
 

  
Abstract— Recently, a new approach called the Perturbation 

Iteration Transform Method has been introduced. This 
approach is based on the fusion of the Perturbation Iteration 
Algorithm and the Laplace Transform Method. In this paper, 
the solution of the nonlinear partial differential equation: 
Cahn-Hilliard equation is presented by using this new scheme. 
Some numerical tests are presented to make apparent the 
potential of this new approach. The results show that the 
approximate solutions of these equations are very close to their 
exact solutions even with less computational stress. 
 

Index Terms— perturbation iteration algorithm, Cahn-
Hilliard equation, Laplace transform method, nonlinear PDEs, 
perturbation iteration transform method 
 

I. INTRODUCTION 
onlinear Partial Differential Equations continues to be 
an active field of study in Physics, Engineering and 
Applied Mathematics. Among such PDEs, we have the 

Cahn-Hilliard equation, which was introduced by Cahn and 
Hilliard in [1] in order to illustrate the phase separation 
phenomenon in a solid. Several authors have also worked on 
Nonlinear PDEs [7-10]. 
In this work, we are concerned with the solution of the 
Cahn-Hilliard Equation, which is of the form: 

( ) ( ) ( ) ( ), , , ,n
t xxu x t ru x t su x t tu x t= + −          (1.1) 

with the initial condition:  
( ) ( ),0u x f x=                     (1.2) 

where s , t  are both real numbers, r  and n  are positive 
integers. 
Many authors have investigated the Cahn-Hilliard equation 
both analytically and numerically. 
Shehata in [2] obtained and compared the numerical solution 
of a Cahn-Hilliard equation by using both the Homotopy 
Perturbation Method (HPM) and the Adomian 
Decomposition Method (ADM). Furihata in [3] also 
obtained the numerical solution of Cahn-Hilliard equation 
via the finite difference method. [4] solved these equations 
with the Differential Transform Method (DTM) and  [5] - 
[6] used the Exp-function method to obtain the exact 
solutions of the Cahn-Hilliard. Many articles have 
investigated the analytical and numerical solution of the 
Cahn-Hilliard equation [16-21]. 
The Perturbation Iteration Transform Method (PITM) is the 
 

Manuscript received March 13, 2017. Revised Month 31, 2017.   This 
work was supported in full by Covenant University. 

G. O. Akinlabi (grace.akinlabi@covenantuniversity.edu.ng) is with the 
Department of Mathematics, Covenant University, Nigeria.  

S. O. Edeki (soedeki@yahoo.com) is with the Department of 
Mathematics, Covenant University, Nigeria. 

combined form of the Perturbation Iteration Algorithm and 
the Laplace Transform. The idea of using the PITM was 
proposed by in [13]. They used the method to solve both the 
linear and nonlinear Klein-Gordon equations. For more 
articles on PITM, see [12-15]. 

The remaining part of this study thus arranged: section II 
gives a review of the PIA and section III deals with the 
illustration of the PITM. Numerical examples are presented 
in section IV, where PITM is applied to some Cahn-Hilliard 
equations to prove its effectiveness. Section V presents the 
graphs of the solutions in section IV. The final section, VI 
gives the concluding remark.  

II. PERTURBATION ITERATION ALGORITHM [11], [13] 
Here, we illustrate how the Perturbation Iteration Algorithm 
works. Suppose a perturbation algorithm is been developed 
by taking the correction terms of the first derivatives in the 
Taylor series expansion and also one correction term in the 
perturbation expansion. This algorithm will be named: 
PIA(1,1). 
We now consider a partial differential equation of the form: 

( ), , , 0F u u u ε′′ =                           (2.1) 

where ( ),u u x t= , uu
t

∂
=

∂
 , 

2

2

uu
x

∂′′ =
∂

 and ε  is the introduced 

perturbation parameter. 
And if we use just one correction term in the perturbation 
expansion, we have: 

( )1n n c n
u u uε+ = +                         (2.2)  

Putting (2.2) into (2.1) and expanding in a Taylor series with 
first derivatives will yield. 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
, , ,0 , , ,0 , , ,0

           , , ,0 , , ,0 0
u c u cn n

u c n

F u u u F u u u u F u u u u

F u u u u F u u uε

ε ε
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′′′′ ′′ ′′ ′′ + +
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 where ( ),u u x t= , u
FF
u

∂
=

∂



, u
FF
u′′

∂
=

′′∂
,  u

FF
u

∂
=

∂
, FFε ε

∂
=

∂
and 

ε  is the perturbation parameter to be evaluated at zero. 
Reorganizing (2.3), we have 

( ) ( ) ( )u u
c c cn n n

u u u

FFF Fu u u
F F F

ε ε′′
+

′′+ = − −
  

          (2.4) 

Starting with an initial guess, 0u , evaluate the term, ( )0cu  
from (2.4) and then substitute the result into (2.2) for 1u . We 
continue this iteration procedure by using Equations (2.4) 
and (2.2) until a satisfactory result is obtained. 
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III. PERTURBATION ITERATION TRANSFORM METHOD [13] 
In this section, we demonstrate the basic idea of the PITM. 
Consider the general nonlinear PDE of the form: 

