
f *ru rnal of Computer Scien'ce & Its A pplications. l)eccmht'r 2{X)6. \"o1. l3 No.l

()f lXl'r Dictionarv from\ Subquadratic Time Generation
String(s) using Suffix Tree

F"zekiel F. Adebiyi
.)cp;u't ment of Computer and Intllrmat ion Se iercr-S
il.-r)\ errant uni versity
P\18 1023. Ota, Nigeria.
: - mai I : eadebiyi @ sdsc.edu

.lbstract.
Given a set of alphaitbas y @hose size is lyl) and set of subject strings X = {x n x,
..., t J bver t such that n = y,i=t.rxi, the problem consi^dereil in this paper, is the
generation 0f items of the dbtionary l2la, where q is a positive htteger greater
than I, from the strings in X. This stringology problem finds application in the
bioinfoimatics problem of moffi findingf10] and recently in the selection of
oligonucleotides for Microarray and PCR[13, I4]. Microarray and PCR are both
academic and industri"al tools of Bioinfornmtics used in Life Sciences.

A naive algorithm that runs in O(lylt) time was given recently by Zheng et al.[13,
141 to solve this problem. In this paper, we present a novel algorithm based on
the saffix tree tlmt solves this problem in subquadratic time.

Keywords . Stringology, Suffix tree, dictionanry, seeds, motifs, oligonacleoti.des,
microarray, PCR.

1.0 Introduction

In bioinformatics, the following stringology problem is

an impofiant step in motif finclingl l0] and rccently in

the selecticn of oligonuclsotiCes for micro array and

Il{iR[13, l4].'fypical setup include k subject strings X

= {xl, x2, .. !, **}, such that n - f,=r..k xi, where strings

xl, x?, . .., xk are generated over a set of alphabets I,
whose size is a = Itl. The problem is then to list out all

lf lo substrings that appear in X, whel e q is a po$itive

integer greater than l. Since atl possible of lllt
substrings, not known in advance may occLrr in X, a

naive approach employed in [3, 14] is to create l;l"
buckets (if q = 2 andltl = 4 for DI\A ,4t = 16 buckets

include AA, AC, AG, ^dl', . r., TT) and slicle a ruler of

length q through each sutlject stnngs to collect all pos-

sible lflo substrings.To collect the occuffence statistics

of the lf lt buckets that occur in X, in the worst case, a

O(lfl't) time is requircd. We show in this paper how a

novel algorithm designed using the suffix tree is cleverly

engineered to do this in O(n ln n/ln a) time. For com

pactness, let us call the ltlt substrings seeds of length q

(hencefofih, q-seeds). Our resulting algorithm has be :n

used in Adebiyi[3] andAdebiyi and Olarenwaju[4] to

design efficient sequential and parallel algorithm for

oli gon ucleoti des selecti on.

1.1 Organization of the paper

This paper is structured as follows. In section 2, we

discuss the suffix tree andprcsent our novel algorithm in

section 3. We discuss the implementation of our algo-

rithm and oLlr expenmental experience using this algo-

26 A Subquadratic Time Generation of lll', nictionary from String(s) using Suffix Tree

rithm in section 4. We conclude this paper in section 5.

1.0 Suffix tree

Some good materials on suffix tree can be found in

Adebiyifl I and Gusfield[6].'We

give abriefdescription below. The followittg informal

description is taken from [1].

A suffix tree is a lexicographically inter-connected data

structure, that provide efficient access to all substrings

of a stringsz over which it is built. This datastructure

can be constructed and represented in linear time and

space. And this has enable the solution ofmany strin._qs

problem in lineartime. The construction ofa sufrr-x ffee

in lineartime can be found in Weinerfl2l, McCreight[8]

and [Jkkonenll1].Arecent paper by Kurtz[7] discusrd

how an economical construction of suffix tree uith re-

spect to space can be done.

We give here the definition of a suffix tree for an arbi-

trary string x of length N over an alphabet t as present

in [6]. We follow this to show how a suffix tree can be

Ezekiel F. Adebiyi

built for a set of strings.

Definition 1 A suffix tree of a N-character string x is a

rooted directed tree with exactlyN leaves, numbered 1

to N. Each internal node, other than the root., has at

least tr,r-o children and each edge is labelled rn'ith a

nonempt)- substring ofx. No two edges out a node can

have edge-labels beginning with the same characters.

