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Magnetohydrodynamic (MHD) natural convection flow and associated heat
convection in an oriented elliptic enclosure has been investigated with numerical
simulations. A magnetic field was applied to the cylindrical wall of the configura-
tion, the top and bottom walls of the enclosure were circumferentially cooled and
heated, respectively, while the extreme ends along the cross-section of the elliptic
duct were considered adiabatic. The full governing equations in terms of continu-
ity, momentum, and energy transport were transformed into nondimensional form
and solved numerically using finite difference method adopting Gauss–Seidel itera-
tion technique. The selected geometrical parameters and flow properties considered
for the study were eccentricity (0, 0.2, 0.4, 0.6, and 0.8), angle of inclination (0°,
30°, 60°, and 90°), Hartmann number (0, 25, and 50), Grashof number (104, 105,
and 106), and Darcy number (10−3, 10−4, and 10−5). The Prandtl number was held
constant at 0.7. Numerical results were presented by velocity distributions as well as
heat transfer characteristics in terms of local and average Nusselt numbers (i.e., rate
of heat transfer). The optimum heat transfer rate was attained at e value of 0.8. Also,
the heat transfer rate increased significantly between the angles of inclination 58°
and 90°. In addition, Hartmann number increased with decreased heat transfer rate
and flow circulation. A strong flow circulation (in terms of velocity distribution) was
observed with increased Grashof and Darcy numbers. The combination of the geo-
metric and fluid properties therefore can be used to regulate the circulation and heat
transfer characteristics of the flow in the enclosure. C ⃝ 2016 Wiley Periodicals, Inc.
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Highlights

– Numerical simulation of the effects of selected geometrical and fluid properties onMHD natural
convection in an inclined elliptic porous enclosure.

– Finite difference method adopting Gauss–Seidel iteration techniques is used to solve this
problem.

– Average Nusselt Number (Nua) for the parametric range 0.6 ≤ e < 1 is mixed convection
conduction.

– Local Nusselt number (Nu) increased for the parametric range 0.4 ≤ e < 1, that is, 0.4 to 0.8.

– Inclination angle increases significantly for the range 58° ≤ ∅ ≤ 90°, that is, 58° and 90°
inclination.

– Hartmann number effect increasing with decreasing flow circulation (i.e., velocity distribution).
Grashof and Darcy numbers effect increasing strongly with increasing flow circulation (velocity
distribution) for Grashof number = 106 and 10−4.

1. Introduction

One of the most important phenomenon in a thermal system is free or natural convection,
this is due to its wide applications in nature and engineering such as oceanic current, sea-wind,
fluid flows around shrouded heat dissipation fins, free air cooling without the aid of fans, electronic
cooling, heat exchanger between the soil and atmosphere, high performance insulation for buildings,
chemical catalytic reactors, food processing, electrochemistry, metallurgy, grain storage, cooling of
radioactive waste containers, solar collector energy, and compacted bed for the chemical industry to
mention a few [1, 2]

So far, many studies in the field of natural convection inside simple enclosures have been
performed so that it is a classic problem now. However, the natural convection heat transfer problem
inside an enclosure with a nonsimple shape and with different geometry is a topic that has recently
received more attention. Based on the published papers in the field, it can be claimed that the subject
has been seriously investigated with the development of numerical methods and related hardware in
the past two decades [3].

In the same vein, natural convection heat transfer inside irregular and complex shaped
enclosures has a wide variety of technology or engineering applications. This is because various
geometries have been receiving a growing interest recently due to their potential engineering
applications in electronic package, electronic equipment, solar power receivers, grain storage,
and so on. In fact, actual enclosures occurring in practice often have a geometry different from
a rectangular shape [4].The research of natural convection in porous media has been conducted
widely in recent years, which involves post-accidental heat removal in nuclear reactors, cooling and
radioactive waste, energy efficiency, drying processes, to mention a few [4].
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Also, magnetohydrodynamic (MHD) flows, which are the simplest plasma model, have been
the subject of a great number of empirical and theoretical investigations in physics. Most especially,
the MHD flow associated with heat transfer has received considerable attention so far, as their ap-
plication resides in many industrial fields, such as an MHD generator that transforms thermal and
kinetic energy directly into electrical energy by eliminating the boiler and turbine due to high operat-
ing temperature, electric propulsions for space exploration, crystal growth in liquids, cooling of nu-
clear reactors, microelectronic devices, electronic packages, geothermal energy extraction, boundary
layer control in the field of aerodynamic, electromagnetic casting and control mechanism in material
manufacturing industries among others [5, 6].

In addition, in industry, the quality of a crystal is affected adversely by instabilities in the
melt phase because instabilities impose temperature fluctuations at the solidification front and
leads to striations in the crystalline product. It is well known that applying a magnetic field to the
system leads to damping unavoidable hydrodynamic movement and consequently growing high
quality crystals. In general, the quality and homogeneity of single crystals growth from dripped
semiconductor melts are very important and interesting for the manufacture of semi and super
conductors [7]. Some other quite promising applications are pertinent to metallurgy, such as MHD
stirring of molten metal and magnetic levitation casting. In such cases, an electrically conducting
fluid becomes involved in a magnetic field [8].

Though many studies have begun to appear in the literature which deal with natural con-
vection heat transfer with or without porous media for non-rectangular enclosure shapes such as
triangular, L-shaped, trapezoid, elliptical, wavy, rhombic, parallelogram-shaped enclosures and so
on. Special attention is given to elliptic enclosures because of their increasing heat transfer coef-
ficient, reduction in the rate of heat transfer losses, creation of less resistance to the cooling fluid,
which results in less pumping power in the case of forced flow and in the case of power failure for
the case of natural convection. An elliptic geometry is flexible enough to approach a circular tube
when the axis ratio approaches unity and approaches a flat plate when the axis ratio becomes very
small [9, 10]. Mota and colleagues [11] investigated numerically natural convection in horizontal
eccentric elliptic annuli containing saturated porous media. Governing equations were solved in a
generalized orthogonal coordinate system using high-order compact finite differencemethod. Effects
of geometrical parameters such as eccentricity, ratio axis length of elliptic enclosure as well as cylin-
der were investigated on heat transfer rate at a constant Ra= 100 and hydraulic-radius ratio (2). They
concluded that the rate of heat transfer losses could be minimized by a proper choice of the elliptic
shape of a concentric annulus which could be further enhanced if the geometry was made eccentric.

