Journal of Computer Science & Its Applications, June 2007, Vol. 14 No. 1

The Left and Right Extension Problems Revisited

Ezekiel F. Adebiyi

Department of Computer and Information Sciences
Covenant University

PMB 1023, Ota, Nigeria.

E-mail: eadebiyi(sdsc.edu

ABSTRACT.

Given asetof alphabets S, , astring S over X , where the length of S, |S| =n,
and two equal substrings S[il; j1] and S[i2; j2], the right (left) extension
problem is to find how far (say p) to the right (or left) can we extend S[il; j1]
and S[i2; j2] simultaneously such that the distance between S[jl + 1; j1+p]
and S[j2 +1; j2+p] is q (or the distance between S[il-p; il-1] and S[i2-p; i2-
1] is d-q). The distances consider here is usually either Hamming or the
Edit distances, where q € [0; d] and d 2 0. This stringology problem finds
applications in the bioinformatics problem of repeats extraction[9] and
recently in the selection of oligonucleotides for microarray and PCR/2].
Microarray and PCR are both academic and industrial tools of

Bioinformatics used in Life Sciences.

The left and right extension was first formulated in [9] and solved mainly

using the longest common prefix (LCP) technique on the suffix tree.
Solution of LCA for the left and right extension problems has its inherent
difficulty in that it is difficult to implement and maintain{4]. Recent results
that solve LCP via the range minimum query (RMQ) has been proposed[4].
We re-visited in this paper the left and right extension problem by
proposing new solution procedures and show how the resulting LCP
problem can be solved using the RMQ. The resulting solution is found easy
to implement and maintain. Furthermore, we show how the left extension
problem can be solved without building the suffix tree for the reversal

version of the subject string.

Keywords. Stringology, Suffix tree, Longest common ancestor (LCA),
Longest common prefix (LCP), Dynamic programming, Range mininium

query (RMQ), Repeats, Oligonucleotides.

1.0 Introduction Given a set of alphabets X, a string S over 2. where

Formally. the stringology right and left extension the length of S.

S|=n, two equal substrings S[il: 1]

problems can be concisely described as follows: and S[i2: j2], positive constant d. the right and left

76 The Left and Right Extension Problems Revisited

extension problems require us to compute tables T,

and T ., ofsized+ 1 such that

right

T,u@ =ps.t.d(S[1+ 1:j1 +pl. S2+ 122
+p]) = qand

Tuw(d-q)=ps.t.d(S[il-p;il - 1] S[i2 - p:i2 -
Ih=d-q (1)

toreach q € [0: d]. where d,, is the hamming distance.
Note that the original formulation by [9] wrongly
included the maximum tunction in the equation (1)
given above. For Edit distance, the right and left

tables are detined as follows.

T.(@) = H(xryr)|(xryr) € [j1 + 1in] x [j2+ 1:n]
and i1s maximal w.r.t d(S[j1 + 1:
xrl. S[j1+ L yr]) <q).

Tad-qg)= {(xLyDl(xLyly e [T:11 - 1] x[1:12 - 1]
and 1s maximal w.r.t d.(S[1: xl];

S[1:yl]) =d-q}. (2)

Matrices [jI +1:n|x[j2+1:n]and [1;il -1] [1:i2-1]
are Edit distance dynamic programming matrices
for strings (S[j1+1: n]; S[j2+1: n]) and (S[1: il-1]:
S[1:121]). And the pair (xr. yr) is said to be maximal
with respect to d.(S]j1+1: xr]: S[j2+ 1. yr])=q it and

only if

Lodo(S[p -+ Toxr+ 4L S[2+ 1:vr]) »

2 d(S[j1+ 1oxr]. S22+ 1 yr

q it xr<n,
1) - qifyr<n.
and

oA S+ toxr+ 1L S22+ Loyr -+ 1)) -

g rxr

nand vr < n.

amality defined above must also hold tor

 appropriately. Considering the

neasure. the Hamming distance
ssSEctfand SIEgL 6 () is Of

Ezekiel F. Adebiyi

S[i]=S[j]and I otherwise. For Editdistance.

