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1. Introduction

Let X be a Banach space, K a nonempty convex subset of X and T :
K — K a self map of K.

Definition 1. Let xy € K. The Picard iterative scheme {x,}22 is
defined by

(1) Tpnt1=Txy,, n=0,1,2,....

Definition 2. Let zg € K, the Mann iterative Scheme [10] {un}22 is
defined by

(2) Unt1 = (1 — ap)up + anTuy,
where {on, }5° are real sequences in [0,1) such that Y 7 o = 00.

Definition 3. Let yo € K, the Ishikawa iterative scheme [5] {y,}5, is
defined by

(3) Yn+1 = (1 - an)yn + o, Tz,
Zn = (1 - Bn)yn + BT yn,

where {an }22 0, {Bn 152 are real sequences in [0,1) such that ">~ 4 o = 00,
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Definition 4. Let yo € K, the Noor iterative (three-step) scheme [11]
{yn}5°, is defined by

(4) Yn+1 = (1 - an)yn + Tz,
Zn = (1 - Bn)yn + ﬁnTUn
Un (1 - ’Yn)yn + T Yn,

where {an 1020, {Bn}oo, {1}l are real sequences in [0,1) such that
Yol gy = 0.

Definition 5. Let yo € K. The multistep iterative scheme [21] {y,}5°,
1s defined by

(5) Yn+1 = (1 - an)yn + OénTZ}z
= (1= B )yn + BiT2 i =1,2,... k-2
Zrkz:_l = (1 - ﬁﬁ_l)yn + sz:_lTyna k> 2)

1
ZTZ

where {an}5, {81, i = 1,2,....k — 1 are real sequences in [0,1) such
that Y 2 a = 00.

Remark 1. The multistep iterative scheme (5) generalizes the iterative
schemes (4), (3) and (2) in that,
(1) If k=3 in (5), we have the Noor iterative scheme (4).
(17) If k =2 in (5), we have the Ishikawa iterative scheme (3).
(731) If k=1 in (5), we have the Mann iterative scheme (2).

Several generalizations of the Banach fixed point theorem have been
proved to date, (for example see [1], [3], [9] and [23]). One of the most
commonly studied generalization hitherto is the one proved by Zamfirescu
[23] in 1972, which is stated thus:

Theorem Z. Let (X,d) be a complete metric space and T : X — X a
Zamfirescu operator satisfying

1
(6) 1Tz =Tyl < hmax{lle —yl, 5(lz = Tz| + lly = Tyl),
1
5l =Tyl + lly — T=lD},

where 0 < h < 1. Then T has a unique fixed point p and the Picard iteration
{zn}52 defined by

(7) Tp+1 = T.%‘n,

n=20,1,2,..., converges to p for any xg € X.
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Several papers have been written recently on the Zamfirescu operators
(6). For example (see [1], [2], [13], [18], [21-24]) . The most commonly used
methods of approximating the fixed points of the Zamfirescu operators are
Picard [21], Mann [10], Ishikawa [5], Noor [11] and multistep [22] iterative
schemes.

Many researchers have concentrated of late on the equivalence of the
various iterative schemes, that is, whether the convergence of any of the
iterative method to the unique fixed point of the Zamfirescu operator is
equivalent to the convergence of the other iterative schemes. For a look at
some of the recent results in this area (see [21], [22] and [24]).

Jungck [6] introduced a different perspective into the generalization of
Banach contraction principle, Singh et al. [20] significantly improved on the
result of Jungck [6] when he proved the following result which is now called
Jungck contraction principle.

Theorem Js ([20]). Let Y be an arbitrary nonempty set and (X,d) a
metric space. Let S,T :Y — X satisfy d(Tz,Ty) < kd(Sz,Sy), 0 <k <1,
forallz,ye Y. T(Y)CS(Y) and S(Y) or T(Y) is a complete subspace of
X, then S and T have a coincidence. Indeed, for any xo € Y, there exists a
sequence {xyp} in Y such that

(a) Stpy1=Txn, n=0,1,2,...