The use of ducts with an elliptic cross-section has increased in modern engineering
heat transfer applications such as compact heat exchanger, flow passage and so on. Kakac and
colleagues [12] reported that the main advantage of using elliptic ducts over circular ducts was the
increasing heat transfer coefficient with the elliptic-shaped duct. Eid [13] investigated natural con-
vection heat transfer in elliptical annuli with different aspect ratio experimentally and numerically.
The study showed that natural convective heat transfer in concentric elliptic annuli increased by
about 40% more than the circular annuli having the same perimeter. Sakalis and colleagues [14]
reported laminar, incompressible hydrodynamically fully developed flows in straight elliptical ducts
with the aspect ratio varying from 0.25 to 0.99. The duct wall was subjected successively to constant
temperature, circumferentially uniform and axially linearly varying temperature. Numerical results
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obtained with an ADI scheme (alternating direction implicit) indicated that the friction factor
increased as aspect ratio decreased and high Nusselt number decreased as aspect ratio decreased.
Also, Nusselt numbers increased for small axial wall temperature distribution, which decreased
for large axial wall temperature values. Abdel-Wahed and colleagues [15] carried out an extensive
experimental investigation on laminar developing and fully developed flows and heat transfer in a
horizontal elliptical duct. The result predicted that the optimum heat transfer rate for a tube occurred
at eccentricity, e = 0.866. Mahfouz [16] studied numerically the buoyancy driven flow in an inclined
elliptic enclosure using Fourier Spectra method. He concluded that the angle of inclination increased
with the total rate of heat transfer for the case of a uniform wall temperature (UWT) while in case
of uniform heat flux (UHF), the increased angle of inclination decreased the mean temperature
of the inner wall of the enclosure. Ghasemi and colleagues [17] presented natural convection
between a circular enclosure and an elliptical cylinder using a control volume-based finite element
method. The result showed that the smaller the size of the elliptic cylinder, the more room for
flow circulation and the higher the strength of the flow regime. Bello-Ochende and Adegun [18]
reported a perturbation analysis of a combination of free and forced laminar convection in a tilted
elliptic cylinder. They concluded that the heat transfer and fluid results for the range of eccentricity,
0 ≤ e ≤ 1, showed that e = 0.866 the local Nusselt number exhibited significant dependence on the
azimuthal angle. It also indicated that the optimal value of mean Nusselt number occurred when
e = 0.866. Adegun and Oladosun [19] investigated a scale analysis of free and forced convection
heat transfer in an elliptic conduit. The results obtained showed that the generalized Nusselt number
was dependent solely on the eccentricity of the ellipse. It also indicated that the Nusselt number
at the end of minor axis was greater than that of the major axis [20]. Fatih and Hakan numerically
investigated MHD mixed convection in a nanofluid filled lid-driven square enclosure with a rotating
cylinder using the finite element method. They concluded that the averaged heat transfer rate
decreased with increased Hartmann number and 14.2% of the heat transfer enhancement was
obtained for a rotating cylinder as compared to the stationary case. Also, they found that magnetic
field application suppressed the velocity field flow and convection and in the same vein, it could be
used to control the local Nusselt number since it acted to increase the rate of heat transfer toward
the right end of the bottom wall of the configuration for the parametric range 0.35 ≤ X ≤ 0.75 [21].
Fatih and Hakan numerically studied MHD mixed convection of a nanofluid filled partially heated
triangular enclosure with a rotating adiabatic cylinder using Finite element method. They concluded
that an increased Hartmann number decreased the total entropy generation, local and averaged
Nusselt numbers. Also, they discovered that average Nusselt number increased with the Grashof
number to heat enhancement of 231.1% for Gr = 106 compared to the case at Gr = 104. Again, they
observed that angular rotational speed of the cylinder could be used as a control mechanism for
flow and temperature distribution within the triangular enclosure, and in the same vein, they found
that average heat transfer enhancements of 50.4% and 37.4% were obtained for a rotating cylinder
compared to the motionless case [22]. Fatih and Hakan numerically considered natural convection in
a nanofilled cavity having different shaped obstacles (circular, square, and diamond) installed under
the influence of a uniform magnetic field and heat generation using Galerkin weighted residual finite
element formulation. They found that the presence or application of the obstacles retarded the heat
transfer process and became more pronounced with higher values of Raleigh numbers. The average
heat transfer was reduced by 21.35%, 32.8%, and 34.64% for the cavity with circular, diamond,
and square shaped obstacles compared to the case without obstacles. They also discovered that the
topography and thermal patterns were affected by the application of a magnetic field, nanoparticles,
and different shaped obstacles [23]. Fatih and Hakan investigated the influence of inclination angle
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of the magnetic field on mixed convection of nanofluid flow over a backward facing step and entropy
generation using finite element method. They concluded that the averaged heat transfer increased as
the Reynolds number increased and the effect became enormous with higher values of inclination
angle of the magnetic field. Also, they noticed that as the value of the Hartmann number decreased
for a horizontal aligned magnetic field, the volume fraction of the nanoparticles increased the
average and local Nusselt numbers. It was also discovered that for the inclined and vertical magnetic
field, suppression of the recirculation behind the step was noticed as a result of the increased value
of Hartmann number. Israel and Amos [24] investigated numerically MHD oscillatory coquette flow
of a radiating viscous fluid in a porous medium with periodic wall temperature. They concluded
that the flow velocity increased with an increased magnetic field, Grashof number and the porosity.
Ahmed [25] used the finite volume method with a collocated grid to analyze the natural convection
in a parabolic enclosure. The heat transfer rate analyzed with local and average Nusselt numbers
for the bottom wall of the enclosure showed that the local heat transfer rate was larger for the
small value of the parabolic equation constant (C = 0.1) and also average heat transfer rate was
higher for the same constant value. Moghimi and colleagues [26] studied numerically natural
convection in an inclined L-shaped porous enclosure using the finite difference method via Marker
and Cell Approach (MAC). They concluded that decrement of Darcy number decreased the rate of
heat transfer and inclination angle had an important effect on isotherms and streamlines at a high
Rayleigh number. Habibis and colleagues [27] studied numerically natural convection flow in a
parallelogramic region filled with an electrically conducting fluid in a fluid saturated medium. They
concluded that the convection model within the enclosure was dependent on the Rayleigh number
and inclination angle. Hakan and colleagues [28] studied numerically the effect of joule heating
MHD natural convection in a nonisothermally heated enclosure. The results showed that the flow
was weaker near the right corner of the cavity due to a nonisothermal boundary condition.

Focus of the Work

The present study is an investigation of the effect of salient geometric parameters and fluid
properties on an electrically conducting fluid flow within an inclined elliptic porous enclosure sub-
jected to localized heating. The authors used the finite difference method adopting the Gauss–Seidel
iteration technique. A physical model of the problem is shown in Fig 1. The whole cross-section
of an elliptic domain was used in the numerical computation. The duct walls required circumferen-
tially cooled and heated regions A1A2 and B1B2 as well as major and minor diameters, “a” and “b,”
respectively. For the discretization of the governing equations, the central difference quotients were
used for the second-order derivatives. Algebraic equations obtained for each variable were solved by
a simple form of the Gauss–Seidel iteration procedure because it generates a well-refined estimate
of the solution and its error could be controlled by the number of iterations. A computer algorithm
was developed to simulate the fluid flow and heat transfer in the enclosure.

Nomenclature

b: minor diameter of the enclosure
a: major diameter of the enclosure
Ar: aspect ratio
B0: magnitude of the magnetic field, Tesla
Cp: specific heat at constant pressure J/kg °C
Dh: hydraulic diameter, m

5



Fig. 1. Schematic diagram of the physical model of the problem. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com/journal/htj.]

g: gravitational acceleration, m/s2

Ha: Hartmann number = ( B0a
√
Qe

𝜌𝜈
)

Da: Darcy number, (k/a2)

Gr: Grashof number = ( g.𝛽.ΔTa
3

𝜈2
)

Pr: Prandtl number = ( 𝜈
𝛼
)

UR: dimensionless velocity component in radial direction
𝐔∅: dimensionless velocity component in Azimuthal direction
k: thermal conductivity, W/m °C
K: permeability of the saturated porous medial,m2

P: dimensionless pressure
p: pressure, N/m2

NU: local Nusselt number
NUa: average Nusselt number
q: heat flux, W/m2

RR: radial direction
r: dimensional radius
R: dimensionless radius
t: dimensional temperature
T: dimensionless temperature

6



Greek symbols

𝛼: thermal diffusivity = 𝐦2

𝐬
𝛽: volumetric thermal expansion coefficient,K−1

𝜑: dimensionless stream function
�: dimensionless heat generation or absorption parameter

e: dimensionless ellipse, eccentricity = (
√
1 − Ar2)

Ө: enclosure inclination angle, °C
∅ ∶ azimuthal angle

v: fluid kinematic viscosity, m2

s
p: fluid density, kg

m3

𝝈e ∶ fluid electrical conductivity, W/m °C

Abbreviation

MHD: magnetohydrodynamics
Eq.: equation
CFD: computational fluid dynamics

2. Mathematical Modeling

This section presents the physical model of an inclined elliptic enclosure with localized heat-
ing. Governing equations of continuity, momentum, and energy transport were nondimensionalized
using some heat transfer indices. The resulting nonlinear system of partial differential equations
were solved using the finite difference method adopting the Gauss–Seidel iteration technique.

