Journal of Computer Science & Its Applications, June 2007, Vol. 14 No. |

From Requirements Elicitation to Requirements Modelling:
An Experience Report

Daramola, J.O. and Adebiyi, A. A.
Department of Computer and Information Sciences
Covenant University, Ota, Ogun State, Nigeria.

wandi_ex@yahoo.com, arivo_adebiyi@yahoo.com

ABSTRACT

Requirements elicitation is one of the vital aspects of requirements
engineering that seldom gets sufficient attention during software
development, although it has been found to play a pivotal role in the
success or failure of most software development efforts. This is because it
provides an opportunity for all stakeholders in the software development
process to access, review and understand the user requirements for a
system andthe limitations of the software development activiry.

In this paper, we give an experience report of the application of use case
modeling as a technique for requirement elicitation in the development of
a Course Registration System (CRS) for a Nigerian University. The resulrs
obtained confirmed the high payoff of placing adequate emphasis on
requirements elicitation during a software development activity.

Keywords: Requirements Engineering, Requirements Elicitation,

Use Cases Modelling, Object
Constraints Language (OCL) Specification.

1. INTRODUCTION requirements is the. major cause of software failure
Requirements are the statements of what a system today [3]. Theretfore. the requirement phase of the
must do, how it must behave, the properties it must dey clopment process has the greatest tendency to
exhibit. the qualities it must possess and the cripple the resultinQ system if it is not done
constraints that the system must satisfy [1.2.3].Thc correctly. Also. it is more difficult to rectify
hardest single part of building a software system is problems at a later phase of development other
deciding precisely what to build. Therefore. the than the requirement phase [5]. All of these make
process of emphasizing the utilization of systematic requirements engineering a very core activity of
nd repeatable techniques that ensures the the system development life cycle with the key
-mpleteness. consistency and relevance of the objective of specifying a system that can be
wemorequirements s called Requirements successtully realized.
sineering (RE) [4]. ’ Requirements analysis is the aspect of
“oonobserved that the inability to produce requirement engineering process in which what is

cctand unambiguous software to be done is elicited and modeled. This process

From Requirements Elicitation to Requirements Modelling:
An Experience Report

has to deal with difterent viewpoints. and it uses ¢

combination of methods and tools to produce

requirements document. Some of the challenging

issues of requirements engineering process include

[6.7]:

a. Achieving requirements completeness without
unnecessarily constraining system design:

b. Analysisand validation difficulty:

(@]

Changing requirements over time:

d. Usersdo notknow whatis technically feasible:

(¢

Users may change their minds once they see the
possibilitics more clearly:
. Users may not be able to accurately describe

what they do:

<

Discoveries made during the later phases may

(r

bring about change to requirements:

h. Social. legal, financial. and/or

&

political.
psychological factors;

1. Ltis impossible to say with high certainty what
the requirements are. and whether th'ey are met.
until the system is actually put in place and
running correctly.

The 1mplication of lack of
requirements specification. which evolves from
elicitation process. is a grievous one. According to
Connolly ct al. [8]. one of the major reasons for the
failure of software projects is lack of complete
requirements. The problems that result from inept.
inadequate. or inefficient requirements engineering
are expensive and plaque most software systems and
software development organisations |9]. Despite the

current trend to rapidly develop applications

companies are realizing that the consequences of

inadequate requirements engineering are too great
[10].
Many

refining a svstem can be directly traced to elicitation

ol the problems in creating and

1ssues. Yet. much of the research works conducted

a complete

Daramola, J.0. and Adebiyi, A.A. 125

on requirements engineering have ignored this
important phase of development. Indeed. there has
been a concentration of rescarch in the area of
precision. representation. modelling techniques.
verification. and proofs as opposed to improving
the elicitation of requirements. Hence in [6] there
was a clarion call for more research efforts should
be directed towards methods and tools needed to
improve the requirements analysis process, and in
particular, to those providing more support
requirements elicitation.

