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Abstract: This research used the Linear elastic fracture mechanics relation together with
that of the stress intensity factor range after substituting the material constants A, M
developed from the outcome of an experiment conducted on a high yield strength (o, = 100
Ksi (680 MN/m?%), critical stress intensity factor (K.) = 150 Ksi [in]'? (165 MN/mm®))
Martensitic steel in air environment to develop a working model which was then employed
with different constant amplitude stresses and varying average crack lengths to generate data.
Series of regression analysis and optimization processes were employed to create a novel
model which is suitable for data analysis, generation of design consideration, evaluation and
determination of damage tolerance and safe operating condition. This has been used to
climinate the many mathematical steps and processes involved in data analysis and add ease
to design and evaluation.

Key words: Crack model, fatigue life, regression analysis, metal, fracture

INTRODUCTION

Crack, a phenomenon which have been described as the alternative opening and closing of regions,
beginning from a notch hole (Odukwe ef &f., 2007), initiates unnoticed and grow at a fast rate through
structural members and have been found to be the cause of most fatigue failures (Sobcvzyk, 1987,
Miller and Akid, 1996, Budynas, 1998; Shaffer ef /., 1999; Henkel and Pense, 2001). These failures
are sudden and occur at points of stress raisers and can lead to catastrophic effects if allowed to
develop further than the material can withstand (Tomkins er @l., 1981, Miller and Akid, 1996,
Courtney, 2000; Dieter, 2000). The extent to which crack grows in a material depends on its brittleness
(Dieter, 1988; Shaffer ef a/., 1999). However, brittle fracture is characterized by a rapid rate of crack
propagation, having no gross deformation, but containing little micro deformation in deference to the
other type known as ductile fracture, which is characterized by appreciable amount of plastic
deformation prior to and during crack propagation, with an amount of gross deformation present at the
crack surface (Dieter, 1988; Shaffer ef af., 1999).

Many attempts have been made at studying the phenomenon of crack initiation and growth with
the aim of creating suitable mathematical models which can be used to study and also understand the
behaviour of structural members under variable loading and different environments (Nelson, 1984,
Sobeyzk, 1987; Nelson, 1990; Navarro and De Los Rios, 1992; Hirose, 1993; Miller and Akid, 199¢;
Pascual and Mecker, 1997; 1999). The first by Griffith for fracture behaviour of components that
contains sharp discontinuities and its modification by Trwin and Orowan are available
(Anderson, 1995). Tt was assumed that incipient fracture in ideally brittle materials occur when the
magnitude of the energy supplied at the crack tip during incremental increase in crack length is at least
equal to the magmtude of the elastic energy. The result was that crack growth will take place when
the elastic energy per unit crack surface area is equal to the material resistance to crack extension
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(Ajayi, 2003). Thus, once a flaw is initiated in a material, it can grow when certain conditions are met.
This growth thence can result in eventual failure if the conditions reach a critical value. Moresover, it
has been certified that changes in stress intensity factor, Ak, has a major influence on the fatigue crack
growth (Odukwe ef al., 2007), thereby justifying the model known as the Paris equation (Sobeyzk,
1987; Ewalds and Wanhill, 1991; Navarro and De Los Rios, 1992; De Los Rios ef af., 1994; Miller and
Alkid, 1996), which relates the differential of the fatigue crack growth per cycle of loading to the stress
intensity factor range (Ak) given as:

da 1 1
a_A(Ak) oy

Where A, M are material constants and 92 is the rate of crack growth per cycle of loading.
dN

The Eq. 1 above has been used to explain the phenomenon of linear elastic fracture mechanics,

given as region II in a log-log plot of da against Ak (Dieter, 1988; 2000). Further work on this
dN

equation for high yield strength (o, = 100 Ksi (689 MN/m’), critical stress intensity factor (K,) = 150
Ksi [in]'? (165 MN mm?). Martensitic steel in air environment by Odukwe et af. (2007), reveal

thatAk explains about 99.85% Of changes in 92 and also gives the material constants A and M as
dN

7.244x1077 and 2.22, respectively. A model representing a straight line approximation of Eq. 1 was
then proposed as:

log[%j = 222log (Ak)-8.14 (2)

Thus, the Equation becomes useful for the metal when right substitutions are made into it.
However, the process becomes cumbersome when it is desired to have design consideration to study
the behaviour of metals to changes in the constant stress amplitude and varying fatigue cyele of loading,
thereby making it imperative for researchers to look into various ways of creating simple models which
will eliminate too many compulsory substitution, reduce mathematical steps and also will be suitable
for data analysis. This work aims at achieving this by carrying out applied research using Eq. 1, stress
intensity factor relation together with the parameters developed in Odukwe ef af. (2007) to create a
novel model which will be devoid of many mathematical processes, but suitable for analyzing the crack
sizes from the point of view of number of fatigue ¢ycles and constant amplitude stresses.

MATERIALS AND METHODS

The Eq. 1 together with the relation for the stress intensity factor range given by Eq. 3 and the
parameters developed in Odukwe ef af. (2007) were employed to develop a simple working model
which can be used to generate data. Constant amplitude stresses of 15 Ksi (103.43 MPa) to 60 Ksi
(413.70 MPa) in increment of Sksi (34.48 MPa) were used along side average crack lengths ranging
from 0.20 inches (5.08 mm) to 3.95 inches (100.33 mm).

