lournal of Computer Science & Its A pplications, December 2006, Vol. 13 No.1

\ Subquadratic Time Generation of |y |* Dictionary from

String(s) using Suffix Tree

t.zekiel F. Adebiyi
epartment of Computer and Information Sciences
‘ovenant University

PMB 1023.Ota, Nigeria.

£-mail: eadebiyi@sdsc.edu

ibstract.

Given a set of alphabets 5. (whose size is |Y|) and set of subject strings X = {x , x,,
..y X, Jover Y, suchthatn =y _ xi, the problem considered in this paper, is the
generation of items of the dictionary |5 |, where q is a positive integer greater
than 1, from the strings in X. This stringology problem finds application in the
bioinformatics problem of motifs finding[10] and recently in the selection of
oligonucleotides for Microarray and PCR[13, 14]. Microarray and PCR are both
academic and industrial tools of Bioinformatics used in Life Sciences.

A naive algorithm that runs in O(|y’|') time was given recently by Zheng et al.[13,
14] to solve this problem. In this paper, we present a novel algorithm based on
the suffix tree that solves this problem in subquadratic time.

Keywords. Stringology, Suffix tree, dictionary, seeds, motifs, oligonucleotides,

microarray, PCR.

1.0 Introduction

[n bioinformatics, the following stringology problem is
an important step in motif finding[10] and recently in
the selection of oligonucleotides for microarray and
PCR[13, 14]. Typical setup include k subject strings X
={X,X,, ..., X },suchthatn=¥%_ xi, where strings
X, X,, ..., X, are generated over a set of alphabets ¥,
whose size is a=|y7|. The problem is then to list out all
|30 substrings that appear in X, where q is a positive
integer greater than 1. Since all possible of |y
substrings, not known in advance may occur in X, a
naive approach employed in [13, 14] is to create |y|¢
buckets (if =2 and]E| =4 for DNA, 4> = 16 buckets
include AA, AC,AG AT, ..., TT) and slide a ruler of

length q through each subject strings to collect all pos-

sible |y substrings. To collect the occurrence statistics
of the 3]0 buckets that occur in X, in the worst case, a
O(|s2|%) time is required. We show in this paper how a
novel algorithm designed using the suffix tree is cleverly
engineered to do this in O(n In n/In a) time. For com-
pactness, let us call the |y°|* substrings seeds of length q
(henceforth, g-seeds). Our resulting algorithm has be :n
used in Adebiyi[3] and Adebiyi and Olarenwaju[4] to
design efficient sequential and parallel algorithm for

oligonucleotides selection.

1.1 Organization of the paper

This paper is structured as follows. In section 2, we
discuss the suffix tree and present our novel algorithm in
section 3. We discuss the implementation of our algo-

rithm and our experimental experience using this algo-

26 A Subquadratic Time Generation of |y |* Dictionary from String(s) using Suffix Tree

rithm in section 4. We conclude this paper in section 5.

1.0 Suffix tree

Some good materials on suffix tree can be found in
Adebiyi[1] and Gusfield[6]. We

give a brief description below. The following informal
description is taken from [1].

A suffix tree is a lexicographically inter-connected data
structure, that provide efficient access to all substrings
of a strings, over which it is built. This data structure
can be constructed and represented in linear time and
space. And this has enable the solution of many strings
problem in linear time. The construction of a suffix tree
in linear time can be found in Weiner[12], McCreight[8]
and Ukkonen[11]. Arecent paper by Kurtz[7] discussed
how an economical construction of suffix tree with re-

spect to space can be done.

We give here the definition of a suffix tree for an arbi-
trary string x of length N over an alphabet ¥ as present

in [6]. We follow this to show how a suffix tree can be

4
CTAGK N 9
LACKIS / f\\(}as
/ 7\

: / \

4 J
T(J‘I?A (3% &

Ezekiel F. Adebiyi

built for a set of strings.

Definition 1 A suffix tree of a N-character string x is a
rooted directed tree with exactly N leaves, numbered 1
to N. Each internal node, other than the root, has at
least two children and each edge is labelled with a
nonempty substring of x. No two edges out a node can
have edge-labels beginning with the same characters.
The key feature of the suffix tree is that for any leaf1, the
label of the path from the root to leaf i exactly spells out
the suffix of x that start at position i. Note that the defi-
nition above does not guarantee the existence of a suf-
fix tree for any string x. The problem is that if a preffix
of a suffix of x matches a suffix of x, the path for the
later suffix would not end at a leaf. Therefore, to guar-
antee the existence of a suffix tree for any string X, we
place at the end of x a special symbol that is not in the
alphabet y°.We use in this paper. the symbol $, for the
termination character. Below is a suffix tree for x =
GTATCTAGG. The number at the leaves indicate the
starting position of the corresponding suffixes.

