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Abstract 

We introduce the concept of a mild solution of Lipschitzian       
quantum stochastic differential equations (QSDEs). Results on the 
existence, uniqueness and stability of a mild solution of QSDEs          
are established. This is accomplished within the framework of the 
Hudson-Parthasarathy formulation of quantum stochastic calculus. 
Here, the results on a mild solution are weaker compared with the ones 
in the literature. 

1. Introduction 

Recent literatures reveal consistent study of existence of a mild solution 
of differential equations ranging from classical differential equations to non-
classical differential equations. For details, see [4, 5, 11, 12, 16] and the 
references therein. 

One of the main analytical difficulties in the theory of both classical     
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and non-classical stochastic differential equations (SDEs) arises when the 
coefficients driving the equation consist of unbounded operators, see [7]. In 
[6], Balasubramaniam et al. discussed the existence of mild solutions for 
semilinear neutral functional evolution equations with nonlocal conditions by 
using fractional power of operators and Kransnoselskii fixed point theorem. 

In [4], existence and uniqueness of the mild solutions for stochastic 
differential equations for Hilbert valued stochastic processes are discussed, 
with the multiplicative noise term given by an integral with respect to a 
general compensated Poisson random measure was established. 

When considering quantum stochastic differential equations (QSDEs) 
within the framework of Hudson and Parthasarathy [15] formulation of 
QSDEs not much has been done in this area. However, some properties of 
solution sets of quantum stochastic differential inclusions were established in 
[1, 2, 8]. 

Existence of mild solution of impulsive QSDE and SDE was also 
considered in [16, 18] using the fixed point theorem method. In [9], results 
on solution of impulsive QSDEs and the associated Kurzweil equations      
were established. The recurrence of such problems in the literature is the 
motivation for this work. Hence the results here will be an extension of the 
results on QSDEs in the literature. 

We organize the rest of the paper as follows: in Section 2, we adopt  
some definitions and notations of Ekhaguere’s formulations in [10] and      
[8, 9]. In Section 3, we introduce the QSDE with an infinitesimal generator 
of a family of semigroups and establish the main results on existence and 
uniqueness of solution. In Section 4, we establish result on stability of 
solution. The methods we used here are adoption of similar methods applied 
in [10]. 

All through the remaining sections, as in [8-10], we employ the locally 

convex topological space A
~

 of noncommutative stochastic processes. We 
also adopt the definitions and notations of the following spaces ( ),Nclos  
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( ),~
Aclos  ( ),~

AAd  ( ) ,
~

wacAd A  ( ),~
Ap

locL  ( ),~
Ap

locL  ,,
∞
γ locL  the integrator 

processes ,πΛ  ,+gA  ,fA  for ( ),, , +
∞
γ∈ RlocLgf  ( ) ( )., +

∞
γ∈π RlocBL  

Let ( ).~,,, 2 IALHGFE loc ×∈  The following equation is the Hudson-

Parthasarathy quantum stochastic differential equation in integral form 
introduced in [10]: 

( ) ( )( )( ( ) ( )( ) ( )∫ ++= π∧
t

t f sdAssXFsdssXEXtX
0

,,0  

( )( ) ( ) ( )( ) ),,, dsssXHsdAssXG g ++ +  

( ) .,00 ItXtX ∈=  (1.1) 

In equation (1.1), the coefficients E, F, G and H lie in a certain class            
of stochastic processes for which quantum stochastic integrals against the 
gauge, creation, annihilation processes ,ΠΛ  ,+f

A  gA  and the Lebesgue 

measure t are defined in [10]. In the work of [10], the Hudson and 
Parthasarathy [15] formulation of quantum stochastic calculus was employed 
to establish the equivalent form of quantum stochastic differential equation 
(1.1) given by 

( ) ( )( ) ( ),,,, ξη=ξη ttXPtXdt
d  

 ( ) ξη=ξη 0,0, XX  for almost all ,It ∈  (1.2) 

where η, ξ lie in some dense subspaces of some Hilbert spaces which          
have been defined in [10]. For the explicit form of the map ( ) →txP ,  

( ) ( )ξη,, txP  appearing in equation (1.2), see [10]. Equation (1.2) is a first 

order non-classical ordinary differential equation with a sesquilinear form 
valued map P as the right hand side. Equation (1.1) is known to have a 

unique weakly absolutely continuous adapted solution A
~

: →Φ I  for the 
Lipschitzian coefficients E, F, G and H. 
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2. Fundamental Concepts and Notations 

In what follows, we employ the locally convex topological state space 

A
~

 of noncommutative stochastic processes and we also adopt the definitions 
and notations. See [8-10] and the references therein. 

