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Abstract
Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed

through multi-step fractionation scheme to assess the levels and sources of contamination

in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of

contamination was assessed using the individual contamination factors (ICF) and global

contamination factor (GCF). Multivariate statistical approaches including principal compo-

nent analysis (PCA), cluster analysis and correlation test were employed to evaluate the

interrelationships and associated sources of contamination. The spatial distribution of metal

concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed

significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination

trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal

component and agglomerative clustering analyses indicate that trace metals contamination

in the ecosystems was influenced by multiple pollution sources.

1. Introduction
The rapid industrial and socioeconomic development of the Niger Delta of Nigeria has resulted
in increasing heavy metal pollution of coastal aquatic ecosystems (tidal estuaries and creeks,
rivers, mixohaline lagoons and mangrove swamps) located in the region [1–4]. Most of the
equatorial water systems in the Niger Delta serve as primary recipients of petroleum explora-
tion-exploitation wastes, onshore and offshore industrial sewage, chemical contaminants,
domestic and office wastes generated by multinational oil companies that are found in the
region. In addition, these aquatic ecosystems have also witnessed the uncontrolled use of
banned chemicals by local fishermen for fishing purposes. Several offshore and onshore inci-
dents of crude oil spillage into water bodies in the region have been reported [4–6]. Studies
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have indicated enhanced levels of petroleum hydrocarbons and trace metals in surface water,
sediments and biota associated with oil pollution [3, 6–8].

Trace metals contamination in aquatic ecosystems constitutes significant health and envi-
ronmental hazard for fishes, humans, invertebrates and mangroves. The relative magnitude of
occurrence, persistence, varied sources, bioaccumulative nature, and toxicity of trace metals in
coastal aquatic ecosystems are increasingly receiving global attention [9–14]. Metals are intro-
duced into aquatic systems through natural processes such as rock weathering and anthropo-
genic inputs such as agricultural activities, mining, atmospheric depositions, domestic and
industrial wastewater/effluents, municipal wastes, soil erosion and runoff and domestic sewage
[15–17]. Once released into aquatic ecosystems, trace metals are primarily associated with sedi-
ments and related sedimentary particulate matter. Therefore, sediments are critical sinks or
sources of pollutants [18–21]. Coastal estuarine and riverine sediments are critical components
of these fragile ecosystems and are particularly prone to contamination [2–4, 21–24].

Multivariate statistical approaches have been widely employed in identifying the natural
and/or anthropogenic sources of metal contamination in estuarine/marine water and sedi-
ments [25–31]. Statistical methods commonly used include the principal component analysis
(PCA), cluster analysis, and correlation test. The principal component analysis is a statistical
tool frequently employed for the elucidation of information of multivariable origin by simplify-
ing statistics, which means employing less comprehensive indices instead of more relative indi-
ces to separate natural and anthropogenic trace metals influence [32, 33, 34]. PCA provides
simple visualization of the interrelationships that exists among quantitative observations/vari-
ables in complex or large datasets including data of different distributions in the sediment frac-
tions [35, 36]. It has been applied to interpret the variations in sedimentary trace metals and
organic matter concentrations as well as assist in analyzing the origin of metal contamination
with the spatial distribution of trace elements [27]. The agglomerative hierarchical clustering
(AHC) analysis provides a measure of similarity in assessing the associations among the
observed variables and the sampling sites, while correlation analysis presents a statistical char-
acterization of a quantitative variable by other quantitative variables to establish their relation-
ships using the correlation coefficient.

The objectives of this study are to: (i) determine the spatio-temporal distributions and frac-
tionations of five trace metals (Cd, Cr, Cu, Ni and Pb) in benthic sediments; (ii) evaluate the
anthropogenic and/or natural inputs of trace metals using multivariate statistical approaches;
and (iii) explore the interrelationships among the trace metals and sediment constituents.

2.0 Materials and Method

2.1 Study area
Fig 1 shows the map of the investigated freshwater, riverine and estuarine ecosystems in this
study. The aquatic ecosystems considered in this study are Douglas Creek (DOU) (4.55°S,
8.00°N), Okorotip Creek (OKT) (4.56°S, 7.93°N), Stubbs Creek (STB) (4.60°S, 7.99°N), Qua
Iboe Estuary (QUE) (4.53°S, 7.99°N) and Qua Iboe River (QUR) (4.58°S, 7.93°N).

