Approximate-analytical Solutions of the Generalized Newell-Whitehead-Segel Model by He’s Polynomials Method

Sunday O. Edeki, Member, IAENG, Grace O. Akinlabi, and Sakiru A. Adeosun

Abstract—This paper considers approximate-analytical solutions of the generalized Newell-Whitehead-Segel model by means of He’s polynomials solution method. The method is technically presented and applied to both linear and nonlinear forms of the Newell-Whitehead-Segel model. The results guarantee the efficiency and reliability of the proposed method.

Index Terms—Analytical solutions; He’s polynomials; Newell-Whitehead-Segel model.

I. INTRODUCTION

In real life settings, modelling involves partial differential equations (PDEs), which may appear in linear or nonlinear forms. However, solutions to these models has become a great task before researchers. Hence, the development of numerical schemes, semi-analytical methods, and even modified semi-analytical methods [1-8]. In this work, emphasis will be on one of the vital models known as Newell-Whitehead-Segel Model (NWSM) whose general form is:

\[
\begin{align*}
 w_i(x,t) &= kw_{xx} (x,t) + aw(x,t) - bw^j (x,t), \\
 w(x,0) &= g(x),
\end{align*}
\]

where \(a, b \in \mathbb{R}\), and \(k, j \in \mathbb{Z}^+\).

The NWSM is a vital in fluid mechanics, engineering, and other aspects of pure and applied sciences. Recently, many researchers have considered, and adopted good number of solution techniques in a bid to solving (1.1) [9-11]. The purpose of this work is to consider in a general form, the solution of the NWSM by means of He’s polynomial method whose basic merit is hinged on easy handling on nonlinear terms [12-16].

II. ANALYSIS OF THE METHOD [12, 13]

Let \(\Xi\) be an integral or a differential operator on the equation of the form:

\[
\Xi(\mathcal{Z}) = 0.
\]

Let \(H(\mathcal{Z}, p)\) be a convex homotopy defined by:

\[
H(\mathcal{Z}, p) = p\Xi(\mathcal{Z}) + (1-p)G(\mathcal{Z}),
\]

where \(G(\mathcal{Z})\) is a functional operator with \(\mathcal{Z}_0\) as a known solution. Thus, we have:

\[
H(\mathcal{Z}, 0) = G(\mathcal{Z}) \text{ and } H(\mathcal{Z}, 1) = \Xi(\mathcal{Z}).
\]

whenever \(H(\mathcal{Z}, p) = 0\) is satisfied, and \(p \in (0,1]\) is an embedded parameter. In Homotopy Perturbation Method (HPM), \(p\) is used as an expanding parameter to obtain:

\[
\mathcal{Z} = \sum_{j=0}^{\infty} p^j \mathcal{Z}_j = \mathcal{Z}_0 + p \mathcal{Z}_1 + p^2 \mathcal{Z}_2 + \ldots.
\]

From (2.4) the solution is obtained as \(p \to 1\). The method considers \(N(\mathcal{Z})\) (the nonlinear term) as:

\[
N(\mathcal{Z}) = \sum_{j=0}^{\infty} p^j H_j,
\]

where \(H_k\)'s are the so-called He’s polynomials, which can be computed using:

\[
H(\mathcal{Z}) = \frac{1}{i! c^p} \left(N \left(\sum_{j=0}^{\infty} p^j \mathcal{Z}_j \right) \right)_{p=0}, \quad n \geq 0.
\]

where \(H(\mathcal{Z}) = H_i(\mathcal{Z}_0, \mathcal{Z}_1, \mathcal{Z}_2, \mathcal{Z}_3, \ldots, \mathcal{Z}_i)\).

III. THE HE’S POLYNOMIALS ON THE GENERALIZED NWSM

Here, the He’s Polynomials method is applied to the generalized NWSM as follows.

In integral form, with \(I_0(\cdot)\) denoting an integral operator, we write (1.1) as:

\[
\begin{align*}
 w(x,t) &= w(x,0) + I_0(\mathcal{Z}kw_{xx} + aw - bw^j), \\
 w(x,0) &= g(x), \quad w(x,t) = w.
\end{align*}
\]
Note: In HPM, the series solution is expressed as:

\[w(x,t) = \sum_{n=0}^{\infty} p^n w_n, \]

(3.2)

which is evaluated as \(p \to 1 \). Thus, by applying convex homotopy method to (3.1), we have:

\[\sum_{n=0}^{\infty} p^n w_n = g(x) \]

\[+ I_0'(k \sum_{n=0}^{\infty} p^{n+1} w_{n+1} + a \sum_{n=0}^{\infty} p^n w_n - bH_n), \]

(3.3)

where \(H_n, n \in \mathbb{N} \cup \{0\} \) represent He’s polynomials associated with the nonlinear term, \(w'(x,t) \).

