

A PROCESS FRAMEWORK FOR MANAGING IMPLICIT

REQUIREMENTS USING ANALOGY-BASED REASONING

COVER PAGE

EMEBO, ONYEKA CHIBUEZE

CU023020043

JULY, 2017

A PROCESS FRAMEWORK FOR MANAGING IMPLICIT

REQUIREMENTS USING ANALOGY-BASED REASONING

TITLE PAGE

BY

EMEBO, ONYEKA CHIBUEZE

B.Sc. and M.Sc. Computer Science

(Covenant University)

Matriculation Number: CU023020043

A Thesis Submitted to the Department of Computer and Information Sciences,

College of Science and Technology, Covenant University, Ota, Nigeria. In Partial

Fulfilment of the Requirements for the Award of Doctor of Philosophy (Ph.D)

Degree in Computer Science.

JULY, 2017

ii

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the

award of the degree of Doctor of Philosophy in Computer Science in the Department of

Computer and Information Sciences, College of Science and Technology, Covenant

University, Ota.

PHILIP JOHN AINWOKHAI

(Secretary, School of Postgraduate Studies)

Signature and Date

PROFESSOR SAMUEL WARA

(Dean, School of Postgraduate Studies)

Signature and Date

iii

DECLARATION

I, EMEBO, ONYEKA CHIBUEZE declare that this research was carried out by me under the

supervision of Professor Charles Korede Ayo of the Department of Computer and

Information Sciences, Covenant University, Ota, Ogun State, Nigeria and Dr. Olawande

Daramola of the Department of Computer and Information Sciences, Covenant University,

Ota, Ogun State, Nigeria. I attest that this thesis has not been presented either wholly or

partly for the award of any degree elsewhere. All the sources of materials consulted in the

course of this academic research are duly acknowledged.

EMEBO, ONYEKA CHIBUEZE

Signature and Date

iv

CERTIFICATION

We certify that the thesis titled “A Process Framework for Managing Implicit

Requirements using Analogy-Based Reasoning” is an original research work carried out

by EMEBO, ONYEKA CHIBUEZE (CU023020043) in the Department of Computer and

Information Sciences, College of Science and Technology, Covenant University Ota, Ogun

State, Nigeria, under the supervision of Professor Charles Korede Ayo and Dr. Olawande

Daramola. We have examined and found the work acceptable for the award of a degree

Doctor of Philosophy in Computer Science.

PROFESSOR CHARLES KOREDE AYO

(Supervisor)

Signature and Date

DR. OLAWANDE DARAMOLA

(Co-Supervisor)

Signature and Date

DR. OLUFUNKE OLADIPUPO

(Head of Department)

Signature and Date

PROFESSOR CHARLES UWADIA

(External Examiner)

Signature and Date

PROFESSOR SAMUEL WARA

(Dean, School of Postgraduate Studies)

Signature and Date

v

DEDICATION

This work is dedicated to God Almighty who has made me a pen in the hand of the ready

writer, ordering my steps and guiding my way through the journey of life and ensuring that

everything works together and is fitting into a plan for good for me at all times.

It is also dedicated to Him only.

vi

ACKNOWLEDGEMENTS

At the end of every seven years, you shall grant a release.

…because the LORD’s release has been proclaimed.

I am deeply indebted to God my Father, the author and finisher of this work for giving me

wisdom and understanding needed to complete this research. His grace saw me through

my doctoral studies.

My deep and sincere gratitude also goes to the Chancellor, Dr David Oyedepo and the

members of the Board of Reagents of Covenant University Ota for the vision and mission

of the University.

Also special thanks to the management and staff of the University: the Vice Chancellor,

Prof. AAA Atayero, the acting Registrar, Mrs Mary Aboyade, the Deans of the Colleges

and the various Heads of Department for their commitment to the pursuit of the vision of

Covenant University.

I would also like to use this medium to express my sincere gratitude to the Head of

Department, Dr Olufunke Oladipupo for her motivation towards completing this project,

my supervisor Professor. C.K Ayo for his fatherly role and mentorship in my career and

finally my co-supervisor, Dr Olawande Daramola, who inculcated in me a sense of standard

and quality in the course of this project, his critical views, observations, and suggestions

were the major driving force for the successful completion of this work.

My appreciation also goes to the entire staff of the Department of Computer and

Information Sciences for their continuous encouragement and support in times of need,

also for their critiques and contributions during presentations at the departmental and

cluster levels. God will reward you all.

I remain thankful to the management of Covenant University Ota, for availing me the

opportunity to be a beneficiary of the Young Academics Training Programme (YATRAP)

initiative. May God continue to take us forward to greater heights in Covenant University.

vii

To my friends (Sona Odafen and Joy Lamptey) who contributed to the content and editing

of this work, thank you for being there for me. To my wife (Shalom Obi), thank you for

being by my side all through this work. To my project students at the undergraduate

programme especially Izuchukuwu Alaine, I want to appreciate you all for your immense

contributions to this work. To my other colleagues in the YATRAP program thank you for

being a big family to me here.

I would like to acknowledge and appreciate my parents Mr Christopher and Mrs Ada

Emebo, for investing their lives and resources to providing me quality moral, formal

education and spiritual upbringing, also for all their parental support, encouragement and

belief in me. To my siblings (Uchenna, Ada, and Ifeoma), I thank you all for your believing

in me as well and for the prayers rendered ceaselessly in seeing to it that this work is

completed.

Not forgetting the Fulbright Scholarship programme that gave me the unique opportunity

to go for my fieldwork in the United State of America (U.S.A) where I had the opportunity

of being hosted by Montclair State University under the supervision of Dr Aparna Vardea.