2.2 Sediment sampling and analyses
2.2.1 Collection and pretreatment of sediment samples. Five (5) sampling sites were

mapped and designated for sediment samples collection. Triplicate sediment samples from
each designated sites were collected monthly using a modified van Veen (0.1 m2) grab sampler
and were preserved in clean, well-labeled glass bottles. In all, fifteen sediment samples were col-
lected each month from five sampling sites during the wet season (June, July August) resulting
in forty-five benthic sediment samples for the period. A similar routine was repeated for the
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dry season months (November, December and January). Therefore, ninety (90) benthic sedi-
ment samples were collected from the study locations during this investigation. After collec-
tion, all samples were stored in ice-packed coolers and transported to the laboratory. These
samples were further treated by refrigeration in the laboratory at 4°C to inactivate microbes
and preserve the integrity of the samples prior to analysis. In the laboratory, the sediment sam-
ples were dried in an oven maintained at 105±0.5°C, homogenized, comminuted using a hand
mortar and sieved using a 2 mmmesh sieve prior to leaching [37]. Coning and quartering
method was used to obtain subsamples from the respective composite samples.

2.2.2 Sediment characterization analysis. The major sediments constituents considered
in this study included total organic carbon, silt, clay and sand. The preparation, extraction and
quantitation of benthic sediment samples for the determination of total organic carbon (TOC)
followed the wet chemistry technique as described by [38]. Fine-grained portion of grain-size
distributions were performed by sedimentation method [39, 40].

2.2.3 Chemical fractionation of sediment and elemental analysis. For the purpose of
classifying the bioavailable metallic species in each sample, five sequential chemical extractions
were performed with the objective of identifying the metal classifications influenced by various
environmental conditions: (a) exchangeable, (b) bound to carbonates, (c) bound to iron and
manganese oxides (reducible), (d) bound to organic matter (oxidizable), and (e) residual [41].
The selective extraction of fraction A was performed using 1.0 g of sieved sediment at room
temperature for one hour with 8.0 mL of 1 MMgCl2 solution at pH 7.0 with continuous agita-
tion. This fraction sometimes known as acid-soluble fraction provides information on the
capacity of the sediment to absorb and desorp trace metals in relation to changes in the ionic
composition of the sediment. Sediment residues from fraction A were leached at room

Fig 1. Map of study area showing the ecosystems in Niger Delta region of Nigeria (Inset: Map of
Nigeria).

doi:10.1371/journal.pone.0156485.g001
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temperature with 8.0 mL of 1 M sodium acetate at a pH of 5.0 (adjusted using acetic acid) with
continuous agitation to obtain metals that are associated with carbonates (fraction B). For the
reducible fraction (fraction C) extraction, sediment residues obtained from fraction B were
extracted with 20 mL of 0.04 M hydroxyl ammonium chloride in 25% (v/v) acetic acid for 6 hr
at 96°C with occasional agitation of the solution. Fraction C constitutes trace metals associated
with iron and manganese oxides and is sensitive to redox potential variations.

In order to obtain trace metals that are associated with organic matter (oxidisable) (fraction
D), sediment residue in fraction C were extracted with 3.0 mL of 0.02 M nitric acid and 5.0 mL
of 30% hydrogen peroxide solution and heated for 2 hr at 85°C with intermittent agitation.
Thereafter, 3.0 mL of 30% hydrogen peroxide was added and pH of mixture adjusted to 2.0
using nitric acid, and heated at 85°C for 3 hr with continuous agitation. On cooling, 5.0 mL of
3.2 M ammonium acetate in 20% (v/v) nitric was added and the mixture diluted to 20.0 mL
with continuous agitation for 30 min. This fraction gave trace metals bound to variable forms
of organic matter that can be released under oxidizing conditions. Finally, fraction E (trace
metals bound to the residue) were obtained through extraction of residue fraction from D in a
Teflon vessel with a mixture of 50 mL of 40% hydrofluoric acid and 75 mL of 60% perchloric
acid. The mixture was evaporated to dryness and 2.0 mL of 60% perchloric acid added and
evaporated until white fumes were produced. Resultant residue was digested in 50 mL of 3 M
hydrochloric acid. This fraction includes trace metals that are structurally bound to silicates. A
summary of the Tessier sequential extraction procedure and the reagents used is presented in
Table 1.