The ke)'feature ofthe suffix tree is that for any leafi, the

label of the path from the root to leaf i exactly spells out

the suffix of x that start at position i. Note that the defi-

nition abor-e does not guarantee the existence of a sufl

th tree tor any string x. The problem is that if apreffix

of a sutJ-rx of r matches a suffix of x, the palh for the

later suftir u'ould not end ataleaf. Therefore, to guar-

antee the eristence of a suffix tree for any string x, we

place at the end of r a special symbol that is not in the

alphabet I.\\'e use in this paper. the symbol $, forthe

termination character. Below is a suffix tree for x -
GTAICTAGG The number at the leaves indicate the

starting po sition of the corresponding suffi xe s.

fCt.{r;

rt'r'drr;r
f

,i1'

Fig" I", Th* ssJfix [rs* fur x: * #T.4'I'C7'A{IG

\-_

\ (:r,+c$s

A{i{}5
..

'?d

gr

t
i

i TATCTAOC3
I

3e.q:e[F, Adebiyi

lh: suffix tree constructed for a set of strings is called a

Jenerahzedsuffix tree, can be easily achieved by con-

iicutively building the suffix tree for each string in the

:et.

The resulting suffix tree is built in time proportional to

:he sum of all the string lengths. The leafnumber ofthe

A Subquadratic Time Generation of lflo Dictionary from String(s) using Suffix Tree 27

single string suffix tree can easily be converted to two

numbers, one identifying the string and the other identi-

fying the startingposition inthat string. Belowis the gen-

eralized suffix tree (henceforth GST) for the strings

xl -TACTAand x2: CACTCA.

FiS. il" 'I'J:* -q*usrtrlirr:cl sr:f$ix trex {{:;'$tf}

3.0 The Subquadratic running timeAlgorithm

Wb state first some important preliminaries. Note that

two types ofexact repeats exist: maximal and non-maxi-

mal. An exact repeat F is maximal if aBc and bBd occur

in S for some a*b and cfd, &,b, c, d t I. Otherwise

the repeat is non-maximal.

A maximal repeat is aproper substring ofanother mari-

mal repeat, called the supermaximal repeat. Note that

the q-seeds formally described above can be define as

follows.

Definition 2 Aq-seed is a substring of length q that

occur in at least one location in the set X.

Let each bucket obtained via q-seed i be B . Else

where lzl,r-rsing the suffix ffee for solving a different prob-

lem, we use among other definitions and observation

the following definition and corollary to characterize seeds

l,fj
?T

ft:r ;n1 :x 3,'dil1'']',4 .-tnCI ;Itg x {.-,'.-{.i-"''J-t-)t

to extractthem. We discovered that the characteriza-

tion also finds application here partly.

Observation 1 A substring that is completely non-maxi-

mal in all strings in {*i,l i : I . . .k} cannot be a possible

seed, since it is contained in some supermaximal re-

peats.

Definition 3 Arepeat seed is a repeat (i.e., non-maxi-

mal, maximal or supeffnaximal) in at least two ofthe

subject strings"

Noting the above, the seeds of interest in this paper as

defined in definition 2 canbe charactertzed using the

follor,ving coro llary :

Corollary 1 In addition to the q-length constraint, ob-

serue that definition 3 above will capture all the q-seeds

of the dictionary 4q extractable from the strings in X,

,q3,

1."i1

28 A Subquadratic Time Generation of f ;lr Dictionary from String(s) using Suffix Tree

except for the q-seeds that exist only on one sequerlce.

And because mrximality as depicted in observation I is
not a constraint in definition 2,theq-seeds we desire

can also end between two nodes, in addition to those

that exist at the nodes.

Using the following definitions and notations, the algo-

rithm encapsulating all the observations regarding the

generation ofq-seeds is given in figures 3, 5, and 4 of
the appendix.

' seeded*iAboolean variable labelling all loca-

tions (leafs (seed ending in between or at the

end) and nodes (seed ending at the end or in

between trvo edges)) where seeds are found.

And seeded* is true if a leaf or a node spelled

(after Sagot[9]),a seed.

e bucklen: Total# ofentries in a bucker. bricklen

4- 0.

e hitscount:' otal # of buckets. i.e. Total + of q-

mers extracteC. hitscount +- 0"

Ezekiel F. Adebiyi

lencount: Accumulated sum ofedge lengths as

we do the depth first traverse ofthe suffix free.

succ: successive children of a node x.

depth: accumulated length ofedges alongapath

in a suffix tree.

Lemma 1. Using corollary l, all the q-seeds of the

dictionary lllo extractable from the strings in X can be

done in O(n ln n/ln a) worst case time.