(b) {Sxn} converges to Sp for some p inY, and Sp = Tp, that is S and
T have a coincidence at p.

Further, if Y = X and S, T commute (just) at p, then S and T have a
unique common fixed point.

Remark 2. If Y = X and S = id (identity map), then the map
d(Tz,Ty) < kd(Sz,Sy) (Jungck contraction map) is the same as the con-
traction map d(Tz, Ty) < kd(z,y).

2. Preliminaries

The following definitions are useful in our work. Let X be a Banach
space and Y an arbitrary set. Let S,T : Y — X be two non self mappings
such that T(Y) C S(Y).

Definition 6 ([6]). Forxo € Y, the Jungck iterative scheme is a sequence
{Sz,}3° defined by
(8) Stpy1 =Txn, n=0,1,2,....

Singh et al. [20] recently introduced the Jungck-Mann iterative process
and discussed its stability for a pair of contractive maps. The iterative
process is defined thus:
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Definition 7 ([15]). For ug € Y the Jungck-Mann iterative scheme is
the sequence {Suy}3° defined by

(9) Stnt1 = (1 — ap)Sup, + anTuy, n=0,1,2,... .
where {an }52 is a sequence in [0,1) such that Y >, = co.

Olatinwo and Imoru [15] and Olatinwo [17] built on that work to intro-
duce the Jungck-Ishikawa and Jungck-Noor iterative schemes and use their
convergences to approximate the coincidence points of some pairs of gener-
alized contractive-like operators with the assumption that one of each of the
pairs of maps is injective. Their iterative schemes are defined as follows:

Definition 8 ([15]). For gy € Y, the Jungck-Ishikawa iterative scheme
is the sequence {Sgn}o defined by

(10) Sgnt1 = (1 — an)Sgn + anTzy
Sz, = (1 - Bn)Sgn + BnTgn
where {an, }22 o and {Br}5% are real sequences in [0,1) such that Yo" o
= 00.
Definition 9 ([17]). Let to € Y, the Jungck-Noor iterative scheme is the
sequence {St, }°°, defined by
(11) Stp+1 = (1 — o) Sty + apToy,
Svp, = (1 = Bn)Sty + BnTwy,
Swy, = (1 —v,) Sty + Tty

where {an 152, {Bn}oly and {n}o>, are real sequences in [0,1) such that
Yoy O = 0.

The authors [14] introduced the Jungck-multistep iterative scheme and
use the convergence to approximate the common fixed points of those pairs
of generalized contractive-like operators without assuming the injectivity of

any of the operators but rather they proved their results for a pair of weakly
compatible maps S, T

Definition 10 ([14]). Let yo € Y, the Jungck-multistep iterative scheme
is the sequence {Syn}o2, defined by

(12) Stynt+1 = (1 — an)Syn + oznTz}L
Szl = (1— B1)Syn + BTz, i=1,2,..k—2

S = (1 - BN Sy, + B Ty, k> 2

where {a, }° o, {B.12°,, i =1,2,...,k — 1 are real sequences in [0,1) such
that Y > a, = 00.
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Remark 3. (A) The Jungck-multistep iterative scheme (12) generalizes
the iterative schemes (11), (10) and (9), that is
(7) If k =3 in (12), we have the Jungck-Noor iterative scheme (11).
(1) If k = 21in (12), we have the Jungck-Ishikawa iterative scheme (10).
(iii) If k = 2 and B} = 0 in (12), we have the Jungck-Mann iterative
scheme (9).

(B) If X =Y and S = id (identity map), the Jungck-multistep (12),
Jungck-Noor (11), Jungck-Ishikawa (10), Jungck-Mann (9) and Jungck (8)
iterative schemes reduces to multistep (5), Noor (4), Ishikawa (3), Mann (2)
and Picard (1) iterative schemes respectively.

