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Abstract: In this paper, we propose a pricing model for stock option valuation. The model

is derived from the classical Black-Scholes option pricing equation via the application of the

constant elasticity of variance (CEV) model with dividend yield. This modifies the Black-

Scholes equation by incorporating a non-constant volatility power function of the underlying

stock price, and a dividend yield parameter.
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1. Introduction

In financial mathematics, option pricing theory is a core aspect requiring fre-
quent attention of financial analysts and financial engineers, actuaries and so
on [1-3]. In recent years, ever since the 1987 market crash, several market
observations have revealed the association between stock price and volatility;
leverage effect is the phenomenon behind this [4]. The effect as explained in [4]
states that “if a firm’s stock price falls, it will increase the debt-equity ratio of
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the firm and therefore increases the variance of the stock’s return” It is worth
mentioning that the Black-Scholes option pricing formula [5] does not reconcile
this leverage effect parameter.

Black in [6], considered this financial leverage effect. This was later ex-
tended and supported by other researchers in terms of empirical evidences [7].
Consequently, a theoretical framework to capture this relationship (inverse) be-
tween the stock price and its variance is built by Constant Elasticity of Variance
(CEV) class of stock price distributions.

In option pricing theory, Black and Scholes assumed that the underlying
stock price process, St, follows a lognormal distribution and solves the Stochas-
tic Differential Equation (SDE):

dSt = µStdt+ σStdWt, (1)

where µ represents rate of return (drift coefficient), σ the stock price volatility
rate, and Wt is a standard Brownian motion.

The basic assumptions of the Black-Scholes model include arbitrage-free op-
portunities, no dividend paying equity, constant risk-free-rate, constant volatil-
ity, and so on [8,9]. In this work, emphasis will be on how to address the
assumptions of no dividend yield and that of constant volatility (stock price
standard deviation). The assumption of the volatility being constant was to
keep the model linear and for analytical solvability. However, in practical set-
tings, constant volatility is not realistic. We shall therefore resort to the fol-
lowing form of SDE in the next subsection to modify the Black-Scholes model
for stock option valuation.

2. A Note on CEV Option Pricing Model (CEVOPM)

The assumption of the constant volatility parameter in the Black-Scholes model
has drawn the attention of many researchers even in terms of the analytical or
numerical solutions obtained via the different modifications of the Black-Scholes
model [10-12] and the references therein. Delbean and Shirakawa proved that
arbitrage opportunities are allowed in the CEV model when the stock price is
on strictly positive conditions [13].

Cox and Ross [14] considered the CEV diffusion process governed by the
SDE when q = 0:

dSt = St (µ− q) dt+ σS
ξ

2

t d (Wt) , (2)

whose solution at time t is St = S, ξ denotes an elasticity rate, q is a dividend
yield parameter, while µ,σ, andWt remain as defined in the earlier section. The
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elasticity rate parameter ξ, which is the central feature of the model, controls
the relationship between the volatility and price of the underlying asset.

The CEV diffusion model seems to be a natural extension of the Geometric
Brownian Motion (GBM). In [15], Beckners considered the CEV and its impli-
cations for option pricing on the basis of empirical studies and concluded that
the CEV class could be a better descriptor of the actual stock price, in terms of
behavior than the traditionally used lognormal model. Xiao et al. [16], applied
the CEV model for the study of a defined-contribution pension plan where ben-
efits are paid by annuity; with a focus on the model describing the dynamic
movements of the risky market price.

In what follows, the Black-Scholes model will be modified using the SDE
associated with the CEV model in (2).

2.1. The Modified Black-Scholes
Model Derivation (CEV-B-S Model)

Let St be the stock price at time t , satisfying the SDE in (4), such that the
value of the contingent claim is V = V (S, t) with V ∈ C2,1 (R× [0, T ]), so by
applying Ito lemma, we have:

dV =
∂V

∂t
dt+

∂V

∂S
dS +

1

2

∂2V

∂S2
〈dS〉

=
∂V

∂t
dt+

∂V

∂S

(

St (µ− q) dt+ σS
ξ

2

t d (Wt)

)

+
1

2

∂2V

∂S2

〈

St (µ− q) dt+ σS
ξ

2

t d (Wt)

〉

. (3)

But
〈

St (µ− q) dt+ σS
ξ

2

t d (Wt)

〉

= σ2S
ξ
t dt, (4)

where

Θ • dWt =

{

dt, forΘ = dWt

0, otherwise
(5)

Hence, (3) becomes:

dV =
∂V

∂t
dt+

∂V

∂S

(

St (µ− q) dt+ σS
ξ
2

t d (Wt)

)

+
1

2

∂2V

∂S2

(

σ2S
ξ
t dt

)

. (6)

Therefore

dV =

(

∂V

∂t
+ (µ− q)S

∂V

∂S
+

1

2
σ2Sξ ∂

2V

∂S2

)

dt+ σS
ξ
2

∂V

∂S
dW. (7)
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Suppose Ξ(t)is a delta-hedge-portfolio constructed by longing a contingent
claim, and shorting a delta unit of the concerned underlying asset such that:

Ξ(t) =−∆S + V (S, t),

dΞ(t) =dV (s, t)−∆dS,

∆ =
∂V

∂S
, and

dΞ(t) =rΞ(t)dt.