N
S CTAGGS
\\

~. \\5

TATCTAGGS
|

Fig. 1. The suffix tree for 2 = GTATCTAGCG

Zrzwizl F Adebiyi

e suffix tree constructed for a set of strings is called a
seneralized suffix tree, can be easily achieved by con-

secutively building the suffix tree for each string in the

Qe
>o L.

The resulting suffix tree is built in time proportional to
the sum of all the string lengths. The leaf number of the

A Subquadratic Time Generation of |y|* Dictionary from String(s) using Suffix Tree 27

single string suffix tree can easily be converted to two
numbers, one identifying the string and the other identi-
fying the starting position in that string. Below is the gen-
eralized suffix tree (henceforth GST) for the strings

x1 =TACTAand x2 =CACTCA.

AN
e \\»‘\ .
,»/ < AN I
A e s\ T R
/” d [hY T
7 / \\ T
e / \, ~
-~ 4 A 6
A ¢ N o
R S, 5, & S, -
T/ \\z” A/ \T A/ N\ CAS
/ : S 7 k% s N,
£ B4 \"‘;,\ { \
/ A A 34
‘gc\// K CAS b A \] ' 3,
) \\ crcay \$;:\;./ \CAS / N\
\ / . CTAS N\
¥
1,2 22 31 § / \
’ - 25 13 o1 1.4

Fig. 2. The generalized suffix tree (GST) for 2, = TACT A and 2 = CACTCA

3.0 The Subquadratic running time Algorithm

We state first some important preliminaries. Note that
two types of exact repeats exist: maximal and non-maxi-
mal. An exact repeat p is maximal if apc and bpd occur
in S for some a#b and c¢#d, a, b, ¢, d € ¥°. Otherwise
the repeat is non-maximal.

A maximal repeat is a proper substring of another maxi-
mal repeat, called the supermaximal repeat. Note that
the q-seeds formally described above can be define as

follows.

Definition 2 A g-seed is a substring of length q that

occur in at least one location in the set X.

Let each bucket obtained via g-seed i be B,. Else
where[2], using the suffix tree for solving a different prob-
lem, we use among other definitions and observation

the following definition and corollary to characterize seeds

to extract them. We discovered that the characteriza-

tion also finds application here partly.

Observation 1 A substring that is completely non-maxi-
mal inall strings in {xi,|i=1...k} cannot be a possible
seed, since it is contained in some supermaximal re-

peats.

Definition 3 Arepeat seed is arepeat (i.e., non-maxi-
mal, maximal or supermaximal) in at least two of the

subject strings.

Noting the above, the seeds of interest in this paper as
defined in definition 2 can be characterized using the

following corollary:

Corollary 1 Inaddition to the g-length constraint, ob-
serve that definition 3 above will capture all the g-seeds
of the dictionary 49 extractable from the strings in X,

28 A Subquadratic Time Generation of |y|* Dictionary from String(s) using Suffix Tree

except for the g-seeds that exist only on one sequence.
And because maximality as depicted in observation 1 is
not a constraint in definition 2, the g-seeds we desire
can also end between two nodes, in addition to those
that exist at the nodes.

Using the following definitions and notations, the algo-
rithm encapsulating all the observations regarding the
generation of g-seeds is given in figures 3, 5, and 4 of
the appendix.

¢ seeded : Aboolean variable labelling all loca-
tions (leafs (seed ending in between or at the
end) and nodes (seed ending at the end or in
between two edges)) where seeds are found.
And seeded _is true if a leaf or a node spelled
(after Sagot[9]),a seed.

® bucklen: Total # of entries in a bucket. bucklen
< 0.

® hitscount: Total # of buckets, i.e. Total # of g-

mers extracted, hitscount — 0.

1

Ezekiel F. Adebiyi

® lencount: Accumulated sum of edge lengths as
we do the depth first traverse of the suffix tree.

® succ: successive children of a node x.

¢ depth: accumulated length of edges along a path
inasuffix tree.