It was indeed a lifetime opportunity to interact with the software industry in getting

involved in the evaluation of this work.

viii

TABLE OF CONTENTS

Cover Page ... i

Title Page .. ii

Acceptance .. ii

Declaration ... iii

Certification ... iv

Dedication ... v

Acknowledgements .. vi

Table of Contents ... viii

List of Tables .. xii

List of Figures .. xiii

List of Abbreviations .. xv

Abstract .. xvi

CHAPTER ONE: INTRODUCTION .. 1

1.1 Background Information ...1

1.2 Statement of the Problem ..4

1.3 Aim and Objectives of the Study ..5

1.4 Research Methodology ...5

1.5 Significance of the Study ..7

1.6 Scope of the Study ..8

1.7 Organisation of the Thesis ..8

CHAPTER TWO: LITERATURE REVIEW ... 10

2.1 Introduction ...10

2.2 Overview of Requirements Engineering (RE) ..10

2.2.1 Key Issues in Requirements Engineering ... 13

2.2.2 Activities in Requirements Engineering ... 14

2.3 Core Technologies and Concepts ..19

2.3.1 Natural Language Processing (NLP) .. 19

2.3.2 Ontology ... 25

2.3.3 Analogy-Based Reasoning (ABR) .. 37

2.4 Sources of Implicitness in Requirements ..45

2.4.1 Implicit Knowledge .. 45

2.4.2 Outsourced Software .. 46

ix

2.4.3 Ambiguity in Requirements Documents .. 47

2.5 Overview of Related Work ...53

2.6 The Context of this Research ..57

2.7 Summary ...57

CHAPTER THREE: METHODOLOGY ... 58

3.1 Introduction ...58

3.2 Survey Research Design ...58

3.2.1 Framework and Hypothesis Development ... 59

3.3 Structure of the Survey ...61

3.4 Data Collection Method ..61

3.5 Test Method ..63

3.6 Sample Procedure ...64

3.7 Data Analysis and Results ..65

3.7.1 Reliability Test ... 67

3.7.2 Hypothesis Testing ... 67

3.8 Discussion ...77

3.9 Discussion of Validity Threats..78

3.10 Requirements of the Process Framework ...80

3.11 Process Framework for Managing IMR Process ..80

3.11.1 Components of the Framework .. 80

3.12 Summary ...87

CHAPTER FOUR: SYSTEM DESIGN AND IMPLEMENTATION .. 88

4.1 Introduction ...88

4.2 Motivation for PROMIRAR ...88

4.3 System Modelling for PROMIRAR..89

4.3.1 Use Cases for PROMIRAR .. 90

4.3.2 Class Diagram for PROMIRAR ... 99

4.3.3 Activity Diagram for IMR Classification ... 101

4.3.4 Sequence diagram for IMR Identification in PROMIRAR 102

4.3.5 Workflow of PROMIRAR’s Operation .. 102

4.4 File Designs ..103

4.4.1 Input Files ... 103

4.4.2 Output/Report Files .. 104

4.4.3 Corpus Files .. 104

x

4.5 Ontology Design ...104

4.5.1 Domain Requirements .. 105

4.5.2 Conceptual Modeling of the Domain ... 105

4.6 Algorithm Design..108

4.6.1 Lexical Ambiguity .. 108

4.6.2 Vagueness ... 111

4.6.3 Other Ambiguities .. 112

4.7 Implementation Language and Platform ...113

4.8 Implementation of PROMIRAR ...114

4.9 Description of PROMIRAR Views ..116

4.9.1 The Main PROMIRAR Window .. 116

4.9.2 The About PROMIRAR Window .. 117

4.9.3 The About Analysis Window ... 118

4.9.4 Report Generation in PROMIRAR ... 119

4.10 Summary ...122

CHAPTER FIVE: EVALUATION ... 123

5.1 Introduction ...123

5.2 Performance Evaluation of PROMIRAR..123

5.2.1 Overview of Source Requirements Documents .. 123

5.2.2 Background of the Subjects .. 124

5.2.3 Description of Experimental Procedure ... 125

5.2.4 Metrics for the Performance Evaluation ... 126

5.2.5 Performance Evaluation Results ... 128

5.2.6 Discussion of Performance Evaluation Results .. 130

5.2.7 Comparative Evaluation of PROMIRAR and Other Tools 130

5.2.8 Discussion of Performance Evaluation Results .. 131

5.2.9 Discussion of Validity Threats of Performance Evaluation 132

5.3 Process Framework Evaluation of PROMIRAR in an Organisational Context ...133

5.3.1 Background for the Case Study .. 134

5.3.2 Approach Used to Integrate PROMIRAR with RM Tools 135

5.3.3 Method used to conduct the Case Study ... 137

5.3.4 Evaluation Report for the case studies ... 141

5.3.5 Discussion of Validity Threats of Industrial Case Evaluation 145

CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS ... 147

xi

6.1 Conclusion ..147

6.2 Contributions to Knowledge ...150

6.3 Recommendations and Future Work ..151

REFERENCES ... 153

APPENDIX A: Requirements Documents used for Evaluation 171

APPENDIX B: The Questionnaire Form ... 176

APPENDIX C: List of Publications from the Thesis ... 185

xii

LIST OF TABLES

Table 2.1: Comparative Analysis of Ambiguity Resolving Tools 51

Table 3.1: Number of Participants in each country .. 63

Table 3.2: Data on Characteristics of Respondents .. 66

Table 3.3: Reliability Test Table .. 67

Table 3.4: Result of Correlation Testing for H1 ... 69

Table 3.5: Result of Correlation Testing for H2 ... 70

Table 3.6: Result of Correlation Testing for H3 ... 72

Table 3.7: Result of Correlation Testing for H5 ... 74

Table 3.8: Result of Correlation Testing for H6 ... 76

Table 4.1: Use Case Narrative for Importing SRS Document .. 92

Table 4.2: Use Case Narrative for Edit SRS .txt Document ... 93

Table 4.3: Use Case Narrative for Save SRS Text ... 94

Table 4.4: Use Case Narrative for Output File Directory ... 95

Table 4.5: Use Case Narrative for Ontology Management ... 96

Table 4.6: Use Case Narrative for Select Analysis ... 97

Table 4.7: Use Case Narrative for Start Analysis ... 98

Table 4.8: Use Case Narrative for Help .. 99

Table 4.9: Table showing the Architecture’s Classes and their Functionalities 100

Table 5.1: Subjects’ Profession and Experience Index ... 125

Table 5.2: Sample IMR Identification Form... 126

Table 5.3: Recall, Precision & F-Score Result from Experts (E1-E8) using RS1-RS3.. 129

