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The effects of uncarbonized (fresh) and carbonized bone particles on the microstructure and properties of
polypropylene composites have been studied. The addition of the bone particles ranges from 5 to 25 wt%
in uncarbonized and carbonized forms in the polypropylene matrix. The physical and mechanical prop-
erties were used as criteria for the evaluation of the composites. Microstructures of the composites were
assessed with scanning electron microscopy (SEM/EDS). The results revealed that the addition of carbon-
ized bone particles reinforcement has superior properties than uncarbonized bone particles composite
based materials with an increase in the compressive strength, hardness values, tensile strength and flex-
ural strength by 53%, 45% and 35% respectively, and a decrease in the % elongation and impact energy by
75% and 32%, respectively at 25 wt% carbonized bone, with 28% increase in tensile strength at 15 wt% car-
bonized bone addition. The increase in strength and hardness values was attributed to the distribution of
hard phases of bone particles in the ductile polypropylene matrix.

� 2012 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Polymer composite materials are being used in a wide range of
structural applications in the aerospace, construction and automo-
tive industries due to their lightweight and high specific stiffness
and strength [1]. A variety of materials are being used ranging from
lower performance glass fiber/polymer, used in small sail boats
and domestic products, to high performance carbon fiber epoxy
systems used in military aircraft and spacecraft [2]. One sector
where the use of composite materials is still evolving is the auto-
motive industry. Composite materials offer great potential in
reducing vehicle weight, thus increasing fuel efficiency and reduc-
ing CO2 emissions. In addition to weight reduction, the number of
individual parts can be significantly reduced making the high-vol-
ume composite car concept cost effective [2,3].

In recent years there is a perceived shortage of wood fiber for
composite products due to competition for fiber by pulp mills, re-
duced harvesting and manufacturing and diminished log quality.
Also, there is pressure from environmentalists to reduce forest
use and regulatory legislation pending on disposal of agri-fibers
[1–5]. For example, any potential to reduce field burning is an envi-
ronmental benefit and helps address the issue of restricted open
burning. There are tremendous quantities of agricultural biomass
odion).

-NC-ND license.
available for non-agricultural uses such as paper and composite
products [5].

Previous studies have proved that Chicken eggshell (ES) is an
agriculture byproduct that has been listed worldwide as one of
the worst environmental problems, especially in those countries
where the egg product industry is well developed. In the U.S. alone,
about 150,000 tons of this material is disposed in landfills [5]. ES
contains about 95% calcium carbonate in the form of calcite and
5% organic materials such as type X collagen, sulfated polysaccha-
rides, and other proteins [4,5].

Patricio Toro et al. [5], studied eggshell, a new bio-filler for poly-
propylene composites. The work proved that ES composites
showed lower modulus of elasticity (E) values than talc compos-
ites, talc filler could be replaced by up to 75% with ES while main-
taining a similar stiffness and E compared to the talc composites.
Abdullah et al. [6] studied the water absorption and mechanical
properties of high-density polyethylene/egg shell composite. It
was found that the addition of egg shell powder to the polymer
leads to decrease in the tensile strength, modulus of elasticity,
and shore-D hardness on the other hand it increases the % elonga-
tion at break and impact strength. Water absorption of the com-
posite behaviors as a function of days was also investigated, and
it increases by increasing the exposure time for the same filler
content, while the absorbed amount of water increases, by increas-
ing the wt% of egg shell’s constant exposure time. Based on the
foregoing this present research is looking at the possibility of using
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cow bone as a reinforcer in polymer matrix composites, since egg-
shell and bone belong to the same calcium group [7].

2. Experimental procedures

2.1. Materials/equipment

Polypropylene (matrix), bone (uncarbonized and carbonized),
stain remover (water soluble), aluminum foil, polishing agent, grit
paper, etchant, water and lubricant. Set of sieves (mesh sizes; 1000,
750, 500, 250, and 100 lm), hacksaw, Universal tensile testing ma-
chine, Digital Rockwell hardness machine, Charpy Impact machine,
measuring cylinder, Vernier caliper, bone crusher, two roll mill,
hydraulic press, crucible furnace, a pair of thongs, digital weighing
balance, polishing machine, optical and scanning electron
microscope.