S(1.)=min[o (1 L.+ 1.0)-)+1:d(-1.5-
)+ t(i.). (3)

where t(1.,)) 1s 0. if S1(1) = S2(j) else I. For Hamming

distance. TablesT ,, and T , can be computed in O(d)

right
time, using the suftix tree that allows the constant
time computation of the length of the LCP of two
substrings of S[7, 13]. Tables T, and T, under the
Edit distance cost O(d”) time using the longest
common prefix technique and the computation of
front(d) of the DP-matrix[lS]. But the ideas behind
the computation of LCP 'using the suffix tree in
constant time has been found to be unwieldy and un-
implemental. The Range Minimum Query (RMQ)
has been proved to provide us with a simple
algorithm to compute.the LCP using the su_x tree[4].
We couple this idea with some other pattern
matching techniques to design simple O(d) and O(d")
algorithms for the left and right extension problems

under the Hamming and Edit distance metrics. Our
resulting algorithm has been used in Adebiyi|2] and
Adebiyi and Olarenwajuf3] to design efticient
sequential and for

parallel algorithm

oligonucleotides selection.

1.1 Organization of the Article

This paper is structured as follows. Section |
contains the introduction. Section 2 presents the
suttix tree, the lowest common ancestor (LLCA)
problem and how using the using the suftix tree. the
LCAproblem isequivalent to the LCP problem and
given two nodes, how LCP can be done in constant
time. Section 2 is intended to show the reader how
unwiedy and un-implemental L.CP computation via
the suftix tree could be. And we made attempt also in
this section to simplity the implementation of this

technique by presenting another look of o concise

Ezekiel F. Adebiyi

design of'the algorithms involved. Insection 3. we
present a new technical exposition of the RMQ
problem equivalence to the LCA problem. and
how the RMQ) problem can be solved in constant
tme. Using precious sections ideas. our new
solutions to the left and right extension problems
is presented in section 4. Lastly. section 5 contains

our conclusion.
2.0 Suffix tree and LCA problem

Some good materials on suftix tree can be found in
Adebiyi[1] and Gustield|6]. We give a brief

description below:

Asuftix tree is a lexicographically inter connected
data structure, that provide efficient access to all
substrings of a strings. over which it is built. This
data structure can be constructed and represented
in linear time and space. And this has enabled the
solution of many strings problem in linear time.
The construction of a sutfix tree in linear time can
be found in Weiner[16]. McCreight[11] and
Ukkonen[14]. A recent paper by Kurtz][8]
discussed how an cconomical construction of

suftix tree with respect to space can be done.

Y, CTAGGs [/ Y

/ / k!
! / (S

4 7
TCTAGGS

Fig. 1. The sullix tree [

The Left and Right Extension Problems Revisited 7 7
We give here description of a suftix tee for an
arbitrary string X of length n over an alphabet X using
[1.6]. We follow this to show how a suffix tree can be

built foraset of strings.

Definition 1 A suffix tree of a n-character string x is a
rooted directed tree withéxa_ctly n leaves. numbered
| to n. Each internal node, other than the root. has at
least two children and each edge is labelled with a
nonempty substring of x. No two edges outa node can
have edge-labels beginning with the same characters.
The key feature of the suffix tree is that for any leafi.
the label of the path from the root to leaf 1 exactly

spells out the sutfix of x that start at position .

Note that the definition above does not guarantee the
existence of a suffix tree for any string x. The problem
is that if'a prefix of a suffix of x matches a suffix of x.

the path for the later suftix would not end at a leaf.
Therefore. to guarantee the existence of a suftix tree
for any string x, we place at the end of x a special
symbol that is not in the alphabet X.We use in this
paper. the symbol $. for the termination character.
Below is a suffix tree for x = GTATCTAGG. The
number at the leaves indicate the starting position ot

the corresponding suftixes.

. . GG 5
“-\ T e
- el
TCTALT S~
\
A}
e G
i .
|
|
= (s ,'l‘. i 3 i ‘*‘\.:"/7

Lo describe the fowest common ancestor problem. let us take the tollowing defimtions from Gustield|[6].

