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Abstract 

Using differential transformation method, the analysis of the free vibration of a prismatic Euler-

Bernoulli beam under various supporting conditions is carried out in this study. Some numerical 

examples are presented to demonstrate the efficiency and reliability of the method. The results 

obtained are in good agreement with the results in available literature obtained using different 

approaches. These results show that the technique introduced here is accurate and easy to 

apply. 

Key words: Differential transform, Vibration, Natural frequency, Mode shape 

 

 

1. Introduction 

Vibration problems for uniform Euler-Bernoulli beams have attracted considerable 

attention of a number of researchers. It is noted that several solution procedures have been 

employed. Chun (1972) studied the free vibration of a Bernoulli-Euler beam hinged at one end 

by a rotational spring with constant spring stiffness and with the other end free. Wang and Lin 

(1996) utilized the Fourier series to investigate the dynamic analysis of beams having arbitrary 

boundary conditions. Yeih et al. (1999) employed a dual multiple reciprocity method (MRM) to 

determine the natural frequencies and natural modes of an Euler-Bernoulli beam. Kim and Kim 

(2001) used Fourier series to obtain frequency expressions for uniform beams with generally 

restrained boundary conditions. Mauarizi et al. (1976) studied the problem of free vibration of 

a uniform beam hinged at one end by a rotational spring and subjected to the restraining action 

of a translational spring at the other end using exact expression of trigonometric and hyperbolic 

functions. The transverse vibration of uniform Euler-Bernoulli beams under linearly varying 

axial force was presented by Naguleswaran (2004). He solved for the mode shape using the 

method of Frobenius. In a study conducted by Lai et al. (2008), a technique based on the 

Adomian decomposition method was applied to solve free vibration problems of Euler-

Bernoulli beams with various elastically supported conditions. Recently, Liu et al. (2009) used 

He’s variational iteration method to calculate the natural frequencies and mode shapes of an 

Euler-Bernoulii beam under various supporting conditions.  

 In the present work, a technique called differential transformation is applied in 

analyzing vibration problem of Euler-Bernoulli beam under various supporting conditions. The 

concept of differential transformation was first introduced by Zhou (1986) to solve linear and 

nonlinear initial value problems in electric circuit analysis. This approach makes it possible to 

obtain highly accurate results or exact solutions for differential equations. 

  The organization of this paper is as follows: In the next section, the principle of 

differential transformation is reviewed. In section 3, the method is applied to analyze the free 
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vibration problem. In the penultimate section, numerical results are given and compared with 

those obtained by Adomian decomposition and He’s variational iteration methods. Conclusion 

is given in the last section. 

 

2. The principle of Differential Transform Method 

The differential transformation technique, which was first proposed by Zhou (1986), is one 

of the numerical methods for solving ordinary and partial differential equations with fast 

convergence rate and small calculation error. It uses a polynomial form that is sufficiently 

differentiable as the approximation to the exact solution. The technique is based on Taylor 

series expansion. The main difference between Taylor series method and the differential 

transformation method is that the former requires computations of higher order derivatives 

that are quite often formidable, while the latter involves iterative procedures instead. Applying 

the differential transformation technique in solving free vibration problems generally involves 

two transformations, namely, differential transformation and inverse differential 

transformation.  

The basic definitions and operations of differential transformation are introduced as 

follows (available in the literature):  

The differential transformation of the k
th

 derivative of function Y(x) is defined as follows: 
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and the differential inverse transformation of Y(k) is defined as follows: 

 ( ) ( )( )∑
∞

=

−=
0

0

k

k
xxkYxY                                                                                                       (2) 

Combining Eqs. (1) and (2), we have 

 ( ) ( ) ( )
∑
∞

= =








−
=

0

0

0

!k xx

k

kk

dx

xYd

k

xx
xY                                                                                       (3) 

which is the Taylor series of Y(x) at x = x0. Eq. 3 implies that the concept of differential 

transformation is derived from the Taylor series expansion. In practical applications, the 

function Y(x) is expressed by a finite series and the inverse differential transform is written as 
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Eq. (4) implies that ( )( )∑
∞

+=

−
1

0

nk

k
xxkY is negligibly small. In this study, the convergence of the 

natural frequencies determines the value of n.  