( ) ( ) ( ) ( ), , , ,Lu x t Mu x t Nu x t g x t+ + =              (3.1) 
with the associated initial condition:  

( ) ( ),0u x f x=                   (3.2) 

where L
t

∂
=

∂
 is the first order linear differential operator, 

2

2M
x

∂
=

∂
is the second order linear differential operator, 

( ),Nu x t  represents both the linear and the nonlinear terms,  

and ( ),g x t  is the source term. 
We take the Laplace transform of both sides of (3.1) to have 

( ) ( ) ( ) ( ), , , ,L Lu x t +L Mu x t +L Nu x t =L g x t                   (3.3) 
On using the differential property of Laplace transform in 
(3.3), we get 

( ) ( ) ( ) ( )

( )

1 1, , ,

1 ,

f x
L Lu x t = L h x t L Mu x t

s s s

                  L Nu x t
s

  +   −       

−   

         (3.4) 

Applying the Inverse Laplace Transform to both sides of 
(3.4) gives 

( ) ( ) ( ) ( )1 1, , , ,u x t =E x t L L Mu x t Nu x t
s

−  −  +    
       (3.5)

  
where ( ),E x t  is the term obtained from the source term and 
the associated initial condition. 
Now, by using the PITM, (3.5) becomes: 

( ) ( ) ( )

( ) ( )1

, , ,

1 , ,

cu x t E x t u x t

          L L Mu x t Nu x t =0
s

ε

ε−

− +

 −  +    

                (3.6) 

Hence, 

( ) ( ) ( ) ( ) ( )1, , 1, , ,c

E x t u x t
u x t = L L Mu x t Nu x t

sε
−−  −  +    

  (3.7) 

Equation (3.7) is the combined form of the Laplace 
transform method and the perturbation iteration method. 
From (3.7), the term, ( )0cu  is then calculated and substituted 
into (2.2) to obtain 1u . This iteration procedure is repeated 
for 2u , 3u  and so on. The approximate solution is thus 
obtained by the formula: 

( ) ( )
0

, ,n
n

u x t u x t
∞

=

= ∑                 (3.8) 

That is, 

( ) ( ) ( ) ( ) ( )0 1 2 3, , , , ,u x t u x t u x t u x t u x t= + + + +       (3.9) 
 

IV. NUMERICAL EXAMPLES 
In this section, we apply the proposed method to the Cahn-
Hilliard Equations. 
 
Case I: 
Consider the Cahn-Hilliard Equation: 

( ) ( ) ( ) ( )3, , , ,t xxu x t u x t u x t u x t= − +                     (4.1) 
subject to:   

( )
2

1,0
1

xu x
e

=
+

                           (4.2) 

with the exact solution: 

( ) 3
22

1,
1

x tu x t
e −

=
+

                          (4.3) 

 
 
Solution to Case I: 
Taking the Laplace Transform of both sides of (4.1) with the 
initial condition (4.2), we get 

( ) ( ) ( ) ( )
2

31 1 1, , , ,
1

x xxL u x t + L u x t u x t u x t
s se

   = ⋅ − +   
+

   (4.4) 

Applying the Inverse Laplace Transform to both sides of 
(4.4) gives 

( ) ( ) ( ) ( )
2

1 31 1, , , ,
1

x xxu x t L L u x t u x t u x t
se

−   = + − +   +
    (4.5)

  
Now, by PITM, (4.5) becomes:  

( ) ( )

( ) ( ) ( )

2

1 3

1, ,
1

1 , , ,

x c

xx

u x t u x t
e

          L L u x t u x t u x t =0
s

ε

ε−

− +
+

  − − +   

          (4.6) 

Thus, 

( ) ( ) ( )
( ) ( ) ( )

2
1

1

1 3

, , 1

1 , , ,

x

c

xx

u x t u x t e

           L L u x t u x t u x t
s

ε
−

−

−

 = − + + 
 
  + − +   

         (4.7) 

 
This implies that: 

 ( )
2

0
1,

1
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e
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 ( )
( ) ( ) ( )

2

22 2 2
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1 3 3 2
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11 1 2 1
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xe eu x t t
ee e e
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Therefore, the solution ( ),u x t  is given by: 

( ) ( ) ( ) ( ) ( )0 1 2 3, , , , ,u x t u x t u x t u x t u x t= + + + +   

          
( ) ( ) ( )

2

2 22 2 2

2

3 3 2
1 1 1

1 11 1 2 1

x

x xx x x

xe e t
e ee e e

 
 

= + − − + 
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  (4.8) 

Equation (4.8) is an approximate solution of case I. 
 