78 The Left and Right Extension Problems Revisited

Definition 2 Consider a rooted tree 1. a node u is
an ancestor of a node v if u is on the unique path
from the root to v and a proper ancestor of v refers

to an ancestor that is not v.

Definition 3 In 1. the lowest common ancestor
(Ica) of two nodes x and v is the deepest node in T
thatis an ancestor of both x and y.

The tollowing amazing result that helps to solve

t=}

the LCP in constant time is summarized in the

theorem that follows.

Theorem 1 After a linear amount of pre-
processing of a rooted tree, the LCA of any two

nodes can be found in constant time[7. 13].

This result finds application in prescribing
solution for the LCP problem in that the suftix tree
connects strings to the LCA problem, so that the
LCA of leaves i and j identifies the LCP of
sutfixes 1 and j. We have summarized in the
following the proof” of Schieber and Vishkin[13]
(reformulated using Gustield|6]) for theorem |

above.

Let B be a rooted complete binary tree with p

leaves (n = 2p - | nodes in totah). then every
internal node has exactly two cutidren and the
number of edges on the pativ from the root 1o ans

leaf'in Bisd = log, p. Furthermorc. ot node vor B
be assigned a d + | bit number, called its path
number, that encodes the unique path from the
root 1o v. A 0 for the 17/ bit from the left indicates
that the itk edges on the path goes to a left child.,
nd a1 oindicates @ right child. So that the
path ol node v in fig. 2(a) will be
00 and the root will be 1000000, 1f

i=6and we padded outtod + | bits by adding a 1

Ezekiel F. Adebiyi

to the right of the path bits followed by as many
additional Os as needed to make d + 1 bits.

Fig. 2(b) is an example of complete binary tree. Note
that the nodes are numbered as they are encountered
in a depth-first traversal. Let us assume that we can
execute the XOR of two binary numbers of size
O(log n) in constant time. shift a binary number (left
or right) by up to O(log n) bits in constant time and
find the position of the left-most or right-most [-bitin
a binary number in a consfam. Note that the XOR of
two bitsis | ifand only if the bits are different. and the
XOR of two d + | bit numbers is obtained by
independently taking the XOR of ecach bitof'the two
numbers. For example. the XOR of 00101 and 10011
is 10110. Therefore. using the XOR operation. in a

complete binary tree. we can find Ica(i: j). where i and

jare nodes as follows. in constant time in f1g. 3.

Using this algorithm. from fig. 2(b). it is casy to find
in constant time that the lca(5 (101). 7 (111))= 06
(110). To apply the above results to a general rooted
tree T, we need to map the nodes of T to the nodes of
B.insuchaway that LCAretrievals on B will provide
information to solve LCA queries on T . Note that.
although quite unwieldy and maybe um-
implenmental, a linear time pre-processing task can be
perform on T to map T to B and the first of all these is
traversing T in a depth-first manner. numbering the
nodes in the order that they are first encountered in
the traversal. This idea is also use in converting the
suliix tree to a rooted tree that enable the range
minimum queries. This actually complete the proof

of'thecorem !

Ezekiel F. Adebiyi The Left and Right Extension Problems Revisited 79

100
pd AN
A = \\
010 7, 6N HO

/'/’4

t/ 3 5// o &

001 011 1ol Y

—
/
/’/
/

Fig. 2. a) The 0010 path, b) A binary tree with four leaves. The path numbers are written

both in binary and in base ten.

1. BINARY-TREE-LCA(z,3)

2. r+ XOR(%, 7)

3. k — find the left-most 1-bit(r)

4, shift ¢ right by d + 1 — & places,

5. set the right most bit to a 1, and
6. shift it back left by d + 1 — k places

7. return the resulting new i

Fig. 3. The constant time algorithm that find LCA in a preprocessed complete t»inzxfy tres.