 Theorems that are frequently used in the transformation of the equations of motion and 

the boundary conditions are listed in Tables I and II, respectively.  
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Table I Basic theorems of DTM for equations of motion  

Original function     Transformed function 
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Table II DTM theorems for boundary conditions 
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3. Application of Differential Transform Method (DTM) to solve free vibration problem of 

uniform beam 

The equation of motion for lateral vibrations of a uniform Euler-Bernoulli beam of finite length 

L ignoring shear deformation and rotary inertia effects can be written as (  ) 
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where ( )txy ,  is the lateral deflection at distance x  along the length of the beam and time ,t

EI  is the flexural rigidity of the beam, ρ  is the mass per unit volume of the beam, and A  is the 

cross-sectional area of the beam. 

The beam is subjected to the homogeneous boundary conditions described as follows: 

at x = 0, 
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and 

at x = L, 
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32103210 ,,,,,,, rrrrrrrr ddddcccc  are constants coming from different boundary conditions for 

Euler-Bernoulli beam, where 1=r  and .2  
 To obtain the natural frequencies and mode shapes, one can assume: 

( ) ( ) tiexYtxy ω=,                                          (8) 

where ( )xY  is the modal deflection and ω  denotes the natural frequency of the flexural beam 

Substituting Eq. (8) into Eq. (5), we have 
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Eq. (9) simplifies in the dimensionless form as follows:
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upon introducing the following dimensionless quantities: 
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the dimensionless natural frequency of the beam. 

The boundary conditions of Eqs. (6) and (7) also are given by the following dimensionless forms: 

 at X = 0, 

( ) ( ) ( ) ( ) 2,1,0012

2

23

3

3 ==+++ rXY
dX

XdY

dX

XYd

dX

XYd
rrrr αααα

                                  
(12) 

at X = 1, 

( ) ( ) ( ) ( ) 2,1,0012

2

23

3

3 ==+++ rXY
dX

XdY

dX

XYd

dX

XYd
rrrr ββββ

                                
(13)

 
or 

( )( )∑
=

=
3

0

,00
j

j

rjYα
  

2,1=r
                                               (14) 

( )( )∑
=

=
3

0

,01
j

j

rjYβ
  

2,1=r
                        

(15) 



5 

 

where the 16 constants, αrj, βrj (r=1,2; j=0,1,2,3), are dimensionless and Y
(j)

(X) denotes the jth-

order derivative with respect to X, and sets Y(X)=Y
(0)

(X). 

From the definition and properties of differential transformation given in Table 1, the 

differential transform of the equation of motion (10) is found as: 

 ( )( )( )( ) ( ) ( ) 044321 =−+++++ kYkYkkkk λ                                                                   (16) 

Rearranging Eq. (16), one has the following recurrence relation 
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Combining Eq. (17) and the appropriate boundary conditions, solutions to the free vibration 

problem can be obtained. Now, the solution procedure of the differential transformation 

method will be shown for clamped-free and hinged-free uniform beams with each of them 

having elastic spring restraints at the right end x = L. 

  

Case1:  

Let us first consider a clamped-free uniform beam whose right end x = L is connected by 

translational spring and rotational spring as shown in Fig. 2. Since the deflection and slope are 

zero at X = 0, then the boundary conditions at x = 0 and x = L are given as 
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where RRk  and TRk  are the rotational and translational spring constants respectively. 

The dimensionless boundary conditions are: 
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where  
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Performing differential transform to the boundary conditions at X = 0, one has 
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( ) ( )The values of  2 and 3 are set as unknowns such asY Y
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Setting the determinant of the coefficient matrix of Eq. (29) to zero gives the characteristic 

(eigenvalue) equation of the structure, that is, 
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Solving Eq. 30 ,  we get as the ith estimated eigenvalue which corresponds to n where n is
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 The mode shapes are found via inverse differential transform at the corresponding 

natural frequencies, that is 
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Case 2: 

Similarly, let us consider the hinged-free beam, whose right end x = L is connected by 

translational spring and rotational spring as shown in Fig. 3. The deflection and bending 

moment are zero at X = 0, that is, 
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as their dimensionless form. 