After extractions, the concentrations of cadmium (Cd), copper (Cu), chromium (Cr), lead
(Pb) and nickel (Ni) in fractions A–E were determined using inductively coupled plasma spec-
trophotometer (ICP-AES). The detection limits were 0.02, 0.01, 0.02, 0.02 and 0.01 ppm for
Cd, Cr, Cu, Pb and Ni respectively.

2.2.4 Preparation of standard. In order to reduce the detrimental effects of overlapping
spectral interferences on element quantitation during metal analyses, an interelement correc-
tion standard was prepared by using standardized solution of metals ions prepared from their
salts. A mixture of commercially available 100 ppm stock solutions (BDH Grade) of Cd2, Cr3,
Cu2, Pb2 and Ni2 were prepared as interelement working standard solutions to verify that the
overlapping lines do not cause the detection of elements at concentrations above methods
detection limits (MDLs) [42].

2.3 Statistical analysis and GIS
The analytical data obtained were analyzed using the XLSTAT-Pro software (AddinSoft,
Inc., NY, USA). Pearson’s correlation analysis and Principal component analysis (PCA)
were employed to explore the interrelationship among trace metals and between TOC and
trace metals concentrations in sediment samples to identify their hypothetical source. The

Table 1. Geochemical fractionation scheme of trace metals adopted for present study.

Extraction
step

Fractionation
phase

Nominal target phase Reagents

Step 1 Fraction A Exchangeable metals MgCl2 (1.0 mol/dm3)

Step 2 Fraction B Carbonates bound NaOAc (1.0 mol/dm3) at pH = 5.0

Step 3 Fraction C Oxides Fe/Mn NH2OH.HCl (0.04 mol/dm3) / CH3COOH (4.4 mol/dm3)

Step 4 Fraction D Organic matter and
sulfides

HNO3 (0.02 mol/dm3) / H2O2 (12.8 mol/dm3); then NH4OAc (3.2 mol/dm3) at
pH = 2.0

Step 5 Fraction E Residual bound to silicates HF/HClO4; then HCl (3.0 mol/dm3)

doi:10.1371/journal.pone.0156485.t001
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adequacy of data for PCA was confirmed with the Kaiser–Meyer–Olkin (KMO) and Bart-
lett’s sphericity tests. A difference of p < 0.05 was considered to be significant. Comparative
and continuous summary descriptives were also performed. Also, the agglomerative hierar-
chical clustering (AHC) analysis was conducted on the observed dataset using Ward’s
method [43], with Euclidean distances (proximity matrix) as a measure of similarity to
assess the associations among the parameter and sampling sites. The AHC is an iterative
classification method that initiates clustering by calculating the dissimilarity between differ-
ent group of objects, and then two objects which when clustered together minimize a given
agglomeration criterion are clustered together [44–46]. The software employed for mapping
the spatial variations and risk assessment code index was ArcGIS Version 10.2 developed by
ESRI. On the basis of the observed data, a linear combination of the observed values with
weights was used to estimate the values of attributes at unsampled sites within the investi-
gated aquatic ecosystems, which considers the direction of variations and incorporates
trends into the interpolation to create better predictions. For this study, ordinary Kriging
was adopted for estimation of geospatial data as:

Z�ðx0Þ ¼
Xn

i¼1

liZðxiÞ ð1Þ

where Z�(x0) is the estimated values of Z a point x0, Z(xi) is the observed value at the point
xi and λi is the weight placed on Z(xi) [47].