Definition 11 ([15]). The maps S,T : Y — X with T(Y) C S(Y), is
called the generalized Zamfirescu operators if

1
(13) Tz ~Ty| < hmax{[|Sz — Sy||, 5 (Sz — Tz| + Sy — Tyl),
1
oISz = Tyll + 1Sy — T|))},

where 0 < h < 1. If S = id (identity map) and Y = X, the generalized
Zamfirescu operator (13) reduces to the Zamfirescu operator. We observe
that condition (13) implies

(14) |72 — Ty|| < ]ISz — Syl| + 26 — Ta,

where 0 < § < 1 and § = max{h, 5% }. For details of proof see [15].

Definition 12 ([14]). A point p € X is called a coincident point of a
pair of self maps S, T if there exist a point q (called a point of coincidence)
in X such that ¢ = Sp = Tp. Self maps S and T are said to be weakly
compatible if they commute at their coincidence points, that is if Sp = Tp
for some p € X, then STp =TSp.

Olatinwo [16] introduced the following general contractive-like operator
and define thus:

Definition 13 ([16]). For S,T :— X with T(Y) C S(Y), whenever
S(Y) is a complete subspace of X. There exist a real number § € [0,1) and
a monotone increasing function ¢ : R — RY such that ¢(0) = 0 and for
every x,y €Y, we have

(15) |7 — Tyl| < 3)|Sa — Syl + (]| Sz - Tal)

Remark 4. If ¢(x) = 26z in (15), we have (14). Hence (15) general-
izes (14).
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In this paper, we show that the convergence of Jungck [6], Jungck-Mann
[15] and Jungck-multistep [14] iterative schemes are equivalent for the class
of generalized Zamfirescu operators (14) in a Banach space. As corollaries,
the convergence of the Jungck-Ishikawa [15] and Jungck-Noor [17] iterative
schemes are also shown to be equivalent. Our results are generalizations and
extensions of the work of Soltuz [21-22], Zhiqun [24] and other numerous
results in the literature.

Lemma 1 ([21]). Let {a,}22, and {e,}22, be nonnegative real sequences
satisfying the following inequality an+1 < (1— Ap)an + €, where A, € (0,1),
for alln > ng, > 07 g Ap = 00 and e, = o(X\y). Then limy, o0 an = 0.

3. Main results

Theorem 1. Let X be a Banach space. Suppose S, T : X — X are
two mappings satisfying the generalized contractive-like operator (15) such
that T(X) C S(X). Assume S and T are weakly compatible, then they
have a unique common fized point. Let p be the unique common point of
S and T (that is Sp = Tp = p). If xo,up € X and define {Sxz,}22,
and {Su2}2°, as sequences satisfying (8) and (9) respectively. Then the
following are equivalent:

(1) The Jungck-Mann iterative scheme (9) converges to p.

(13) The Jungck iterative scheme (8) converges to p.

Proof. (i) implies (i7): Assume Su,, — p, then using (8), (9) in (15), we

have
(16)  [|Sup+1 — Szpt1|l = ||(1 — an)Sup + anTuy — Txy ||
= ||Sup — anSup + anTuy, — Tuy,
+ Tup, — Ty |

< (1= ap)||Sun — Tup|| + [|Tup — Ty
An application of (15) with = uy, y = =, in (16) gives
(17) [Tun = Tl < 6] Supn — Szal + ¢(1Sun = Tunl))-
Substituting (17) in (16), we have
|Stunt+1 — Sxnt1ll < (1 — an)||Sun — Tupl| + 6||Sun — Sy ||
+ @(l1Sun — Tunl])
0| Sun — Sap| + (1 — an)([|Sun — pll

+ | Tun = Tpll) + o (([|Sun — pl|
+ | Tun — Tpl[))-

IN
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In view of the fact that | Tp — Tuy,|| < d||Su, — p|| by (15), then we have

(18) [[Sunt1 — Szpy1]l < 6||Sup — Szp|| + (1 — ay) (1 +60)||Su, — p|
+ (14 6)[|Sun — pl)).

