
 

  
Abstract— This paper applies Perturbation Iteration 

Transform Method: a combined form of the Perturbation 
Iteration Algorithm and the Laplace Transform Method to 
linear Schrödinger equations for approximate-analytical 
solutions. The results converge rapidly to the exact solutions. 
 

Index Terms— Schrödinger equations, perturbation 
iteration algorithm, Laplace transform, perturbation iteration 
transform method, linear PDEs 
 

I. INTRODUCTION 
chrödinger equation is a partial differential equation used 
in the description of the way the quantum state of a 

physical system changes with time [1]. This offers a way on 
how the calculation of the associated wave function is done.  
These equations have wide applications in physics, and other 
areas of applied sciences, which include but not limited to 
hydrodynamics, superconductivity, nonlinear optics, and 
plasma physics [2]. 
The Schrödinger equation is of the form: 

2( ) 0,

( ,0) ( ).
xxtiu u h x u u u

u x p x

φ η + + + =


=
            (1.1) 

where ( , )u u x t=  is a complex function, ( )h x  a function of 

x , 2 1i = − ,  φ , η  are constants. 
In this paper, we shall consider a special case of the 
Schrödinger equation in (1.1) based on some initial 
conditions for the consideration of the time evolution of a 
free particle. 
The Schrödinger equation has been studied by many 
researchers with various solution techniques. Bulut, et al in 
[3] applied the Sumudu transform method (STM) to the 
Schrödinger equation with variable coefficients. Adomian 
decomposition method (ADM) was applied to these 
equations in [4] while a coupling of the Homotopy 
Perturbation Method (HPM) with the ADM was adopted in 
[5] for the solution of both linear and nonlinear Schrödinger 
equations. Other methods include: Finite Difference Method 
(FDM) [6], Modified Variational Iteration Method (VIM) 
[7], and differential transformation method (DTM) [8]. For 
more work on the Schrödinger equation, see [9 – 11]. 
The Perturbation Iteration Transform Method (PITM) 
involves the fusion of the Perturbation Iteration Algorithm 
and the Laplace Transform. This idea was introduced in 
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[14], where the method was used to solve linear and 
nonlinear Klein-Gordon equations. For other articles on the 
use of the PITM to solve linear and nonlinear PDEs, see [13-
16]. 

The remaining part of the paper will be structured as 
follows: in section II and III, the overviews of the PIA and 
PITM are presented respectively. In section IV, we apply the 
PITM to solve some illustrative examples while in section 
V, we give a concluding remark. 

II. PERTURBATION ITERATION ALGORITHM [12], [14] 
In this section, we illustrate how the Perturbation Iteration 
Algorithm works. Suppose a perturbation algorithm is been 
developed by taking the correction terms of the first 
derivatives in the Taylor series expansion and also one 
correction term in the perturbation expansion. This 
algorithm will be named: PIA(1,1). 
We now consider a partial differential equation of the form: 

( ), , , 0F u u u ε′′ = ,                     (2.1) 

where ( ),u u x t= , 
uu
t

∂
=

∂
 , 

2

2

uu
x

∂′′ =
∂

 and ε  is the 

introduced perturbation parameter. 
And if we use just one correction term in the perturbation 
expansion, we have: 

( )1n n c n
u u uε+ = + .                   (2.2)  

Putting (2.2) into (2.1) and expanding in a Taylor series with 
first derivatives will yield. 
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 and ε  is the perturbation parameter to be 

evaluated at zero. 
Reorganizing (2.3), we have 

( ) ( ) ( )u u
c c cn n n

u u u

FFF Fu u u
F F F

ε ε′′
+

′′+ = − −
  

 .    (2.4) 

Starting with an initial guess, 0u , evaluate the term, 

( )0cu  from (2.4) and then substitute the result into (2.2) for 

1u . We continue this iteration procedure by using Equations 
(2.4) and (2.2) until a satisfactory result is obtained. 
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III. ANALYSIS OF THE PITM [14,15] 
In this section, we demonstrate the basic idea of the PITM. 
Consider the general nonlinear PDE of the form: 

( ) ( ) ( ) ( ), , , ,Lu x t Mu x t Nu x t g x t+ + =         (3.1) 
with the associated initial condition:  