Some of the specific instances in literature
where use case: modelling have been used a
medium for requirements elicitation include: The
Object Oriented Software Engineering method by
Jacobson | I1. 12] which describes how use cases
relate to system analysis and test models. The 4+1
[13]

emphasizes the' importance of use case modelling

view model of software architecture in
in the representation of architectural views of a
system from the user's viewpoint. Use case
diagrams are fully incorporated into the UML
notation |13.14;>15J. Also. UML based software
development methods. such as COMET [14] and
Rational Unified Process (RUP) | 16]. all start with
use case modelling to describe software
requirements, while the role ol use cases in the
requirements and analysis modceling phases of a
model-driven software cnginecring process was

presented in [17].

However our objective in this paper is to show
the payoft’ of placing adequate emphasis on

requirements elicitation during software

development. This we have demonstrated through
the use case modelling of an automated Course
Registration System (CRS) for Covenant
University. Nigeria.

The rest of the paper is briefly summarized as

1 26 Daramola, J.0. and Adebiyi, A. A.

follows: section 2 gives an overview of sottwarce
requirements elicitation. In sections 3. we present
use case modelling a requirements elicitation and a
description of how to used as basis for complete
requirements modelling the CRS for Covenant
'L,Jniversity. In Section 4, we give an experience
report of the noticeable gains discovered during the
later phases of development of the CRS and in
section 5 we give our conclusion and

generalizations.

2. SOFTWARE REQUIREMENTS
ELICITATION |

Software requirements elicitation is a process by
which all partics involved in the development of a
software system discover. review and understand
user needs and the limitations of the development
activity and the software [2]. Requirements

elicitation serves as a front end to systems

development. which involves various stakeholders:

analysts. sponsors. developers. and end users.

Requirements engineering process can be broken

down into three main activitics. whichare [6]:

a. Generating requirements from various
stakeholders by making the users the major
focus:

b. Ensuring that the needs of all stakeholders are
consistent and feasible; and

¢. Validating the requirements derived in line

with the needs of'the stakeholders

This model involves a sequential ordering of

activities in iterative mode and the activities should
be properly documented. Requirements elicitation
can be broken down into the activities of fact-
information gathering. information

nation and integration. The resulting

ot trom clicitation is a subset of the goals of

. ~ortes. which describe a number of

<. The remainder of the

From Requirements Elicitation to Requirements Modelling:
An Experience Report

requirements engineering process concerns the
validation of this subset to see if it is what the
stakeholders actually intended. This validation
typically includes the creation of models to foster
understanding between the parties involved in
requirements development. The result ol a
successful requirements engineering process is a
requirements specitication. where the goodness or
incongruity of a specification can be judged only
relative to the user's goals and the resources

available|6].

A vood requirements elicitation process supports
the development of a specification with a set of
attributes such as those detined in [6]. There are
major problems with requirements elicitation that
inhibit the definition of requirements that are
unambiguous. complete. verifiable. consistent.
modifiable. traceable. usable. and necessary.
However. the way out of these problems is to refine
information

the processes of" tact-finding.

gathering. information documentation and
integration to specitically address these problems.
This is where the ingenuity of the technical team
comes into play. The Problems of requirements
elicitation can be summarized into three major

categories [0]:

a. Problems of scope. in which the requirements
may address too little or too much
information:

b. Problems of understanding. within
stakeholders suchas users and developers: and

c. Problems of volatility. which is the changing
nature of requirements.

The following is a set of recommended
requirements clicitatlion techniques [I8]:
Interviews. Document analysis. Brainstorming.
Requirements workshop. Prototyping. Use cases.

Storyboards and Interface analysis. These

From Requirements Elicitation to Requirements Modelling:
An Experience Report

techniques can be used in combination and they
have been found effective in emerging the real
requirements for planned development etforts and

models.

2.1. Process of Conducting Requirements
Elicitation

The following approach is recommended for
carrying-out requirements elicitation. The

approach is basced on extensive review of literature

combined with our practical experiences of

requirements analysis. The purpose is to solve the
requirements clicitation problems earlier
identified:

a. Writc aprojectvision and scope document.

b. List a project glossary and acronyms that
provide definitions of domain words that
arc acceptable to the stakeholders for the
purpose of eftective communication.