2.4 Contamination assessments
2.4.1 Individual contamination factor and global contamination factor. The degree of

ecological risk associated with trace metals could be evaluated as a function their retention by
determining the contamination factors of metals [48]. According to [49], a high contamination
factor of the metals implies low retention time and high degree of risk to the aquatic environ-
ment. In this study, the individual contamination factors (ICF) and the global contamination
factor (GCF) were computed for the investigated sampling sites during the wet and dry sea-
sons. The ICF for the DOU, OKT, STB, QUE and QUR sites were calculated by dividing the
sum of the non-residual fractionation concentrations (i.e. exchangeable, carbonates bound,
acid-reducible and oxidizable-organic fractions) by the residual fraction for each site. The GCF
for each investigated site was computed through the summation of the ICF for Cd, Cr, Cu, Ni
and Pb for each site [36, 50]. The individual contamination factor and global contamination
factor classifications are: ICF< 0 & GCF< 6 –indicates low, 1< ICF< 3 & 6< GCF< 12–
moderate, 3< ICF< 6 & 12< GC< 24 –considerable and ICF> 6 & GCF> 24 –high con-
tamination. The ICF and GCF were computed for each sampling site according to the following
equations:

ICFm ¼

XD

i¼A

CFi

CFE

ð2Þ

GCF ¼
Xn

m¼1

ICFm ð3Þ

where CFi
denoted the concentration of each non-residual fraction and CFE

is the concentration

of the residual fraction.

Sediment Contamination and Statistical Techniques

PLOS ONE | DOI:10.1371/journal.pone.0156485 June 3, 2016 5 / 19



3.0 Results and Discussion

3.1. Trace metals content and characterization of sediment
The levels of trace metals (Cd, Cr, Cu, Ni, Pb), total organic carbon (TOC) content, silt, clay
and sand in benthic sediments at various sites are presented in Fig 2 and Fig 3, while the spatial
distribution of trace metals in the five studied ecosystems during the wet and dry seasons are
shown in Fig 4. The concentrations of each studied trace metal indicated significant spatial var-
iations that were characteristically distinctive and correlative with proximity to anthropogenic
activities (industrial and domestic), nearshore area, fishing settlements, and shipping channel.
Higher concentrations were observed more frequently near the Atlantic coast of the estuarine
ecosystem resulting in comparable downstream concentration values especially at locations

Fig 2. Tracemetals concentrations (mg/kg) in sediment samples obtained for wet and dry seasons.

doi:10.1371/journal.pone.0156485.g002

Fig 3. Sediment characterization variables in investigated ecosystems in Niger Delta.

doi:10.1371/journal.pone.0156485.g003
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Fig 4. Spatial distribution of trace metals in benthic sediments of mangrove ecosystems of Niger Delta during wet and dry
seasons.

doi:10.1371/journal.pone.0156485.g004
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with intense anthropogenic activities. The concentrations of trace metals generally followed the
pattern Pb>Cu>Cr>Cd>Ni.

The TOC values ranged from 5.55–10.77, 5.91–11.33, 6.82–11.23, 4.99–6.44, and 5.23 to
14.56% with mean values of 7.05±2.0, 8.46±2.11, 9.45±1.48, 5.24±0.71 and 9.34±3.59% at
DOU, OKT, STB, QUE and QUR sites, respectively. The results indicate high organic contents
in investigated sediment, implying high sedimentary metal affinity for humic substances,
which might decrease trace metal bioavailability through complexing [31]. The silt content of
sediments ranged from the lowest value of 8.64 at QUE site to 75.23% at QUR site with the
highest mean value of 69.96±3.59%.

3.2 Trace metals pollution sources apportionment
The Pearson correlation coefficients for trace metals, total organic content, sand, clay and silt
in asphyxiated benthic sediments from equatorial estuarine and freshwater ecosystems in
Niger Delta are presented in the Pearson matrixes below (Table 2).