Notation 2.1. In what follows, D  is some inner product space with R  

as its completion, and γ is some fixed Hilbert space. 

 (i) For each ,+∈ Rt  we write ( )+γ R2L  (resp.  [ )( );,02 tLγ  resp. 

[ )( )),,2 ∞γ tL  for the Hilbert space of square integrable, γ-valued maps on 

[ )∞≡+ ,0R [ ) [ )( ).,.resp;,0.resp ∞tt  

(ii) The noncommutative stochastic processes which we shall discuss   

are densely defined linear operators on ( ( ));2
+γΓ⊗ RLR  the inner product 

of this complex Hilbert space will be denoted by ⋅⋅,  and its norm by .⋅  

Definition 2.2. For ,, ED⊗∈ξη  we define ηξ⋅  on A  by 

.,, A∈ξη=ηξ xxx  

Then { }ED⊗∈ξη⋅ ηξ ,,  is a family of seminorms on ;A  we write wτ  

for the locally convex Hausdorff topology on A  determined by this family. 

Notation 2.3. We denote by A
~

 the completions of the locally convex 

spaces ( )., wτA  

Notation 2.4. (i) We denote the space of sesquilinear forms on ED⊗  by 

( ).ED⊗sesq  

(ii) Let ,+⊆ RI  we denote by ( )ED⊗,0 IL  the set of all ( )-ED⊗sesq  

valued maps on I, i.e., ( ) ( ){ }.:,0 EDED ⊗→=⊗ sesqIuIL  
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Definition 2.5. A member ( )ED⊗∈ ,0 ILz  is: 

 (i) absolutely continuous if the map ( ) ( )ξη→ ,tzt  is absolutely 

continuous for arbitrary ., ED⊗∈ξη  

(ii) of bounded variation if over all partitions { }n
jjt 0=  of I, 

( ) ( ) ( ) ( ) .,,sup
1

1 ∞<












ξη−ξη∑

=
−

n

j
jj tztz

H
 

Definition 2.6. A stochastic process Φ will be called locally absolutely 

p-integrable if the map ( ) ,ηξΦ→ tt  ,+∈ Rt  lies in ( )ILp
loc  for arbitrary 

ED⊗∈ξη,  and ( ).,0 ∞∈p  

Notation 2.7. For ( )∞∈ ,0p  and ( )A~, 2 ×⊆ + ILI locR  denotes the set 

of maps AA
~~

: →×Φ I  such that the map ( )( )ttXt ,Φ→  lies in ( )A~p
locL  

for every ( ).~
Ap

locLX ∈  

Definition 2.8. Let .+⊆ RI  

  (i) A map AA
~~

: →×Φ I  will be called Lipschitzian if for any 
,, ED⊗∈ξη  there exists a function 

( )∞→Φ
ηξ ,0: IK  

lying in ( )ILloc
1  such that 

( ) ( ) ( ) ηξ
Φ
ηξηξ −≤Φ−Φ yxtKtytx ,,  

for all A
~

, ∈yx  and almost all .It ∈  

 (ii) If for ,, ED⊗∈ξη  ηξΦ  is a map from A
~

×I  into [ ],ED⊗sesq  

then for ( ) ,
~

, A×∈ Itx  the value of ( )tx,Φ  at ED⊗∈ξη,  will be denoted 



S. A. Bishop et al. 94 

by ( ) ( ).,, ξηΦ tx  Such a map will be called Lipschitzian if for arbitrary 

,, ED⊗∈ξη  

( ) ( ) ( ) ( ) ( ) ηξ
Φ
ηξ −≤ξηΦ−ξηΦ yxtKtytx ,,,,  

for all A
~

, ∈yx  and almost all .It ∈  

(iii) If Φ is a map from A
~

×I  into the ( ),ED⊗sesq  then for ( )tx,  

,
~
A×∈ I  the value of ( )tx,Φ  at ,, ED⊗∈ξη  will be called Lipschitzian 

(resp. continuous) if for arbitrary ,, ED⊗∈ξη  the map ( ) ( )txtx ,, Φ→  

( )ξη⋅ ,  from A
~

×I  to C  is Lipschitzian (resp. continuous). 