¢. Evolve the user requirements by focusing
on product benefits and general

acceptability.

d. Document the rationale for cach
requirement when necessary.

e. Provide training for requirements analysts
and user representatives so as to achieve
the following:

i, identify the role of the requirements
analyst. who are to work with end-users to

evolve the requirements,

inoowrite good requirements
document.

i identify requirements errors and

corrective measures.

nadentity investment needs on the

project.
v. understand the project and/or
organization's requirements

Process.

a

h.

m.

0.

q.

Daramola, J.O. and Adebiyi, A. A. 1 27

vi. suggest methods and techniques that
will be used for the elicitation. and
vii.understand the use ol project's
automated requirements tools.

Prioritize the requirements appropriately.
Establish a mechanism for requirements
management.
Use peer reviews ‘and ispections of all
requirements work products.
Use an industryv-streneth automated
requirements tools that:

i. assign attributes to cach requirement.

and

1. provide traceability.
Use hybrid of good requirements gathering
techniques such as requirements workshops.
prototyping, and use cases.
Provide members of the project tcam (or
stakcholders) with audiencespecific versions
of the requirements when information is
being shared.
Establish a continuous improvement ethic.
tcamwork approach. and a quality culture.
Involve customers and uscrs throughout the
developmenteffort.
Perform requirements validation and
verification activities in the requirements
gathering process to cnsure that each
requirement is testable.
Store requirements ina requirements
repository instead of a paper document.
Keep the granularity ol the requirements
repository small so that individual
requirements can casily be entered. iterated.
approved. traced. managed and published.
Ensure that requirements repository stores all

kinds of individual requirements metadata

and requirements models.

1 28 Daramola, J.0. and Adebiyi, A. A.

3. Use Cases Technique for Effective
Requirements modelling

Use cases are pictures of actions a system
performs. depicting the actors and they describe
the behaviour of a system when a particular
stimulus is sent by one of'its actors. Use cases are
used during the analysis phase of a project to

identity and partition system functionalities. They

are powerful tools when combined with their’

oive better semantic

&

textual description to
information. Many developers believe that use
cases and scenarios facilitate team
communication. They provide a context for the
requirements by expressing sequences of events
and a common language for end users and the
technical team. Use case modelling facilitates and
encourages stakeholders' participation, which is
one of the primary factors for ensuring project
success. In addition. it provides a means of
identifying. tracking. controlling and managing
system development activities. Other
requirements clicitation techniques should also be
used in conjunction with use cases to provide
enough information that enable development

activities.

There are two primary artitacts involved when
performing use case modelling. The first is the use
case diagram. which graphically depicts the
system as a collection of use cases (represented by
oval shape). actors (represented by stick object)
and their relationships, which are basically:
association. extension. dependency and uses. Use
case and actor icons are assembled into large
system boundary diagram. This diagram shows all
use cases in a system surrounded by a rectangle.
Outside the rectangle are all actors of the system
and they are tied to their use cases with lines.

Inside the svstem boundary are use cases that are

From Requirements Elicitation to Requirements Modelling:

An Experience Report

part of the system being modelled and everything
outside is external to the system. The diagram
communicates the scope of business events that must
be processed by the system. The details of cach
business event and how the users interact with the
system are described in the second artitact. called the
use case narrative, which is the textual description of
the business event and how the users will interact

with the system to accomplish the task [19].

3.1 Use case modelling of Course Registration

System

Use case modeling of Course Registration System
(CRS) of Covenant University was undertaken after
detailed study of the activities of the key actors in the
registration process using use case cases and uses
case narratives. The CRS.is designed to enable
students of the University to independently register
course to be taken on per semester basis after initial
clearance from the staff course advisers. It enables
each student to select from the pool of relevant
available courses to bé taken in a particular semester
without exceeding the maximum limit and after all
necessary prerequisites have been satisfied. The
program also validates the student's financial
standing betore registration is allowed. The use case
diagram showing the several possible use casce
scenarios of the CRS is shown in figure | while the

use case narratives are shown in tables 1-4 [20)].