Case II: 
 
Consider the Cahn-Hilliard Equation: 

( ) ( ) ( ) ( )3, , , ,t xxu x t u x t u x t u x t= − +                        (4.9) 
subject to: 

( ),0 xu x e=                                (4.10) 
Solution to Case II: 
Taking the Laplace Transform of both sides of (4.9) with the 
initial condition (4.10), we get 

( ) ( ) ( ) ( )31, , , ,
x

xx
eL u x t = + L u x t u x t u x t
s s

   − +           (4.11) 

Applying the Inverse Laplace Transform to both sides of 
(4.11) gives 

( ) ( ) ( ) ( )1 31, , , ,x
xxu x t =e L L u x t u x t u x t

s
−   + − +   

       (4.12)

  
Now, by PITM, (4.12) becomes:  

( ) ( )

( ) ( ) ( )1 3

, ,

1 , , ,

x
c

xx

u x t e u x t

          L L u x t u x t u x t =0
s

ε

ε−

− +

  − − +   

           (4.13) 

Thus, 

( ) ( ) ( ) ( ) ( )1 3, 1, , , ,
x

c xx

u x t e
u x t = L L u x t u x t u x t

sε
−− +   + − +   

  

                            (4.14) 
 
This implies that: 
 ( )0 , xu x t e=  

 ( ) 3
1 , 2 x xu x t e e t = −   

 ( ) ( ) ( )33 2 4 2 2
2

1, 2 2 5
4

x x x xu x t e e t e e t= − + − − +  

 ( ) ( )2 3
3

2, 2 25
3

x xu x t e e t= − − +
 

( )3 2 4 6 51 40 156 150 41
10

x x x xe e e e t+ − + − +
 

( ) ( ) ( )3 3 23 2 7 5 2 2 91 12 5 2 2 5
7 12

x x x x xe e t e e e t+ − + − − + − +

 7 9 11 133 ( 128 704 1440 1520
176

x x x xe e e e+ − + − +  
15 17 19 21 11920 324 62 5 )x x x xe e e e t− + − +

 
9 11 13 151 ( 512 2304 4608 5376

832
x x x xe e e e− − + − +

 17 19 21 23 25 27 134032 2016 672 144 18 )x x x x x xe e e e e e t− + − + − +

      
 
Therefore, the solution ( ),u x t  is given by: 

( ) ( ) ( ) ( ) ( )0 1 2 3, , , , ,u x t u x t u x t u x t u x t= + + + +   

          ( ) ( )33 3 2 4 2 212 2 2 5
4

x x x x x x xe e e t e e t e e t = + − + − + − − +   

   ( ) ( )2 3 3 2 4 6 52 12 25 40 156 150 41
3 10

x x x x x x  e e t e e e e t− − + + − + − +
 

       
( ) ( ) ( )3 3 23 2 7 5 2 2 91 12 5 2 2 5

7 12
x x x x xe e t e e e t+ − + − − + − +

 

       

7 9 11 133 ( 128 704 1440 1520
176

x x x xe e e e+ − + − +

 
        

15 17 19 21 11920 324 62 5 )x x x xe e e e t− + − +
  

 

       
9 11 13 15 171 ( 512 2304 4608 5376 4032

832
x x x x xe e e e e− − + − + −

      

   
19 21 23 25 27 132016 672 144 18 )x x x x xe e e e e t+ − + − + +

  
  (4.15) 

Equation (4.15) is an approximate solution of case II.

 Equation (4.15) is the approximate solution of Case 
II.

 

V.  DISCUSSION OF RESULTS 
In this section, we present the graphs for both the 
approximate and exact solutions to the Cahn-Hilliard in Case 
I. The approximate solutions contain terms up to the fourth 
power. In Table I, the solution of case 1 is analysed. 
 

 
Fig. 1: Approximate solution of Cahn-Hilliard Equation in 
Case I 
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Fig. 2: Exact solution of Cahn-Hilliard Equation in Case I 

 
Table I: Solution comparison of case 1 

( ),x t  3term apprxu −  5term apprxu −  Abs error−
 

( )0,  0  0.500000 0.500000 0.000000 

( )0.1,0.9  0.958248 0.962758 0.004510 

( )0.2,0.8  0.871402 0.874352 0.002951 

( )0.3,0.7  0.788224 0.790056 0.001832 

( )0.4,0.6  0.709070 0.710123 0.001052 

( )0.5,0.5  0.634227 0.634767 0.000540 

( )0.6,0.4  0.563914 0.564149 0.000235 

( )0.7,0.3  0.498290 0.498369 0.000078 

( )0.8,0.2  0.437453 0.437469 0.000016 

( )0.9,0.1  0.381441 0.381442 0.000002 

 

VI. CONCLUSION 
In this paper, we presented the solution of the nonlinear 

partial differential equation: Cahn-Hilliard Equation by 
using a new solution technique referred to as Perturbation 
Iteration Transform Method. The results obtained revealed a 
fast convergent rate to their exact solutions without any form 
of discretization or linearization. We therefore, recommend 
this solution technique for solving any nonlinear partial 
differential equations in other aspects of pure and applied 
sciences. 
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