The boundary conditions at x = L are as specified by Eqs. (19) and (20). 

Taking the differential transform of these boundary conditions, we have 

At X = 0, 

 ( ) ( ) 02,00 == YY                                                                                                                       (36) 

At X = 1, we have equations same as Eqs. (26) and (27). 

By following the same procedure as Case 1, one obtains the frequency equation as 
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which is solved to yield the ith estimated eigenvalue corresponding to n. 

Furthermore, the ith mode shape corresponding to the ith natural frequency is obtained 

by Eq. (32).  

Here, 
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4. Numerical Examples 

 In order to explore the precision and efficiency of DTM in this study, the two examples 

of the cases in the previous section are discussed as follows.  By following the procedures 

described in the two cases, the ith estimated eigennvalues, natural frequencies and 

consequently the mode shapes are calculated using the computer package Matlab and analyzed 

in this section.  The results obtained here are compared to those yielded from the Adomian 

decomposition and He’s variational iteration methods and very good agreement is found. 

 

Example 1: Clamped-free beam with elastic spring restraints at  X = 1 (x = L) 

A clamped-free beam, whose right end is connected to a translational and a rotational spring, is 

considered (as discussed in the first case). The solution of Eq. (29) (taking real part for 

eigenvalue λ  and assuming 1=RRβ , 1=TRβ and 0001.0=ε ) is displayed in Table 1. The result 

shows that the first estimated eigenvalue 1λ  is obtained in the fourth iteration and the second 

eigenvalue 2λ is obtained in the seventh iteration. Other eigenvalues are obtained in a similar 

fashion. These results show that convergence of eigenvalues with DTM is the fastest when 

compared to the results of ADM and He’s variational iteration method (see Ref. ()). Specifically, 

the first eigenvalue corresponding to n = 4 is 1λ =21.3305. Thus, the first dimensionless natural 

frequency denoted by 1ω  is obtained using 

 6185.411 == λω  

and the first natural frequency can be written as 

 .6185.4
4

1
EI

ALρ
ω =  

 

In Figs. 1 and 2, as the term number, n, increases, the natural frequencies 61 ϖϖ −  converge to 

4.6185, 23.7831, 63.4827, 122.7415, 201.7308 and 300.4482 very quickly. 

Substituting 1λ =21.3305 into Eq. (33) for n=4, we obtain the first mode shape function as 

 

( )
)10021082.110453021.410839079.602539.0(

)10466855.610226511.210507662.2059251.0(

191115811573

181114710462
1

XXXXXz
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Following the same procedure as shown above, the other natural frequencies and mode shape 

functions can be obtained. 
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Table 1: Results of the ith estimated eigenvalues [ ]n
iλ  for n = 18 approximate terms for Example 

1 

 

n 
    

[ ]n
1λ  [ ]n

2λ  
 

[ ]n
3λ   

[ ]n
4λ  

 
[ ]n
5λ  

  
[ ]n
6λ  

1 22.3736 231.5189     

2 21.3335 472.0628     

3 21.3305 562.1272     

4 21.3305 565.6123     

5 21.3305 565.6379 4049.8335 9339.5961   

6 21.3305 565.6380 4030.2659 13572.9074   

7 21.3305 565.6380 4030.0576 14998.4559   

8 21.3305 565.6380 4030.0563 15064.5559   

9 21.3305 565.6380 4030.0563 15065.4757 40917.1709 62059.3504 

           10 21.3305 565.6380 4030.0563 15065.4834 40698.4888 81698.4012 

           11 21.3305 565.6380 4030.0563 15065.4834 40695.3485 89737.8999 

           12 21.3305 565.6380 4030.0563 15065.4834 40695.3163 90259.8484 

           13 21.3305 565.6380 4030.0563 15065.4834 40695.3161 90269.0215 

           14 21.3305 565.6380 4030.0563 15065.4834 40695.3161 90269.1301 

           15 21.3305 565.6380 4030.0563 15065.4834 40695.3161 90269.1311 

           16 21.3305 565.6380 4030.0563 15065.4834 40695.3161 90269.1311 

           17 21.3305 565.6380 4030.0563 15065.4834 40695.3161 90269.1311 

18 21.3305 565.6380 4030.0563 15065.4834 40695.3161 90269.1311 
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Fig. 1: Convergence of the first three dimensionless natural frequencies 