Table 5.4: Overview of other Relevant Tools ... 131

Table 5.5: Comparing PROMIRAR’s Performance with other Selected Tools 131

Table 5.6: Use Case Narrative to Create a Project.. 138

Table 5.7: Use Case Narrative to Import a Document .. 139

Table 5.8: Use Case Narrative for Requirements Management 140

Table 5.9: Use Case Narrative to add Explicated Requirements 141

Table 5.10: Evaluation Report Form used by each Evaluator .. 143

Table 5.11: Process Framework Evaluation Result by two Expert in Company A & B 144

xiii

LIST OF FIGURES

Figure 1.1: Flowchart of the adopted Research Process ... 6

Figure 2.1: Stages in Natural Language Processing ... 21

Figure 2.2: Types of Ontology .. 26

Figure 2.3: Requirements Engineering Activities ... 28

Figure 2.4: Diagram of the Structure Mapping Process of Analogical Reasoning 39

Figure 2.5: The CBR Cycle .. 44

Figure 3.1: Overview of the Survey Research Process ... 59

Figure 3.2: Framework for the hypothesis development .. 61

Figure 3.3: IMR Process Framework .. 81

Figure 3.4: Flowchart for Analogical Matching ... 86

Figure 3.5: An Example of a Structural Isomorphism Network between Two Domains . 87

Figure 4.1: Combined Use Case of PROMIRAR ... 91

Figure 4.2: Combined Class diagram for PROMIRAR .. 100

Figure 4.3: Activity Diagram for IMR Identification in PROMIRAR 101

Figure 4.4: Sequence Diagram for IMR Identification in PROMIRAR 102

Figure 4.5: Flowchart Diagram for PROMIRAR’S Workflow 103

Figure 4.6: An Ontograph of the Various Steps Needed for Registration 107

Figure 4.7: An Ontograph of the basic things to get from a Level Adviser 107

Figure 4.8: Result of a Query of 100 Level Courses .. 108

Figure 4.9: Lexical Analysis Algorithm for PROMIRAR .. 109

Figure 4.10: Lexical Analysis –Context Disambiguation Algorithm 110

Figure 4.11: Vagueness Analysis Algorithm .. 111

Figure 4.12: Corpus Search Algorithm ... 112

Figure 4.13: A Snapshot of PROMIRAR Main Screen .. 114

Figure 4.14: PROMIRAR Main Screen with Highlight of Interface of Major Goals 117

Figure 4.15: PROMIRAR Help Window ... 118

Figure 4.16: PROMIRAR Help Window (About Analysis) ... 119

Figure 4.17: PROMIRAR Main Screen Activating the “Auto view Report” Option 120

Figure 4.18: Screen of PROMIRAR Vagueness Report File ... 121

Figure 4.19: Screen of PROMIRAR Lexical Ambiguity Report File 121

Figure 5.1: Structure of Relations of CMS Requirements .. 124

Figure 5.2: Performance Evaluation (Actual Value vs. Predicted Outcome) 127

xiv

Figure 5.3: Performance Evaluation (Human Expert vs. PROMIRAR) 128

Figure 5.4: Precision (a) Recall (b) Chart from 8 Experts (E1-E8) using the R1-R3 129

Figure 5.5: Conceptual Architecture of the First Alternative ... 136

Figure 5.6: Conceptual Architecture of the Second Alternative 137

Figure 5.7: Use Case for Creating a Project ... 138

Figure 5.8: Use Case for importing a Document .. 139

Figure 5.9: Use Case for Requirements Management .. 140

Figure 5.10: Use Case to add explicated Requirements ... 141

xv

LIST OF ABBREVIATIONS

ABR Analogy-Based Reasoning

API Application Programming Interface

AI Artificial Intelligence

ADO Application Domain Ontology

BFO Basic Formal Ontology

CBR Case-Based Reasoning

CMS Course Management System

NLP Natural Language Processing

IDE Integrated Development Environment

IMR Implicit Requirements

POS Part of Speech

PROMIRAR PROduct for Managing Implicit Requirement using

Analogy-based Reasoning

RE Requirements Engineering

RT Requirements Traceability

SRS Software Requirements Specification

SE Software Engineering

UML Universal Modelling Language

WSD Word Sense Disambiguation

xvi

ABSTRACT

The ability of a system to meet the stated requirements affects the success and overall

usability of the system. The presence of implicit requirements create difficulties in

fulfilling the desires and needs of the stakeholders during software development.

Identification of implicit requirements is essential to the functionality of the software as

implicit requirements are equally as important as explicit requirements. Although different

researchers and practitioners have identified the importance of implicit requirements for

the overall successful outcome of software development, there is a need to correlate these

theoretical assumptions about implicit requirements with the state of practice and also

create a framework which can effectively identify and manage implicit requirements within

a software organisation. This thesis is a two-part research. It involved an empirical

investigation of the perception and handling of implicit requirements in small and medium-

sized software organisations and the presentation of a process framework to identify and

manage implicit requirements during software development process. The empirical

investigation was conducted using a survey, which was conducted through a web-based

questionnaire, where 56 participants from 23 countries participated. The study found that

critical organisational factors such as number of years in the business of an organisation,

the years of experience of an organisation in requirements engineering, and size of software

development team have a positive correlation with the perception and handling of implicit

requirements within an organisation. Further analysis showed that a significant number of

practitioners believe that additional means can complement the use of experience such as

tool support in managing implicit requirements. Hence, the relevance of the second part of

this research, which presents an approach for identification and management of implicit

requirements using analogy-based reasoning, ontology, and natural language processing.

The approach is supported by a prototype tool, which was assessed by conducting a

performance evaluation of the tool with industry experts as well as with three other existing

tools. From the performance evaluation result, the prototype tool had a mean recall value

of 83.20% and a mean precision of 86.16% showing that the tool is efficient and fit for

practical use. Also from the comparative analysis done, firstly, it was observed that the

lexical ambiguity and structural ambiguity analysis of the prototype tool performed better

than the first tool in terms of recall and F-Score but were almost at par in terms of precision.

Secondly, when the lexical analysis of the prototype tool was compared with the second

tool, they both performed at par across all metrics. Finally, when the vagueness analysis of

the prototype tool was compared with the third tool, it was observed that the prototype tool

performed better across all metrics. An industrial evaluation of the process framework with

two requirements management tool by two experts each from two companies was

conducted, which further revealed that the prototype tool integrates well with

organisational requirements engineering processes. Recommendations were made towards

improving the domain ontology for enhanced implicit requirements identification. In

conclusion, the ability to discover unknown and un-elicited requirements will mitigate

many risks that can adversely affect system architecture design and project cost.

Keywords: analogy-based reasoning, implicit requirements engineering, ontology.