Let ayn, = ||Sun, — Sz,
A=1-9§
en = (1= an)(1+0)[|Sun — pll + (1 + 6)[[Sun — pl)-

Hence by Lemma 1, we obtain lim,_,« || Su, — Sz,| = 0.
Therefore by

[Szn = pll < |Szn — Sunll + [|Sun —p = 0 as n — oo,
we get

(19) lim Sz, = p.

n—oo
(#4) implies (4):

(20)  ||Sxnt1 — Suni1]] (1 — an)||Sun — Txpl|| + an||Tun — Ty ||
(1 — ) ||Supn — Sy ||

+ (1 — ap)||Sxp — Txy|| + an||Tun — Txy|.
An application of (15) with z = z,, y = u, in (20), gives
(21) | Tzn — Tun|| < 6)Sxn — Suy|| + @(||Sxn — Txy]|)-
Substituting (21) in (20),we have

(22) [|Szn41 — Sungal| < (1= an)[[Szn — Suall + (1 — an) [ Sz — Ty ||
+ and||Szy, — Sup|| + ane(||Stn — Txy||)
= [1 — apn + and]||Szy — Suy|
+ (1 = ap)[|[ Sz — Ty |
+ anp([|Szn — Tayl|)
< 1= (1= d)an][|Szn — Sun|
+ (1 —an)(|Szn = pll + [ Tp — Tzn|)
+ an@(([Sen — pll + [[Tp — Tnl]))
< [T =1 = 8)an]|Szn — Sun||
+ (1 —an)(1+9)[[Szn —pll
+ ane((1+6)[|Szn — pl))-
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Let a, = ||Sxn — Suy||,
A=1-9§
en = (1 —an)(1+0)[[Szn — pll + ane((1 + 6)[[ Sz — pl]).-

By Lemma 1, Y 02 A\, = 00. €, = 0o(\y). Hence limy, o0 || Sz — Suy|| = 0.
Thus

ISun — p|| < ||Sxn — Sup|| + ||Szn —p|| =0 as n — oo.

Therefore lim,, o, Su, = p. This shows that the convergence of Jungck iter-
ative scheme (8) is equivalent to the convergence of Jungck-Mann iterative
scheme (9) for generalized contractive-like operator (15). [

Remark 5. If S = id (identity map), the proof of Theorem 2 is the same
as that of Theorem 1 of Zhiqun [24].

Theorem 2. Let X be a Banach space. Suppose S, T : X — X are two
mappings satisfying the generalized contractive- like operator (15) such that
T(X) C S(X). Assume S and T are weakly compatible,then they have a
unique common fixed point. Let p be the unique common fized point of S
and T i.e (Sp=Tp =p). If up,yo € X and define {Sun}22 o and {Syn}o,
as sequences satisfying (9) and (12) respectively. Then the following are
equivalent:

(1) The Jungck-Mann iterative scheme (9) converges to p.

(ii) The Jungck-multistep iterative scheme (12) converges to p.

Proof. (i) implies (i7): Assume Su, — p. Using (9), (12) and (15), we
have

(23)  [[Sunt1 = Syntall < (1= an)l|Sun — Synll + anl| Tun — Tz,
(1 — an)||Sun — Syn|| + oo || Sun — Sz}lH

+ ano(||[Sun — Tuy||).

<
<

Using (15), we have

(24)  [ISun = Szl < (1= Bp)lISun — Synll + Byl Sun — Tzl
(1= Bu)llSun = Synl| + Byl Sun — Tun|
+ 0Bl Sun — Szl + Bro(l|Sun — Tu)).
Substituting (24) in (23), we have

(25) [[Sun+1 — Synt1ll < (1 — ay)||Sun — Syn|
+ ban (1 — B)[|Sun — Synl
+ 5an5¢1LHSUn = Tup || + 520%5%”*9“71 - SZTQLH
+ 5an571LSD(||S“n — Tup||) + anp([|Sun — Tuyl)).
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= [1— (L = 8)an — danf,)||Sun — Syu|