From Requirements Elicitation to Requirements Modelling:

An Experience Report Daramola, J.O. and Adebiyi, A. A. 1 29
T /f *\\\
ji“’ \ s \'1 8 g - / 3
e 4.t S LS p RS> ‘,.m‘r) N f, . }‘ L
! P8 8 ,,”“"'” ORI D eg
{x Course Payment

Check Course
Prerequisite

/

<<entends>>
7

/

<<extends >

T —
Add and
IJ (EE &

Student

-

. Requirements

<SS

Fig. 7: Use¢ Case Diagram for CRS

Table 1. Use Case Narrative for Add Course

Use Case | Add Course

Goal in content Student will be required to add registerable courses via CRS if registration process is opened
i.e. before the closing date. a user interface containing listof registerable courses is

displayed with add buttons activated.

Level This use case uses the confirm fees payment use case to determine student's eligibility to

register courses based on whether the course prerequisite has been passed or failed.

Parameters In: matricno, course code, college and department hosting the course, programme. Out:
current session, minimum and maximum unitallowed per semester, unit registered per
semester; students' name and photograph, list of courses available in the department and

their corresponding prerequisites

Preconditions Course registration is not closed; user is a good standing student of the university. Graded
courses cannot be added. Total course unit registered per semester cannot exceed the
maximum or fall below minimum allowed. Therefore a course is only added. after the

prerequisites must have been passed.

Post-conditions Adding of course(s) is achieved.

(Success End)

Post-condition Adding of courses is not achieved, cancel button is pressed and the process is canceled.

(Failed End)

Actors Students

Irigger A student requests to operate the CRS for a CRS operation Add course operation

1 30 Daramola, J.0. and Adebiyi, A. A.

From Requirements Elicitation to Requirements Modelling:
An Experience Report

Description

(Event Flow)

Actor action

System respond

Aftected data objects with

operations

I. Student requests to
operate the CRS by
clicking the Add-

course button

2. Verify registration status

Reading from the system
data file for registration

status

3. Displaysrich interactive

interface

Read and display the lists of
colleges and departments,
current session. available

courses. maximum units and

minimum units registrable.

4.Selectstudent's. -
college. department

and programme

S. Displays courses and their

prerequisites

Read and display the lists of
courses and their

prerequisites

6. Enter Matricno

and press start button

7. Verity student's fee payment

status. disciplinary record,

performance record.

Read from fee payment file,
disciplinary record file,

performance file.

8. Select a course
from course list and

press Add button

9. Verity course to add

Check.if all course
prerequisites have been
passecl_‘l-iy student. I passed.
add eourse to course list. if
not display message that
course cannot be registered
because of failed
prerequisitcs: update total

course unit so far registered.

AIf total course unit

registered is more than
maximum per semester
display message stating that
course cannot be added, else
add course to course

registration list.

Extensions

Add and drop use case

From Requirements Elicitation to Requirements Modelling:

An Experience Report

Daramola, J.0. and Adebiyi, A. A. 1 31

Table 2. Use Case Narrative for Add and Drop Course

Use Case 2

Add and Drop Course

Goal incontent

Student could be required to add or drop a course via CRS if registration process is opened. a

user interface is displayed with add and drop buttons activated

Level This isan extend use case from Add course use case
Parameters [n: matricno, course code, college and department hosting the course. Out: currentsession.

minimum and maximum unit allowed per semester, unit registered per semester. students’

name and photograph, list of courses available in the department and their corresponding prerequisites
Preconditions | Courseregistration is not closed; user is a good academic standing student of the university.

Ifuserisa fresh student, course prerequisite is not checked. Graded course cannot be added or dropped.