Pearson statistical analysis indicated weak but positive interelement relationships between
Cr, Cu, Ni, Pb and Cd at DOU, STB and QUE sites. According to [51], strong but positive
correlations between trace metals indicate that they might likely originate from common
source(s), and possess mutual dependence and identical behavior during transportation
between aquatic compartments. Cu and Cr showed negative correlations at OKT, QUE and
QUR sites. In general, metal–metal interrelationships in the present study were either positive
or negative but correlatively weak indicating the unlikelihood that most of the trace metals
originated from the same source. Moreover, trace metals correlations with TOC, sand, silt and
clay contents of sediments were mostly negative except at STB site where Cd showed a strong
and significant relationship with clay. Cd mostly recorded positive correlations with clay at all
sites except at QUR site. There was a negative correlation between TOC levels in sediment and
trace metals at DOU and STB sites, while a mix of positive and negative correlations marked
the interrelationships between TOC and metals at QUE, QUR and OKT. This probably sug-
gests that different organic particulates and the physicochemical conditions of TOC might
have been responsible for the transport and distribution of trace metals in these aquatic ecosys-
tems. Representative scatter plots depicting the linear relationships between TOC% and trace
metals in benthic sediment of the study sites are presented in Fig 5. The overall Kaiser-Meyer-
Olkin (KMO) measure of sample adequacy coefficients were 0.31, 0.51, 0.50, 0.60 and 0.32<1
for DOU, OKT, STB, QUE and QUR sites dataset, respectively, and the concomitant probabil-
ity of Bartlett’s sphericity test was less than the significance level α = 0.05. Thus, the observa-
tions at OKT, STB and QUE were averagely adequate for a factor model [52].

3.2.1 Principal component analysis. The rotated factor loadings of principal component
analysis (PCA) conducted to evaluate the interrelationships of trace metals and the major con-
stituents (clay, sand, silt and TOC) of the benthic sediments from the five studied aquatic eco-
systems are presented in Table 3 and Fig 6. The different trace metals contamination behaviors
were observed in all five studied ecosystems. As shown in Table 3, there were two principal
components (PC1 and PC2) for sedimentary variables at the DOU, OKT, STB, QUE and QUR
sites. Overall, the two principal components characterize 77.32, 70.91, 66.83, 77.17 and 72.05%
of the accumulative contribution rate for the five trace metals and four sediment quantities at
the DOU, OKT, STB, QUE and QUR sites, respectively. At the Douglas creek, the contribution
of PC1 was 55.09% of the total variance, and had a positive load in the contribution of Cd, Ni
and clay, indicating that these trace metals originated from anthropogenic activities such as
industrial effluent or domestic sewage. Other sedimentary components such as sand, silt and
TOC indicated significant negative relationships with PC1. The second principal component at
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Table 2. Correlationmatrix for trace metals, TOC, clay, sand and silt in benthic sediments.