+ 0% By || Sun — Say

+ S0, B ISty — Tuy||

+ (6an By + an) (| Sun — Tuy)).
Using (15) in (12), we have
(26)  |ISun — Sz3ll < (1= Ba)lSun — Synll + B1llSun — Tzl

< (L= B)ISun — Synll + B2l Stun — Tun||
+ 6Bl Sun — Szpll + Breo(l|Sun — Tu)).

substituting (26) in (25), we have

27) |[Suns1 = Syntall < [1 = (1 = 0)an — danf,] | Sun — Syn|
+ 0%, (1 = B2)[|Sun — Syal|
+ 82 B, B3 || Sun — Tun||
+ 530%5%53“*9“71 - Szg” + 5an571LHSUn — Tuy|
+ 020, BLB2 (ISt — Tun))
+ (an + 60 By)@([|Sun — Tuy )
= [1—(1-08an,—(1—068)da,B.
— 0%an B, B2 St — S|
+ 8% B, 8| Sun — Sz
+ (50%/8711 + 520‘nﬁ71y37%)”sun — Tuy |
+ (an + 60 B, + 6% B 87)p (|| Sun — Tug)).
Using (15) in (12), we have
(28)  [1Sun = Szl < (1= B)[Sun — Synll + BillSun — T2y
< (1- Bg)Hsun — Synll + 52”5%1 — Tuy|
+ 68%|Sun — Szpll + B (| Sun — Tuy)).
Substituting (28) in (27), we have
(29) [[Sunt1 = Synsal < [1= (1= 8)an — (1 - 8)danf,
- 52@n5};6§]‘|5un — Synll
+ 530%671157%(1 - BZ)HSUn — Synll
+ 8% B8 Bl Stn — Tun|| + (S0 3,
+ 5253@‘715%52)”*9“71 — Tuy |
+ 8% o3, 8,85 Sun — Sz,
+ 0% B B Brp (| Sun — Tunl])
+ (an + o BE + 6% B 52) || Sy, — Ty |
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= [1— (L= 8)an — (1= 8)danB) — (1= 6)6%an 3} Br
—0%an B B2 Bl Sun — Syl
+ 8 an B B2 Bl Sun — Sz
+(6an By, + 0% B Ba + 0% an B B2 8 || Stn — T |
+(0m + ban By, + 82 B 55 + 0 B B2 B ) o (|| St — Tun ).

Continuing the above process, we have

(30) [[Stnt1 — Syntall < [1—(1—8)an — (1 —8)dans,,
- (1 - 5)520%51%,5121
— = (1=8)0" 3, B2p ... pk3
— 0" 2an BB B . B 2| Sun — Synl|
+ 5k710‘n5711ﬁ7215731 e /Bqliiz”sun - SZﬁle
+ (San Bt 4+ 2anBLB2 + 2an, Bl 5283 + ...
+ 5’6_20%51%@%&2 . 5713_2) [Stn — Tun||(an
+ ban B + 6% an B85 + By BB + - ..
+ 85 2083285 . B ) (|| Sun — Tu])).

Using (15) in (12), we have

(31) |Sun — Sz < (1= By )1 Sun — Synll + B~ | Sun — Tyall
< (1= B HlISun — Syall + By 1Sun — Tun|