1

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND INFORMATION

Every software system has a pre-determined purpose and the success of such a system is

dependent on its ability to achieve this purpose. The purpose and functions of a software

system, however, depends on the needs of the stakeholders of which the system is

considered a failure if it is unable to adequately meet these needs. Hence, all the

requirements of the system must be met.

Requirements engineering is a core activity in software development that refers to a process

that covers key foundational activities such as discovering, documenting and maintaining

the requirements for achieving the predefined purpose of a system (Kotonya and

Sommerville, 1998). It connects the needs of the stakeholders and the functions of the

software system, thereby creating optimum satisfaction for the users of the system.

Requirements engineering is a systemic process which begins with requirements elicitation

and involves the identification of requirements from different stakeholders. At this stage,

different types of requirements are identified and they can be broadly classified into two,

namely: explicit (this includes both functional and non-functional requirements) and

implicit requirements. Explicit requirements refer to the well-defined and clearly stated

requirements that a system should execute while implicit requirements (IMR) are the

hidden or assumed requirements that a system is expected to fulfil even though not

explicitly elicited during requirements gathering (Daramola et al., 2012; Pittke et al.,

2015).

As an example, the scenario of creating a portal system for a publishing company that was

extracted from Jha (2009) was considered. While capturing the requirements of the system,

an important requirement was omitted. The following requirements were documented.

2

i. Explicit Requirement 1: A Publisher should be able to create an article, send it for

approval and finally publish the article on the portal.

ii. Explicit Requirement 2: A Portal user should be able to search articles published

on the Portal.

The objective was to develop a system that will cater to both requirements so that the

publisher could create and publish an article and the end user could search the articles using

the search functionality. However, when the system was developed and deployed, end user

discovered that the search result displayed articles, which were published, under approval

and in draft state. This was unsatisfactory for the end-user of the system. This outcome

was as a result of an uncaptured (unspoken) implicit requirement, which was never

mentioned, and thus was not catered for prior to the development of the system.

i. Implicit Requirement: The articles in draft state and under approval should not be

displayed in the search result.

According to Ahamed (2010), the quality of any software system is dependent on its

conformance to both explicit and implicit requirements. Hence, the quality of software

cannot be adjudged good and guaranteed to meet customers’ satisfaction if only explicit

requirements are satisfied while the implied ones are ignored (Drysdale, 2007).

Even though IMR is essential to the successful function of any software, its undefined

nature serves as a challenge causing it to receive less attention in practice. This differs

from explicit requirements which, as opposed to IMR, are clearly defined (Grehag, 2001;

Singer et al., 2009). So far, IMR is handled by requirements engineers who use their

initiative and experience to address the challenges that the absence of such requirements

pose to the overall purpose and functions of the system (Jha, 2009; Parameswaran, 2011).

A number of reasons can lead to the emergence of IMR, some of which are: i) there is lack

of implicit shared understanding among all the stakeholders in a project about the quality

of requirements of a system (Glinz, 2014); ii) a software organization develops a product

in a new domain or subcontracts the software to an external organization with a different

operational background via outsourcing (Deshpande and Richardson, 2009) and iii) there

3

is a knowledge gap between developers and shareholders due to existence of implicit

knowledge. Failure to make IMR explicit in such instances could lead to serious problems

(Polyani, 1983).

According to Polyani (1983), implicit knowledge means “knowing more than you can tell”.

If a stakeholder offering information on a system needs to know more than can be told,

then not all that is known will be told. This missing implicit knowledge can become a basis

for some IMR, which the stakeholder expects the system to fulfil when developed (Gacitua

et al., 2009). Based on the reasons outlined above, it is sufficient to say that the inability to

effectively manage IMR can lead to poor software quality, which in essence creates a

shortfall between stakeholders’ needs and the functionality of the system leading to

customers’ dissatisfaction with the software.

In addition, managing IMR pose some challenges during software development because i)

what is classified as IMR at a certain time, can become obsolete over time because of

technology advancement and new innovations; ii) IMR can lead to budget deficit if not

well managed. For instance, if IMR are not discovered on time, it could be more costly to

integrate such requirements into design or implementation stages, which will swell the

budget for the project; iii) IMR that pertain to software architectural concerns such as

scalability, maintainability, and usability if not properly understood and addressed on time

carry significant risks that can adversely affect the success of a project (Daramola et al.,

2012; Douglass, 2009; Singer et al., 2009).

According to Daramola et al. (2012), these challenges can be partially tackled using good

requirements elicitation methods or through inclusive software development paradigms

such as agile approaches. It is, however, important to note that there are certain situations

where these options are not the preferred choice as these approaches are not known to

possess the inherent capability for handling IMR.

In addition, the advent of requirement management tools such as DOORS, Caliber-RM,

RDD-100, RequisitePro, and icCONCEPT-RTM, amongst others (Larsson and Steen,

2008), and requirement analysis techniques like the KANO model (Kano et al., 1984; Xu

et al., 2007), have failed to directly address issues of IMR. Closely related to the intention

4

of this research is the MaTREx project (Gacitua et al., 2009). In MaTREx, the focus of

the authors was on evolving tools and techniques to improve the management of

information on requirements via automatic trace recovery; ascertaining the existence of

tacit knowledge by tracing of unprovenanced requirements and presuppositions; and

uncovering in requirements documents, the presence of nocuous ambiguity that would

result in potential misinterpretation. However, the focus of this thesis is to use analogy

based-reasoning approach for effective discovery and explicit documentation of IMR,

which would help to manage IMR in a way that improves the overall success of software

development processes.

In view of this, this research proposes a tool support framework that can be integrated into

an organisation’s Requirement Engineering (RE) procedures in order to manage IMR. This

is to improve the efficiency of the RE process, and eventually the whole software

development task.

1.2 STATEMENT OF THE PROBLEM

Implicit and explicit requirements are both crucial to the success of a software system

(Drysdale, 2007; Grehag, 2001; Leffingwell and Widrig, 2000; Pittke et al., 2015). So far,

very little attention has been accorded IMR in the literature as opposed to loads of attention

lavished on explicit requirement as a subject matter (Daramola et al., 2012; Kotonya and

Sommerville, 1998). The observations and general opinions of practitioners suggest that

IMR poses a lot of challenges for software developers, hence the need to efficiently and

effectively manage them. Although there is a general perception of the importance of IMR

during software development, there is yet a lack of empirically proven evidence through

research studies that have assessed the impact of IMR on the success or failure of software

development projects.