Ak = Covfra (3)

Where C = constant for edge and surface cracks = 1.12 (Odukwe ef af., 2007), 0 and a are the constant
amplitude stress and the average crack length, respectively.
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Substituting Eq. 3 into Eq. 1 and simplifying gives:

= (ACMG“fiI%)a% @

Integrating from N, to N, gives:

N o N (5)
Ao IIM)

Substituting the values of A, M and C given earlier into Eq. 5 gives:

N, =273820527.2067 7 (a"! —a;"" )+ N (6)

a o

Thus, inputting the various values of average crack lengths for desired constant amplitude stress of
15 ksi (103.43 MPa) into Eq. 6 gives Table 1.

Carrying out a regression analysis of a on the vertical against N on the horizontal for constant
amplitude stress of 15 ksi (103.43 MPa) gives an exponential relationship after optimization as:

a=0.18 exp (1.3800x10°N)  [R?=0.998] (7

To get a general relationship for all values of amplitude stress, different values of o were used and the
result of the regression of a against N for different data points are as presented in Table 2.

RESULTS AND DISCUSSION
Table 1 and 2 shows that a pre-existing crack size of 0.20 inches (5.08 mm) was used and that
the exponential variable changes with changing o, while the R? values gives a justification that the
number of cycles explains about 99.8% changes in the crack sizes. The 0.18 value is related to the
initial crack length. Thus, the general form of the estimated relationship can be given as:
a=a,exp (& N) (8)
where a = final crack length,
a, =1initial crack length, ¢ = exponential variable and N = Number of fatigue cycles.
Observing column one with column three shows the relationship that:
a=1f{o) &)
Regressing column one against three and optimizing the result gives the power law denoted by:

o = 4x10% 6> 15 [R? = 00 87%] (10)

With this result, it is clear that o is responsible for the observed changes in the exponential variable,
hence, substituting Eq. 10 into Eq. 8 gives:
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Table 1: Table showing the number of cycles of loading corresponding to desired crack sizes, obtained from substituting
the values of individual average crack size and desired constant amplitude stress of 15 Ksi into Eq. 6
MNo. Desired average crack sizes, a (inches) x 25.4 mm MNo. of cycles, W (cvcles), when o =15 Ksi (103.43 MPa)

0 0.20

1 0.35 47798.50
2 0.40 58775.56
3 0.55 84312.65
4 0.62 93690.41
5 0.79 112284.52
6 0.87 119549.65
7 0.98 128411.25
8 1.52 160095.10
9 170 167932.32
10 1.92 176345.55
11 2.20 185624.23
12 2.35 190070.15
13 2.45 192862.54
14 2.60 196822.28
15 2.85 202889.30
16 3.00 206252.41
17 3.35 213423.48
18 3.48 215877.50
19 3.65 218937.31
20 3.95 223969.56

Table 2: The result of regression analysis of average crack sizes a, against Number of cycles, N for different values of
constant amplitude stresses, o

o (Ksi) x 6.895 MPa Exponential estimation Exponential variable (c) R?value
15 a=0.18 exp (1.3800x107°N) 1.3800x107 0.998
20 a=0.180 exp (2.612x107°N) 2.612x1077 0.998
25 a=10.180exp (4.285x107°N) 4.285x107° 0.998
30 a=0.180 exp (6.425%107°N) 6.425x107° 0.998
35 a=0.180 exp (9.045%107°N) 9.045x107° 0.998
40 a=0.180 exp (1.216x107°N) 1.216x1074 0.998
45 a=0.180 exp (1.580x107*N) 1.580x1074 0.998
50 a=0.180 exp (1.995x107*N) 1.995x1074 0.998
55 a=10.180 exp {2.468x107*N) 2.468x1074 0.998
60 a=0.180 exp (2.992x10"*N) 2.992x1074 0.998
a=a,exp(4x10°c**N) (1

and the general equation thus can be written as:

4 OIISC(MD*EE“EN] (1 2)

This Eq. 12 therefore, is a constitutive relationship commecting crack size a, with the number of
cycles, N and stress amplitude, o for Martensitic steel containing edge and surface cracks. Thus with
this model, corresponding crack lengths can be deduced from knowledge of desired number of fatigue
cycles and constant amplitude stress. No reference is made whatsoever to the constants A, M and C
which are compulsory parameters for the use of Eq. 1-3, more so, the many mathematical steps of
substitution and evaluation is eliminated with its use. Thus, Eq. 12 is a simple model which can be
used at anytime to evaluate crack sizes, make design consideration, determine damage tolerance and
identify safe operating or loading condition for Martensitic steel with edge and surface cracks without
much recourse to many mathematical steps and processes.

CONCLUSION
The modeling of the constitutive relationship between crack lengths, numbers of fatigue cycles

and constant amplitude stress for Martensitic steel containing edge and surface cracks have been done.
The outcome of an experiment on high yield strength (o, = 100 Ksi (689 MN m™), critical stress
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intensity factor (K,.) = 150 Ksi [in]*? (165 MN mm™) Martensitic steel in air environment by
Odukwe ef al. (2007) was employed together with the relations for linear elastic fracture mechanics
and the stress intensity factor range Eq. 1 and 3, to develop a working model which was used to
generate data after substitution of the values of A and M together with the constant for edge and
surface cracks. The desired crack lengths were inputted into it and corresponding number of fatigue
cycles were generated. The result was then used to develop a novel model which can be used at any
time to have access to data, make design changes and predict the behaviour of the metal to variable
loading under specified amplitude stresses. This model, if used has removed the cumbersome
mathematical processes involved in such data anlysis and also eliminates compulsory substitution
which is required in previous models. It can also be used to predict crack sizes corresponding to desired
mumber of fatigue cycles and amplitude stresses, by merely inputting right parameters; however it does
not cover for all metals but for that used for the analysis.
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