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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

The effect of sodium nitrite (NaNO2) in the corrosion inhibition of micro-alloyed and API-5L X65 steels in E20 simulated fuel 
grade ethanol (SFGE) have been investigated via gravimetric method and morphological examination. While NaNO2 addition 
may positively slow down corrosion rate, its concentration within the tested range of 0.2 – 1.0 g/L plays an insignificant role in 
improving the corrosion resistance of API-5L X65 and micro-alloyed steels. Morphological examination of both steels after 
immersion tests in the presence and absence of the inhibitor showed pitting corrosion mechanism. Furthermore, statistical 
analysis confirms with 90 % confidence, that there is no significant difference between the corrosion behaviour of the two steels 
in E20 SFGE with and without NaNO2 inhibitor. Highest protection of the metal surface was achieved at 62.63 % with 0.2 g/L 
NaNO2 for API-5L X65 in E20. 
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1. Introduction 

Carbon steel, which is commonly used to fabricate storage tanks, pipelines for the transportation of fuel and 
automobile engine parts & components, is susceptible to corrosion when exposed to fuel grade ethanol (FGE) 
environment due to the presence of some contaminative constituents (majorly water, chloride and acetic acid) in the 
fuel [1]. This poses a major problem in the use of existing fuel storage and transportation system for fuel grade 
ethanol (FGE) as well as in the use of fuel grade ethanol as an alternate fuel for automobile engines.  

Among the numerous methods for preventing the degradation of a metallic surface by corrosion, corrosion 
inhibition is one of the most widely used [2]. Inhibitors are chemically adsorbed on metallic surfaces by forming a 
protective layer or thin film. Inhibitors can be classified according to their mechanism of action as cathodic, anodic, 
anodic-cathodic mix or adsorption action. In the case of anodic inhibitor, an important consideration is the inhibitor 
concentration. Using an inappropriate quantity of inhibitor disturbs the formation of film protection and causes 
localized corrosion, due to exposed sites on the metal surface.  

Anodic inhibitors are thus classified as “dangerous inhibitors”. Examples of anodic inhibitors include 
orthophosphate, nitrite, ferricyanide, molybdates, nitrates and silicates [2]. The focus of this study is to investigate 
the effect of sodium nitrite (NaNO2), a type of anodic inhibitor, in the corrosion inhibition of API-5L X65 and 
micro-alloyed steels in simulated fuel grade ethanol (SFGE). A Study by [3] have shown that micro-alloyed steel 
exhibits pitting corrosion when exposed to E20 SFGE due to contamination by chloride. There is significant 
information in literature on corrosion inhibition of carbon steel with NaNO2 in various media [4-8]. However, there 
is sparse literature regarding the corrosion inhibition of micro-alloyed steels and API-5L X65 steels in E20 SFGE. 
This work aims to contribute to the body of knowledge in this expanse. 

2. Experimental 

2.1. Materials and test environments 

Nine samples with dimensions 30 × 30 × 11 mm each were machined from micro-alloyed steel plates in as-
received condition. From an API-5L X65 pipe steel, nine samples with dimensions 30 × 30 × 6 mm each were 
equally extracted for mass loss tests and microscopic examination. One of the nine samples from each steel was 
used for the microscopic test. The chemical composition of API X65 and micro-alloyed steels used in this study 
include: 0.08 & 0.13 C; 1.22 & 0.77 Mn; 0.25 & 0.01 Si; 0.02 & 0.03 Cr; 0.02 & 0.02 Ni; 0.003 Ti; 0.03 & 0.04 Al; 
0.006 & 0.002 Mo; 0.008 & 0.006 Cu; and balance of Fe respectively (all in Wt.%). The microstructures of the as-
received steels are shown in Figure 1. The microstructures of the two steels show irregularly dispersed pearlite in a 
ferrite matrix. The microstructure of X65 steel is expressively finer and more homogenous than that of micro-
alloyed steel. 

     

 

Fig. 1. SEM images at 1000x magnification of as-received (a) API-5L X65 and (b) Micro-alloyed steels. 
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E20 SFGE environment was prepared following the procedure described in [9] with 98.5 Vol. % ethanol, 0.5 

Vol. % pure methanol, 56 mg/L glacial acetic acid, 32 mg/L pure sodium chloride (NaCl), 1 Vol.% ultra-pure water 
and pure sodium nitrite (NaNO2) powder (for inhibition). The reagents used were of analar grade.  

NaNO2 is a yellowish-white crystalline solid with 68.995 g/mol molecular weight. The two-dimensional structure 
of NaNO2 is shown in Figure 2. To determine the role of NaNO2 concentration in the inhibition behaviour, 
concentrations of 0.2, 0.6 and 1 g/l were used for the corrosion tests. Control tests were carried out in the absence of 
the inhibitor.  

 
 
 
 
 
 
 
 

Fig. 2. Two-dimensional structure of NaNO2. 
 