2.2. Methods

The flowchart used in this study is shown in Fig. 1: the fresh
cow bones (limb bones) were collected from an abattoir in Tudun
Wada, Zaria, Nigeria, washed and cleaned to a good physical condi-
tion. The bones were then divided into two; one part for carboniza-
tion (CB) and the other used as uncarbonized (FB). The former was
carbonized in a crucible furnace at about 550 �C for 45 min. Bone
crusher was used to crush the bones to a certain particle size
(62 mm) and the latter ground to 61000 lm by replacing the
crusher sieve with 1 mm sieve [7]. Sieving was done using a set
of sieves having mesh sizes of 1000, 750, 500, 250 and 100 lm
diameter to obtain small particle size. After sieving, the under size
of 100 lm was used as reinforcement (see Fig. 2) [6,7].

The bone was then degreased so as to get rid of any trace of oil
and blood that will inhibit proper bonding between the matrix
(polypropylene) and the reinforcement (bone) using a water solu-
ble stain remover. The process utilized the differential weight be-
tween the bone and the associating oily substances (gravity
separation) by pouring water (mixed with stain remover) and
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Fig. 1. Schematic diagram of the flow sheet for the development of polypropylene/
bone reinforced composite.
allowing it to settle for about 30 min. This process was repeated
using water without stain remover several times until a clean
(shallow) surface was observed on the surface of water. The bone
was found negative when tested for the presence of both oil and
blood [7].

Compounding or mixing was done not only to mix but also to
ensure intimate mixing of composite forming constituents. The
two roll mill machines, were switched on and set for preheat to
a temperature of 180 �C for 1 h. The polypropylene (Fig. 2c) matrix
was introduced when the two rolls are just closed by regulating the
gap between them. After 2 min, a measured amount of filler (bone
particles); 5, 10, 15, 20, 25 wt% was introduced as carbonated ash
bone (Fig. 2a) and uncarbonized (fresh) powdered bone (Fig. 2b).
The mixture was left for 8 min to achieve effective homogeniza-
tion. The mixture was then ejected and allowed to cool.

The blended material was pressed using a hydraulic press at
elevated temperature (�180 �C) to a thickness of the mold. It was
pre-pressed prior to melting for 45 min using a Moore hand oper-
ated press at high speed (low pressure) to prevent fracture. It was
later pressed at a low speed (high pressure) for 3 min. The compact
was removed while still hot to obtain a smooth surface as in
(Fig. 2d). The same procedure was used for the remaining compo-
sition. After, the developed composites were sectioned into test
samples for properties’ evaluation.

The density of the samples was determined by measuring the
weight of the sample (m) and then by immersing into a measuring
cylinder half filled with water and recording the increase in vol-
ume (v) as the volume of the sample. The density of each sample
(q) was obtained using equation 1 [8]:

q ¼m
m
ðg=cm3Þ ð1Þ

The water absorption was determined by weighing the sample (w1)
and placing in a closed container containing water. The sample was
then weighed after 24 h as (w2). The percentage weight gained was
calculated and recorded for each sample using the following for-
mula [6,7]:

%weight gained ¼ w2 �w1

w1
� 100% ð2Þ

Tensile test was carried out using a Hounsfield tensometer. The
samples were cut into suitable dimensions and a gauge length of
25 mm was marked using a scriber. Each sample was subjected to
test by loading to its maximum load carrying capacity, after which
the tensile strength was calculated using Eq. (3). The corresponding
strain was also computed [8].

r ¼ max:loadðPÞ
Initial cross sectional areaðAÞ ðN=m2Þ ð3Þ

The extent to which the material elongates is determined by mea-
suring the greatest separation between the gauge marks just before
rupture, and is often expressed as % elongation [8].

Thus:

%e ¼ gauge length after rupture
initial gauge length

� 100 ð4Þ

The compression test was carried out using a universal tensile test-
ing machine. A compression load was applied and the maximum
load was read directly from a digital meter. The compressive
strength was then calculated using Eq. (3).