(8)

In a bid to making the portfolio value riskless, (say bank account), where r is
a riskless rate, we therefore have:

dΞ(t) = dV (S, t)−∆dS,

dΞ(t) =

(

∂V

∂t
+ (µ− q)S

∂V

∂S
+

1

2
σ2Sξ ∂

2V

∂S2

)

dt+ σS
ξ

2

∂V

∂S
dW

−∆
(

(µ− q)Sdt+ σS
ξ

2dW
)

, (9)

⇒
dΞ

dt
=

(

∂V

∂t
+ (µ− q)S

∂V

∂S
+

1

2
σ2Sξ ∂

2V

∂S2

)

+ σS
ξ

2

∂V

∂S

dW

dt
−

∂V

∂S

(

(µ− q)Sdt+ σS
ξ

2d
dW

dt

)

. (10)

Thus:
dΞ

dt
=

∂V

∂t
+

1

2
σ2Sξ ∂

2V

∂S2
≡ rΞ (11)

So, combining (7), (8) and (11), we obtain

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2Sξ ∂

2V

∂S2
− rV = 0. (12)

Equation (12) is referred to as the modified Black-Scholes model via CEV SDE
with dividend yield.

3. Discussion of Result

When ξ = 2, (12) becomes the classical Black-Scholes model. It is also observed
that (12) coincides with the model obtained when the stock price St follows the
SDE in (2) without a dividend yield [17], but the difference(s) between the
stock prices SND andSD for the SDEs in (2) will be highlighted in the next
subsection.



ON A DIVIDEND-PAYING STOCK OPTIONS PRICING... 1033

3.1. Comparison of the SDE Models

In what follows, we shall compare the fundamental features of the associated
models presented above in this subsection.

Let SND and SDbe the solutions of the SDE in (2), indicating no divi-
dend and dividend yields respectively. Suppose further that V BSM

0 denotes
the volatility of the Black-Scholes model, V CEVM

0 is the volatility of the CEV
model without dividend yield, V CEVM

0D is the volatility of the CEV model with
dividend yield, V ar

BSM the variance of the Black-Scholes model, V ar
CEVM the vari-

ance of the CEV model without dividend yield, V arD
CEVM the variance of the CEV

model with dividend yield. Then, the following are thus deduced easily:

For volatilities: V BSM
0 = σ, V CEVM

0 = σS
ξ

2
−1, V CEVM

0D = σ∗S
ξ
2
−1

D

For variances: V ar
BSM = σ2, V ar

CEVM = σ2Sξ−2, V arD
CEVM = σ2

∗S
ξ−2
D

Formean parameters: m̄ND
CEVM = µ, m̄D

CEVM = µ− q











(13)

Note : In both cases of the governing SDEs: with or without dividend pa-
rameter, it is clear that the variances V CEVM

0D = g (σ, SD)and V CEVM
0D =

h (σ, SND)are functions of the underlying asset prices SND and SD respectively.

3.2. Interpretation of Results

We present a graph (see Figure 1) below to show the estimates of the distri-
bution of (S (T )− 1, 0)+ using different values of the elasticity parameter for
results interpretation, and to show the economic implications of the elasticity
rate. For the purpose of simulation, we consider the following values for the
concerned parameters: T = 2.0, σ = 0.3, µ = 0.05 and forξ = 0.1ξ = 2, and
ξ = 5 See [17] and the related references therein for details.

3.3. Elasticity and Elasticity Parameter

The following relationship is used in the computation of elasticity [17]:

e =

(

dV CEVM
r

dS

)

÷

(

V CEVM
r

dS

)

, (14)

while

dV CEVM
r

dS
= (ξ − 2) σ2Sξ−3 and V CEVM

r = σ2Sξ−2, (15)
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Figure 1: Estimates of the distribution

so

e = ξ − 2. (16)

Note. It is obvious from (13) that for any positive constant k with little
algebra, we have:

Se
t = kV CEVM

r . (17)

Remarks.

1. Elasticity is said to be zero if ξ = 2; therefore, the stock price is lognor-
mally distributed as indicated in the classical Black-Scholes model.

2. Elasticity is −1 as proposed by Cox and Ross (see [14]), if ξ = 1.

3. When ξ < 2, the so-called leverage effect observed mainly in equity mar-
ket, shows that the stock volatility increases as the corresponding price
falls.



ON A DIVIDEND-PAYING STOCK OPTIONS PRICING... 1035

4. On the other hand, when ξ > 2, the so-called leverage effect observed
mainly in commodity market, indicates that the volatility of the com-
modity increases as the corresponding price increases

The relationship between the stock price and the volatility of its return has
been shown empirically to be negative see [18, pg6]. This is guaranteed when
ξ < 2 is considered.

4. Concluding Remarks

In this paper, we proposed a pricing model for stock option valuation. The
model is derived as a modification of the classical Black-Scholes pricing model
using the constant elasticity of variance model with the incorporation of divi-
dend yield parameter. This serves as an alternative to the traditional lognormal
model for stock prices. In CEV model, the price variations of the underlying
asset are negatively correlated with variations in the level of volatility; this
helps in reducing the known volatility smile effects of the lognormal model.
As a modification of the Black-Scholes pricing model, a non-constant volatility
power function is introduced, and comparison between the CEV models with
or without dividend yield is made.
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