2.2. Immersion tests 

Eight samples each from micro-alloyed and API-5L X65 steels were dry-abraded with silicon carbide paper 
grades of 80, 180, 320, 600 and 800 microns for the immersion tests. The abraded samples were degreased with 
acetone and initial weight was measured. The immersion tests were carried out for a duration of 60 days at ambient 
temperature of 27oC. The samples were suspended in sealed 300 ml plastic containers, carrying 200 ml of the test 
solution. Each test was replicated to determine the reproducibility of the tests. At the end of the exposure period, the 
samples were removed from the test solution, dried and cleaned following the chemical cleaning procedure 
described in [3,9]. Final weight measurements were taken and corrosion rate in mils per year (mpy) calculated with 
the relation given in Equation (1) [9]. 

DTAWKRC ×××= /..                                                                                                                              (1) 

Where C.R. is corrosion rate (mpy), K is a constant (534), W is the mass loss (mg), A is the sample area (in2), T is 
the exposure time (hours) and D is density (g/cm3). The inhibitor efficiency ( fE ) was computed as shown in 
Equation (2) [2]. 
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−

=
o
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Where iR  the corrosion rate of metal with inhibitor, oR is corrosion rate of metal without inhibitor, and fE is 
inhibitor efficiency (percentage). 

Morphological changes in the tested samples were also examined using a JEOL Scanning electron microscope, 
Model number JSM 840A. 
 

3. Results and Discussion 

Figure 3 shows the variation of corrosion rates with NaNO2 concentration obtained after immersion tests for 
micro-alloyed and API-5L X65 steels. In general, the X65 steel exhibited higher corrosion rates than micro-alloyed 
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steel which indicates that anodic reactions are more spontaneous in X65 steel. Highest corrosion rates of 1.31 × 10-3 
and 1.25 × 10-3 mpy were obtained for X65 and micro-alloyed steels in the control tests. However, the two steels 
responded differently to variations in NaNO2 concentration. Corrosion rate of X65 steel increased with increase in 
NaNO2 concentration while that of micro-alloyed steel decreased. Significant protection was achieved on X65 steel 
at 0.2 g/L NaNO2, the lowest concentration with respect to the control test. Corrosion rate of 4.90 × 10-4 mpy was 
obtained which is approximately 62 % lower than the control test value. This suggests that NaNO2 is best effective 
at inhibiting fuel ethanol corrosion of API-5L X65 steel at low concentrations. Higher concentrations of the 
chemical resulted in higher corrosion rates of 1.11 × 10-3 and 1.12 × 10-3 mpy for samples tested in 0.6 and 1 g/L 
NaNO2 respectively, though these values are lower in comparison to the control test result.  
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Fig. 3. Variation of corrosion rate with inhibitor concentration for API-5L X65 and Micro-alloyed steels. 

Conversely, the corrosion rate of micro-alloyed steel followed a decreasing trend with increasing concentration of 
NaNO2. Best protection of 6.26 × 10-4 mpy was achieved at 1 g/L NaNO2. A comparison of the degradation 
behaviour of the two steels in the presence of NaNO2 shows that micro-alloyed steel is more responsive to the 
protective action of the adsorbent species present in NaNO2. However, within the limits of NaNO2 concentrations 
used for this study, the lowest corrosion rate overall was achieved by X65 steel with smallest inhibitor concentration 
of 0.2 g/L.  

The statistical significance of the experimental data obtained was further investigated with the aim of determining 
if the effect of varying the concentration of NaNO2 was significant. Two-factor Analysis of variance (ANOVA) test 
was used to determine the statistical significance of the functional variables. Table 1 shows the results of the 
ANOVA test. Based on the determined mean square ratio, it can be concluded with 90 % confidence that inhibitor 
concentration had no significant effect on the mass loss of the two steels. Furthermore, it can also be concluded at 
the same confidence level, that there is no significant difference between the behaviour of API-5L X65 steel and 
micro-alloyed steel in E20 with and without NaNO2 inhibitor additions. 

Figure 4 shows the variation of inhibitor efficiency with inhibitor concentration for both X65 and micro-alloyed 
steels. As indicated by the corrosion rates, inhibitor efficiency decreased with increase in NaNO2 concentration for 
X65 steel, while increase was noted for micro-alloyed steel. X65 steel exhibited highest inhibitor efficiency of 62.63 
% with 0.2 g/L NaNO2 in simulated E20 while micro-alloyed steel had its highest value of 49.93 % with 1 g/L 
NaNO2. 
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 Table 1. ANOVA test results for the API-5L X65 and micro-alloyed steel mass loss data 

Source of Variation 

Sum of 
Squares 

(SS) 

Degrees of 
Freedom 

(DF) 

Mean 
Square 
(MS) 

Mean Square 
Ratio (MSR) 

Minimum 
MSR at 90% 
confidence 

Inhibitor Concentration 0.0293 3 0.0098 1.44 5.39 
Metal Type 0.0045 1 0.0045 0.66 5.54 
Residual 0.0204 3 0.0068 

  Total 0.0541 7       
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Fig. 4. Variation of inhibitor efficiency with inhibitor concentration for API X65 and Micro-alloyed steels. 