+ 88, H1Sun — Syall + By e((|Sun — Tunl).
Substituting (31) in (30), we have

(32) [|Stns1 = Synsal < [1—= (1= 8)an — (1= 8)dans,
— (1-0)8*anfy0,
— = (=)0 PanB s By
— (1 0)6" 2o BL3235 ... B2
— (1=08)0" " anByBaBs - By 11 Sun — Syal|
+ (Ban By + 6% an B85 + B BaB + - ..
+ 0" B BrBs - B+ 0 Lan B8RS
= .ﬂﬁ_l)HSun — Tun|
+ (an + 50‘nﬁ7lz + (52&”@11&%
+ P BrBaBs + .+ 6 P BB . B
+ 0" a8 BB - B (|1 Sun — Tugl),
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(33)  ISunt1 = Synall < [1—(1—day
— 0F e, BLB2B5 .. BET||Suy — Syl
+ (banBh + 2B B2 + 3, BL 5253
+ 4620, 88283 ... gE2
+ 6" ey, BaB2 B3 L BETN (| Suy — p|
+ | Tp = Tunl|) + (an + S 3,
+ 0%an Bl + B, BL 265 + ..
+ 5k—2a 51/82/83 ...5]6—2
+ 8oy - By (IS un — pl
+ HTp—Tun||)>

(34) [1Sun+1 — Syns1ll < [1— (1 = 6)an]|[Supn — Synl|
+ (6an By + 0 an BBy + 6 B Bafn + - .
+ 5k‘—2anlﬁlﬁ253 o Bk‘—?
+ 5" o BLBaBs - B (1 + 6) (|| Sun — pll)
+ (an + S B + 6% 81 B2 + 8 B B2 5
+ o+ 0 R0, BB L B
+ 8" B8R B . B (L + 6)||Sun — pl]).
Therefore,
[Sunt1 — Synll < [1— (1 = 0)an]||Sun — Synll + €x
where

€n = (5anﬁ¢1L + 526%5%5% + 536%@%512“8731 +...
+ 6k72anﬁlﬁ2/83 L ﬁk*Q
+ 0" o B85 By B (1 4 8) (|| S — pl))
+ (an + 00 B + 82, 8182 + 63, 81 32 53
+ 20,8 E283 . g
+0" B Ba B - B (14 6)[Sun — pl)).-
Set A, = (1—9)ay, then by Lemma 1, it follows that lim,, o ||Sun — Syn|| =

0. Since limy, o0 Su, — p by assumption. Then [|Sy, —p|| < ||Sun — Sy ||+
||Sun, — p|| = 0 as n — oo. Which implies lim,,—,~ Sy, = p

(74) implies (7): Assume Sy, — p
(35)  [1Syn+1 = Suntall < (1= an)|Syn — Sunll + @n| Tz, — Tuy|
< (1= a)||Syn — Stun|| + and|| Szt — Su,||
+ (|82, — Tz,
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(36) 1Sz — Sunll < (1= B)lSyn — Sunll + Bull Tz — Sunl|
< (L= Bu)lSyn — Sunll + Bull Tz — Syn|
+ Bl Syn — Sun|
< [1Syn — Sunll + BalI T2 — Syal.

Substituting (36) in (35), we have

(B7) 1Syn+1 = Suns1ll < (1 = an)|[Syn — Sunll + and|[Syn — Sun||
+ B0 T2, — Synll + anp([|1S2, — Tll)
(1= (1= 68)an]l|Syn — Sun|

+ 80 B | Tz — Synll + ang([Sz — Tpll)
(1= (1= 6)an]l|Syn — Sun|

+ 8B, (1 Tz — Tl + lp = Syal)

+ anp([[Szy — Tzp)-

IN

An application of (15) with z = p, y = 22 gives
(38) Tz —Tpll < 6l1Sp = Syall + #(I1Sp = Tpll) = 6[1Sp — Synl.
Substituting (38) in (37), we have

(39) [Synt1 = Stntal < [1 = (1= 0)an]||Syn — Sunl
+ 008, (6 + 1) Sy — p|
+ ang([|Szy — Tz, ).