Therefore, the research questions investigated in this work are:

i. What is the impact of IMR on system development in practice?

5

ii. How can IMR be efficiently managed within an organisational context to promote

successful RE during software development?

1.3 AIM AND OBJECTIVES OF THE STUDY

This research work aims to evolve a process framework for managing IMR within an

organisation.

To achieve this aim, the objectives of this work are to:

i. empirically investigate the impact of IMR on success or otherwise of software

development in practice;

ii. design a process framework that both discovers and manages IMR in a

systematic way;

iii. provide a prototype tool support for the process framework for managing IMR;

and

iv. Evaluate the process framework and prototype tool using industrial case

studies and controlled experiments.

1.4 RESEARCH METHODOLOGY

In order to fulfil the goal of this research work, the primary research methods used are

empirical survey and design science research methods.

This includes literature survey, empirical survey, tool prototyping, case study and

controlled experimentation. To achieve the aim and objectives of this work, the research

framework adopted for this research is premised on the framework presented in Hevner et

al. (2004) and Figure 1.1 shows the flowchart of the adopted research process. The

following paragraphs highlight the activities engaged in this research.

6

Figure 1.1: Flowchart of the adopted Research Process

Source: (Hevner et al., 2004)

a. Literature Survey: The literature survey includes the review of relevant literature that

contains valuable information, which could be useful to this research work. This

method involves in-depth research of the essential concepts (requirements engineering,

IMR, requirements management amongst others), which form the foundational part of

this research work. Also, past research works, which are directly and indirectly related

are reviewed. Materials reviewed include published journals, peer-reviewed conference

papers, and technical reports.

b. Empirical Survey: An empirical survey aimed at investigating the impact of IMR on

the software development process in practice was carried out. Although it has been

speculated in the literature that poor management of IMR leads to poor quality of

7

software product, this has not been widely supported by empirical evidence. Hence, a

survey was carried out involving RE experts in the academic and professional global

online communities (e.g. SEWORLD, AISWORLD, Yahoo requirements engineering

group, etc.). The empirical data was gathered by using an online questionnaire.

c. Model Formulation: From the result of the survey of the literature, this thesis

proposed the Analogy-Based Reasoning (ABR) approach in order to manage IMR. The

approach integrates two other core technologies, which are Natural Language

Processing (NLP) and Ontology. These three technologies were then integrated in a

complementary way in order to formulate an architectural framework for managing

IMR.

d. Proof of Concept Implementation: A prototype tool (PROMIRAR) was developed

to support the process of managing IMR. The tool is lightweight and developed with

the Eclipse IDE that can be integrated with other Eclipse-based requirements

management tools or other open source requirements management tools.

e. Evaluation: The prototype tool and the process framework were evaluated using

industrial case studies and controlled experiments. This entails a field assessment of

the tool by industrial experts and controlled experiments using industrial experts,

faculty and graduate students of software engineering program. Thereafter, the result

of the evaluation experiments was analysed in order to establish a basis for the

generalisation of the results.

1.5 SIGNIFICANCE OF THE STUDY

This research work has significance to the RE community and the software development

industry in general. The importance of this study includes the following:

i. This study identifies some gaps in existing requirements management literature and

proposes a process framework that enables the effective management of implicit

requirements during RE phase of software development.

ii. The developed systematic tool support framework when integrated into an

organisation’s RE procedure for managing IMR. This will promote the efficiency

8

of the RE processes in software development organisations, thereby reducing the

occurrence of software budget overrun by software firms.

iii. It will further enhance the quality of the software product delivered thereby

eliminating instances of poorly developed software products.

iv. It will bring about greater user satisfaction in developed software products.

1.6 SCOPE OF THE STUDY

The main focus of this work is to investigate how implicit requirements (IMR) can be

effectively and efficiently managed within small and medium-sized software organisations

that embark on projects that solve problems within their immediate environment. These

organisations are more in number and easily accessible. However, little emphasis was

placed on large-sized organisations. Also, this research is focussed on companies that are

developing information systems and also lightweight embedded systems. Organisations

that are involved in the development of more complex systems and cyber-physical systems

were not considered.

1.7 ORGANISATION OF THE THESIS

Chapter One of this thesis presents a general introduction to the study, the statement of the

problem, the aim and specific objectives of the research, the methodology used, scope of

the study and the significance of the study.

Chapter Two undertakes a critical review of the literature on the key issues and activities

in Requirements Engineering (RE) with a focus on implicit requirements. The chapter

presents a critical review of implicit factors in RE touching on the sources of implicitness

and an overview of core technologies and concepts that are essential to the handling of

implicitness in RE. The chapter also reviews different works that attempt to convey the

importance of IMR in RE. The Chapter concludes finally with a brief summary of findings.

Chapter Three describes the research methodology adopted by this thesis. The first part

discusses the design and implementation of the empirical survey, while the second part

describes the architecture of the process framework for managing implicit requirements.

9

Chapter Four presents a description of the design and implementation of the support tool-

PROMIRAR for identification and managing IMR.

Chapter Five handles the evaluation procedure of the approach as well as the tool

developed and it concludes with a discussion of the threats to the validity of the industrial

case evaluation.

Chapter Six is the last chapter that contains the summary, conclusion and a discussion of

the future research outlook of this thesis.

10

CHAPTER TWO

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter provides a review of literature in order to properly situate the context of this

research. It presents theoretical background on important aspects such as requirements

engineering, and the core technologies that have been used in this research – Ontology,

Natural language processing (NLP), Analogy-Based Reasoning (ABR). It closed with a

review of sources of implicitness in requirements engineering and related work on implicit

requirements.

2.2 OVERVIEW OF REQUIREMENTS ENGINEERING (RE)

Before delving into the details of software requirements engineering, it is essential that the

words making up the concept of requirements engineering be properly defined and

explained to ease understanding. Thus, there is need to understand what requirements and

engineering are, as used in this study. Kotonya and Sommerville (1998) gives the definition

of requirements as a specification of what should be implemented or a constraint of some

kind on a system software; usually defined during the early stages of software

development. He further sees requirements in the form of a user-level facility description,

a detailed specification of expected system behaviour, a general system property, a specific

constraint on the system, information on how to carry out some computation and a

constraint on the development of a system software among others. The use of the term

engineering implies that systematic and repeatable techniques be used to ensure that system

requirements are complete, concise and relevant among other things. This can be seen

resonating all through the requirements engineering process from the elicitation of

requirements to the modelling and analysing of requirements, negotiation, validation and

verification and finally the management of change.