Cd Cr Cu Ni Pb TOC% %Clay %Sand %Silt

Cd 1

Cr 0.070 1

Douglas Creek Cu 0.556 0.088 1

Ni 0.272 0.278 -0.013 1

Pb 0.299 0.056 -0.615 0.196 1

TOC% -0.636 -0.600 -0.451 -0.774 -0.070 1

%Clay 0.646 0.643 -0.002 0.533 0.644 -0.761 1

%Sand -0.477 -0.700 0.159 -0.288 -0.704 0.550 -0.944 1

%Silt -0.758 -0.419 -0.218 -0.773 -0.436 0.909 -0.887 0.684 1

Cd 1

Cr -0.070 1

Qua Iboe Cu 0.202 -0.463 1

Estuary Ni 0.849 0.054 0.293 1

Pb 0.060 -0.566 0.540 -0.249 1

TOC% -0.320 -0.535 0.194 -0.417 0.730 1

%Clay 0.466 -0.591 0.680 0.183 0.624 0.016 1

%Sand -0.431 0.604 -0.655 -0.140 -0.613 -0.010 -0.998 1

%Silt 0.241 -0.635 0.505 -0.069 0.528 -0.016 0.938 -0.957 1

Cd 1

Cr 0.232 1

Okorotip Creek Cu 0.231 -0.720 1

Ni 0.048 -0.168 0.312 1

Pb -0.327 0.474 -0.676 -0.080 1

TOC % 0.645 0.100 0.269 -0.341 0.088 1

%Clay 0.333 -0.500 0.432 -0.544 -0.652 0.344 1

%Sand 0.692 -0.448 0.649 0.219 -0.321 0.652 0.460 1

%Silt -0.671 0.522 -0.666 -0.017 0.466 -0.638 -0.683 -0.963 1

Cd 1

Cr 0.464 1

Stubbs Creek Cu 0.761 0.361 1

Ni 0.596 -0.322 0.458 1

Pb 0.164 -0.148 -0.431 0.353 1

TOC % -0.493 -0.436 -0.525 -0.043 -0.056 1

%Clay 0.855 0.526 0.653 0.207 -0.063 -0.436 1

%Sand -0.689 -0.412 -0.497 -0.099 0.165 0.127 -0.939 1

%Silt -0.010 -0.038 -0.086 -0.186 -0.310 0.614 0.348 -0.650 1

Cd 1

Cr -0.184 1

Qua Iboe River Cu -0.451 -0.297 1

Ni 0.383 0.081 -0.011 1

Pb 0.139 0.455 -0.752 0.470 1

TOC % 0.784 -0.400 -0.573 0.436 0.405 1

%Clay -0.743 0.037 0.559 0.293 0.074 -0.470 1

%Sand 0.579 0.683 -0.532 0.456 0.503 0.275 -0.439 1

%Silt -0.373 -0.767 0.384 -0.610 -0.580 -0.134 0.124 -0.946 1

Values in bold are different from 0 with a significance level alpha = 0.05.

doi:10.1371/journal.pone.0156485.t002
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Fig 5. Scatter plots of trace metals and total organic contents in Douglas creek (left) and Qua Iboe estuary (right).

doi:10.1371/journal.pone.0156485.g005

Table 3. Loadings of two principal components for benthic sedimentary variables.

DOU OKT STB QUE QUR

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

Load of Cd 0.703 0.346 -0.632 0.556 0.932 -0.234 0.381 0.791 0.698 -0.618

Load of Cr 0.611 -0.018 0.574 0.687 0.586 0.075 -0.746 0.316 0.462 0.784

Load of Cu 0.152 0.941 -0.794 -0.448 0.831 -0.153 0.747 0.064 -0.758 0.198

Load of Ni 0.669 0.108 -0.012 -0.507 0.334 -0.486 0.128 0.865 0.534 0.195

Load of Pb 0.501 -0.781 0.643 0.435 -0.130 -0.524 0.752 -0.480 0.717 0.293

Load of Clay 0.971 -0.198 -0.743 0.036 0.951 0.188 0.963 0.180 -0.472 0.638

Load of Sand -0.845 0.398 -0.901 0.140 -0.821 -0.496 -0.958 -0.155 0.909 0.229

Load of Silt -0.961 -0.121 0.968 -0.123 0.138 0.932 0.888 0.028 -0.833 -0.483

Load of TOC -0.887 -0.402 -0.577 0.716 -0.544 0.588 0.262 -0.797 0.599 -0.674

Eigenvalue 4.958 2.001 4.405 1.976 3.926 2.089 4.544 2.401 4.177 2.307

Contribution rate (%) 55.089 22.232 48.948 21.960 43.622 23.208 50.492 26.677 46.410 25.635

Cumulative % 55.089 77.322 48.948 70.908 43.622 66.830 50.492 77.168 46.410 72.045

Values in bold indicate strong loadings.

doi:10.1371/journal.pone.0156485.t003
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Fig 6. The two principal components calculated by PCA reflecting the relationship of investigated trace metals and
sedimentary variables.

doi:10.1371/journal.pone.0156485.g006
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DOU site contributed 22.23% of the total variance, and was only positively related to Cu and
correlatively negative to Pb.

In the Okorotip creek, the first principal component, which accounted for 48.95% of the
total variance was negatively related to the loads of Cd, Cu and major sediment constituents
except silt. Silt was significantly positively related to PC1, while the load of Pb also indicated a
positive relationship with PC1. The contribution rate of PC2 was 21.96% and related positively
only with Cr and TOC, indicating a probable biogenic input. The correlatively high load of
TOC indicated it as an important sedimentary metal ion conjugates.