We note that 3% € [0,1), for n = 1,2,... and 1 < i < k — 1. Therefore by
(12) and (15), we have

(40)  ||ISzh = Tzp|l < 1Sz —pll + lp — T2 ||
§+1)||Sz) —PH
5+ D)[(1 = BY)|[Syn — pl| + BEIT22 - pl|]

(A -
D[ = B)ISyn — pll + 88,1525 — pll]
D[ISyn — pll + 818z — pll]

+ D[IISyn = pll + 1Sz — pl]
(5+1)[||Syn pll+ (1= B)ISyn — pll
+ Ball Tz, — ol
(6 + DIISyn = pll + 1Syn — pll + T2 — pl]
(6 + 1)[2[|Syn — pll + 61152 — pll]
(6 + D)[2[1Syn — pll + 1523 — pll] ..
(6 + D)[(k = 2)[|Syn — || + 1Sz = pll]

(
(
(0 +
(0 +
(6

VAN VAN VANNN VANRE VAR VARRR VAN

IANIA N IA
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< (6+1)[(k=2)1Syn — pll + (1 = B )Syn — pll
+ B Tyn — pll]
< (0 + D[k =2)1Syn — pll + [|Syn — pll + [ Tyn — pll]
< (6 + D[k = D)[ISyn — pll + 6l|Syn — pll]
< (6 + D[k = D[Syn — pll + [1Syn — pll]
< (6 + Dk[Syn — pl|-

Substituting (40) in (39), we have

1SYnt1 — Stng1 < [1—(1—6)an]l|[Syn — Suy||
+ 60 B3 (8 + 1) ||Syn — pll + ane(k(6 + 1)||Syn — pl|)-

Let A, = (1—6)ay, and e, = 6, BL(6+1)||Syn —pl| +anp(k(§+1)|| Sy, —pl|-
Then,
[Syn+1 = Supsall < [L = An]l|Syn — Sunl| + €n.

Since by assumption lim,,_,~ Sy, = p, then by Lemma 1,
lim || Sy, — Suy|| = 0.
n—

Therefore, ||Su, — p|| < [|Syn — Sun|| + ||Syn — p|| = 0, as n — oo which
implies lim,, o, Su, = p. This shows that the convergence of Jungck-Mann
iterative scheme (9) is equivalent to the convergence of Jungck-multistep
iterative scheme (12) when applied to the generalized contractive-like oper-
ator (15). [

Theorems 2 and 3 lead to the following Corollaries.

Corollary 1. Let X be a Banach space. Suppose S, T : X — X are
two mappings satisfying (15) such that T(X) C S(X). Assume S and T are
weakly compatible, then they have a unique common fized point. Let p be the
unique common fized point of S and T (i.e Sp = Tp = p). If ug,go,to € X
and define {Sup}> o, {Sgn}y and {St,}o°, as sequences satisfying (9),
(10) and (11) respectively. Then the following are equivalent:

a) (i) The Jungck-Mann iterative scheme (9) converges to p.

(13) The Jungck-Ishikawa iterative scheme (10) converges to p.

b) (i) The Jungck-Mann iterative scheme (9) converges to p.

(1) The Jungck-Noor iterative scheme (11) converges to p.

Proof. The proof of Corollary 1 is similar to that of Theorem 2. |

Corollary 2. Let X be a Banach space. Suppose S, T : X — X are
two mappings satisfying (15) such that T(X) C S(X). Assume S and T
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are weakly compatible, then they have a unique common fixed point. Let
p be the unique common fized point of S and T (i.e Sp = Tp = p). If
0, U0, 9o, to, Yo € X and define {Szn}p2q, {Suntnlo, {Sgntnzos {Statnio
and {Syn}52, as sequences satisfying (8), (9), (10), (11), (12) and (13)
respectively, then the following are equivalent:
(1) The Jungck-Mann iterative scheme (9) converges to p.
(13) The Jungck-Ishikawa iterative scheme (10) converges to p.
(#i1) The Jungck-Noor iterative scheme (11) converges to p.
(iv) The Jungck-multistep iterative (12) converges to p.
(v) The Jungck iterative scheme (8) converges to p.

Remark 6. Theorem 2 is a generalization and extension of Theorem 1
of Soltuz [20] and Theorem 1.1 of Zhiqun [23]. Theorem 3 also generalizes
and extends Theorem 2 of Soltuz [21] and some other numerous results in
literature.
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