad as the worst case. 

 

 

 

 

 

 

 

 

 

 

5.2    Analysis of Shellsort and 

Improved Shellsort for the 

Worst-case and Best- case   

Scenarios  
 

Analysis of Shellsort is very 

difficult and incomplete. A complete 

analysis is extremely difficult and 

requires answers to some mathematical 

problems that have not yet been solved 

[2,3]. The running time of Shellsort 

depends on the choice of increment 

sequence and the proofs can be rather 

complicated. The average-case 

analysis is a long-standing open 

problem, except for the trivial 

increment sequences [7]. Since 

Shellsort improves on Insertion Sort by 

decreasing the number of comparisons 

made, the approach employed here in 

comparing Shellsort with this proposed 

algorithm is to compare the number of 

comparisons made in each case. 

 

6.0 Results Obtained 

The two algorithms were 

implemented and compiled using 

Turbo C++ 4.5 compiler on an Intel 

Celeron M microcomputer running 

Windows Vista
TM

 Basic. The results 

obtained showing the number of 

comparisons made in each case are 

summarized in the table below:    

 

Table I: Number of Comparisons 

The number of comparisons 

has a direct effect on the time; the 

lower the number of comparisons, the 

shorter the time taken to complete the 

sorting. For any input size n for the 

worst and the best cases, the number of 

comparisons carried out by the 

Improved Shellsort is half the size of 

the input, that is, Number of 

comparisons = n/2. For input size n 

greater than 1 for the worst case for 

 Number of Comparisons 
Carried Out 

Case Size of 
 Input 

Shellsort Improved  
Shellsort 

Worst-case 10 19 5 

Best-case 10 13 5 

Average-case 10 19 13 

Worst-case 20 55 10 

Best-case 20 43 10 

Average-case 20 59 50 

Worst-case 50 180 25 

Best-case 50 154 25 

Average-case 50 254 296 

Worst-case 100 456 50 

Best-case 100 404 50 

Average-case 100 672 1183 
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Shellsort, the minimum number of 

comparisons made is n and for the best 

case the minimum number of 

comparisons is  
n
/2. The growth rate of 

the number of comparisons made in 

the worst case is higher than that of the 

best case as the size of n increases for 

Shellsort. 

 

7.  Conclusion 

The Improved Shellsort 

algorithm obviously from the results 

obtained performs better than Shellsort 

in the worst-case, the best-case and a 

small size input of the average-case. 

The strength of this algorithm becomes 

more appreciated as the size of the 

input to it increases for the worst-case 

and best-case scenarios but when input 

size begins to be higher than twenty its 

strength diminishes for the average-

case. Implementing the two algorithms 

on a different platform may produce 

different running time results but the 

same pattern will of course show. We 

therefore, conclude that this proposed 

Improved Shellsort will run faster than 

Shellsort for the worst-case, best-case 

and a subset of the average-case. 
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