3.0 The LCAand RMQ problems tree). we use the suttix tree of GTATCTAGG in fig.
The new technical exposition given in this sectionis | in the following. Pre-processing the suffix tree as
based on the work of Kiefer|[10]. described above. that is, number the nodes in the
To show the direct application of RMQ to solving order that they are first encountered in the traversal.

the LCA in a suffix tree (and not in a general rooted The resulting suffix tree is shown in fig. 4 below.

80 The Left and Right Extension Problems Revisited

For clarity. we define the LCA and the RMQ
problems.

The LCA problem. The structure to query and
therefore pre-process is the rooted tree T with n
nodes. The LCA requires the following query to be
solved.

Query: Fornodes uand v of tree T, query LCA (u.v)

returns the least common ancestor of bothuand v.
We now take next the RMQ problem.

The RMQ problem. Here. the structure to pre-
process is a length n array L of numbers. The query

required is

Query: For indices 1 and j between | and n. query
RMQL(i.j) returns the index of the smallest element

inthe subarrav 1 |1...j].

We adopt the tfollowing notation to state clearly the
time needed for pre-processing and the time for

performing the actual query given. We therefore

write that if an algorithm has pre-processing time

f(n) and query time g(n), we then write that the

algorithm has the complexity <f(n), g(n)>.

T BN

.

TCTATRS -
.

10 s % 3
, \ 12

Yo

\

’,l'_u n Eh]
/N A 3 // e as
/ N, - J "/ - .
/ 5,
, 1
9
|

. ETAGGS
e LMY
e, v s
/ ~
g a0

102

TATCTAGECS

CTARGS : 1

2.4) preprocesserd sullix sree

Ezekiel F. Adebiyi

Since O(n) pre-processing is required to solve the
LCA in constant time. therefore. to solve the LCA
problem using the RMQ. we need to show that a
linear time transtormation of LCA to RMQ 1is
possible. This is the issue discuss in the next section
and we conclude it by showing that if'a constant time
solution exist to solve the RMQ problem. then there

exist, aconstant time then to solve the LCA problem.

Fig. 5. An Enler tour of the preprocessed sellix tree.

3.1 ALinear Reduction from LCA to RM(Q

Since the number ot a node in a sutfix tree is bounded
from above by O(n)[5]. a linear time reduction will
be possible via doing some tree traversal on the tree.
Thus. to have a detailed link of how the nodes are
connected via ancestors. a depth first search on the
tree to produce an Euler tour is more appropriate. For
the suftix tree in fig. S, this Euler tour can be shown
in an array E as follows. Additionally. we store the
various level. each node is, in the tree, in an array L.
These levels are shown in brackets behind the Euler

tour numbering.

Ezekiel F. Adebiyi

The Left and Right Extension Problems Revisited 81

Table 1. The Euler tour of the suffix tree in fig. 5 with additional level information.

Index

12345678910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29

array* £ 1213435657 5

318912

1210101212120

array L 0101212323 2101 2121 2

1010121210¢0

Furthermore. to enable us know the specific interval
to use in our attempt to use the RMQL to solve the
LCA -, we need to compute the first occurrences' of
all nodes in a Euler tour. This is given in an array R

oflength n below.

Table 2. The first occurrence array for all nodes.

node 1234567 8 9 101112131415

array B 1245781014 1517 19 22 24 25 27

Fromthe L array above. note that
Observation 1 The LCA of nodes u and v is the
shallowest node encountered between the visits to u

and to v during a depth first search traversal of T .

| —— =] . o
This must not be a first oceurrences. it may be in-fact any oceurrences

Using the above observation, and the foregone
arguments. it is now easy to prove the theorem that

follows.

Theorem 3 If there is an <O(n):O(1)>-solution for
RMQ. then there is an <O(n);0(1)>-solution er
LCA.

Proof. We first show that the LCA problem can be

reduce in linear time to the RMQ problem and the

solution of the RMQ is the current node expected
out for the LCA problem. We conclude the proot by
showing how the RMQ after the O(n) pre-

processing time can be solve in O(1) time.