The MHD natural convection flow of an elliptic enclosure of major diameter, a, and minor
diameter, b, filled with a fluid saturated porous medium is considered as shown in Fig. 1 along with
the important geometry parameters. The top A1A2 and bottom B1B2 walls are simultaneously cooled
and heated, respectively, and the two extreme ends along the cross-section of the elliptic ducts are
considered adiabatic. An external magnetic field of magnitude (B0) is applied on the cylindrical
wall of the enclosure and at an angle 𝜃 to the inclined side wall. The Hartmann number is varied
as 0≤ Ha ≤ 50 , the Darcy number is taken as Da≤ 10−3, 10−4, and 10−5, the Grashof number is
varied as 104 ≤ Gr ≤ 106 to cover both buoyancy and magnetic field dominant flow regimes, the
Prandtl number is held constant at Pr = 0.7, eccentricity varied as 0, 0.2, 0.4, 0.6, and 0.8 while the
elliptical enclosure inclination angle is varied as00 ≤ 𝜃 ≤ 900, respectively. The specific boundary
conditions for the enclosure at the elliptic wall with all relevant parameters considered in the domain
are all included in the governing equations.

2.1 Basic assumptions

The following assumptions are made in the present work:

(i) The flow is assumed to be two dimensional (2D), that is, there is no flow in the axial
direction.
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(ii) Steady-state condition is also assumed, that is, 𝜕U
𝜕t

= 𝜕V
𝜕t

= 𝜕T
𝜕t

= 0.

(iii) Velocity components at the walls are zero, that is,Ur = U∅ = 0, no slip boundary
condition.

(iv) Gravity acts vertically downward.

(v) The axial heat fluxes in the fluid are negligible.

(vi) Viscous dissipation effects are considered to be negligible.

(vii) The working fluid is considered an electrically conducting Newtonian fluid.

(viii) Radiation and joule heating effects are negligible.

(ix) The flow is considered incompressible, that is, 𝜌 = constant.

2.2. Governing equations and geometrical configurations

2.2.1. The dimensional form of the governing equations

The governing equations are formulated based on the assumptions made in 2.1, the flow
and thermal fields inside the elliptic enclosure are modeled by the Navier–Stokes and the energy
equations, respectively, which are given in a primitive or dimensional form as follows, Verzicco and
Orlandi [29]:

2.2.2. Continuity equation

The dimensional form of continuity governing equation is given as,

𝜕Ur
𝜕r

+
Ur
r

+ 1
r
.
𝜕U𝜙

𝜕𝜙
= 0 . (1)

2.2.3. Radial direction (r)

The dimensional form of momentum governing equation in the radial direction is given as

A = B + C − D, (2a)

where

A = 𝜌

[
𝜕Ur
𝜕t

+
Ur𝜕Ur
𝜕r

+
U𝜙

r
.
𝜕Ur
𝜕𝜙

−
U𝜙

2

r

]
, (2b)

B = 𝜌g𝛽
(
t − tre f

)
cos 𝜃 −

𝜕 p

𝜕r
, (2c)
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C = 𝜇

[
𝜕2Ur
𝜕r2

+ 1
r2

.
𝜕2Ur
𝜕𝜙2 + 1

r
.
𝜕Ur
𝜕r

− 2
r2

.
𝜕U𝜙

𝜕𝜙
−
Ur
r2

]
− 𝜌𝜐

k
Ur , (2d)

D = 𝜎eB0
2𝜐. (2e)

Dividing Eq. (2a) through by 𝜌, yields

Y = A + B − C , (3a)

where

Y =

[
𝜕Ur
𝜕t

+
Ur𝜕Ur
𝜕r

+
U𝜙

r
.
𝜕Ur
𝜕𝜙

−
U𝜙

2

r

]
, (3b)

A = g𝛽
(
t − tre f

)
cos 𝜃 −

𝜕 p

𝜌𝜕r
, (3c)

B = 𝜐

[
𝜕2Ur
𝜕r2

+ 1
r2

𝜕2Ur
𝜕𝜙2 + 1

r

𝜕Ur
𝜕r

− 2
r2

.
𝜕U𝜙

𝜕𝜙
−
Ur
r2

]
− 𝜐

k
Ur , (3d)

C =
𝜎eB0

2

𝜌
𝜐. (3e)

For a steady-state condition,

𝜕u
𝜕t

= 0. (3f)

Therefore, Eq. (3a) becomes

K = X + Y − Z , (4a)

where

K =
Ur𝜕Ur
𝜕r

+
U𝜙

r
.
𝜕Ur
𝜕𝜙

−
U𝜙

2

r
, (4b)

X = g𝛽
(
t − tre f

)
cos𝜃 −

𝜕 p

𝜌𝜕r
, (4c)

Y = 𝜐

[
𝜕2Ur
𝜕r2

+ 1
r2

𝜕2Ur
𝜕𝜙2 + 1

r

𝜕Ur
𝜕r

− 2
r2

.
𝜕U𝜙

𝜕𝜙
−
Ur
r2

]
− 𝜐

k
Ur , (4d)

Z =
𝜎eB0

2

𝜌
𝜐. (4e)

2.2.4. Azimuthal direction (𝝓)

The dimensional form of governing equation in the azimuthal direction is given as

Q = P + R − T , (5a)

where

Q = 𝜌

[
𝜕U𝜙

𝜕t
+
Ur𝜕U𝜙

𝜕r
+
U𝜙

r

𝜕U𝜙

𝜕𝜙
+
UrU𝜙

r

]
, (5b)
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P = 𝜌g𝛽
(
tw − tre f

)
sin𝜃 − 1

r

𝜕 p

𝜕𝜙
, (5c)

R = 𝜇

[
𝜕2U𝜙

𝜕r2
+ 1
r2

𝜕2U𝜙

𝜕𝜙2 + 1
r

𝜕U𝜙

𝜕r
+ 2
r2

.
𝜕Ur
𝜕𝜙

−
U𝜙

r2

]
, (5d)

T = 𝜌𝜐

k
U𝜙. (5e)

Dividing Eq. (5a) through by 𝜌, yields

S = U + V −W , (6a)

where

S =
[
𝜕U𝜙

𝜕t
+
Ur𝜕U𝜙

𝜕r
+
U𝜙

r

𝜕U𝜙

𝜕𝜙
+
UrU𝜙

r

]
, (6b)

U = g𝛽
(
t − tre f

)
sin 𝜃 − 1

𝜌r

𝜕 p

𝜕𝜙
, (6c)

V = 𝜐

[
𝜕2U𝜙

𝜕r2
+ 1
r2

𝜕2U𝜙

𝜕𝜙2 + 1
r

𝜕Ur
𝜕r

+ 2
r2

.
𝜕Ur
𝜕𝜙

−
U𝜙

r2

]
, (6d)

W = 𝜐

k
U𝜙. (6e)

For a steady-state condition,

𝜕U𝜙

𝜕t
= 0 , (6f)