Proof. The suffix tree for X can be build in o(n) time.
Note that for each q-seeds required for aparticular q

length: \\€ will not need to traverse all nodes and edges

of the suffix tree. But consiclering a worst case sce-

nario, in uhich case, we neecl to traverse all edges and

nodes. Blunrer[5] had shor,vn thatthe number ofnodes

in a suffi\ ri'ee lor a random text x on an alphabet of
size a : I-i. rincer a nlodel of equiprobabilit,v and in-
ceprgndcnce ct rire characters in X, is F(n) - iFc +
Fcin))n, r,r,here in this case

o

o

Y-rl'f*' :I;il{*rln{;'*lci* til*i* lil iI i;t r'
"l

anri

F.trti 3;; !4 -Ji 5-it *- cjII # J*-**d"

5id$
f 'i i!-J

is a small oscillating factorwith exponentially increasing

period and n accounts for the prefixes ofX. It is straight-

forward now to extend that the number of edges of a

suffix is bound by O(n ln n/ln a). hiote that the number

of edges on the path from the root to any leafis (ln n/ln

a) and the numer of leaf is O(n). Therefnre, the number

of edges on a suffix tree can not tre ffiot'* than (}(n ln #
}n e). Sin*e t"he travorsing execllfecl in ourr aXgorithn: is n

fuirctian ofthr Nrurnher ofnodes and edges, therefure.

our algorithm wilrst case nm time (plus the tims l*e"iuirecf

to build sutTix tree) is bound from above by O(n ln r:lln

a).

4.0 Experimental Experience

V/e have implemented our subquadratic algorithm in C

nnder Linux based on KufizlTl space efficient imple-

rnentntion ofa modified iV{cCreight sufrr-x tree andtested

it als* under Linux on a PC n-ith Pentium IV Cpu and

5l?hdn I{.AM. We bench-marked our algorithrn (Alg

F3) wittrr th* neive algorithm in [13. l1] (AlgA).

E:tid F. Adebiyf

To compare output, the dataset used is the barley ESTs

from HARVEST 1.45 downloaded from http:ll

harvest.ucr.edu/. It contains k - 53;240 unigenes, with

fr : 43,464, 144 bases.
'We

downloaded from http:ll

harvest.ucr.edt/ anoth er 7.41 KB of EST unigenes to

compare their effi ciency.

Algorithm A and algorithm B, for q - 11 and q- 12

extracted the following same number of seeds in table

l(a,b), grouped according to the number oftimes, they

occulred. For q: l3,our algorithm (Alg B) produced

A Subquadratic Time Generation of lllq Dictionary from String(s) using Suffix Tree 29

the seeds oftable 1(c), for which the naive algorithm

(AlgA) failed to run. This is because the exponential

space requirement ofthe naive algorithm is astronomi-

cal too large to be accofirmodated on the PC we used

to carry out our experiment.

As expected theoretically, the run times (on the same

system) ofthe two algorithms, that is,AlgAandAlg B

on the 7 .41 KB of EST unigenes dataset are depicted

in table 1(d). For q : 13,because of the astronomical

increase in 4t, algorithm A will not ruIt.

Table 1" Disrrihrtior of recd* extrn*ted frrrm the berlsy E$Ts f*r a) {' * 33 {g * 1"1}
'b}

I = 3S ig r 1?)1 c) I * 39 qE = 13) and di th* *rnning time* {x1$} of alguriih.r:r of ,4 *rrcl

"S far different vdue* of g on th* *-axis

*f $ucuffen*ss # qrf s*scls # trf'*serlrrs$f*$ # *f se,eris

{h}{ur}

g${}t.?$ I

fl?Jt?l !}

3$ri?$il

ss?37

Srlslrs

!s$s"{

1*$

lfi-1S

ts-?$}

an-gg

4$-49

ss-$?lI^?

31,?s2gs.

s{]ll$s?

.3{?1S

{}{s*

4{}{1.5

$si*1

{*}

*f $ssrJrr{;}I}r-:e$ # *f srrcrds
{d}

SG

1-S

lrJ- 1'$

x{}-!$

3{}-;lll

,.1*-4$

sil-$.llfi

tt);}SiiSI1

iFrr.r?...+ F
f f .j{*

$T.*?

i3il$'tr

'1.$gi^

it{t}$

30 A Subquadratic Time Generation of l;le Dictionary from String(s)

5.0 Conclusion

A subquadratic algorithm has been designed to gener-

ate the lpla dictionary which finds applications in the

bioffirmatics problems ofmotifs finding and selection

ofoligonucleotides. The algorithm is designed using the

suffix fee, clever$ engineered viathe fine lexicographic

interconnected structure ofthe suffix tree to run in a

subqradratic time instead ofan existing novel algorithm

that runs in exponential time.

Acknowledgment

We thank the anonymous referee of our paper accepted

at the Intl Workshop and Conf. on new trends in the

Mathematical and Computer Science with application

to real world problems, June l9-23,2006,whose care,

firl review work has necessitated ttre new technical ex-

position inthis paper. This work is partially supported

by the Covenant University Senate Research Grant

200412005. Partofthis workwas done, while the

author was at LIRMM, France on a CNRS-NEPAD

special grant.