( ) ( ),0u x f x=                  (3.2) 

where L
t

∂
=

∂
 is the first order linear differential operator, 

2

2M
x

∂
=

∂
is the second order linear differential operator, 

( ),Nu x t  represents both the linear and the nonlinear terms,  

and ( ),g x t  is the source term. 
We take the Laplace transform of both sides of (3.1) to have 

( ) ( ) ( ) ( ), , , ,L Lu x t +L Mu x t +L Nu x t =L g x t                
                       (3.3) 
On using the differential property of Laplace transform in 
(3.3), we get 

( ) ( ) ( ) ( )1 1, , ,
f x

L Lu x t = L h x t L Mu x t
s s s

  +   −       
 

                           
( )1 , .L Nu x t

s
−                     (3.4) 

Applying the Inverse Laplace Transform to both sides of 
(3.4) gives 

( ) ( ) ( ) ( )1 1, , , ,u x t =E x t L L Mu x t Nu x t
s

−  −  +    
,  (3.5) 

where ( ),E x t  is the term obtained from the source term 
and the associated initial condition. 
Now, by using the PITM, (3.5) becomes: 

( ) ( ) ( ), , ,cu x t E x t u x t ε− +   

            ( ) ( )1 1 , ,L L Mu x t Nu x t =0
s

ε−  −  +    
.        (3.6) 

Hence, 

( ) ( ) ( ), ,
,c

E x t u x t
u x t =

ε
−

 

                ( ) ( )1 1 , ,L L Mu x t Nu x t
s

−  −  +    
.      (3.7) 

Equation (3.7) is the combined form of the Laplace 
transform method and the perturbation iteration method. 
From (3.7), the term, ( )0cu  is then calculated and 

substituted into (2.2) to obtain 1u . This iteration procedure is 
repeated for 2u , 3u  and so on. The approximate solution is 
thus obtained by the formula: 

( ) ( )
0

, ,n
n

u x t u x t
∞

=

= ∑              (3.8) 

That is, 

( ) ( ) ( ) ( )0 1 2, , , ,u x t u x t u x t u x t= + + +       (3.9) 
 

IV. NUMERICAL ILLUSTRATIVE EXAMPLES 
In this section, we apply the PITM to the Linear Schrödinger 
Equations. 
 
Problem I: 
Consider the linear Schrödinger equation [11]: 
 

( ) ( ), , 0t xxu x t iu x t+ = ,                     (4.1) 
subject to:   

( ),0 1 cosh 2u x x= + .                          (4.2) 
 
Solution to Problem I: 
We take the Laplace Transform of equation (4.1) with the 
initial condition (4.2) to get: 

( ) ( )1 cosh 2 1, ,xx
xL u x t L iu x t

s s
+

  = −            (4.3) 

We take the Inverse Laplace Transform of both sides of 
(4.3) to have: 

( ) ( )1 1, 1 cosh 2 ,xxu x t x L L iu x t
s

−  = + −     
.      (4.4) 

Applying the PITM to (4.4), we get:  
( ) ( ) ( ), 1 cosh 2 ,cu x t x u x t ε− + +   

            ( )1 1 ,xx+L L iu x t =0
s

ε−      
.         (4.5) 

Thus, we have 

( ) ( ) ( )1, 1 cosh 2 1, ,c xx

u x t x
u x t L L iu x t

sε
−− + +  = −     

 

                         (4.6) 
Hence, 
 ( )0 , 1 cosh 2u x t x= + , 

( )1 , 4 cosh 2u x t it x= − , 

( ) 2
2 , 8 cosh 2u x t t x= − , 

( ) 3
3

32, cosh 2
3

u x t it x= , 

( ) 4
4

32, cosh 2
3

u x t t x= , 

( ) 5
5

128, cosh 2
15

u x t it x= − , 

( ) 6
6

256, cosh 2
45

u x t t x= − , 

( ) 7
7

1024, cosh 2
315

u x t it x= , 

 
   .  
 
Therefore, the solution ( ),u x t  is given by: 

( ) ( ) ( ) ( ) ( )0 1 2 3, , , , ,u x t u x t u x t u x t u x t= + + + +   
21 cosh 2 4 cosh 2 8 cosh 2x it x t x= + − −  
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   3 4 532 32 128cosh 2 cosh 2 cosh 2
3 3 15

it x t x it x+ + −      

    6 7256 1024cosh 2 cosh 2
45 315

t x it x− + +  .      