Definition 2.9. Let .+⊆ RI  

 (i) By a stochastic process indexed by I, we mean a function on I with 

values in ( ).~
Aclos  

(ii) And for ( ),,0 ∞∈p  ( )A~×ILp
loc  is the set of maps →×Φ AI ~:  

( )A~clos  such that ( )( ),, ttXt Φ→  It ∈  lies in ( )mvs
p
locL A

~
 for every ∈X  

( ).~
Ap

locL  

Definition 2.10. A stochastic process ( )A~Adp ∈  is called simple if 

there exists an increasing sequence ,nt  …,2,1,0=n  with 00 =t  and 

∞→nt  such that for each ,0≥n  

( ) ( )ntptp =       and     [ )., 1+∈ nn ttt  

For a topological space ,N  let ( )Nclos  be the collection of all nonempty 

closed subsets of ;N  we shall employ the Hausdorff topology on the 

( )A~clos  as defined in [10]. Also, for ( )CclosBA ∈,  and ,C∈x  we define 

the Hausdorff distance, ( )BA,ρ  as in [18]. Then ρ is a metric on the ( )Cclos  

and induces a metric topology on the space. 
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Definition 2.11. A map [ ] [ ]ED⊗→× sesqTtP ,
~

: 0A  belongs to the 

class ( [ ] )WTtC ,,
~

0×A  if for arbitrary :, ED⊗∈ξη  

  (i) ( ) ( )ξη⋅ ,,xP  is measurable for each .
~
A∈x  

 (ii) There exists a family of measurable functions [ ] +ηξ → RTtM ,: 0  

such that ∫ ∞<ηξ
t
t

dsM
0

 and ( )( ) ( ),,, sMxP ηξ≤ξη⋅  ( ) [ ].,
~

, 0 Ttsx �A ×∈  

(iii) There exist measurable functions [ ] +ηξ → RTtK ,: 0  such that for 

each [ ],,0 Ttt ∈  ∫ ∞<ηξ
t
t

dsK
0

,  and 

( ) ( ) ( ) ( ) ( ) ( ).,,,, ηξηξ −≤ξη−ξη yxWsKsyPsxP p  

For ( ) ( ) [ ]Ttsysx ,
~

,,, 0×∈ A  and where for (i)-(iii) ( ) ,ttW =  and 

( ) ( ) ( ) .
0 0
∫ ∫ ηξηξηξ +=

t

t

t

t
dssKdssMth  

Notation 2.12. The class ( [ ] )WTtC ,,
~

0×A  denotes the class of 

sesquilinear form-valued maps which satisfy the Lipschitz condition and the 
Caratheodory conditions. 

Definition 2.13. A member ( )ED⊗∈ ,0 ILz  is: 

  (i) absolutely continuous if the map ( ) ( )ξη→ ,tzt  is absolutely 

continuous for arbitrary ,, ED⊗∈ξη  

 (ii) of bounded variation if over all partitions { }n
jjt 0=  of I, 

( ) ( ) ( ) ( ) ,,,sup
1

1 ∞<












ξη−ξη∑

=
−

n

j
jj tztz

H
 

(iii) of essentially bounded variation if z is equal almost everywhere to 

some member of ( )ED⊗,0 IL  of bounded variation, 
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(iv) a stochastic process ( )A~,0 ILx ∈  is of bounded variation if 

( ) ( ) ∞<












ξη−ξη∑

=
−

n

j
jj txtx

1
1,,sup

H
 

for arbitrary ED⊗∈ξη,  and where supremum is taken over all partitions 

{ }n
jjt 0=  of I. 