Lemma 1. Using corollary 1, all the g-seeds of the
dictionary |y°|? extractable from the strings in X can be
done in O(n Inn/In a) worst case time.

Proof. The suffix tree for X can be build in O(n) time.
Note that for each q-seeds required for a particular q
length. we will not need to traverse all nodes and edges
of the suffix tree. But considering a worst case sce-
nario. in which case, we need to traverse all edges and
nodes. Blumer[5] had shown that the number of nodes
in a suffix tree for a random text x on an alphabet of
sizea=y|. under amodel of equiprobability and in-
dependence of the characters in X, is F(n) ~ (Fc +

Fo(n))n, where in this case

Fyp = i [elnag - (o~ 1)In(a - 1)] (1)
and
\ :(-] . ; : / Doy g
Fo(“,) - _(__11) S“[l - e-.?rrz-j,f In uU:f/ — 14 L7} \;‘_,:»“37':2;/']:1 n/ina £
‘ Ina §540 oA Ina ;- v
o™

is a small oscillating factor with exponentially increasing
period and n accounts for the prefixes of X. Itis straight-
forward now to extend that the number of edges of a
suffix is bound by O(n In n/In a). Note that the number
of edges on the path from the root to any leaf’is (Inn/In
a) and the numer of leaf is O(n). Therefore, the number
of edges on a suffix tree can not be mo:e than O(n Inn/
Ina). Since the traversing executed in o+ ralgorithmis a
function of the number of nodes and edges, therefore,

our algorithm worst case run time (plus the time required

to build suffix tree) is bound from above by O(n In n/In
a).

4.0 Experimental Experience

We have implemented our subquadratic algorithm in C
under Linux based on Kurtz[7] space efficient imple-
mentation of a modified McCreight suffix tree and tested
italso under Linux on a PC with Pentium IV CPU and
512MB RAM. We bench-marked our algorithm (Alg
B) with the naive algorithm in [13, 14] (Alg A).

Zzzkiel F. Adebiyi

To compare output, the dataset used is the barley ESTs
from HARVEST 1.45 downloaded from http://
harvest.ucr.edw/. It contains k = 53; 240 unigenes, with
n=43, 464, 144 bases. We downloaded from http://
harvest.ucr.edu/ another 7.41 KB of EST unigenes to

compare their efficiency.

Algorithm A and algorithm B, forq=11and q=12
extracted the following same number of seeds in table
1(a,b), grouped according to the number of times, they
occurred. For q = 13, our algorithm (Alg B) produced

A Subquadratic Time Generation of |y|* Dictionary from String(s) using Suffix Tree 29

the seeds of table 1(¢), for which the naive algorithm
(AlgA) failed to run. This is because the exponential

space requirement of the naive algorithm is astronomi-
cal too large to be accommodated on the PC we used

to carry out our experiment.

As expected theoretically, the run times (on the same
system) of the two algorithms, thatis, AlgAand AlgB
on the 7.41 KB of EST unigenes dataset are depicted
in table 1(d). For g = 13, because of the astronomical

increase in 49, algorithm A will not run.

Table 1. Distribution of seeds extracted from the barley ESTs for a) { = 33 (g = 11) ,b)

{ =36 (g=12), ¢) { = 39 (¢ = 13) and d) the running times (<10} of algorithun of A and

B for different values of ¢ on the z-axis

(a)

7 of ocourrences # of sceds

1-9 2801351

10-19 924719

20-29 199790

30-39 35737

40-49 20820

30-79173 26694

(©) ()
of ocourrences # of seeds

1-9 20385811

10-19 TTA7S wh
20-29 9747 s
30-39 3084 ®r
10-49 1621

50-58110 3408 '

(b)
4 of occurrences # of seeds
1-9 11232806
10-19 308522
20-29 34718
30-39 9465
40-49 4065
50-67117 6931
g - e
!
i
§
%
__,ﬁmmﬁ"'{/,., FTPUPTOURDRPRRY S K am s a0
¥ % W T 2 3 ;fi I’& 8

30 A Subquadratic Time Generation of |s|% Dictionary from String(s) using Suffix Tree

5.0 Conclusion

A subquadratic algorithm has been designed to gener-
ate the |y |* dictionary which finds applications in the
bioinformatics problems of motifs finding and selection
of oligonucleotides. The algorithm is designed using the
suffix tree, cleverly engineered via the fine lexicographic
interconnected structure of the suffix tree to run in a
subgradratic time instead of an existing novel algorithm
that runs in exponential time.