2 4 632 2561 1 8 cosh 2
3 45

t t t x = + − + − + 
 

  

     3 5 732 128 10244 cosh 2
3 15 315

t t t t i x + − + − + − 
 

  

( ) ( ) ( ) ( )0 2 4 64 4 4 4
1 cosh 2

0! 2! 4! 6!
t t t t

x
  = + − + − + 
  

  

     
( ) ( ) ( ) ( )3 5 74 4 4 4

cosh 2
1! 3! 5! 7!
t t t t

i x
  + − + − + − 
  

    

( ) ( )
( )

( ) ( )
( )

2 2 11 4 1 4
1 cosh 2 , 0

2 ! 2 1 !

n n n nt t i
x  n

n n

+    − −    = + − ≥   
+        

[ ]1 cos4 sin 4 cosh 2t i t x= + −  
41 cosh 2ite x−= +                (4.7) 

 
Equation (4.7) is the exact solution of Problem 1. 

Equation (4.8) is the approximate solution of Case I.
 

 
Problem II: 
Consider the linear Schrödinger equation [11]: 

( ) ( ), , 0t xxu x t iu x t+ = ,                         (4.8) 
subject to: 

( ) 3,0 ixu x e= .                              (4.9) 
Solution to Problem II: 
We take the Laplace Transform of equation (4.8) with the 
initial condition (4.9) to get: 

( ) ( )
3 1, ,

ix

xx
eL u x t L iu x t
s s

  = −      .             (4.10) 

We take the Inverse Laplace Transform of both sides of 
(4.10) to have: 

( ) ( )3 1 1, ,ix
xxu x t e L L iu x t

s
−  = −     

.          (4.11) 

Applying the PITM to (4.11), we get:  

( ) ( ) ( )3 1 1, , ,ix
c xxu x t e u x t +L L iu x t =0

s
ε ε−  − +     

.  

  (4.12) 
Thus, we have 

( ) ( ) ( )
3

1, 1, ,
ix

c xx

u x t e
u x t L L iu x t

sε
−− +  = −     

    (4.13) 

Hence, 
 ( ) 3

0 , ixu x t e= , 

 ( ) 3
1 , 9 ixu x t ite= , 

 ( ) 2 3
2

81,
2

ixu x t t e= − , 

 ( ) 3 3
3

243,
2

ixu x t it e= − , 

 ( ) 4 3
4

2187,
8

ixu x t t e= , 

 ( ) 5 3
5

19683,
40

ixu x t it e= , 

 ( ) 6 3
6

59049,
80

ixu x t t e= − , 

 ( ) 7 3
7

531441,
560

ixu x t it e= − , 

   . 
 
Therefore, the solution ( ),u x t  is given by: 

( ) ( ) ( ) ( ) ( )0 1 2 3, , , , ,u x t u x t u x t u x t u x t= + + + +   
            

3 3 2 3 3 3 4 381 243 21879
2 2 8

ix ix ix ix ixe ite t e it e t e= + − − +  

    5 3 6 3 7 319683 59049 531441
40 80 560

ix ix ixit e t e it e+ − − +  

2 4 6 381 2187 590491
2 8 80

ixt t t e = − + − + 
 

  

    3 5 7 3243 19683 5314419
2 40 560

ixt t t t ie + − + − + 
 

  

( ) ( ) ( ) ( )0 2 4 6
39 9 9 9

0! 2! 4! 6!
ixt t t t

e
  = − + − + 
  

  

     
( ) ( ) ( ) ( )3 5 7

39 9 9 9
1! 3! 5! 7!

ixt t t t
ie

  + + − + − 
  

  

( ) ( )
( )

( ) ( )
( )

2 2 1
31 9 1 9

, 0
2 ! 2 1 !

n n n n
ixt t i

  n e
n n

+    − −    = + ≥   
+        

 

( ) 3cos9 sin9 ixt i t e= +  

( )9 3it ixe e=  
( )3 3x t ie +=                  (4.14) 

 
Equation (4.14) is the exact solution of Problem 2. 
 

V. CONCLUSION 
In this paper, we applied the Perturbation Iteration 

Transform Method to the linear Schrödinger equations. This 
method resulted from the combined form of the PIA and the 
LTM. The solutions are in series forms, and converged 
rapidly to the exact forms. The method is therefore, proven 
to be very efficient and reliable. 
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