Bend or flexure test was carried out with the same Hounsfield
tensometer. Samples were cut into suitable dimensions, each sam-
ple was bend tested using an improvised support and a center
point load until it breaks. If a load (P) is applied over the entire
span (L), and act on a cross-sectional area (A), then flexure strength
could be calculated using equation 5 [8].



Fig. 2. Micrograph of (a) carbonized bone powder (CB) (b) fresh bone powder (FB) (c) polypropylene (d) pressed PP/bone composite.
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Flexural strength ¼ 3ðloadÞðspanÞ
2ðwidthÞðthicknessÞ2

ðMPaÞ ð5Þ

Rockwell hardness testing machine with 1.56 mm steel ball inden-
ter was used to test the hardness of the samples on a F scale. The
hardness of each sample was read directly from the Rockwell tester
[8].

The impact test was carried out on the samples using a charpy
impact testing machine to determine the impact energy. A v-notch
of 2 mm deep was created at 45� into a 10 � 3.3 � 55 mm standard
specimen for charpy impact test which is intended to provide the
stress concentration during the impact test [1,8]. The sample was
then placed on the machine and the pendulum was allowed to
hit the specimen when it swings under gravity. The impact energy
was obtained by reading energy loss of the pendulum as a result of
hitting the sample directly from the machine.

Samples were sectioned from each composition for metallo-
graphic examination. The samples were ground with grit papers
(80–600 grits) using water as coolant. Polishing was followed using
alumina polishing powder mixed with distilled water and later
etched with Keller’s reagent. The microstructures obtained were
photographically captured using an optical microscope with
built-in camera [10]. The surface of developed composites with
0%, 15% and 25% from both uncarbonized and carbonized samples
were observed using a scanning electron microscope equipped
with energy dispersive spectroscopy (SEM-EDS) and optical micro-
scope (OPM).

3. Results and discussion

SEM is used to study the morphology of the composites pro-
duced. Plate 1 shows the SEM/EDS micrograph of the polymer ma-
trix, while Plates 2–5 show the SEM/EDS of the composites.
Morphological analysis using SEM clearly shows the difference in
the morphology of the polymer matrix and its composites (see
Plates 1–5). The microstructure clearly shows that when the bone
particle was added to the polymer, morphological changes in the
structure took place.

The density of the composites increases with an increase in
weight percent of bone (Fig. 3) owing to the fact that bone is den-
ser than PP. It can also be seen that relatively higher values of den-
sities are recorded for the composites with carbonized bone. This
can be explained by the fact that during carbonization, the spongy
portion of the bone is being decomposed and densified, resulting in
the elimination of volatile matters [7].

In Fig. 4, it can be seen that there is an increase in the amount of
water absorption. This is because, the matrix (PP) and the rein-
forcement (bone) are not in any way soluble in one another and
interfacial bonding between the bone and the matrix phases may
be not be perfect. This results in inter-phase and inter-particle
spaces (porosity). As the wt% of bone increases, the level of poros-
ity also increases hence the amount of water absorption. Compos-
ites of uncarbonized bone (FB) particles showed a higher level of
porosity by absorbing relatively large amount of water than com-
posites with carbonized bone (CB). This is because any separation
in the bone as a result of loose particles is removed when carbon-
izing the bone to obtain carbonized particles. This result is in
agreement with the outcome obtained when polyester was rein-
forced with iron fillings [6,7,9].

As the wt% of bone increase, there is a corresponding increase in
tensile strength (Fig. 5) owing to the fact that as the volume of
reinforcement increases, its strengthening effect also increases.

A superior property was recorded while testing PP reinforced
with CB particles this is due to the removal of spongy portion
and subsequent elimination of volatile matters during carboniza-
tion [10–12]. From the results of EDS, it was found that there



Plate 1. SEM image of the polypropylene matrix with the ED (�500).

Plate 2. SEM image of the polypropylene matrix with 15% FB (�500).

Plate 3. SEM image of the polypropylene matrix with 15% CB (�500).
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Plate 4. SEM image of the polypropylene matrix with 25% FB (�500).

Plate 5. SEM image of the polypropylene matrix with 25% CB reinforcement (�500).