11

Different researchers have given their definitions of requirements engineering. According

to Kotonya and Sommerville (1998), requirements engineering refers to that aspect of

software engineering that comprises all activities involved in discovering, documenting

and maintaining a set of requirements for a computer-based system. It is considered to be

the initial phase of the lifecycle of software development that deals with the identification,

documentation and management of requirements (Odeh, 2009). It usually involves lengthy

deliberations among stakeholders to create a platform for them to conclude and complete

accurate and unambiguous list of software requirements. Zave (1997), defined

requirements engineering as “the branch of software engineering concerned with real

world goals for functions of and constraints on software systems. It is also concerned with

the relationship of these factors to precise specifications of software behaviour and to their

evolution over time and across software families”. The definition goes further to reiterate

requirements engineering not only as a process of software development but also as a core

engineering activity. The definition reiterates requirements engineering (RE) as an

important part of an engineering process pointing to the fact that RE is concerned with

anchoring development activities to a real-world problem in a way that the appropriateness

and cost-effectiveness of the solution can be analysed (Nuseibeh and Easterbrook, 2000).

The requirements engineering process is concerned with the identification, modelling and

verification of the functionality of a software system. It also puts into cognizance the

context within which it will be developed and operated. Pohl (1997) itemised four (4) main

tasks of requirements engineering as requirements elicitation, negotiation, specification

and validation or verification. These are simply the basic activities that make up the process

of requirements engineering. Requirements engineering has however been considered a

misnomer with a school of thought arguing against its being referred to as an engineering

process while the other faction sees it as an integral part of software engineering (Pohl

1997).

Over the years different problem areas have been identified in software development,

however, meeting the requirements of the customer or user of the software is one which is

always emphasised. The principal problem areas in software development and production

as put forward by the European Software Process Improvement Training Initiative, 1996,

12

are the specification, documentation and management of requirements which is a sum total

of what requirements engineering (RE) is about. It was further discovered that difficulties

with requirements in embedded systems are the root-cause of safety-related software errors

that have persisted until integration and system testing.

It is of utmost importance that requirements are clearly specified and documented; free

from any form of ambiguities, inaccuracies and inconsistencies. If this is not the case, then

complications could arise in the software development process, which may result in the

system being delivered late and costing much more than originally expected. It could also

result in the system becoming unreliable in use with regular system errors and crashes

disrupting normal operation or better still in the dissatisfaction of customers and end-users

of the software with the system, making the identification and handling of such issues with

requirements as is usually the case with implicit requirements very necessary.

Requirements engineering is however not an easy task. It comes with its own baggage of

difficulties, which could arise from the system itself or from external sources such as the

stakeholders of a particular software system and the environment within which a software

system is to operate. Change is a major difficulty that requirements engineering is saddled

with. Different things that the requirements engineer works with are subject to change.

From the environments within which a software system operates to the goals and priorities

of stakeholders and even their needs and the specifications of the system software.

The practice of requirements engineering in the 21st century has been faced with several

challenges with some of these challenges being E-commerce and globalisation, accelerated

system development and off-the-shelf systems among others.

The ideas that brought such drastic changes to the field of Requirements Engineering (RE)

are that not only should the process of modelling and analyzing requirements be done using

contextualized enquiry techniques as opposed to techniques isolated from the

organizational and social context in which the software system would have to operate but

that RE should focus on modelling indicative and optative properties of the environment,

not just the functionality of the new system (Zave and Jackson, 1997) and that the

requirements engineer has to take seriously the need to analyze and resolve conflicting

13

requirements to support stakeholders’ negotiation and also to reason with models that

contain inconsistencies (Ghezzi and Nuseibeh, 1998).

In their opinion, RE is a multidisciplinary, human-centered process whose tools or

techniques draw upon a variety of disciplines making it a necessity for the requirements

engineer to master skills in a variety of disciplines including cognitive psychology,

anthropology, sociology and linguistics amongst others, which helps the requirements

engineer to develop a software system that would enhance and not hinder human activities.

Requirements engineering can, therefore, be seen as the process of discovering the purpose

for which a software system is to be developed by identifying stakeholders and their needs

and documenting same in a form that is responsive to analysis, communication and

subsequent implementation. This underlies a major component of system development

processes. Thus, if attention is given to requirements, the probability of the system

developing problems in future is reduced.

2.2.1 Key Issues in Requirements Engineering

Requirements engineering as a field has several issues arising as it only became popular in

the 1990s. It evolved as a field in its own right following several important and radical

shifts in its understanding.

The first issue arising in requirements engineering is the fact that it is a relatively new field

in which several groundbreaking discoveries are still being made. In fact requirements

engineering could not attain the independence of being a field in its own right due to several

orthodox views that made up its components. Thus, the need for the emergence of new

ideas that clearly defined what requirements engineering should entail.

Secondly, requirements engineering is considered a misnomer amongst scholars due to it

being considered a core engineering activity (Zave, 1997). However, from the definitions

given of engineering by several textbooks, there is no doubt that requirements engineering

is indeed an engineering activity as it seeks to provide cost-effective solutions to real-world

14

problems in such a way that the cost-effectiveness and appropriateness of the solution can

be analysed.

2.2.2 Activities in Requirements Engineering

The areas of requirements engineering, which is a sum total of all the activities that make-

up the process of RE are eliciting requirements, analysing and modelling requirements,

communicating requirements, agreeing on requirements and evolving requirements (Kaur

and Singh, 2010).

I. Elicitation of Requirements in RE

The elicitation of requirements is usually the first step in the RE process and it is worthy

of note that it does not imply that requirements are out there to collect only by asking the

right questions but that the information gotten from stakeholders must be interpreted,

analysed, modelled and validated and more often implied requirements elicited before the

requirements engineer can be confident he has what he needs to develop a particular

software system.

An important goal of requirements elicitation is to find out the purpose for which a software

system is being developed by identifying the problem such a system is to solve. This helps

the requirements engineer to identify system boundaries, which would determine where

the final delivered system would fit into the current operational environment (Nuseibeh

and Easterbrook, 2000).