The reduction is as follows. Given the tree T.
compute the arrays E. L. and R as we have discussed
above. Letassume that we can preprocess L in linear
time. To deal with the reduction problem of
translating the LCA to a RMQ problem. Note that
the initial problem. we have isaLCA (u.v). Now

e The nodes in the Euler tour between the first
visits to u and to v are E[R]u].....R[V]] (or
E[R[V].....R[u]]).

e The shallowest node in this sub-tour is at
index RMQ (R[ul.R[v]), since L[i] stores
the level of the node at E[i]. and the RMQ
will thus report the position ot the node with
minimum level. This is in line with
observation 1 above.

e The node at this

E[RMQL(R[U].R[VD]. which is thus the

output of LCA_ (u.v).

position 1s

And thus. we can- write that LCA (uyv) =
E[RMQ, (R[u].R[v])]. Note that the query time 1s
simply O(1), since the LCA query in this reduction
uses one RMQ query in L and three array references
R[u]. R[v] and E[RMQ (R[u].R[v])] at O(l) time
each. Therefore. we have a <O(n):O(1) -solution
for LCA.

82 The Left and Right Extension Problems Revisited Ezekiel F. Adebiyi

Using the algorithm in fig. 6. we now present the

For the‘solutmn to the génen‘al RMQ pleblelll. th-e required <O(n):0(1)>-algorithm for + RMQ.
BERACEI5-Eiekted {0~ and 1.0 ~.-To.end-his Above, the ST algorithm is based on a table of'size

summary. we will encapsulate below the solution to

R nlog n. The idea of'the algorithm that follows is a
a special case of the RMQ problem, the +tRMQ

further application of the divide-and-conquer
problem. The solution to the +RMQ problem is i
, technique to pre-compute answers on small sub-

sufficient to apply the longest common prefix : . .
' arrays thus removing the log tactor trom the pre-

solution required to solve the left and right)) ..
4 . = processing. To this end, an array L' of'size 2n/log n

extensions problem revisited in this paper. This . C . .
p pap 1s constructed, that stores minimums of blocks of

special case is as result of the +1 or -1 relationshi : ; . : : .
P ‘ P size logn/2 of L. Anarray L" is use to keep track of
in the adjacent elements of the array L.

3.2 An <O(n), O(1)>-Algorithm for+ RMQ 1. Sparse Table Algorithm(L}

To represent the <O(n).O(1)>-algorithm for+tRMQ 2. fill Matrix M using (4)
~of [10]. we need as subroutine a Sparse Table (ST) :
I’ _J Sk huebi i [(5D 3. for arbitrary pair (%,), compute RM QL (%, 7):
algorithm that was used to derive a <O(n log ; :

n).O(1)>-solution for the general RMQ. This 4, k= (log{; —1}]
algorithmis as follows.

5. get iy = M(z, k)
The ST algorithm is based on dynamic

. me = M — 9k)
programming. Here. we pre-compute each query 6. get ma = M(j — 2" + 1K)

whose length is a power of two and store our result " output minfm,,ma}
L4 | 1 1 2

in a matrix M. so that M[i: j] = m. such that L[m] =
)
minL[l.....i+2 -1]. Note that matrix M has size O(n

log n) and for every i between 1 and n and every j .6. The (O(nlog n), O(1))-algorithm for computing
between | and log n. each entry of matrix M store

5 . : . . i 7, 7) using (4) above.
the minimum element in the block starting at i and an arbitrary RMQy (i, 7) using (4) o

having length 2j . Matrix M is tilled dynamically

. . . . where each of the minima in L' came from. We name
using the following equation: ‘ € i :

the resulting <O(n),O(1)>- algorithm Optimal-

M1 LMt - 1)) < LMl =271 5 - 1)), RMQl -compute(L) and our version is given below in
Mg = 1) i % ;

Mli=2"%4 1] othcrwise, hg 7.

Using M. the following alporithin (see fig: 6), the To simplify our presentation, we did not include the
ST algorithm compute an arbitrary RMQ,(ij) by details as regard the gse of normalization property
o . between blocks in order to reduce the hidden
comparing the minimums of the two blocks that) K))

) k constant in the linear time required to preprocess
conver the sub-range 1 to). The two blocks i1 to 142 -1

&

) _ ') ~ blocks for the in-blocks RMQs required in steps 9.
2o -2 =1 are obtained via the largest block of S :
11, and 12. But the normalization idea used is

7o Zh. = = oz 7 — 2y thatfitthis sub-range. : . y o :
’ ang straight-forward and can be found in [10. 4].