F = G + H − I , (7a)

where

F =
[Ur𝜕U𝜙

𝜕r
+
U𝜙

r

𝜕U𝜙

𝜕𝜙
+
UrU𝜙

r

]
, (7b)

G = g𝛽
(
t − tre f

)
sin 𝜃 − 1

𝜌r

𝜕 p

𝜕𝜙
, (7c)

H = 𝜐

[
𝜕2U𝜙

𝜕r2
+ 1
r2

𝜕2U𝜙

𝜕𝜙2 + 1
r

𝜕Ur
𝜕r

+ 2
r2

.
𝜕Ur
𝜕𝜙

−
U𝜙

r2

]
, (7d)

I = 𝜐

k
U𝜙. (7e)

2.2.5. Energy transport equation

The primitive energy transport governing equation is given as,

k𝜕2t
𝜕r2

+ k
r2

.
𝜕2t
𝜕𝜙2 + k

r
.
𝜕t
𝜕r

= 𝜌Cp

[
Ur

𝜕t
𝜕r

+U𝜙

𝜕t
r𝜕𝜙

]
. (8)
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2.3. Normalized boundary conditions

The dimensionless boundary conditions of the elliptic enclosure are expressed as follows:

Ur = U∅ = 0 . (9)

The boundary condition along the walls of the elliptic duct is the no-slip condition and im-
permeability.

The upper circumferential elliptic wall of the enclosure is maintained at constant cold tem-
perature (Tc) so that

Ur = U𝜙 = T = 0. (10)

The inclined lower circumferential elliptic wall of the enclosure is subjected to a constant
heat flux,

𝜕q

𝜕r
= 0. (11)

The two extreme ends are considered adiabatic:

𝜕T
𝜕r

= 0. (12)

2.4. The normalized governing equations

It is regarded that the results of this study be valid for all physical model (within the scope
of the study). It is therefore necessary to express the dimensional governing equations and the as-
sociated boundary conditions in the nondimensional form, so that the results thus obtained could be
generalized for a wide variety of physical situations. Hence the following dimensionless quantities
or transforming parameters are considered in the present work:

2.4.1. Transforming parameters

R = r
a
, UR =

ura

𝜐
, U𝜙 =

u𝜙a

𝜐
, P =

p

pre f
, T =

t − tre f
Δt

, ΔT =
qa

k
,

Pr = 𝜐

𝛼
=

𝜌Cp𝜐

k
, Ra =

g𝛽ΔTa3

𝜐𝛼
, Ha =

B0a
√
𝜎e√

𝜌𝜐
,Gr =

g𝛽ΔTa3

𝜈2
,

Da = k
a2

,Δ =
Q0a

2

𝜌𝛼Cp
, UR = 1

R
𝜕𝜓

𝜕𝜙
, U𝜙 = −𝜕𝜓

𝜕R
, R = r

a
= 𝜂 =

√
1 − e2

1 − e2sin2𝜙
.

2.4.2. Normalized continuity equation

𝜕UR

𝜕R
+

UR

R
+

𝜕U∅
R𝜕𝜙

= 0 . (13)
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2.4.3. Normalized momentum equations
2.4.3.1. Radial direction

The normalized momentum equation in radial direction is given as

B = A − C − K , (14a)

where

B = UR ⋅
𝜕UR

𝜕R
+

U𝜙

R
⋅
𝜕UR

𝜕𝜙
−

U𝜙
2

R
, (14b)

A = A = Gr cos 𝜃, (14c)

C =
[
𝜕P
𝜕R

−
𝜕2UR

𝜕R2 − 1
R2 ⋅

𝜕2UR

𝜕𝜙2 − 1
R

⋅
𝜕UR

𝜕R

]
, (14d)

K =
[
2
R2 ⋅

𝜕V
𝜕𝜙

+
UR

R2 +
UR

Da
+ Ha2

]
. (14e)

2.4.3.2. Azimuthal direction

The normalized momentum equation in azimuthal direction is given as

B = A − L + D, (15a)

where

B =
[
UR ⋅

𝜕U∅
𝜕R

+
U𝜙

R
⋅
𝜕U∅
𝜕𝜙

+
URU∅
R

]
, (15b)

A = Gr sin 𝜃, (15c)

L =

[
1
R

⋅
𝜕 p

𝜕𝜙
−

𝜕2U∅

𝜕R2 − 1
R2 ⋅

𝜕2U∅

𝜕𝜙2

]
, (15d)

D =
[
𝜕UR

𝜕R
+ 2
R2 ⋅

𝜕UR

𝜕𝜙
−

U𝜙

R2 −
U𝜙

Da

]
. (15e)

2.4.4. Normalized energy transport

The normalized energy transport governing equation is expressed below as

𝜕2T
𝜕R2 + 1

R2 ⋅
𝜕2T
𝜕𝜙2 + 1

R
⋅
𝜕T
𝜕R

= Pr

[
UR ⋅

𝜕T
𝜕R

+ ⋅U𝜙

𝜕T
R𝜕𝜙

]
. (16)

2.5. Finite difference analogue (FDA) of the normalized governing equations (discretization)

Finite difference approximations replace functions by their corresponding difference quo-
tients. Generally, the domain under consideration is divided into grids or meshes, which can be
of any shape. Points of intersection of the mesh lines form the node, which serves as a point of
evaluation.

12



The method is considered approximate in that the derivative at a given point is represented
by a derivative taken over a finite interval across the point. However, the accuracy of such an approx-
imation can be controlled by choosing the interval as small as possible at the expense of increased
computational efforts resulting in increased number of algebraic equations. [30]

Considering the computational model for an elliptic domain in Fig. 1

(i) The duct wall requires “simultaneous cooled and heated regions A1A2” and “B1B2”

(ii) Major and minor diameters are a and b, respectively.

2.5.1. FDA of normalized continuity equation

The mathematical expression below shows the FDA for the continuity governing equation
from Eq. (13) given as

𝜕UR

𝜕R
+
UR

R
+ 1
R

⋅
𝜕U∅
𝜕∅

= 0,

𝜕UR

𝜕R
=
URi+1, j −Ui , j

ΔR
, (17a)

1
R

= 1
Ri , j

, (17b)

𝜕U∅

𝜕∅
=
U∅i , j+1 −U∅i , j

Δ∅
, (17c)

UR

R
=
URi , j

Ri , j
. (17d)

Substituting Eqs. (17a) to (17d) into Eq. (13), yields

URi , j =
URi+1, j ⋅ Ri , j +

(
U∅i , j+1 −U∅i , j

)(
ΔR
Δ∅

)
Ri , j − ΔR

. (17e)

Simplifying Eq. (17e) gives the discretized form of continuity equation

URi , j =
Ai , j

(
URi+1, j

)
+ C

(
U∅i , j+1 −U∅i , j

)
Di , j

, (17f)

where Ai , j = Ri , j , (17g)

C = ΔR∕Δ∅, (17h)

Di , j = Ri , j − ΔR. (17i)

13



2.5.2. FDA of the normalized momentum equation

The mathematical expression below shows the FDA of normalized momentum governing
equation in Eq. (14a) given as

B = A − C − K ,

where

B = UR ⋅
𝜕UR

𝜕R
+

U𝜙

R
⋅
𝜕UR

𝜕𝜙
−

U𝜙
2

R
,

A = Gr cosΔ,

C =
[
𝜕P
𝜕R

−
𝜕2UR

𝜕R2 − 1
R2 ⋅

𝜕2UR

𝜕𝜙2 − 1
R

⋅
𝜕UR

𝜕R

]
,

K =
[
2
R2 ⋅

𝜕V
𝜕𝜙

+
UR

R2 +
UR

Da
+ Ha2

]
,

UR = URi , j , (18b)

