Addendum: On Convergence and Stability of the Generalized Noor Iterations for a General Class of Operators

H. Akewe\(^1\) and J. O. Olaleru\(^1\)

\(^1\)Department of Mathematics, University of Lagos, Akoka, Lagos, Nigeria.

1 Introduction

An error was pointed out by Prof. C. E. Chidume in the statements of our Theorems and Corollaries in [1]. The proof of all the Theorems and Corollaries are correct but the statements have flaws. The correct statements of the results are hereby stated.

We define the multistep iteration as:

Let \(E \) be a Banach space and \(T : E \rightarrow E \) a self map of \(E \). For \(x_0 \in E \), the multistep iterative scheme \(\{x_n\}_{n=0}^{\infty} \) is defined by

\[
x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Ty_n^1
\]
\[
y_n^i = (1 - \beta_n^i)x_n + \beta_n^i Ty_{n+1}^i, \quad i = 1, 2, ..., k - 2,
\]
\[
y_{k-1}^{k-1} = (1 - \beta_n^{k-1})x_n + \beta_n^{k-1}Tx_n, \quad k \geq 2
\]

where \(\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n^i\}, i = 1, 2, ..., k - 1 \) (with \(k \geq 2 \)) are real sequences in \([0,1)\) such that \(\sum_{n=0}^{\infty} \alpha_n = \infty \).

2.1. Some Strong Convergence Results in Banach Spaces

Theorem 2.1.1. Let \((E, ||.||) \) be a Banach space, \(T : E \rightarrow E \) be a self map of \(E \) with a fixed point \(p \) satisfying the condition

\[
\|p - Ty\| \leq a\|p - y\|. \quad (2.1)
\]

for each \(y \in E \) and \(0 \leq a < 1 \). For \(x_0 \in E \), let \(\{x_n\}_{n=0}^{\infty} \) be the multistep iterative scheme defined by (1.1). Then \(\{x_n\}_{n=0}^{\infty} \) converges strongly to \(p \).

Corollary 2.1.3. Let \((E, ||.||) \) be a Banach space, \(T : E \rightarrow E \) be a self map of \(E \) with a fixed point \(p \) satisfying the condition

\[
\|p - Ty\| \leq a\|p - y\|. \quad (2.2)
\]

\(^* \)Corresponding author: E-mail: hakewe@unilag.edu.ng, hudsonmolas@yahoo.com
for each $y \in E$ and $0 \leq a < 1$. For $x_0 \in E$, let $\{x_n\}_{n=0}^{\infty}$ be the Noor iterative scheme defined by (1.4) in [1]. Then the Noor iterative scheme converges to p.

Corollary 2.1.5. Let $(E, ||.||)$ be a Banach space, $T : E \to E$ be a selfmap of E with a fixed point p satisfying the condition

$$||p - Ty|| \leq a||p - y||,$$

(2.3)

for each $y \in E$ and $0 \leq a < 1$. For $x_0 \in E$, let $\{x_n\}_{n=0}^{\infty}$ be the Ishikawa iterative scheme defined by (1.3) in [1]. Then the Ishikawa iterative scheme converges to p.

Corollary 2.1.6. Let $(E, ||.||)$ be a Banach space, $T : E \to E$ be a selfmap of E with a fixed point p satisfying the condition

$$||p - Ty|| \leq a||p - y||,$$

(2.4)

for each $y \in E$ and $0 \leq a < 1$. For $x_0 \in E$, let $\{x_n\}_{n=0}^{\infty}$ be the Mann iterative scheme defined by (1.2) in [1]. Then the Mann iterative scheme converges to p.

Acknowledgment

The authors are grateful to Prof. C. E. Chidume for pointing out the error.

References

©2014 Akewe & Olaleru; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Approved by editor’s

Dr. Paul Bracken, Department of Mathematics, The University of Texas-Pan American, 1201 W University Dr. Edinburg, TX 78539, USA.