Notation 2.14. We denote by ( )A~BV  the set of all stochastic processes 

of bounded variation on I. 

Definition 2.15. For ( ),~
ABVx ∈  define for arbitrary ,, E D⊗∈ξη  

[ ] ( ) ( ) ,sup
1

1, 












−= ∑

=
ηξ−

τ
ηξ

n

j
jjba txtxxVar  

where τ is the collection of all partitions of the interval [ ] ., Iba ⊂  If 

[ ] ,, Iba =  then we write .ηξηξ = VarxxVarI  Then { }ED⊗∈ξηηξ ,:Varx  

is a family of seminorms which generates a locally convex topology on 

( ).~
ABV  

Notation 2.16. (i) We denote by ( )A~BV  the completion of ( )A~BV  in 

the said topology. 

(ii) We denote by ( ) ( )wacAdBVA AA
~~

: ∩=  the stochastic process that 

is weakly, absolutely continuous and of bounded variation on [ ].,0 Tt  The 

space ( )ξη,A  equips with the norm 

( ) ( ){ }Ittxx PC ∈ξη= :,sup  

is a Banach space. 

It has been well established that the quantum stochastic differential 
equation (2.1) introduced by Hudson and Parthasarathy provides an essential 
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tool in the theoretical description of physical systems, especially those 
arising in quantum optics, quantum measure theory, quantum open systems 
and quantum dynamical systems. See [8, 9] and the references therein. 

3. Existence of Solution 

Let A be the infinitesimal generator of a family of semigroups 
( ){ }0: ≥ttT  defined in [18]. We consider the existence of a mild solution of 

the quantum stochastic evolution problem given by 

( ) ( ) ( ) ( )( )( ( ) ( )( ) ( )tdAttxFtdttxEtxtAtdx g,, ++= π∧  

( )( ) ( ) ( )( ) ),,, dtttxHtdAttxG
f

++ +  

almost all [ ],,0 TIt =∈   

( ) .0 0xx =  (3.1) 

The equivalent form of (3.1) is then given by 

( ) ( ) ( ) ( )( ) ( ),,,, ξη+=ξη ttxPtxtAtxdt
d  

( ) [ ].,, 000 Tttxtx ∈=  (3.2) 

Definition 3.1. An adapted stochastic process Ax ∈  is called a mild 
solution of equation (3.1) if 

( ) ( ) ( ) ( )( )( )( )∫ ξη−=ξη−ξη
t

t
dsssxPstTxtTtx

0
,,,,, 0  

( ) [ ]Tttxtx ,, 000 ∈=  (3.3) 

holds for every [ ]Ttts ,, 0∈  identically. The map P in equation (3.2) is a 

sesquilinear form valued-map defined in [10]. Equation (3.1) is understood in 
integral form (3.3) via its solution. 

Definition 3.2. Let X be a Banach space. A one parameter family ( ),tT  

,0 ∞<≤ t  of bounded linear operators from X into X is a semigroup of 
bounded linear operator on X if 
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 (i) ( ) IT =0  (I is the identity operator on X). 

(ii) ( ) ( ) ( )sTtTstT =+  for every 0, ≥st  (the semigroup property). 

The following theorem established in [10] will be useful in establishing 
the major result in this section. 

Theorem 3.1. Let p, q, u, v be simple adapted stochastic processes        

in ( )A~Ad  and let M be their stochastic integral. If ED⊗∈ξη,  with 

( ),α⊗=η ec  ( ),β⊗=ξ ed  ,, D∈dc  ( ),, , +
∞
γ∈βα RlocL  and ,0≥t  then 

( ) { ( ) ( ) ( ) ( )spssstM
t

γβπαη=ξη ∫ ,,,
0

 

( ) ( ) ( ) ( ) ( ) ( ) ( )} .,, dssvsusgssqssf ξ+α+β+ γγ  (3.4) 

Next, we establish a major result. 