U∅ = U∅i , j , (18c)

𝜕UR

𝜕R
=
URi+1, j −URi , j

ΔR
, (18d)

U∅
R

=
U∅i , j

Ri , j
, (18e)

𝜕UR

𝜕∅
=
URi , j+1 −URi , j

Δ∅
, (18f)

𝜕2UR

𝜕R2 =
URi+1, j − 2URi , j +URi−1, j

ΔR2 , (18g)

𝜕P
𝜕R

= ΔP
ΔR

, (18h)

𝜕2UR

𝜕∅2
=
URi , j+1 − 2URi , j +URi , j−1

Δ∅2
, (18i)

U∅
2

R
=

(
U∅i , j

)2

ΔR
, (18j)

1
R2 = 1

R2
i , j

, (18k)

UR

R2 =
URi , j

R2
i , j

, (18l)

𝜕U∅
𝜕∅

=
U∅i , j+1 −U∅i , j

Δ∅
, (18m)
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2
R2 = 2

R2
i , j

, (18n)

UR

Da
=
URi , j

Da
, (18o)

Substituting Eqs. (18b) to (18o) into Eq. (14a) yields

i , j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Gr cos 𝜃 − 1
ΔR

(
U∅i+1, j
Ri , j

− ΔP
)
+

URi+1, j−URi−1, j
ΔR

+ 1
R2
i , jΔ∅

(
Ui , j+1+Ui , j−1

Δ∅ − 2
(
U∅i , j+1 −U∅i , j

))
− 1
Ri , j

(
U∅i , j ⋅URi , j+1

Δ∅ +
(
U∅i , j

)2
)
− Ha2

1
ΔR

((
URi+1, j −URi , j

)
+ 2

ΔR

)
+ 1

Ri , j

(
1
ΔR −

U∅i , j
Δ∅

)
+ 1

R2
i , j

(
2

Δ∅2 + 1
)
+ 1

Da

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18p)

UR i , j
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Gr cos 𝜃 − C

(
URi+1, j
Ri , j

− ΔP
)
+

URi+1, j−URi−1, j
ΔR

+Di , j
(
URi , j+1+URi , j−1

Δ∅ − 2
(
U∅i , j+1 −U∅i , j

))
−Ai , j

(
U∅i , j ⋅U∅i , j+1

Δ∅ +
(
U∅i , j

)2
)
− Ha2

C
((
URi+1, j −URi , j

)
+ 2

ΔR

)
+ Ai , j

(
C −

U∅i , j
Δ∅

)
+ Bi , j

(
2

Δ∅2 + 1
)
+ 1

Da

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18q)

where

Ai , j =
1
Ri , j

, (18r)

Bi , j =
1
R2
i , j

, (18s)

C = 1
ΔR

. (18t)

15



2.5.3. Azimuthal direction (∅)

The mathematical expression below explains the FDA of normalized momentum governing
equation in an azimuthal direction from Eq. (15a) given as

B = A − L + D,

where

B =
[
UR ⋅

𝜕U∅
𝜕R

+
U𝜙

R
⋅
𝜕U∅
𝜕𝜙

+
URU∅
R

]
,

A = Gr sin 𝜃,

L =

[
1
R

⋅
𝜕 p

𝜕𝜙
−

𝜕2U∅

𝜕R2 − 1
R2 ⋅

𝜕2U∅

𝜕𝜙2

]
,

D =
[
𝜕UR

𝜕R
+ 2
R2 ⋅

𝜕UR

𝜕𝜙
−

U𝜙

R2 −
U𝜙

Da

]
,

UR𝜕U∅
𝜕R

=
URi , j ⋅

(
U∅i+1, j −U∅i , j

)
ΔR

, (19a)

U∅
R

⋅
𝜕U∅
𝜕∅

=
U∅i , j

Ri , j
⋅

(
U∅,i , j+1 −U∅i , j

)
Δ∅

, (19b)

URU∅
R

=
URi , j ⋅U∅i , j

Ri , j
, (19c)

1
R

⋅
𝜕P
𝜕∅

= ⋅P
Ri , jΔ∅

, (19d)

𝜕2U∅

𝜕R2 =
U∅i+1, j − 2U∅i , j +U∅i−1, j

ΔR2 , (19e)

1
R2 ⋅

𝜕2U∅

𝜕∅2
=
U∅i , j+1 − 2U∅i , j +U∅i , j−1

R2
i , j Δ∅

2
, (19f)

2
R2 ⋅

𝜕UR

𝜕∅
= 2
R2
i , j

(
URi , j+1 −URi , j

)
Δ∅

, (19g)

U∅

R2 =
U∅i , j

R2
i , j

, (19h)

U∅
Da

=
URi , j

Da
. (19i)

Substituting Eqs. (19a) to (19i) into Eq. (15a) gives

K (A + B + C) = D − E − M (F + G + H ) + N (I + J ) , (19.1a)
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where

K = U∅i , j , (19.1b)

A =
( 1
ΔR

( 2
ΔR

−URi , j

))
, (19.1c)

B = 1
Ri , j

((
U∅i , j+1 −U∅i , j

Δ∅

)
+URi , j

)
, (19.1d)

C = 1
R2
i , j

(
2

Δ∅2
+ 1

)
+ 1
Da

, (19.1e)

D = Gr sin 𝜃, (19.1f)

E = 𝜃P
Ri , j 𝜃∅

, (19.1g)

M = 1
ΔR

, (19.1h)

F =
(
URi , j ⋅U∅i+1, j

)
, (19.1i)

G =
(
URi+1, j −URi , j

)
, (19.1j)

H =

(
U∅i+1, j +U∅i−1, j

ΔR

)
, (19.1k)

N = 1
R2
i , j Δ∅

, (19.1l)

I =

(
U∅i , j+1 +U∅i , j−1

Δ∅

)
, (19.1m)

J = 2
(
URi , j+1 −URi , j

)
. (19.1n)

Further simplification gives

U∅i , j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Gr sin 𝜃 − ΔP
Ei , j

− C
((
URi , j ⋅U∅i+1, j

)
+
(
URi+1, j −URi , j

)
+

U∅i+1, j+U∅i−1, j
ΔR

)
+Bi , j

((U∅i , j+1+U∅i , j−1
Δ∅

)
+ 2

(
URi , j+1 −URi , j

))
(
C
(

2
ΔR −URi , j

))
+ Di , j

((U∅i , j+1−U∅i , j
Δ∅

)
+URi , j

)
+ Ai , j

(
2

Δ∅2 + 1
)
+ 1

Da

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(19.2a)
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where

Ai , j =
1
R2
i , j

, (19.2b)

Bi , j =
1

R2
i , j Δ∅

, (19.2c)

C = 1
ΔR Re

, (19.2d)

Di , j =
1
Ri , j

, (19.2e)

Ei , j =
1

Ri , j Δ∅
. (19.2f)

2.5.4 Energy Transport Equation

The mathematical expression below shows the finite difference analogue for the normalized
energy transport governing equation from Eq. (16) given as

𝜕2T
𝜕R2 + 1

R2 ⋅
𝜕2T
𝜕∅2

+ 1
R

⋅
𝜕T
𝜕R

= Pr

[
UR ⋅

𝜕T
𝜕R

+U∅ ⋅
𝜕T
R𝜕∅

]

𝜕T
𝜕R

=
−Ti , j
ΔR

(20a)