Ezekiel F. Adehiyi
4.0 Our New Solutions for the Left and Right

Extension Problems

Two basic new solutions simplify the formal
solution for the leftand right problems.

They are
l. the LCP solution via the RMQ. and
1. Optimal RMQ L-compute()

2. partition L into blocks of sizc log n/2

3. fori=1...2n/logn, j=1.. .logn/2

4. compute Mi, j] using (4)
5. define array '[1...2n/logn)
6. define array L"[1...2n/logn]

7. for arbitrary pair (7, j) 5.t ¢ < 7, compute RMQr.(i, 7):

8. if(check-iFsame-block)

9. output(RAMQr(z, j))

10. else

1L, mi = RMQu(L'[¢), L{i + '°§* - 1))
12, my -~ min{L'[g], L'[5]}

13. my = RMQL{L'[j], L[j + &= - 1))
14. output min{m;i, ma, my}

Fig. 7. The {O(n),O(1)}- algorithm for computing an
arbitrary RMQpr(1,7) using (4) above.

2. the new simpler problem formulation to
solve the right extension problem, instead of
increasing the hidden constant through the

building otareversed string sutfix tree.

We take turn in the following sections to present our

solution to the extension problemsin (1) and (2).

The Left and Right Extension Problems Revisited 83

4.1 Left and Right Extension Problem under the

Hamming distance

Basically. tables T andT canbe computedin O(d)
using the LCP deduced from the suffix tree for the
two substrings involved. This is done as follows. For

q= 0, tor the right extension. we need to find the LCP
of suffixesjl +1 andj2+1, letthis be pl and then for ¢
= | (that is a mismatch is allow). we need to find the
LCP (say p2) between suffixes j1 +p1 +1 and j2 +pl
+1 and this also can be done in constant time. so that
the new longest common pretfix will end at j1 +pl +
p2 and j2 + pl + p2. We will continue this until we
reach q = d (mismatch allowed is d). The essence of
sections 2 and 3 is to show how we can simplity the
solution of the LCP problem using the RMQ.
Therefore, for the required LCPs in the solution
prescribed above. we make use of Optimal-RMQ -
compute(L) of fig. 7. saving a lot of overhead in
terms of space |

and complexity as regard

implementation.

To obtain relevant LCPs to solve the right extension
problem. a naive solution required that we construct
the suffix tree for the reverse-string of the subject
string[6].

But we can avoid this by noting that the problem
solvedinT_ . canbe reformulated as determining i'l.
12, such that their LCP with Hamming difference
allowed as required ends at il. i2. In other words.
determine p. such that H(x[il p.il - 1] x[i2-p:i2 -
ID=qand 'l +p=1!andi2 + p=i2. A multiple
application of RMQ will solve this. vielding to a O(d)

solution.

84 The Left and Right Extension Problems Revisited

4.2 Left and Right Extension Problem under the

Edit dist

ance

The formal method prescribed the use of computing

T..andT
in O(dn)
the spelli

+a Using the front(d) of the DP-matrix[15]
time. It is also important to note that using

ng approach ot Sagot|12], a new solution

that runs in O(n) can be obtained.

And this

can be improved but with much overhead

by combining the front(d) of the DP-matrix

-technique with the LCP technique in O(d2) time.

“ Also here. the use of the RMQ solution and an

important observation that avoid building reversal

string su

overhead

ffix wee have decrease signiticantly the

normally experienced in the O(d*) method.

5.0 Conclusion

The new

solutions discussed in this paper has been

used in the implementation of an algorithm for

oligonucleotides selection in an expressed sequence

tag sequences|2]. The formal solution was used in

the selection of repeats in DNA sequences[9]. Our

experimental experience has thus shown that true to

the wide spread notion. the formal solution

implementation is unwieldy and hard to implement

and our new techniques using the RMQ is void of the

overhead

challenges. in term of memory and high

hidden constant value in the complexity that are

paramount in the implementation of the formal

method.