Acknowledgment

We thank the anonymous referee of our paper accepted
at the Intl Workshop and Conf. on new trends in the
Mathematical and Computer Science with application
to real world problems, June 19-23, 2006, whose care-
ful review work has necessitated the new technical ex-
position in this paper. This work is partially supported
by the Covenant University Senate Research Grant
2004/2005. Part of this work was done, while the
author was at LIRMM, France on a CNRS-NEPAD
special grant.

References

1. Adebiyi, E. F. (2002) Pattern Discovery in
Biology and String Sorting: Theory and
Experimentation. Shaker Publisher. Aachen.
Germany.

2. Adebiyi, E. F.,, Kaufmann, M (2002) Extracting
Common Motifs under the Levenshtein Measure:
Theory and Experimentation. Proc. of the 2nd
Workshop on Algorithm of Bioinformatics
(WABI), Italy and also appeared in Lecture
Notes in Computer Science, 2452, 140-156.

3. Adebiyi, E.F. (2006) Using Suffix Tree for Effi-
cient Selection of Unique oligos for large EST
databases, Submitted to WABI 2906 and Inter-
national Journal of Bioinformatics and Computa-
tional Biology (IJBCB)

4. Adebiyi, E. F and Oyelade, J. O. (2006) A Com-
parative Analysis of existing Oligonucleotides

n

10.

14.

Ezekiel F. Adebiyi

Selection Algorithms and Optimal Parallel Oligos
Selection for large EST Databases (Extended
Abstract). Accepted (peer reviewed) proc. of the
Intl Workshop and Conf. on new trends in the
Mathematical and Computer Science with appli-
cation to real world problems, June 19-23, 2006.
A. Blumer A. Ehrenfeucht, and D. Haussler.
Average Size of Suffix trees and DAWGS.
Discrete Applied Mathematics, 24, 37-45, 1989.
D. Gusfield. Algorithms on Strings, Trees and Se-
quences. Cambridge University Press, New York,
1997.

Kurtz, S. (1999) Reducing the Space Require-
ment of Suffix trees. Software-Practice and Ex-
perience, 29(13):1149-1171.

MeCreight, E. M. (1976) A Space-Economical
Suffix tree Construction Algorithm. Journal of
ACM 23(2):262-272.

Sagot, M-F. Spelling Approximate Repeated or
Common Motifs using a Suffix tree, LNCS 1380,
111-127, 1998.

Tompa, M. (1999) An Exact Method for Finding
Short Motifs in Sequences with Application to the
Ribosome Binding Site Problem, 7th Intl. Conf.
Intelligent Systems for Molecular Biology (ISMB),
262-271.

Ukkonen. E. (1993) On-line Construction of
Suffix trees. Algorithmica, 14:249-260.

Weiner, P. (1973) Linear Pattern Matching Algo-
rithm. Proc. 14th IEEE Sym; on Switching and
Automata theory, 1-11.

Zheng.], Close, T., Jiang, T., and Lonardji, S.
(2003) Efficient Selection of Unique and Popular
Oligos for large EST Databases, CPM 2003,
LNCS 2676, 384-401. _
Zheng. J.. Close, T., Jiang, T., and Lonardi, S.
(2004) Efficient Selection of Unique and Popular
Oligos for large EST Databases, Bioinformatics,
20(13), 2101-2112.

Ezekiel F. Adebiyi A Subquadratic Time Generation of |y |° Dictionary from String(s) using Suffix Tree 31

Appendix

ok

FINDIIITS(X, q)

w

ST« Build GST(X)

3. for root children x (in depth first format)

4. if{x is a leaf)

5. len = # of characters that constitute the leaf branch.
6. if(len > g)

7. seededy = 1

8. hitscount = hitscount + 1

9. buckleniiseount = 1 B
10. Bhitscount =

11. else if(z is a node)

12, lencount = depth, bucklen = 0

13. if{g == lencount || q < lencount)
14. seededy = 1

15. hitscount=hitscount-+1

16, LISTOCCPOS(z, ST, hitscount)
17. Bhritseount «— &

18. else DEPTIFIRST(x, lencount, ¢, 8T)

Fig. 3. The subquadratic algorithm for extracting ¢-seeds