There are several techniques that can be employed in the requirements elicitation process

in RE. The type of elicitation technique favoured by the requirements engineer, however,

depends not only on the time and resources available to him or her but also on the type of

information to be elicited. Among the techniques of requirements elicitation is the

traditional techniques, which include the use of questionnaires and surveys, interview and

the analysis of existing documentation such as organisational charts, process models or

standards, and user or manuals of existing systems.

15

The group elicitation technique is another elicitation technique that includes brainstorming

and focus groups and the use of consensus-building workshops with unbiased facilitators

with the aim of exploiting team dynamics to elicit a richer understanding of needs, which

would, in essence, serve as requirements. Prototyping is used for elicitation when there is

a great deal of uncertainty about requirements or where early feedback is required from

stakeholders. This technique can be combined with other techniques to achieve optimum

results.

Model-driven techniques provide a specific type of model for the type of information to be

gathered and use this model to drive the elicitation process while cognitive techniques

include a series of techniques originally designed for knowledge acquisition for

knowledge-based systems (Shaw and Gaines, 1996) and it includes protocol analysis where

an expert thinks aloud while performing a task in order to afford the observer an insight

into the cognitive process used to perform the task.

Finally, contextual techniques involve participant observation and arose in the 1990s as an

alternative to the traditional and cognitive techniques of requirements elicitation. From the

plethora of techniques available, the requirements engineer would have to select the

appropriate technique or techniques most suitable for the process of requirements

elicitation at hand making technique-selection guidance more appropriate than rigid

methods in the process of requirements elicitation (Maiden and Rugg, 1996).

II. Modelling and Analysing Requirements

The modelling and analysis of requirements are the next activity undertaken in the RE

process after requirements elicitation. Modelling can be said to be the construction of

abstract descriptions that are agreeable to interpretation in the sense that the models created

are used to represent a whole range of products of the requirements engineering process

(Nuseibeh and Easterbrook, 2000). The aspect of analysis in the second stage of the RE

process refers to the generation of useful information from the models produced or created.

16

This goes to say that after the requirements engineer has elicited necessary requirements

using the elicitation technique that best suits the particular situation, he proceeds to create

or produce models to serve as drivers for further information gathering while at the same

time uses a particular approach to analysis to be able to generate useful information from

the models thereby enabling it to achieve the purpose for which it was produced.

There are several modelling techniques that can be utilised as a tool through which models

can be made to elicit the necessary information needed. Some of these techniques include

enterprise modelling, which entails having an understanding of an organisation’s structure;

the business rules that affect its operation; the goals, tasks and responsibilities of its

constituent members and the data that it needs to generate and manipulate. What this means

is that enterprise modelling captures the purpose of a system by describing the behaviour

of the organisation in which that system will operate (Loucopoulos and Kavakli, 1995).

Data modelling is another modelling technique that puts into cognisance the fact that large

computer-based systems, information systems more specifically, generate large volumes

of information that must be understood, manipulated and managed. Thus, it creates the

opportunity for the issue of managing large volumes of information when dealing with

large computer-based systems in requirements engineering to be addressed.

Behavioural modelling and domain modelling are also techniques used in modelling and

analysing requirements in RE. While the former places emphasis on the dynamic or

functional behaviour of stakeholders and systems, the later focuses on developing domain

descriptions, which would provide an abstract description of the world in which an

envisioned system will operate. Modelling requirements help the requirements engineer

in the easy analysis of the requirements as it puts techniques such as requirements

animation, automated reasoning, analogical and case-based reasoning and knowledge-

based critiquing among others at the disposal of the requirements engineer with which he

is able to analyse the models produced to generate information.

17

III. Communicating Requirements

Requirements engineering goes far beyond discovering and specifying requirements. It

also puts the fact that for any system software to achieve the intent for which it is

developed, it must be communicated to the different stakeholders in such a way that they

are not only able to understand it and the process behind its creation and implementation

but are also able to interact with the system right from the point where requirements are

elicited to the stage where the system is implemented thus enabling a cross-breed of ideas

that would further increase the functionality of the system.

It would, therefore, not be out of place to opine that the requirements engineering process

goes beyond the mere identification and specification of requirements to being able to

communicate effectively the requirements that have been elicited to the participating

parties, thus, creating a shared meaning upon which several other requirements though not

explicitly stated could be brought to the fore and those already available analysed easily,

written and revalidated.

Communicating requirements, however, goes beyond just eliciting requirements to

managing these requirements. What this means is that the requirements engineer is just not

only able to write out requirements elicited but also able to so in such a way that it is

readable and traceable by many in order to manage their evolution over time making it a

core scientific process.

Requirements traceability (RT) according to (Gotel and Finkelstein, 1994) is the ability to

describe and follow the life of requirements from its origin through its deployment and use

up until it is converted to a software system. It is a crucial factor in requirements

engineering that determines how easy it is to read, navigate, query and change requirements

documentation (Nuseibeh and Easterbrook, 2000). Providing the elements of requirements

traceability in requirements documentation helps the documentation to gain a level of

integrity and completeness that would be useful in managing change in the process of

requirements engineering as is always the case.

18

IV. Verifying and Validating Requirements

It is of utmost importance that an agreement is created and maintained between

stakeholders irrespective of their divergent needs, opinions and goals during the

requirements engineering process. This, therefore, makes it absolutely necessary to

explicitly describe requirements as it not only makes validating requirements possible but

also creates a platform through which conflicts between stakeholders can be resolved.

Validating requirements, such as validating scientific knowledge, is not without its

difficulties. The first difficulty encountered in creating validation in requirements

engineering is philosophical in nature as it concerns what truth is and what could be

considered knowable. It is for this reason that Popper (2009), opines that scientific theories

can never be proved through observations, only refuted.

The second difficulty that arises when creating validation in requirements engineering is

social. This difficulty concerns how agreement in requirements engineering can be reached

in spite of the conflicting needs and goals of the diverse stakeholders involved in the

process. It is based on the problem of disagreement between stakeholders, which can be

managed by a process known as requirements negotiation. Requirements negotiation,

therefore, attempts to resolve the conflict among stakeholders while still ensuring that the

satisfaction of each stakeholder’s goal is not undermined in any way (Ghezzi and Nuseibeh,

1998).