Finally, the technical exposition given in

section 3 of'this paper is new and will help in the easy

implementation of the RMQ solution generally.

Acknowledgment

wank the anonymous referee of our paper

ot the Intl Workshop and Cont. on new

A\

oo Mathematical and Computer Science

real world problems, June 19-23.

Ezekiel F. Adebiyi

2000, whose careful review work necessitate the

new technical exposition in this paper. This work is

partial supported by the Covenant University

Senate Research Grant 2004/2003. Part of this work

was done, while the author was at LIRMM. France
ona CNRS-NEPAD special grant.

References

(OS]

6.

Adebiyi. E, F. (2002) Pattern Discovery in
Biology and String Sorting: Theory and
Experimentation. Shaker Publisher,
Aachen. Germany.

Adebiyi. E. I. (2006) Using Suttix tree for
efficient selection of unique oligos for large
EST databases. Submitted to WABI 2006
and International Journal of Bioinformatics
and Computational Biology (IJBCB)
Adebivi. E. F and Oyelade. J. O. (20006) A
Comparative Analysis of existing
Oligonucleotides Selection Algorithms and
Optimal Parallel Oligos Selection for large
EST Databases (Extended Abstraet).
Accepted (peer reviewed) proc. of the Intl
Workshop and Conf. on new trends in the
Mathematical and Computer Science with
applicaﬁon to real world problems. June 19-
23.2006. "

Bender, M. A. and Farach-Colton. M. The
LCA problem revisited. 88-94. LATIN
2000. ‘

A. Blumer A. Ehrenfeucht. and D. Haussler.
Average Size of Suftfix trees and DAWGS.
Discrete Applied Mathematics. 24. 37-45,
1989. |

Gustield, D. Algorithms on strings. trees
Cambridge

and sequences. L
Press, New York, 1997.

University

Ezekiel F. Adebiyi

7

9.

10.

,_.
(98]

Tarjan, R. (1984) Fast
Algorithms for Finding nearest Common

Ancestors. SIAM J. Computing 13: 338-35

Harel. D.. and

N

Kurtz. S, (1999) Reducing the Space
Requirement of Suffix Trees. Software-
Practice and Experience, 29(13):1149-1171.
Kurtz. S. and Ohlebusch. E., Schleiermacher,
C.. Stoye. J. and Giegerich. G. Computation
and Visualization of degenerate Repeats in
complete Genomes.
international conference ol ISMB. 228-238.
2000.

Kiefer. S.(2003) The Least Common Ancestor
Problem. Presented at the Winter School 2003.
St. Petersburg.

McCreight. E. M. (1976) A Space-Economical
Suffix Tree Construction Algorithm. Journal
of ACM 23(2):262-272.

Sagot. M-I, Spelling Approximate Repeated
or Common Motifs using a Suftix tree. LNCS
1380, 111-127.1998.

Schieber. B.. and Vishkin. U. (1998) On

Finding Lowest Common Ancestors. SIAM J.

Proceeding of

14,

16.

17.

18.

The Left and Right Extension Problems Revisited 85

Computing 17(6): 1253-1263.
Ukkonen. L. (19953)
Construction of Suffix
Algorithmica. 14:249-260.
Ukkonen, E. (1985) Algorithms for

Approximate

On-line

Trees.

String Matching.
Information and Control. 64:100-118.
Weiner, P. (1973) Lincar Pattern
Matching Algorithm. Proc. 14th [EEE
Sym. on Switching and Automata theory.,
I-11.
Zheng, J.. Close 1.

Lonardi. S. (2003) Effictent Selection of

Jiang. 1., and

Unique and Popular Oligos for Large
EST Databases. CPM 2003. [LNCS
2676.384-401.

Close. T..

Lonardi. S. (2004) Efficient Selection of

Zheng. J.. Jiang. 1.0 and
Unique and Popular Oligos for large EST
Databases. Bioinformatics. 20(13).

2101-2112.

