The genome sequences of some genes have been implicated to carry various mutations that lead to the initiation and advancement of lung cancer. In addition, it has been scientifically established that anytime we breathe out, chemicals called Volatile Organic Compounds (VOCs) are released from the breath. Hundreds of such VOCs have been uniquely identified from samples of breathe collected from lung cancer patients, which make them viable as chemical biomarkers for lung cancer. Based on the foregoing scientific breakthroughs, we developed breathogenomics, a computational architecture for screening, early diagnosis and genotyping of lung cancer victims anchored on the analysis of exhaled breath and mutational profiles of genomic biomarkers. The architecture contains two important sub-modules. At the first sub-module, the exhaled breadths of smokers or persons that are at risk of lung cancer are collected and appropriate computational algorithms are employed to determine the presence of any of the VOC biomarkers. Next, a patient with any VOC biomarker in the exhaled breath proceeds to the second sub-module, which contains appropriate computational models for the detection of mutated genes. Once mutations are detected in any of the biomarker genes found in a given patient, such patient is recommended for targeted therapy to promptly curtail the progression of the mutations to advanced stages. The breathogenomics architecture serves as a generic template for the development of clinical equipment for breath and genomic based screening, early diagnosis and genotyping of lung cancer. In this paper, we report the preliminary result obtained from the prototype that we are currently developing based on the architecture. Constructing a lung cancer early diagnosis/screening system based on the prototype when fully developed will hopefully minimize the current spate of deaths as a result of late diagnosis of the disease.