Course unitregistered per semester cannot exceed the maximum or fall below minimum allowed

Post-conditions

(Success End)

Adding or dropping of course(s) is achieved

Post-condition
(Failed End)

Adding and dropping of course(s) is notachieved, or cancel button is pressed and then the

process is cancel

Actors

Students

Trigger

A studentrequests to operate the CRS fora CRS operation such as Add or Drop

Description Actor action System respond Aftfected data objects with
(EventFlow) operations
I. Studentrequests to 2. Verity registration Reading from the svstem
operate the CRS by Status (if registration is still data file for current
clicking the correct open) registration status
button
3. Displaysrich interactive user Readand display the lists of
interface colleges and departments
available, maximum and
minimum units registrable.
and current session
4. Selectstudent's 5. Displays courses and their Read and display the lists of
college.and prerequisites courses and their
department from [ist prerequisites
of colleges and
departments
6. Enter Matricno 7. Verify student Read from student bio-data
and press start button fileand display courses
registered
8. Selectacourse 9. Verify course to add Update course unit
from course listand ' . registered per semesterand
press Add button add course to course
registration list
10 Selectacourse 1. Verity course to drop Update course unit
from course registered per semester and
registration listand drop course if possible
press Drop button
[Extensions

From Requirements Elicitation to Requirements Modelling:
1 32 Daramola, J.0. and Adebiyi, A. A. An Experience Report

Table 3. Use Case Narrative for Confirm fee payment

Use Case 3 Confirm fee payment

Goalin content Student may check correctness of fee pavmentrecords before making attempt to register courses.
Level This is a basic use case for Add course. Drop course operation

Parameters In: matricno, current session. Out: Student name. photograph, department. programme. college.

)

state ofaccount (credits in blue. debitin Red). registrable students (True or false).

Preconditions Studentare only considered eligible torrecistration foranew session if up to 90% ot total tuition

fee has been paid, otherwise registrable status is false.

Post-conditions Student fee payment information is display cd

(Success End)

Actors Students
Trigger A studentrequests to operate the CRS for contirm fees paymentoperation
Description Actoraction System resp Aftected data abjects with
(Event Flow) operations
I. Studentrequests to 2. Verity student's financial status Reading from the system
operate the CRS by data file for fees payment
clicking the records.

contirm fee button

3. Displays prompt for input Display promptto capture
student's matricno and

currentsession.

"
5

4. Entermatricnoand 5. Displaysstudent'srecord

press start button

6. Read from fee
paymentdata file and
display name. college.
department, programme.
photography. account
balance. eligibility <tarus

(trae or false)

Extensions Check Requirements

From Requirements Elicitation to Requirements Modelling:
4n Experience Report Daramola, J.0. and Adebiyi, A. A. 1 33

Table 4. Use Case Narrative for Course Prerequisite

Use Case 4 Course Prerequisite

Goal incontent Student could check the prerequisite fora particular course prior to adding it to list of

registered courses.

Level This is a basic use case for Add course, Add and Drop course operation

Parameters In: Course code, current session. Out: List of prerequisite courses (course code. course title,

course unit, course status).

Preconditions Course code entered as input must be valid i.c. existwithin the available courses in the

university academic program.

Post-conditions Checking of course prerequisite is achieved.

(Success End)

Post-conditions Checking of course prerequisites not achieved. or cancel button is pressed to terminate
(Failed End) process.
Actors Students
Trigger A studentrequests to operate the CRS fora check prerequisite operation
Description Actor action System respond Aftected data objects with
(Event FFlow) operations
I. Student requests to 2. Request student input Display a prompt for student
Check prerequisite matricno.

by clicking the

input button

3. Student enter 4. Verity student Reads student's database file
matricno and to verity studentship status.
click next button.

5. Display user interface for | Display list of colleges,
checking course prerequisites| departments and
programmes

6. Student clicks on 7. Display list of courses Reads and filter out courses

colleges. then available for selected that pertain to selected

department and then programme programme from the
programme - programme courses data file.

8. Student selects 9. Display list of Read and display the list of

from the course list, prerequisite courses prerequisite courses to select

the particular course : course. The information

of interest displayed include course-code.

course title, course unit,

. and course status.

Extension Check Requirements

From Requirements Elicitation to Requirements Modeliing:

1 34 Daramola, J.0. and Adebiyi, A. A. An Experience Report

3.2 Class Entity Modelling of CRS The class entity model of the CRS showing the entity

The detailed use case descriptions provided by classes and lheir.associalions within the CRS is
the use case narratives artifact also provided — shown in Figure 2 with the public and private
adequate basis for accurate identification of attributes of cach class member denoted with (+)

objects and objects’ interactions within the CRS. and (-) respectively.