 
Fig. 2: Convergence of the fourth, fifth and sixth dimensionless natural frequencies 

 

 

Example 2: Pinned-free beam with elastic spring restraints at  X = 1 (x = L) 

Here, a pinned-free beam as described in the second case, whose right end is connected to a 

translational spring and a rotational spring, is considered. The solution of Eq. (29) (taking real 

part for eigenvalue λ  and assuming 0=RRβ , 25=TRβ and 0001.0=ε ) is provided in Table 2. 

The table indicates that the first estimated eigenvalue 1λ  is obtained in the fifth iteration and 

the second eigenvalue 2λ is obtained in the sixth iteration. Other eigenvalues are obtained in 

the same way. In Figs. 3 and 4, as the term number, n, increases, the natural frequencies 

61 ϖϖ −  converge to 6.8858, 18.8462, 51.0100, 104.7358, 178.5526 and 272.2156 very quickly. 
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Consequently, the natural frequencies and mode shapes for the pinned-free beam can be 

obtained based on these eignevalues. 

For instance, the first mode shape function is given by 

 

( )
)10492733.210890643.410379131.3056445.0(

)10420858.110711725.110195074.6039511.0(

191015711473

178135935
1
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where 

 

( ) ( ).3;1 YbYa ==

 
 Following the same procedure as shown above, the other natural frequencies and mode 

shape functions can be obtained. 

  

 

 

 

 

Table 2: Results of the i
th

 estimated eigenvalues [ ]n
iλ  for n = 18 approximate terms for Example2 

n [ ]n
1λ  [ ]n

2λ  
[ ]n
3λ  [ ]n

4λ  
[ ]n
5λ  [ ]n

6λ  

1 73.5340 92.2059     

2 47.5095 298.9577     

3 47.4140 353.6648     

4 47.4138 355.1710 3130.0422 3437.2527   

5 47.4138 355.1791 2605.7908 7663.6966   

6 47.4138 355.1791 2602.0470 10423.4768   

7 47.4138 355.1791 2602.0176 10955.5542   

8 47.4138 355.1791 2602.0174 10969.4425   

9 47.4138 355.1791 2602.0174 10969.5922 31928.3732 55908.0996 

10 47.4138 355.1791 2602.0174 10969.5931 31881.6234 70289.5518 

11 47.4138 355.1791 2602.0174 10969.5931 31881.0366 73969.0166 

12 47.4138 355.1791 2602.0174 10969.5931 31881.0316 74099.4367 

13 47.4138 355.1791 2602.0174 10969.5931 31881.0315 74101.3372 

14 47.4138 355.1791 2602.0174 10969.5931 31881.0315 74101.3567 

15 47.4138 355.1791 2602.0174 10969.5931 31881.0315 74101.3569 

16 47.4138 355.1791 2602.0174 10969.5931 31881.0315 74101.3569 

17 47.4138 355.1791 2602.0174 10969.5931 31881.0315 74101.3569 
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Fig. 3: Convergence of the first three dimensionless natural frequencies 

 
Fig. 4: Convergence of the fourth, fifth and sixth dimensionless natural frequencies. 

 

 

 

5. Conclusion 

The free vibration problem of uniform beam with various elastically restrained end 

conditions is studied in this paper. Differential transformation technique is used to solve the 

pertinent initial-boundary value problem. Natural frequencies are obtained and compared 

with those predicted by Adomian decomposition and He’s variational iteration methods. 

Excellent agreement is found. It was observed that the precision of natural frequencies 

becomes higher with increasing value of n.  

As a matter of fact, this work has demonstrated that the differential transformation 

method has high precision and computational efficiency is vibration problem of beams. 
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