Theorem 3.2. Assume that 

 (i) the coefficients E, F, G, H appearing in equation (3.2) satisfy the 

Lipschitz condition and belong to ( ),~1 A×ILloc  

(ii) there exists a constant NN =ηξ :  such that ( ) ηξηξ ≤ NtT  for 

each .0≥t  

Then for any fixed point ( ) ,, 00 IAtX ×∈  there exists a unique adapted and 

weakly absolutely continuous mild solution Φ of the quantum stochastic 
differential equation (3.1) satisfying ( ) .00 Xt =Φ  

Proof. We first construct a wτ -Cauchy sequence ( ){ } 0≥Φ nn t  of 

successive approximations of Φ in .
~
A  All through except otherwise stated 

ED⊗∈ξη,  is arbitrary. Fix ,0tT >  [ ].,0 Ttt ∈  Define ( ) ( ) =Φ ttT 0  

,0NX  and for ,0≥n  

( ) ( ) ( )( )( ( ) ( )( ) ( )∫ +
π+ Φ+Φ−+=Φ ∧

t

t gnnn sdAssFsdssEstTNXt
0

,,01  

( )( ) ( ) ( )( ) ).,, dsssHsdAssG nfn Φ+Φ+  
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We let each ( ) 1, ≥Φ ntn  define an adapted weakly absolutely continuous 

process in A. 

By hypothesis, ( ) ( ) ( )sXGsXFsXE ,,,,, 000  and ( )sXH ,0  belong to 

sA
~

 for [ ]Tts ,0∈  and ( ),.,0XE  ( ),.,0XF  ( ).,0XG  and ( ).,0XH  lie in 

A. Therefore, the quantum stochastic integral which defines ( )t1Φ  exists for 

[ ].,0 Ttt ∈  

By equation (3.4), ( )t1Φ  is weakly absolutely continuous and hence 

locally square integrable. 

Assume now that ( )tnΦ  is adapted and weakly absolutely continuous, 

then each ( )( ),, ssE nΦ  ( )( ),, ssF nΦ  ( )( )ssG n ,Φ  and ( )( )ssH n ,Φ  is 

adapted and lies in ( ).~2 AlocL  Thus, ( )tn 1+Φ  is adapted and well defined. 

Again, by equation (3.4), ( )tn 1+Φ  is a weakly absolutely continuous process 

in ( ).~2 AlocL  Hence we have proved our claim by induction. We consider the 

convergence of the successive approximations. 

By equation (3.4) and the definition of the map P above, we have 

( ) ( ) ηξ+ Φ−Φ tt nn 1  

( ) ( )( )ξΦ−Φη= + tt nn 1,  

 ( )( ) ( ) ( )( ) ( )( ) .,,,,
0

1∫ ξηΦ−ξηΦ= −
t

t nn dsssPssPN  (1) 

Since the coefficients E, F, G, H are Lipschitzian, the map ( ) →tx,  

( ) ( )ξη,, tXP  is also Lipschitzian and hence satisfies 

( ) ( ) ( ) ( ) ( ) ( ),,,,, ηξηξ −≤ξη−ξη yxtNKtyPtxPN p  

[ ].,,, 0 TttAyx ∈∈∀  
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Substituting the last inequality in (1), we get 

 ( ) ( ) ( ) ( ( ) ( ) ) .
0

11 ∫ ηξ−ηξηξ+ Φ−Φ≤Φ−Φ
t

t nn
p

nn dssssNKtt  (2) 

Since the map ( ) ηξ−Φ→ 01 Xss  is continuous on [ ],,0 Tt  we put 

[ ]
( ) [ ],,,sup 001

,0

TtsXsR
Tts

∈−Φ= ηξ
∈

ηξ  

this implies that ( ) .01 ηξηξ ≤−Φ RXs  Also, let 

( ) ( ) .
0
∫ ηξηξ =

t

t
p dssKtM  

From (2), we have 

 ( ) ( )
( ) ( ( ))

....,2,1,,!1 =≤Φ−Φ ηξηξ
ηξ+ inn

tMRN
tt

n

nn  (3) 

This we prove by induction as follows. 