Fig. 3. Variation of density with increase in bone percentage. Fig. 4. Variation of water absorbed with wt% of bone particle after 24 h.
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was high level of carbon as against that of composites with uncar-
bonized bone particles which could result in higher strength values
when PP was reinforced with CB. The tensile strength recorded for
CB and FB composites are: 31.73 MPa and 29.88 MPa respectively
at 15 wt% of the reinforcement which can be attributed to proper
bonding dispersion of reinforcing phase as seen in Plates 2 and 3.
Meanwhile, from the micrographs, it can also be observed that
clustering of reinforcing phase gave rise to a fall in tensile strength
above 15 wt%. This is also in agreement with recent research
[9–15].

From Fig. 6, hardness value of the composite increased with an
increase in weight percent bone addition. The increase in hardness
is a result of increase in the hard and brittle phase of bone particles
in the PP matrix. Similarly, due to the absence of loose constituents
of bone (spongy) and volatile matters in CB, its addition resulted in



Fig. 5. Variation of tensile strength with wt% of bone particle.

Fig. 7. Variation of % elongation with wt% of bone.

Fig. 8. Variation of impact energy with wt% of bone.
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a superior hardness value than FB. This result is in agreement with
many recent researches [9–15].

From Fig. 7, as the percentage of bone increases, % elongation
decreases; this is because there is a loss of ductility in the compos-
ite with increase in wt% bone. This can be justified by the change in
fracture surface (visual examination) from cup and cone (for duc-
tile) to relatively flat and smooth surface, which is an indicative
feature of embrittlement. The decrease in elongation is more
prominent in CB this can be justified by the fact that its fracture
surface revealed more flatness which comes as another brittle as-
pect [9].

From the result of impact test (see Fig. 8), it was found that as
the wt% of bone increases, the energy absorbed on impact de-
creases with the exception of 0–5 wt% and 5–10 wt% in FB and
CB respectively. The rise in those ranges are believed to be a result
of inter-particle spacing which often tends to slowdown the nucle-
ation of cracks by absorbing some fraction of energy. This is in
agreement with findings of recent research [9–15].

It was observed that (see Fig. 9) as the weight of bone increases
in the composite, the flexure strength also increases. Bearing in
mind that CB is denser than FB, CB shows superior flexure property
than FB. The drop and unsteady increase in FB and subsequent drop
is attributed to uneven dispersion and poor bonding between the
matrices and reinforcing phase (Plates 4 and 5). This result is in
agreement with the recent result obtained in recent research [9].

From the data obtained in Fig. 10, it can be seen that as the
weight of bone increases there is an increase in compression prop-
erties. The increase in compression strength is attributed to the
good compression properties of bone. However, reinforcement
with CB gives superior properties over FB and this may be a result
of proper interfacial bonding between CB and PP matrix as revealed
by micrograph. This result is in agreement with other researches
[9,10].
Fig. 6. Variation of hardness with wt% of bone particle.

Fig. 9. Variation of flexural strength with wt% bone.

Fig. 10. Variation of compressive strength with wt% of bone.
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4. Conclusions

In the present research, different experimental techniques have
been used to characterize the microstructure and properties of PP
and its composites containing different volume fractions of bone
particles. From the results of the investigations and discussions
in the preceding section, the following conclusions have been
made.

1) This work shows that successful fabrication of PP and the
bone particles composite by compounding and compression
molding.

2) The uniform distribution of the bone particles in the micro-
structure of the polymer composites is the major factor
responsible for the improvement in the mechanical
properties.

3) There is not much difference between the density of unrein-
forced PP and that reinforced with bone particles.

4) The hardness values obtained from PP reinforced with bone
particles increased with an increase in the weight fraction of
bone particles.

5) Absence of volatile matters, high carbon content and high
density of carbonized bone are believed to be responsible
for its relatively superior properties.

6) The developed composites have better properties at the
ranges of 5–15 wt% bone particle additions, and for optimum
service condition, bone particle addition should not be
exceeding 15 wt% in order to have better properties.

7) The work provides a unique combination and a wide range
of both physical and mechanical properties of polypropyl-
ene, a thermoplastic polymer without much sacrifice to its
density through reinforcement with bone which is light in
weight, yet hard and strong.
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