𝜕2T
𝜕R2 =

Ti+1, j − 2Ti , j + Ti−1, j

ΔR2 (20b)

𝜕T
R𝜕∅

=
Ti , j+1 − Ti , j

RΔ∅
(20c)

𝜕2T
𝜕∅2

=
Ti , j+1 − 2Ti , j + Ti , j−1

Δ∅2
(20d)

Substituting equations (20a – 20d) into equation 16, yields

L + I + S = T (E + N) (20.1a)

Where

L =
Ti+1, j − 2Ti , j + Ti−1, j

ΔR2 (20.1b)

I = 1
R2
i , j

⋅

(
Ti , j+1 − 2Ti , j + Ti , j−1

)
Δ∅2

(20.1c)

S = 1
Ri , j

⋅

(
Ti+1, j − Ti , j

)
ΔR

(20.1d)

T = Pr (20.1e)
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E = URi , j

(
Ti+1, j − Ti , j

)
ΔR

(20.1f)

N = U∅i , j

(
Ti , j+1 − Ti , j

)
Ri , jΔ∅

(20.1g)

P (R) = Y + D − U − C − T (20.2a)

Where
P = Ti , j (20.2b)

R =

(
−2
ΔR2 − 2

R2
i , jΔ∅

2
− 1
Ri , jΔR

+
Pr ⋅URi , j

ΔR
+
Pr ⋅U∅i , j

Ri , jΔ∅

)
(20.2c)

Y =
Pr

(
URi , j ⋅ Ti+1, j

)
ΔR

(20.2d)

D =
Pr ⋅

(
U∅i , j ⋅ Ti , j+1

)
Ri , jΔ∅

(20.2e)

U =
(Ti+1, j + Ti−1, j

ΔR2

)
(20.2f)

C =

(
Ti , j+1 + Ti , j−1

R2
i , jΔ∅

2

)
(20.2g)

T =
(
Ti+1, j

)
Ri , jΔR

(20.2h)

Ti , j =

⎡⎢⎢⎢⎢⎣
C

(
URi , j ⋅Ti+1, j

)
ΔR +

U∅i , j
(
Ti , j+1

)
Ri , jΔ∅

−
(
Ti+1, j+Ti−1, j

ΔR2

)
−
(
Ti , j+1+Ti , j−1
R2
i , jΔ∅

2

)
− Ti+1, j

Ri , jΔR
+

−2
ΔR2 −

2
R2
i , jΔ∅

2 − Ai , j + C

(
URi , j

ΔR +
U∅i , j
Ri , jΔ∅

)
⎤⎥⎥⎥⎥⎦
(20.3a)

Where
C = Pr , (20.3b)

Ai , j =
1

Ri , jΔR
(20.3c)

3. The Method of Solution

3.1. Solution techniques

The dimensionless governing equation with its associated boundary conditions were solved
numerically using finite difference method adopting Gauss–Seidel technique. For the discretization
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of the governing equations, the central difference quotients were used for the second-order deriva-
tives and forward difference were used for the first-order derivative. The algebraic equations obtained
for each variable were solved by simple form of Gauss–Seidel iterative procedure because it gen-
erates a well-refined estimate of the solution and its error could be controlled by the number of
iterations. The central difference quotients were used to appropriate the derivatives in both radial
(R) and Azimuthal (∅) directions.

Convergence criteria (10−6) is chosen for all dependent variables and the value of (0.1) is
used for the under relaxation parameters the approach similar to [2]. The number of grid points is
taken as (48 × 192) with uniform spaced mesh in both R and ∅ directions. Consequently, the Nusselt
numbers, surface heat transfer coefficient, velocity, and temperature distributions were obtained from
the numerical simulation once the convergence criteria was satisfied.

3.2. Computational procedure

The whole cross-section for laminar natural convection flow in an elliptic enclosure filled
with porous medium was used in the numerical computation. The velocity fields were numerically
evaluated from the momentum transport equations and its associated boundary conditions. The ve-
locity obtained was then used for the evaluation of energy transport equations for the generation of
temperature distribution for the fluid region.

Computed values for Nusselt number, average or mean velocity, flow temperature distribu-
tions, effect of eccentricity on the tube, and heat transfer rate in the enclosure were evaluated by
varying the following dimensionless controlling parameters: Grashof number, Darcy number, Hart-
mann number, and enclosure inclination angle.

3.3. Heat transfer analysis

After obtaining the stream function and temperature distribution, the flow and heat trans-
fer characteristics are easily determined. The heat transfer rate are presented in terms of local and
average Nusselt numbers, that is, Nu and Nua [16].

Nusselt number is a nondimensional parameter indicative of the ratio of energy convection
to conduction [31]:

Nu =
hDh

k
. (21a)

For equation of conduction

qcon = k
dT
dr

. (21b)

Similarly for convection heat transfer mechanism,

qconv . = h(Tw − T f ). (21c)
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If assumes that the heat conduction equal to heat convection, that is,

qcon = qconv (21d)

implies that,

k
dT
dr

= h(Tw − T f ). (21e)

Making h the subject of the equation gives,

h =
K dT

dr

Tw − T f
. (21f)

From Eq. (21a), that is, Nu = hDh
k

, Nu becomes,

Nu =
hDh

k
=

k dT
dr(

Tw − T f
)
k
.Dh (21g)

Nu =
dT
dr(

Tw−T f
) × Dh , (21h)

where

Dh = 4A
P

, (21i)

A = cross − sectional area (21j)

P = watted perimeter, (21k)

Dh = 4𝜋 (ab)
𝜋 (a + b)

= 4ab
a + b

=
4a

√
1 − e2

1 +
√
1 − e2

. (21l)

4. Grid Testing and Validation of the Numerical Results

To verify the grid independence of the solution scheme, numerical experiments were per-
formed as shown in Table 1. Different mesh sizes were used for the case of resolution at Gr = 106 ,
Ha = 25, Da = 10−3 , 𝜃 = 300, e = 0.8, and Pr = 0.7.

Table 1. Comparison of average Nusselt number along the bottom heated wall of the elliptic
enclosure for different grid resolution at Gr = 106, Ha = 25, Da = 10−3, 𝜽 = 300, e = 0.8, Pr = 0.7

Mesh sizes in radial and azimuthal directions 18 × 66 33 × 129 48 × 192 63 × 255

NUa 3.33917 3.34816 3.35077 3.35867
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The present code is tested for grid independence by calculating the average Nusselt number
at the bottom heated wall of the enclosure. Convergence criteria (10−6) is chosen for all dependable
variables and the value of (0.1) is used for the relaxation parameters the approach similar to Ref. [2].
It is found that a grid size (48 × 192) ensured a grid independent solution for the present study as
shown in Table 1.

The results of the present work for 0 ≤ e ≤ 1 was compared with the one reported by Bello–
Ochende and Adegun [18] on perturbation analysis of combined natural and forced convection in a
tilted elliptic cylinder. The comparison was made for the above parametric range, the results showed
that for e = 0.866, the local Nusselt number exhibited significant dependence on the azimuthal angle
and also indicated that the optimal value of mean Nusselt number (Nua) occurred at e = 0.866.
When compared with the present study, there was an excellent agreement. Also, the work reported
by Adegun and Oladosu [19] on scale analysis of natural and forced convective heat transfer in an
elliptic conduit for the parametric range 0 ≤ e ≤ 1, the results showed that the generalized Nusselt
number is dependent solely on the eccentricity of the ellipse and that the average Nusselt number
at the end of minor axis is greater than that of major axis, there is an excellent agreement when
compared with the present work. When the developed algorithm is simulated for, e value = 0.866,
the highest rate of heat transfer is noticed at the end of minor axis of the configuration as reported
and predicted by Bello-Ochende, Adegun [18], and Abdel-Wahed and colleagues [15], there is in
excellent agreement when compared.