"~ Student
“amce srng

fmatricnosstring
~deptistring

SProgristrig
“totaleredit:ing
sMaximum: ereditiing
Advises Bo|E +miminum_ creditzint
Flatled courses | fisuring
Fpassed courses| istring

sregister():bool
Estudent list()

|
Account record
has B 1] wame : string

Lecture: |

-name ;o strmgy =SCSSIONIS
Fstaffid:stringe -coursestatus:string
~deptisiring \ “tmancial statement(in matricno:string. m session:string)
~officenostriv - | debrors_listo)
Frank:string registel ‘ financial_goodstanding(in matricno: string):-hool
+Maximum credit:int v J
+miminum creditzin
Faught courses(in staflid:string)
:
’ Course

-coursceode T string
coursctitte.string
teaches P 1%

=Courseatntin

-coursestatus.string
“eoursecontenting
+prevequisite list] o string

Faddeourse(in courseeodesstring. in matricno:string)
tdeletecourse(in coursecoderstring. in matricno:string)
teourselist(in coursceode: string. in staffed:string)
centerscores(in coursecodesstring. in staffed:string)
~attendancesheetdin coursceeode:stiing)

+scoreshect(in coursecode:string)

cure 20 Class Entity Model of CRS

From Requirements Elicitation to Requirements Modelling:
An Experience Report

3.3 Formal Specification of Constraints on
Requirements models

Object Constraint Language (OCL) is a formal
notation developed so that more precision can be
added to the specifications of systems being
modelled with UML. All of the power of logic and
discrete mathematics is available in the language
[15]. The first step to OCL specification is to
develop a UMIL model. Most typically a class
diagram. Oncc the class diagram has been used to
specity the relationships among the objects in the
system. the OCL expressions are then used to
specify the constraints on model elements so that
implementers of the system can known more
precisely what they must ensure remains true as the
system runs.

In a diagram, a constraint is shown as text string
enclosed in braces |..}Jand placed near the
associated element or connected to that element by
dependency relationship. Constraints can also be
put in notes (comments). An alternative notation is
to keep the constraints in a separate text file. The
key terms in an OCL expression are:

e Invariants: is a property that must remain
true throughout the life of a model element.
such as an object. The reason for

introducing invariants is to specify the
constraints under which the system can
operate. When a svstem carries out a task.
the invariant should be true at the start of
the task. and remain truc at the end of the
task.

® Pre-condition: A pre-condition is
something that must be true before a
particular part of the system is executed.
The designer and implementer can use
precondition to perform checks betfore an
operation is executed. This is a way of
presenting the system from entering illegal

states.

Daramola, J.0. and Adebiyi, A.A. 135

e Post-condition: ‘A post-condition 1s

something that must be true after a particular
part of the system is executed. if that
execution was legal (that is. all pre-condition
were met) and the system has successtully
carried out its action.

Pre-condition and post-conditions can be applied
to operations or to use cases. and as usc cases are
translated into operations through the analysis and
design process. so they ultimately become’
translated into post-conditions on operations.

All OCL statements must take place within a
context. This might be a class, association or a use
case. The statements can be invariants, pre-condition
or post-conditions. The UML convention is that the
keyword context is written in bold type. and the
stereotype of the constraint is written in bold type as

inv for <<invariant>> pre for < precondition>~

and post for <<postcondition=~. Some of the OCL

expressions specifving constraints on some

elements of the class entity model of the CRS are

givenas follows:

Package package::CRSpackage
Context course inv:
Course->exists(x/x.coursecode)
Context Course::addcourse (coursecode: string,
matricno:string)
pre:
Course->exists(x/x.coursecode)
Student->exists(x/x.matricno)

- I)N/.l7 a Ccourse
previously failed or not previously graded can be
registered

Student.failed courses->exists(x/x.Course.coursecode) or
not(Student.passed courses-
>exists(x/x.Course.coursecode))
Date <= Closing_registration datc

registration can only be done before closing date
(Student.totalcredit+ Course.courseunit)
Student.maximum_credit
- = maximum total course unit for a
semester must not he exceeded
post:

Student.totalcredit < = Student.maximum credit
Context
Course::deletecourse(coursecode:string.matricno:sirin:
pre:

Course---exists(x/x.coursecode

1 36 Daramola, J.0. and Adebiyi, A. A.