So, by comparing the powers of the \(p \)'s in (3.3), we have:

\[p^{(0)}: w_0 = g(x) \]
\[p^{(1)}: w_1 = I_0'(kw_{xx,0} + aw_0 - bH_0) \]
\[p^{(2)}: w_2 = I_0'(kw_{xx,1} + aw_1 - bH_1) \]
\[p^{(3)}: w_3 = I_0'(kw_{xx,2} + aw_2 - bH_2) \]
\[\vdots \]
\[p^{(i)}: w_i = I_0'(kw_{xx,i-1} + aw_{i-1} - bH_{i-1}), i \geq 1. \]

Hence, the solution: \(w(x,t) = \sum_{n=0}^{\infty} p^n w_n \to \sum_{n=0}^{\infty} w_n \) as \(p \to 1 \).

IV. ILLUSTRATIVE EXAMPLES

Problem 1: Consider the following linear NWSM [10, 11]:

\[\begin{align*}
 w_i(x,t) &= w_{xx}(x,t) - 3w(x,t), \\
 w(x,0) &= e^{2x},
\end{align*} \]

(4.1)

whose exact solution is:

\[w(x,t) = e^{2x+t}. \]

(4.2)

Procedure w.r.t Problem 1:
Comparing (4.1) with (1.1) gives: \(k = 1, \ a = -3, \ b = 0, \ j = 2 \) and \(g(x) = e^{2x} \). Therefore, using the detail in section 3 gives the recursive relation:

\[\begin{align*}
 w_0 &= e^{2x}, \\
 w_i &= I_0'(w_{xx,i-1} - 3w_{i-1}), \ i \geq 1,
\end{align*} \]

(4.3)

such that:

\[\begin{align*}
 w_0 &= e^{2x}, \ w_1 = e^{2x}t, \ w_2 = \frac{e^{2x}t^2}{2}, \\
 w_3 &= \frac{e^{2x}t^3}{6}, \ w_4 = \frac{e^{2x}t^4}{24}, \ w_5 = \frac{e^{2x}t^5}{120}, \cdots
\end{align*} \]

\[w(x,t) = e^{2x} + e^{2x}t + \frac{e^{2x}t^2}{2} + \frac{e^{2x}t^3}{6} + \frac{e^{2x}t^4}{24} + \frac{e^{2x}t^5}{120} + \cdots \]

\[= \left(1 + t + \frac{t^2}{2} + \frac{t^3}{6} + \frac{t^4}{24} + \frac{t^5}{120} + \cdots\right)e^{2x} \]

(4.4)

Problem 2: Consider the following nonlinear NWSM [9-11]:

\[\begin{align*}
 w_i(x,t) &= 5w_{xx}(x,t) + 2w(x,t) + w^5(x,t), \\
 w(x,0) &= \eta,
\end{align*} \]

(4.5)

whose exact solution is:

\[w(x,t) = \frac{2\eta e^t}{2 + \eta \left(1 - e^t\right)} \]

(4.6)

Procedure w.r.t Problem 2:
Comparing (4.5) with (1.1) gives: \(k = 5, \ a = 2, \ b = -1, \ j = 2 \) and \(g(x) = \eta \). Therefore, using the detail in section 3 gives the recursive relation:

\[\begin{align*}
 w_0 &= \eta, \\
 w_i &= I_0'(5w_{xx,i-1} + 2w_{i-1} + H_n), \ i \geq 1,
\end{align*} \]

(4.7)

where \(H_0 = w_0^2, \ H_1 = 2w_0w_1, \ H_2 = 2w_0w_2 + w_1^2, \ H_3 = 2(w_0w_3 + w_1w_2), \cdots \), such that:

\[\begin{align*}
 w_0 &= \eta, \ w_1 = (\eta^2 + 2\eta)t, \ w_2 = (1 + \eta)(\eta^2 + 2\eta)t^2, \\
 w_3 &= \left(\frac{2}{3} + \frac{2\eta}{3} + \frac{2\eta}{3} - \frac{\eta}{3} - \frac{1}{3}\right)(\eta^2 + 2\eta)t^2, \\
 w_4 &= \frac{\eta t^4}{3}(\eta + 2)(\eta + 1)(3\eta^2 + 6\eta + 1), \cdots
\end{align*} \]

\[w(x,t) = \frac{1}{3} \left(3 + 6t + 6\eta^2 + 3\eta t^2 + 9\eta t^3 + 9\eta t^3\right) \]

(4.8)
forms of the NWSM with efficiency and reliability of the proposed method being guaranteed by the results. We therefore, recommend the method for applications regarding problems arising from other areas of pure and applied sciences.

ACKNOWLEDGEMENT

The authors are sincerely thankful to Covenant University, and the anonymous referee(s) for financial support, and constructive suggestions respectively.

REFERENCES