In order to further establish the accuracy of the mathematical model and the correctness of
the numerical solution, the present numerical results were further compared with the most relevant
results in the literature. The average Nusselt number at the heated bottom wall had been compared
with the corresponding results reported by Mahfouz, 2011 related with the buoyancy driven flow in
an inclined elliptic enclosure as shown in Table 2. The comparison was made using the inner wall
which is relevant to the present work in his results and the following dimensionless parameters were
considered: Pr = 0.7, Ra = 105 , 𝜃 = 900, Ha = 0. Enclosure geometry (in terms of aspect ratio)
compared with the corresponding values of eccentricity and the controlling parameters in the present
work shows good agreement

Further comparison was also performed on the numerical computation of magneto-thermal
convection of water in a vertical cylindrical enclosure reported by Masato. The comparison was
made on the average Nusselt number at the hot plate for the circular electric coil with 2.5 or 5 times
the diameter of the cylindrical enclosure in a gravitational field (the system with magnetic field). The
following dimensionless parameters were compared: Ra= 104, Ha ≠0, Pr = 5.85. When the present
numerical algorithm is simulated using Pr = 5.85, Ra = 104 , Ha ≠ 0, the average Nusselt numbers
when compared showed a very good agreement as shown in Table 2

In the same vein, the results obtained were compared with the work reported by Ghasemi and
colleagues,2012, the results obtained on the average Nusselt number for the following dimensionless
parameters:e = 0.9, major axis ratio (0.6), inclination angle (900), Ra = 105 , Ha = Δ = 0 gives a
good agreement when compared with the present work.

Also, the results obtained in this work were compared with the results reported by Sakalis and
colleagues. 2002, with thermally developing flow in elliptic ducts. The comparison is made using a
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Table 2. Comparison of average Nusselt number (NUa )

S/No Present work Published results Deviation %

1 Ra = 1.86x × 104, Pr = 0.7,
Ha = Δ = 0, 𝜃 = 900, e = 0.9

Mahfouz (2011)
Inner wall, Ra = 1.86 x 104,
Pr = 0.7, Ha = Δ = 0, 𝜃 = 900,
e = 0.9(inclined elliptic enclosure)

NUa = 3.35341 NUa = 3.179 5.49%

2 Ra = 104, Pr = 5.85 , Ha ≠ 0 Masato (2005)
(the system with magnet)
Ra = 104, Pr = 5.85, Ha ≠0 (circular
and cylindrical enclosures)

NUa = 3.33074 NUa = 3.3856 1.62%

3 Ra = 104 − 106, e = 0.9, ;
Ha = Δ = 0, 𝜃 = 300 ,
Pr = 0.7, Aspect ratio = 0.6

Ghasemi and colleagues ( 2012)
Ra = 104–105, e = 0.9, Pr = 0.7,
aspect ratio = 0.6, , 𝜃 = 300 (circular
enclosure)

NUa = 3.35241 NUa = 2.9978 11.82%

4 Ra = 104 − 106, e = 0.8,
NUa = 3.35241

Hajjat and colleagues (2013)
Ra = 104 − 106, e = 0.8
NUa = 3.321852 (circular and
elliptic enclosures)

0.92%

5 Aspect ratio = 0.8,
Tw = constant.

Sakalis and colleagues (2002)
Aspect ratio, 0.8, Tw = constant
(ellipticduct)

NUa = 3.35377 NUa = 3.672 8.66%

different aspect ratio, (0.6), Tw = constant, that is, constant wall temperature with the present work
for different corresponding eccentricity, a good agreement is obtained when the average number
is compared as shown in the Table 2. The study of computational fluid dynamics (CFD) analysis
of laminar natural convection in a circular cylinder to its elliptic enclosure reported by Hojjat and
colleagues. 2013 was also compared with this current study for Ra = 104 to 106, different aspect
ratio (0.6), the average Nusselt number shows good agreement.

5. Results and Discussion

Having studied and validated the numerical method employed in the present work, the effects
of salient geometric parameters (eccentricity, e, and enclosure inclination angles) and fluid properties
(Hartmann, Darcy, and Grashof numbers) on the rate of heat transfer in a steady-state 2D laminar
MHD natural convection flow in an inclined elliptic enclosure filled with fluid saturated porous
medium has been investigated and discussed.
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Fig. 2. Effects of different values of eccentricity, e, on the average Nusselt number. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com/journal/htj.]

5.1. Effect of eccentricity on local and average Nusselt numbers

Figure 4 shows e values considered in the study. The variation of the local Nusselt number
with respect to azimuthal angle at the bottom heated wall of the elliptic configuration along the minor
andmajor axes are presented. For e= 0, the distribution pattern is almost symmetrical about the point
located at Φ = 1800 angular position. The optimum heat transfer of Nu = 3.36 is at Φ = 1200 while
the minimum of Nu = 3.24 is at Φ = 1800. The distribution pattern of e = 0.2 is almost similar to
that of e = 0 in its behavior except for the rate of heat transfer that is higher about the point located at
Φ = 1800 angular position. In a nutshell, in the parametric range 0 ≤ e ≤ 0.2, the difference between
the heat transfer rate at the end of major and minor axes is insignificant.

Above e = 0.2, more heat is transferred from the end of minor axis of the enclosure, that
is, Nusselt numbers at the end of minor axis are greater than the major axis (minor axis = 4.2 and
major axis = 3.0) of the elliptic enclosure. It is also observed from the plot that the higher the value
of eccentricity, e, the higher the rate of heat transfer between the parametric range considered, that
is, 0.4 ≤ e ≤ 0.8 but decreases within the parametric range 1800 ≤ Φ ≤ 2700. Again, a critical
eccentricity, e = 0.8 is attained for optimum heat transfer by convection at the end of the minor axis.
When the developed algorithm is simulated for, e value = 0.866, as shown in Fig. 3, the highest rate
of heat transfer is noticed at the end of the minor axis of the configuration as reported and predicted
by Bello-Ochende and Adegun [18], and Abdel-Wahed and colleagues [15]. In the same vein, it is
observed that the rate of heat transfer at Φ = 1350 and 2350, respectively, is almost the same for all
eccentricities considered.

Figure 5 illustrates the variation of average Nusselt number with various values of eccentric-
ity of the ellipse at the end of the minor axis. It is observed in the figure that average Nusselt number
increases monotonically for the parameter range 0 ≤ e ≤ 0.6, the difference between the heat trans-
fer rate along the minor axis is not significant. Above e= 0.6, it is noticed that the higher the value of
eccentricity, e, the higher the rate of heat transfer. Also, between the parametric range 0.6 ≤ e < 1 ,
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Fig. 3. Effects of local Nusselt number on azimuthal angle for different eccentricity.

heat transfer is no longer by convection only, conduction also occurred, a reason for the sudden rise
in the rate of heat transfer.

A critical eccentricity, e = 0.8, is attained for optimum heat transfer, therefore 0.8 is the
critical value for highest heat transfer by convection which compares well with published journals.