The phenomenon of molecular adsorption was further used to clarify the corrosion inhibition mechanism of 
NaNO2 on API-5L X65 and micro-alloyed steel. The likely mode of adsorption was determined by testing the 
experimental data with various adsorption isotherms. Adsorption isotherms supply information on the inhibitor 
molecular behaviour and its interaction with the metal surface [10]. In addition, the standard free energy of 
adsorption was evaluated with the relation given in Equation (3) [11]. 








 ∆
−=

RT
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o

exp
5.55

1
                                                                                                                                      (3) 

Where ads
oG∆  is the standard free energy of adsorption, 

             R   = molar gas constant and          
T  = absolute temperature. 
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Table 2 shows the thermodynamic parameters obtained for API-5L X65 and micro-alloyed steel in E20 simulated 
FGE with NaNO2 inhibitor. The negative values of ads

oG∆  indicate that the adsorption is spontaneous. ads
oG∆  

obtained for NaNO2 inhibitor concentrations of 0.2, 0.6 and 1 g/L was within the range of -11 to -22 kJ/mol, 
indicating physiosorption mode of adsorption. ads

oG∆  values that are -20 kJ/mol and less negative are consistent 
with physical adsorption which involves an electrostatic interaction between charged atoms and the charged metal 
[12,13]. The data was further fitted with Langmuir, Freundlich and Temkin adsorption isotherms. Figure 5 shows 
the best fit obtained for the data with the Temkin isotherm which is given by Equation (4) [14]. The Temkin 
adsorption isotherm assumes the heat of adsorption of the NaNO2 ions decreases linearly with increasing coverage. 
A regression coefficient of 0.956 was obtained. 

( )θαTadad HH −∆=∆ 10                                                                                                                              (4) 

Table 2. Thermodynamic parameters for API-5L X65 and Micro-alloyed steel in E20 with NaNO2 inhibitor 
Inhibitor 

concentration ϴ K log K 1-ϴ ϴ/1-ϴ 
∆G 

(kJ/mol-1) 
Control 0.00 0.00 0.00 1.00 0.00 0.00 

0.2 g/L NaNO2 0.63 8378.00 3.92 0.37 1.68 -22.38 
0.6 g/L NaNO2 0.13 240.25 2.38 0.87 0.14 -13.58 
1.0 g/L NaNO2 0.08 85.78 1.93 0.92 0.09 -11.03 

 

 

Fig. 5. Variation of inhibitor concentration, ln C with surface coverage, ϴ for API X65 and Micro-alloyed steels. 

 
Figure 6 shows the morphology of API-5L X65 and micro-alloyed steel after the control tests. Degradation of the 

samples was by pitting corrosion. The arrows point to the pits. A comparison of the severely pitted surface of API-
5L X65 steel with the fewer pits on micro-alloyed steel confirms the mass loss results where API-5L X65 was seen 
to exhibit higher corrosion rates than micro-alloyed steel. 

Figure 7 shows the typical SEM images obtained for micro-alloyed steel samples tested in E20 with 0.2 and 0.6 
g/L NaNO2 inhibitor. The corrosion mechanism portrays a combination of uniform and pitting corrosion. Uniform 
corrosion can be seen in the general anodic dissolution of the metal surface. The arrows depicts the pits. Similar 
corrosion mechanism of pitting was observed on the control test samples, though there is apparent reduction in the  
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Fig. 6. SEM images showing pitting corrosion of (a) Micro-alloy and (b) API-5L X65 steels in E20 SFGE without inhibitor. 

 

 

Fig. 7. SEM images showing pitting corrosion of micro-alloyed steel in (a) E20 with 0.2 g/L NaNO2 and (b) E20 with 0.6 g/L NaNO2. Arrows 
point to pits. 

density of the pits. The morphological examination results in Figure 7 confirms the insignificant effect of NaNO2 
inhibitor in corrosion rate reduction. 
 

Conclusion 

The effect of NaNO2 concentration on the degradation of API-5L X65 and micro-alloyed steels have been 
investigated. Highest inhibitor efficiency was obtained with 0.2 g/L NaNO2 on X65 steel. Slightly improved 
corrosion resistance with increase in NaNO2 concentration was observed only on micro-alloyed steel. Statistical 
analysis confirmed that inhibitor concentration had an insignificant effect on mass loss of the steels. In addition, 
there is no significant difference between the degradation behaviour of the two steels with and without NaNO2 
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inhibitor. Thermodynamic evaluation of NaNO2 on the steels confirm physiosorption mode of adsorption obeying 
the Temkin adsorption isotherm.  
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