For ,1=n  inequality (3) holds by considering (2). Assume that (3) holds 
for ,kn =  i.e., 

 ( ) ( )
( ) ( ( ))

....,2,1,!1 =≤Φ−Φ ηξηξ
ηξ+ nk

tMRN
tt

k

kk  (4) 

Then, by (2), 

( ) ( ) ( ) ( ( ) ( ) )∫ ηξ+ηξηξ++ Φ−Φ≤Φ−Φ
t

t kk
p

kk dssssNKtt
0

112  

( )
( ) ( ( ))∫ ηξηξ

ηξ≤
t

t
kp dssMsKk

RN

0!  by (4). 

By applying integration by parts on the first term, we obtain 

 ( ) ( ( ))
( ( ))

.10

1

∫ +
=

+
ηξ

ηξηξ
t

t

k
kp

k
tM

dssMsK  (5) 

Therefore, 
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( ) ( )
( ) ( ( ))

( )!1

1

12 +
≤Φ−Φ

+
ηξηξ

ηξ++ k
tMRN

tt
k

kk  

so that (3) holds for 1+= kn  and so holds for ....,3,2,1=n  

Therefore, for any ,kn >  

( ) ( ) ( ) ( )( )
ηξ+= +ηξ++ ∑ Φ−Φ=Φ−Φ

n
km mmkn ttNtt

1 111  

( ) ( )∑ += ηξ+ Φ−Φ≤
n

km mm ttN
1 1  

( ) ( ( ))
.!1 










≤ ∑ +=

ηξηξn
km

m

m
TMR

N  

It follows that ( )tnΦ  is a Cauchy sequence in A
~

 and converges uniformly 

to some ( ).tΦ  Since ( )tnΦ  is adapted and weakly absolutely continuous, the 

same is true of ( ).tΦ  

We now show that ( )tΦ  satisfies the quantum stochastic differential 

equation (1.1). 

Since ( ) ( ) ,000 XtXt ==Φ  we have by equation (3.4), 

[ ( )( ) ( ) ( )( ) ( )∫ +
π Φ+Φ ∧

t

t gnn sdAssFsdssEN
0

,,  

( )( ) ( ) ( )( ) ]
ηξ

Φ+Φ+ dsssHsdAssG nfn ,,  

[ ( )( ) ( ) ( )( ) ( )∫ +
π Φ+Φ− ∧

t

t g sdAssFsdssEN
0

,,  

( )( ) ( ) ( )( ) ]
ηξ

Φ+Φ+ dsssHsdAssG f ,,  

( )( ) ( ) ( )( ) ( )( )∫ ξηΦ−ξηΦ=
t

t n dsssPssPN
0

,,,,  
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( ) ( ( ) ( ) )∫ →Φ−Φ≤ ηξηξ
t

t n
p sssKN

0
0  as ,∞→n  

since ( ) ( )ssn Φ→Φ  in A
~

 uniformly on [ ].,0 Tt  

Thus, 

( ) ( )tt nn 1lim +∞→
Φ=Φ  

( ) ( ) ( ( )( ) ( )∫ π∞→
∧Φ−+=

t

t nn
sdssEstTXtT

0
,lim0  

( )( ) ( ) ( )( ) ( ) ( )( ) )dsssHsdAssGsdAssF nfngn ,,, Φ+Φ+Φ+ +  

( ) ( ) ( ( )( ) ( )∫ π∧Φ−+=
t

t
sdssEstTXtT

0
,0  

( )( ) ( ) ( )( ) ( ) ( )( ) ).,,, dsssHsdAssGsdAssF fg Φ+Φ+Φ+ +  

That is, ( ) [ ]Tttt ,, 0∈Φ  is a solution of equation (3.3). 

Uniqueness of solution 

To establish the uniqueness of solution, we assume that ( ),tY [ ]Ttt ,0∈  

is another adapted weakly absolutely continuous solution with ( ) .00 XtY =  

Then, by equation (3.4), we obtain again 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )dsssYPssPNtYt
t

t∫ ξη−ξηΦ=−Φ ηξ
0

,,,,  

( ) ( ( ) ( ) )∫ ηξηξ −Φ≤
t

t
p dssYssNK

0
.  