5.2. Effect of enclosure inclination angle on average Nusselt number

Figure 6 depicts the relationship between the average Nusselt number and angle of incli-
nation. The plot explains a monotonical increment between the parametric rang 00 ≤ 𝜃 ≤ 580, the
inclination is not significant within this range. Above580, as is evidently observed from the figure, in-
clination increases considerably with the rate of heat transfer for the parametric range 580 ≤ 𝜃 ≤ 900

5.3. Effect of Hartmann number

Figure 7 presents the variation of velocity distribution in a radial direction along the minor
axis of the enclosure for various Hartmann numbers (Ha = 0, 2 5, 50), for an inclination angle of
𝜃 = 30o, at Gr = 106, Da = 10−3, Pr = 0.7

The Hartmann number is an indication of existence of MHD flow. It can be observed from
the figure that when there is magnetic field influence (Ha = 25, 50) and when the magnetic influence
is negligible (Ha = 0) on the field flow and thermal characteristics in the enclosure.
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Fig. 4. Effects of different values of eccentricity on local Nusselt number at the bottom wall for
various Azimuthal angles (J1) along the major axis of the enclosure.

Fig. 5. Effect of eccentricity on the average Nusselt number. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com/journal/htj.]
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Fig. 6. Effect of enclosure inclination angle on the average Nusselt number. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com/journal/htj.]

Fig. 7. Velocity distribution in radial direction of the enclosure for different values of Hartmann
numbers.
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When the Hartmann number is zero (Ha = 0), the flow circulation (dimensionless velocity
distribution) becomes stronger, because of buoyancy force due to the natural convection effect, which
is the dominant force in the enclosure, that is, heat is transferred by convection. It can be seen from
the figure that at Ha = 0, the flow circulation is very strong as a result of no magnetic field effect.

Contrary is the case when Hartmann number increases (Ha = 25, 50), the Lorentz or Laplace
force, a force on the point charge due to electromagnetic force. This force created as a result of
magnetic field influence becomes greater than the buoyancy force due to natural convection which
causes a reduction in field flow circulation since Lorentz force suppresses the convection current and
consequently leads to a reduction in velocity distribution.

Also, it is observed in the figure that the flow circulation becomes weak at the core along the
minor axis of the enclosure due to strong mixing of the fluid, that is, the presence of cold and hot
fluid results in flow circulation reduction at the core

5.4. Effect of Darcy number

Figure 8 explains the variation of dimensionless velocity distribution in radial direction along
the minor axis of the enclosure for various values of Darcy numbers (Da = 10− 3, 10−4, 10−5),
Ha = 25, Gr = 106, 𝜃 = 30o, Pr = 0.7

When Darcy is high (Da = 10−4) considering the positive side of the plot, a strong intensity
of fluid circulation can be observed inside the elliptic enclosure. The flow circulations are higher
at the enclosure heated bottom wall and weak at the cold top side wall of the enclosure due to
a no-slip boundary condition. As can be seen in the figure, as the Darcy number decreases from
Da = 10−4 to 10−5, the flow circulation becomes weak. Mixture of cold and hot fluid at the core of
the enclosure causes reduction in the flow circulation (velocity distribution) along the radial direction
of the enclosure. When Darcy is at10−3, it behaves in a similar manner to that of 10−4 but in an
opposite direction. Also, it is observed from the figure that it increases at the core of the enclosure
while Darcy at 10−4 starts decreasing and this compares well with the work reported by Ahmed and
colleagues, 2012, that used the same range of values but in a trapezoidal enclosure

5.5. Effect of Grashof number

Figure 9 illustrates the dimensionless velocity distribution in the radial direction (RR) along
the minor axis of the enclosure for various Grashof numbers (Gr = 104, 105, 106), Ha = 25,
Da = 10−3, 𝜃 = 30o, Pr = 0.7

When the value of Grashof number is 104, the magnitude of fluid flow circulation is small due
to the slight effect of convection when Grashof number is low; but as the value of Grashof number
increases fromGr= 105 to 106 because of buoyancy force as a result of the natural convection effect,
the field flow circulation (in terms of velocity distribution) in the enclosure strongly increases.

At the core of the enclosure, there is reduction in flow circulation due to strong mixing of
cold and hot fluid.
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Fig. 8. Velocity distribution in radial direction of the enclosure for different values of Darcy
numbers.

5.6. Velocity profile

Figure 10 explains the variation of dimensionless mean velocity distribution in the radial
direction along the minor axis of the enclosure for 𝜀 = 0.8, Pr = 0.7, 𝜃 = 0o, 30o, 60o, 90o, Gr = 106,
Da = 10−3, Ha = 25

It is observed from the graph that average velocity increases rapidly in the radial direction
along the minor axis of the elliptic enclosure from 0 to 0.1 and it becomes uniform in the range of
0.1 ≤ R ≤ 0.4 in the radial direction along the minor axis of the enclosure, an indication that there is
a limit to have a flow favorable for maximum heat transfer.

Beyond this range, the field flow becomes oscillatory (flow not significant or unsteady) as a
result of strong mixing at the core of the enclosure due to the presence of cold and hot fluids where
the mean velocity reaches the maximum value along the minor axis of the elliptic enclosure
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Fig. 9. Velocity distribution in radial direction of the enclosure for different values of Grashof
numbers.

Fig. 10. Velocity profile of the flow in the enclosure.
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Fig. 11. Angle of inclination.

5.7. Effect of enclosure inclination angle on flow circulation (velocity distribution)

Figure 11 illustrates the variation of velocity distribution (flow circulation) with respect to
different enclosure inclination angles (𝜃 = 0o, 30o, 60o, 90o) for 𝜀= 0.8, Pr= 0.7, Gr= 106, Ha= 25,
and Da = 10−3. It is observed from the plot that the strength of the flow circulation decreases as the
enclosure inclination angle increases from 𝜃 = 30o to 𝜃 = 90o.

6. Conclusions

The geometric parameters and fluid properties were varied under the following conditions,
Ha = 25, Gr = 106, e = 0.8, 𝜃 = 30o, Da = 10−3, Pr = 0.7. From the study, the following conclusions
were drawn

● The numerical results obtained from the study were compared with the published related geome-
tries by comparing their average Nusselt numbers (i.e., the rate of heat transfer) which includes
the following: Tilted elliptic cylinder with no deviation (0%), elliptic duct with no deviation
(0%), horizontal elliptic duct with no deviation (0%), inclined elliptic enclosure with (5.49%)
deviation, circular and cylindrical enclosure with (1.62%) deviation, circular enclosure with
(11.8%) deviation, circular and elliptic enclosure with (0.92%) deviation and elliptic duct with
(0.866%).

● The result obtained from the study indicated that the Nusselt numbers at the end of minor axis
is greater than the major axis (minor, Nu = 4.2 and major, Nu = 3.0).

● A critical eccentricity, e = 0.8 is attained for optimum heat transfer by convection.
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● The difference between the heat transfer rate at the end of major and minor axis of the configu-
ration within the parametric range 0 ≤ e ≤ 0.2 is insignificant (Nu = 3.24 and Nu = 3.25).

● Above e = 0.2, more heat is transferred from the end of the minor axis of the enclosure. It is
also observed from the plot that the higher the value of eccentricity, e, the higher the rate of heat
transfer between the parametric range considered, that is, 0.4 ≤ e ≤ 0.8 but decreases within the
parametric range 1800 ≤ Φ ≤ 2700.

● The effect of Hartmann number on flow circulation(velocity distribution) of the enclosure for
Ha = 0, 25 and 50 are 80, 60 and 58 (i.e., Hartmann number increased with decreased flow
circulation)

● The effect of angle of inclination on heat transfer rate is significant from 580 to 900.

● A strong flow circulation (velocity distribution) is obtained when Gr = 106 and Da = 10−4.

● The study established that the geometry and fluid properties influence the flow circulation and
heat transfer characteristics in the elliptic configuration considered.
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