Student- -exists(x/x.matricno)
Date - = Closing registration date
Student.totalcredit - 0
post:
Student.totalcredit < Student.totaleredit@pre
Context :
Course::enterscores(coursecode:string staffid:string)
pre:)
selt- exists(x/x.coursecode)
Lecturer- -exists(x/x.staffid)
Student- ~forall(x/exists(x.matricno))
Date - = Closing_registration date
Context Student inv:
self--exists(x/x.matricno)
Context Student::Register(): bool
pre:
self-exists(x/x.matricno)

Account_record::financial_goodstanding(matricno) = True
post:
True
Context Student::studentlist()
pre:
Student- -forall(x/exists(x.matricno))
Context-Account record inv:
Student--exists(x/x.matricno)
Context
Account_record::financial goodstanding(matricno)
pre:
Student-—exists(x/x.matricno)
Context
Account record::financial statement(matricno.session)
pre:
Student- -exists(x/x.matricno)
Session-- notkmpty
Context Account record::debtorslist()

pre:
Student- ~exists(x/x.matricno)
Account record::financial goodstanding(matricno) =
False
endpackage

4. Post Requirement Modelling Experience

The decision to place adequate emphasis on

requirement clicitation facilitated a number of

benefits that were noticed during the later stages of’

development. particularly the design and the
implementation phases of the CRS project. These
we have summarized as follows:
e Completeness of Requirements: After the
mitial fact finding initiative which cluded
mterviews and interaction with key

serators of the registration process. A use

s

coscomodel was constructed consisting of

From Requirements Elicitation to Requirements Modelling:
An Experience Report

use cases and use case narratives by the
developer team. This then formed the basis
for interaction during a 2 day requirements
workshop between the developer team and
user representatives. The user
representatives included head of
departments, course advisers. data entry
operators, student representatives and
database administrators. The use case
scenarios and use case narratives were given
to cach participant to caretully study from
the firstday of the workshop till the final day
of the workshop. This result of this was that
the user were able relate well with the use
case model provided such that they asked
questions and made contributions that
remarkably furthered the quality and clarity
of many issues that had been vagucely
attended by the developer team.

Improved mutual understanding: The use
case model presented a view of the system
that was easily comprehensible to the
prospective users of the system. and this
provided a platform for healthy interaction
and mutual understanding of the
expectations and the limits of the CRS.
Hnn(lling of volatile requirements: The
users also had the opportunity to make
changes to some initially conceived
requirements during requirement review
and validation sessions of the requirements
workshop. These were premised on
emergence of new realities that were
occasioned by better understanding of the
potentials of the CRS.

Efficiency of Implementation: The CRS
was implemented using a rapid application
development (RAD) tool named C++

builder 6.0. C++ builder 6.0 enables event

From Requirements Elicitation to Requirements Modelling:
An Experience Report

driven programming and has rich full-
featured capabilitics for window based
enterprise software development,
intcgrating well with major database
management system platforms such
Oracle. SQL Server, Paradox. Interdev.
MS Access. Our experience after
implementation and acceptance test by the
user was that the CRS possesses features
that were completely traceable to the
requirements model. This connotes that
the software completely satisfies its
specified requirements which were
accurately captured and represented
thorough the use case modelling approach

adopted for requirements elicitation.

5. CONCLUSION
There is a seemingly prevalent disposition that
relegates the

importance of requirements

clicitation as compared to other activities of

requirements cngineering such as requirement
specification. requirement validation and
requirement management. These other activities
usually attract more attention during development
and are currently being supported by a large
number of automated tools unlike what obtains for
requirements elicitation.