In Table 3, PC1 accounted for 43.62% variability at STB site and was positively related to
Cd, Cu and clay. This first principal component represents trace metals contamination from
anthropogenic sources to sediments of the Stubbs creek. Sand was significantly negatively
interrelated with PC1. The second principal component, which explained 23.21% of the total
variance indicated significantly positive relationships with silt and TOC. In the Qua Iboe estu-
ary, PC1 was positively related to Cu, Pb, clay and silt, and was also negatively related to Cr
and sand. The contribution of the first principal component was 50.49%. The comparative sig-
nificant loading of clay and silt with the first principal component elucidated the importance of
fine-grained sediment minerals on the transport of trace metals within the estuarine ecosystem.
It further highlighted the likelihood that Cd, Cu, Pb and Ni might have come from anthropo-
genic inputs. PC2, which explained 26.68% of the total variability, was significantly positively
related to Cd and Ni. The total organic carbon content was negatively related to PC2.

Lastly, in the Qua Iboe River system, the contribution of the first principal component was
46.41% of the total variance. PC1 related positively with Cd, Pb and sand, indicating the influ-
ence of sand in capturing and distributing Cd and Pb ions in sediments of the Qua Iboe River.
Also significantly negative relationships were established by PC1 for Cu and silt. PC2, which
explained 25.64% variability, was positively related to Cu and clay, while indicating a negative
interrelationship with organic carbon content.

3.2.2 Agglomerative hierarchical clustering. The dendrograms produced for each of the
studied ecosystems are shown in Fig 7. The AHC grouped the metals, silt, clay, sand and TOC
into two clusters on the basis of dissimilarity between different groups and similarity within a
group. Cluster 1 comprises Cd, Cr, Cu, Ni, Pb and clay; Cr, Ni, Pb and silt; Ni, Pb, sand, silt
and TOC; Cd, Cr, Ni and sand; and Cr, Ni, Pb and sand for the DOU, OKT, STB, QUE and
QUR sites, respectively. It is shown that these trace metals are primarily clustered with sedi-
ment constituents (sand, silt, clay and TOC). This further highlights the vital role played by
sediment in the transport, deposition, remobilization and accumulation of these metals in their
respective aquatic ecosystems. However, at the DOU site, all investigated trace elements except
Cu appear to have a common anthropogenic origin. On the other hand, cluster 2 comprises Cd
and Cu for OKT site; Cd, Cr and Cu for STB site; Cu and Pb for QUE site; and Cu for QUR
site. Moreover, the investigated metals appeared to indicate independent concentration varia-
tions in relation to the different aquatic ecosystems. In general, it is worth noting that certain
trace metals were characteristically indicated in both clusters, highlighting the fact that metals
distributions were distinctively varied in all studied ecosystems, and also that trace metal con-
tamination could have emanated from multiple emission sources.

3.3 Contamination assessment
The degree of ecological risk associated with trace metals could be related to their retention
times by determining corresponding contamination factors. According to [49], a high contami-
nation factor of the metals implies low retention time and high degree of risk to the aquatic
environment. In this study, the individual contamination factor was calculated and employed

Sediment Contamination and Statistical Techniques

PLOS ONE | DOI:10.1371/journal.pone.0156485 June 3, 2016 12 / 19



Fig 7. Hierarchical clustering analysis (Ward's Method) showing the relevant association among the parameters.
Distance metrics are based on the Euclidean distance single linkage method (proximity matrix).

doi:10.1371/journal.pone.0156485.g007
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to estimate the relative retention time of benthic sedimentary metals. The individual contami-
nation factors of each metal in the benthic sediment samples at the various investigated sites
during the wet and dry seasons are presented in Fig 8A and 8B. The global contamination fac-
tor is shown in Fig 8C.

The highest and lowest levels of ICF for Cd were obtained at DOU and OKT sites, respec-
tively, with corresponding ICF values of 0.511 and 0.312. The highest level of ICF for Cr was
recorded at OKT site with a value of 1.696, while the lowest level was obtained at QUR site
with a value of 0.603. Cu had the highest (2.643) and lowest (1.249) ICF levels at QUE and
QUR study sites, respectively, with mean levels of 1.709 ±0.438 and 1.667 ±0.306 for the wet
and dry seasons, respectively. The highest level of ICF (1.098) for Ni was computed for the STB
site, while the lowest level (0.777) was obtained at QUR, with mean values of 0.943 ±0.107 and
0.954 ±0.069 calculated for all sites during the wet and dry seasons, respectively. Results indi-
cated that the ICF levels for Pb were relatively low, implying that the retention times for Pb
were comparatively high. The highest ICF level for Pb was obtained at OKT site with a value of

Fig 8. Weighted individual contamination factors (ICF) for wet (a) and dry (b) seasons and the global contamination factor for studied sites (c).

doi:10.1371/journal.pone.0156485.g008
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0.439, while the lowest ICF level was recorded at QUE, with a value of 0.266. The mean levels
computed for all sites were 0.338 ±0.033 and 0.343 ±0.031 for the wet and dry seasons,
respectively.