References

1. Adebiyi, E. F. (2002) Pattern Discovery in
Biology and String Sortine: Theon- and

Experimentation. Shaker Publisher. -\achen.

Germany.

2. Adebiyi, E. F., Kaufrnann,Iv{ (2002) Extractins

Common Motifs under the Levenshtein \Ieasure :

Theory and Experimentation. Proc. of the 2nd

Workshop on Algorithm of Bioinformatics
(V/ABI), Italy and also appeared in Lecture

Notes in Computer Science, 2452, I 40- 1 56.

3. Adebiyi, E. F. (2006) Using Suffix Tree for Effi-
cient Selection of Unique oligos for large EST

databarses, Submiuedto WABI 2006 andlnter-

national Joumal of Bioinformaticr nnd Computa-

tionalBioloryflJBCB)

4. Adebiyi, E. Fand Oyelade, J. O. (2006)ACom-

parative Analysis of existing Oligonucleotides

using Suffix Tree Ezekiel F" Adebiyi

s election Algorithms and optimal parallel oligo s
selection for large EST Databases (Extended

Abstract). Accepted (peer reviewed) proc" ofthe
Intl workshop and conf. on new trends in the

Mathematical and computer science with appli-
cation to real world probleffis, June 19-23,2006.

5. A. Blumer A. Ehrenfeucht, and D. Haussler.

Average size of Suffix trees and DAWGS.
Discrete Applied Mathematics, 24, 37 -45, 1 9g9.

6. D. Gusfield. Algorithms on Strings, Tiees and Se-

quen ce s . CAmbridge ljniversity press, New york,

1997 .

7 . Kurtz, s. (1999) Reducing the space Require-

ment of Suffix trees. Software-practice and Ex-
perien ce. 29(I 3): I 149-ll7 I .

8. Mccreight. E. M . (1976)A Space-Econornical

Suffix tree Construction Algorithm. Journal of
ACM 23(2):262-272.

9. sagot, N4-F. SpellingApproximate Repeated or
cornmon ir{otifs using a Suffix tree, LhICS 1390,

111-127,1999.

fompa, M. (1 999) An Exact Method fbr Finding

Short Motifs in Sequences withApplicationto the

Itibosome Bincting Site Problem, Tthlntl. Conf.
Intelligent Systems for Molecular Biol*gy flsh{B}.,
262-27 1 .

'--kkonen. E. f 1995) on-line Construction of
S i:fr .r uees. { gorithmica- | I :Zl9 -26A.

\\ einer. P. (1973) Linear Pattern MatchingAlgo-

rirlun. Proc. 14th IEEE Sym. on Switching and

Autonrata theorl', 1-1 1.

Zheng, J., Close, T., Jiang, T., and Lonardi, S.

(2003) Eftrcient Selection ofljnique and popular

oligos for large EST Databases, cpM 2003,
LNC S 267 6, 394-40 1 .

Zheng, J., Close, T., Jiang, T., and Lonardi, S.

(2001) Efficient Selection ofUnique and popular

oligos for large EST Databases, Bioinformatics,

2A(1 3), 2101-211,2.

10.

ii

11.

13.

14.

Ezekiel F. Adebiyi

Appendix

A Subquadratic Time Generation of lllq Dictionary from String(s) using Suffix Tree 31

I"

f;
dr

s.

4,

lr
i),

$"

tt
I,

8.

g.

l$.

LL.

12.

J"$.

14"

15"

I$,

17"

18.

FINnIfiT;${X, {)

,S:l' '.* Build #"$',F'{"{ }

fiur r$trt, *hilelr*r: # {rn d*y,,**. fr,*t Jirnr*t}

if{r ix ;* le;*f}

{*rl fr # nf chara*t*rs ehet r$Erstitnt# t he lsaf bl"&ur:}r.

iffterl H s)

s**rJ*cJ* * 3

ftrif.srourui : Jr.tige$u.n* + I

fiu*l*fgtUadt*c<rnnt * I
.^.

^sh1***ou11l. {-* ;H

etrse if{m ls a nclcl*}

Ie'ncount a, d*ptft, &vc,tJsn : g

iftg ** Ien*ou,r# ll E < len*rxrnf)

*eed*d* -*a I

Iri Lscotr p{.'x h i* scu unt * I

l,IS'f0C*P$$ {t*, S?, h.f f *cr*r.rnf }

ffTttf*n*rnt +* 3j

else DEPTIIFII€T{", Jeraeuu,nt, {, Sf}

Fi$. S, 'fhe subelu:ulratie r*lg*ritlun for sxtreeting _q*se*ds

\-