However. the result of our empirical study with
respect to the automation of the Course
Registration System (CRS) project of Covenant
University gives credence to the fact that when

adequate emphasis are placed on requirement

clicitation some of the pressing challenges of

requirements engineering which naturally limits
the success of software development efforts can be
alleviated. This also compels us to make a strong
case for requirement clicitation as an equally

important aspect of requirement engineering.

Daramola, J.0. and Adebiyi, A.A. 137

In our future work. we intend to look into issues
of providing more software tools support for
requirement elicitation as a response (o existing

relative dearth of automated tools support.

REFERENCES

1. Brooks. Jr. F.. P. (1987) “No Silver Bullets-
essence and Accidents of
Engineering”. I[EE Computer 20(4) 10-19.

2. Thayer. R.H. and Dorfman. M. (1997):

Software Requirement Engineering 2nd

Software

Edition, Wiley-IEE Computer Society, pp
145-163.

3. Faulk, S.R. (1997): Software Requirements: A
Tutorial, In M. Dorfman and R.H. Thayer.
Software Engineering. The [EEE. Inc..pp 128-
149.

4. Sommerville. T.

(1996): Software

Engineering: Addison-Weslev. England. pp

207-283.

3.0 Davisc AN (1993): Software Requirements:
Objects. Functions and States, Prentice-Hall,
Englewood Clifts. NJ. pp 64.

6. Micheal. G Christel and Kyo. C. Kang.
“Issues in Requirements Elicitation™.

http://www.sei.cmu.edu./pub/documents/92/r

eports/pdt/tr12.92.pdf

7. Anthony. Aby (2000): Requirements

E'n g 1 n e ¢ r 1 n g
http:// www.opencontent.org/openpub
8. Cannolly, T.. Begg. C and Strachan. A. (1999),

Database System: A Practical Approach to

Design. Implementation and Management, 2"
Ed.. Reading. M.A. Addison-Wesley.
and Viller. S.

(1999). Capturing the Benefit of Requirements

9. . Sawyer, P.. Sommerville. 1.

Engineering, IEEE Software. 16(2). pp 78-83.
10, Weigers, K. (2000). When Telepathy Won't

Do: Requirements Engineering Kev Practices,

1 38 Daramola, J.0. and Adebiyi, A. A.

10.

http://www.processimpact.com/articles/tele
pathy.html

Jacobson. .. M. Christerson. P. Jonson, and
G. Overgaard, Object-oriented Software
Engineering: a Use Case Driven Approach.
1992, Reading. MA: Addison-Wesley.

M. Griss.

Software Reuse: Architecture. Process and

Jacobson. 1. and P. Jonson.
Organization for Business Success. 1997.
Reading, MA: Addison-Wesley. |
Krutchen. .. Architectural Blueprints - The
"4+1" View Model of Sottware Architecture.
inIELEL Software. 1995. p. 42-50.

Gomaa. H.. Designing Concurrent.
Distributed and Real-Time Applications with
UML. 2000: Addison-Wesley.

OMG. UML 2.0 OCL Specification, in OMG
Final Adopted Specification pte/03-10-14.
2004, Object Management Group.
R U P OM G Gr
http//swww. 128 .ibm.com/developerworks/ra
tional/library/content/03july/10001251/125

I _bestpratices. TPO26B.pdf.

oup.

19.

From Requirements Elicitation to Requirements Modelling:
An Experience Report

Gomaa. H. and Olimpiew. [E.M. :The Role of
Use Cases in Requirements and Analysis
M 0 d e I I n o
http://www.ie.inf.uc3m.es/wuscam-05/5-
wusCam.pdf

RalphwR. Young (2002): “Recommended
Requirements Gathering Practices™
htttp://www.stsc.hill.af.mil/crosstalk/apr2002.
htm

Xiaoqing B.. Peng. L..C.. Huaizhong 1. (2004):
An
Thin-Threads from the UML Diagrams.
COMPSAC pp. 546-552

Ibtyemi. T.S.. Olugbara. O.0.. lkhu-
Omoregbe. N.A. and Osamor. V. (2003),
Web-Based

for

Approach the

to Generate

Developing Enterprise

Effective College

CST

Application
Administration. Project. Covenant

University