The individual contamination factor results showed relatively high levels for Cr and Cu (Fig
8), indicating the high potential mobility and bioavailability for these trace metals, whereas Cd
and Pb had the lowest. The ICF computed for Ni also showed significant potential to be
released from sediment into the overlying water column in the mangrove ecosystems. More so,
the ICF contamination trend in the benthic sediments at all studied sites was
Cu>Cr>Ni>Cd>Pb. However, the weighted concentration effects of Cu, Cr and Ni with com-
paratively moderate contamination factors imply enhanced ecological risks from these metals
to the aquatic biota.

The GCF values for all investigated ecosystems ranged between 5.424 and 4.269 for both
wet and dry seasons. These results indicated that the benthic sediments were moderately
(6< GCF< 12) impacted by trace metals. However, enhanced anthropogenic activities in this
region may likely lead to heightened degree of contamination, which could result in consider-
able risks to the aquatic ecosystems, local floras and faunas.

Chemical fractionation is an important technique that provides distinctive information
about the origin of trace metals. Trace metals in the nonresidual fractions (exchangeable + car-
bonates bound + reducible + oxidizable) are an indication of anthropogenic influences, while
those in residual geochemical phases can be attributed to lithogenic sources [53–55]. The rela-
tionships between the studied trace metals (Cd, Cr, Cu, Ni and Pb) in nonresidual/residual
fractions and associated individual contamination factors in benthic sediments of the investi-
gated estuarine and freshwater ecosystems are presented in Fig 9. As indicated in the linear
plots, there was a significant and positive correlations between the nonresidual fractions and
the individual contamination factors of Cd, Cr, Cu, Ni and Pb during the wet season, while a
strong relationship was established between the nonresidual fractions and the correlative ICF
values of Cr, Cu and Pb during the dry season. Cd and Ni showed very weak correlations. The
linear relationships between residual fractions and the corresponding ICFs of metals revealed
comparable negative but strong correlations for Cd, Cu and Pb, while weak linear relationships
were observed for Cd and Ni.

4.0 Conclusion
In the present study, the occurrence, contamination, sources and associated risks of Cd, Cr,
Cu, Ni and Pb in benthic sediments from five equatorial freshwater, riverine and estuarine eco-
systems were investigated. Multivariate statistical approaches including principal component
analysis, correlation test and agglomerative hierarchical cluster analysis were employed in
characterizing the degree of contamination, sources and interrelationships of trace metals. Use-
ful indices, guidelines and quotients were also used in ascertaining the extent of sediment con-
tamination by individual metals. The ecological risk index by individual contamination factor
shows significant potential mobility and bioavailability for Cu, Cu and Ni. Global contamina-
tion factor identifies the ecosystems as moderate pollution hotspots. However, enhanced
degree of contamination due to anthropogenic activities in the region could result in consider-
able risks to these aquatic systems and biotas. The principal component and agglomerative
clustering analyses indicate that trace metal contaminations in the ecosystems were influenced
by multiple pollution sources. Results also indicate that multistep speciation of sediments pro-
vides a more accurate evaluation of mobility, bioavailability and risk of metals in aquatic eco-
systems. The result of this study will provide valuable baseline information for future
contamination and risk assessments of these littoral ecosystems.
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Fig 9. Relationships between trace metals in nonresidual/residual geochemical fractions and their
corresponding individual contamination factors (ICFs) during the wet and dry seasons. The regression lines and
equations in black color indicate metals in nonresidual fractions and ICFs; the regression lines and equations in red
color represent metals in residual fractions and ICFs.

doi:10.1371/journal.pone.0156485.g009
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