Since the integral ( )∫ ηξ
t
t

p sK
0

 exists on [ ],,0 Tt  it is also essentially bounded 

on the given interval. Hence, there exists a constant tC ,ηξ  such that 

ess sup ( ) [ ].,, 0, TtsCsK t
p ∈= ηξηξ  
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Thus, 

( ) ( ) ( ( ) ( ) )∫ ηξηξηξ −Φ≤−Φ
t

tt dssYsNCtYt
0

.,  

By the Gronwall’s inequality, we conclude that ( ) ( ),tYt =Φ  [ ].,0 Ttt ∈  

Hence the solution is unique. 

4. Stability of Solution 

The next theorem establishes that the solutions equation (3.2) is stable. 
Hence we let the coefficients E, F, G, H satisfy the conditions of Theorem 
3.2. Let ( ),tX  ( ),tY  [ ]Ttt ,0∈  be solutions to equation (3.2) corresponding 

to the initial conditions ( ) ( ) ( ) 00 XtTtXtT =  and ( ) ( ) ( ) ,00 YtTtYtT =  

respectively, where ., 00 AYX ∈  The solution ( )tX  is stable under the 

changes in the initial condition ( ) 00 XtX =  as follows: 

Theorem 4.1. For given 0tT >  and ,0>ε  there exists 0>δ  such    

that if ,00 δ<− ηξ NYXN  then ( ) ( ) ε<− ηξtYtX  still holds for all 

[ ]Ttt ,0∈  and for each pair of ., ED⊗∈ξη  

Proof. Let ( ),tX n  ( ),tYn  for ...,,1,0=n  be the iterates corresponding 

to the initial conditions 0X  and ,0Y  respectively, so that ( ) 00 XtX =  and 

( ) 00 YtY =  for all .0 Ttt ≤≤  Then we obtain the following estimate by 

employing the definition of P and equation (3.4) as in the proof of 
uniqueness of solution: 

( ) ( ) ηξ++ − tYtX nn 11  

( ) ( ) ηξ−≤ 00 YtTXtT  

( ) ( )( ) ( ) ( )( ) ( )( )∫ ξη−ξη−+
t

t nn dsssYPssXPstT
0

,,,,  

( ) ( ) ,
0

,00 





 −+−= ∫ ηξηξηξ

t

t nnt dssYsXCNYXN  
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where tC ,ηξ  is the essential supremum of ( )tK p
ηξ  on [ ].,0 Tt  Therefore, by 

iteration, we obtain for ,0 Ttt ≤≤  

( ) ( ) 








 −+−≤− ∫ ηξηξηξηξ++

t

ttnn YXCNYXNtYtX
0

00,0011  

( ) ( ) 







−+ ∫ ηξ−−ηξ 122121,

1

0
1 dtdttYtXC

t

t nnt  

( ( ) )ηξηξηξ −−+−≤ 00000 YXttlNYXN  

( ) ( ) ,
0

1

0
122121

2 





 −+ ∫ ∫ ηξ−−ηξ

t

t

t

t nn dtdttYtXlN  

where 

{ }.,max 1,, tt CCl ηξηξηξ =  

Continuing the iteration and putting 

{ },...,,2,1,,max ,, njCCL jtt == ηξηξηξ  

we obtain the estimate 

( ) ( ) ηξ++ − tYtX nn 11  

( ) "+−−+−≤ ηξηξηξ 00000 YXttNLYXN  

( )
ηξηξ −

−
+ 00

0
! YXn
ttNL

n
n  

( ) ( )∫ ∫ ∫ +ηξ++
+
ηξ −+

t

t

t

t

t

t nnn
n n dtdtdttYtXNL

0

1

0 0
1211010

1 …"  

( ) ηξ

+

=

ηξ −−≤ ∑ 00

1

0
0! YXttm

L
N

n

m

m
m
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( )
ηξ

+

=

ηξ −≤ ∑ 00

1

0
! YXm
TL

N
n

m

m
 

( ).00
TLeYXN ηξ

ηξ−≤  

Letting ,∞→n  we conclude that 

( ) ( ) ( )TLeYXNtYtX ηξ
ηξηξ −≤− 00  

for all ,0 Ttt ≤≤  and the result follows. 

5. Conclusion 

We have established the existence, uniqueness and stability of a mild 
solution of QSDE (3.1) via equation (3.2). This is possible since equivalence 
of these equations has been established in [10]. 
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