V. Managing Change in Requirements Engineering

The management of change is of utmost importance in requirements engineering. It is in

fact considered a fundamental activity in requirements engineering. This is because

successful software systems are dynamic in nature, evolving alongside the environments

in which they operate (Arnold and Bohner, 1996).

Requirements evolve due to several reasons, which include but are not limited to adding or

deleting requirements or fixing errors. These usually occur in response to the changing

needs and goals of stakeholders; being humans they are dynamic and so are their needs and

19

goals. The need to manage inconsistencies in requirements documentation, which could

have arisen as a result of mistakes or conflict between requirements also creates evolving

requirements in requirements engineering.

It is, however, important to note that each proposed change has to be evaluated in terms of

existing requirements and architecture of existing software system so that acceptable trade-

off between the cost and benefit of making a change can be achieved. The process of

identifying core requirements in order to develop a successful software system that is stable

in the presence of change and flexible enough to be customised and adapted to changing

requirements is simply what evolving requirements in the RE process are about.

2.3 CORE TECHNOLOGIES AND CONCEPTS

In this section, an overview of the core technologies and concepts that relate to the context

of this research is presented. In tackling the challenges of IMR, this research engaged the

use of a combination of artificial intelligence technologies, namely Analogy-Based

Reasoning (ABR), Ontology, and Natural Language Processing (NLP). These approaches

play the following role in achieving the research objectives: ABR - enables cross-domain

reuse of previous requirements specifications in the discovery of new IMR; Ontology –

enables the representation of relevant domain knowledge that is crucial for managing IMR

in specific domains and NLP – enables the automated analysis of requirements, since

requirements are mostly written using natural language texts. Hence, the combination of

these approaches has the potential to address issues of managing IMR during RE.

2.3.1 Natural Language Processing (NLP)

Natural Language Processing (NLP) is a multidisciplinary subject and it is generally

defined as the processing of human language. It deals with a representation of human

knowledge, which has the potential of having ambiguities without the knowledge of the

speaker and the receiver. Therefore, this can be tedious if natural language is processed

manually, making it either automatic or semi-automatic. Natural language cuts across

different fields. In Linguistics, NLP focuses on formal, structural models of language and

the discovery of language universals. In Psychology, it gives insight into the human

20

cognitive process with the aim of modelling the language to a compressible form. In the

field of Artificial Intelligence (AI), NLP focuses on the interaction between humans and

computers. It focuses on developing internal representations of data and efficient

processing of these structures. Different researchers have different definitions for the term

NLP. (Chopra et al., 2013), defined NLP as a subfield of Artificial Intelligence and

Linguistics, devoted to making computers understand the statements or words written in

human languages. According to Liddy (2001), NLP is a theoretically motivated range of

computational techniques for analysing and representing naturally occurring texts at one

or more levels of linguistic analysis for the purpose of achieving human-like language

processing for a range of tasks or applications. Mooney (2014), defines NLP as a branch

of computer science focused on developing systems that allow computers to communicate

with people using everyday language. A consistent fact with these definitions is the

interaction between computers and humans. This means there is an input of natural

language which is converted to machine language (for computer understanding) and the

output is released as natural language. At the stage of the input, the computer/machinery

has natural language understanding, which is the task of reasoning and understanding

where the input is natural language while the output stage refers to the generation of natural

language, which can be in the form of text or other forms.

NLP has evolved over many decades. A notable time in the field of NLP is in 1950. Alan

Turing released an article titled Computing Machinery and Intelligence. The article

proposed what is now referred to as the Turing Test. Turing test focused on the replication

of human intelligence behaviour in machines. A human evaluator that can differentiate

between the machine and human participants was proposed to serve as a judge of natural

language conversations (text only) between a human and a machine that is designed to

generate human-like responses. Since then there have been other notable and successful

NLP systems. For example ELIZA, SHRUDLU are successful NLP systems of the 60’s

which were based on block worlds, In the 70’s the introduction of ontologies into NLP

system gave birth to systems such as MARGIE, SAM Talespin and many other NLP

systems.

21

Different researchers have given different interpretations to the various stages of NLP.

Liddy (2001), classified the natural language process into the following levels: Phonology,

Morphology, Lexical, Syntactic, Semantic, Discourse and Pragmatic.

 As shown below in Figure 2.1 is the diagrammatical representation of the stages in NLP.

Figure 2.1: Stages in Natural Language Processing

Source: (Liddy, 2001)

I. Text Preprocessing

Another word for text preprocessing is Tokenization (as shown in Figure 2.1) or Text

Normalisation. This is an essential part of the NLP system, which reformats the original

text into meaningful units that contain important linguistic features before performing

subsequent text mining strategies. Palmer (2010) defined text preprocessing as the task of

converting a raw text file, essentially a sequence of digital bits, into a well-defined

sequence of linguistically meaningful units. The units are at the lowest level characters

representing the individual graphemes in a language’s written system, words consisting of

one or more characters, and sentences consisting of one or more words. It is an essential

22

part of any NLP system, since the characters, words, and sentences identified at this stage

are the fundamental units passed to all further processing stages, from analysis and tagging

components, such as morphological analysers and part-of-speech taggers, through

applications, such as information retrieval and machine translation systems. This process

includes activities such as segmentations, punctuations, part of speech and sentence

parsing. Text preprocessing can be classified into two: Document Triage and Text

segmentation. Document Triage can be defined as the process of converting a digital file

into a well-defined text document and it includes activities such as character encoding

identification and text sectioning. Wei et al. (2013) defined Document triage as the stage

of converting a binary file into a well-defined text document. This is an easily achievable

stage with the right available software tools. However, it is also crucial to the results as

errors at this stage can make the results incomprehensible. Text Segmentation in simple

terms refers to the breakdown/ division of the text into meaningful units such as sentences,

words, topics, amongst others. There is different type’s text segmentation. One of such is

Morphology. This refers to how the words are broken down into Morphemes (smallest

units of meaning). Morphemes meanings remain the same across words, therefore, an NLP

system can recognise the meaning conveyed by each morpheme in order to gain and

represent meaning (Liddy, 2001).

II. Lexical Analysis

Lexical Analysis refers to the identification and analysis of the structure of words. This

involves the conversion of words into a sequence of tokens. The lexical analysis involves

the division of texts into paragraphs, sentences, and words. The aim of lexical analysis in

natural language processing is to connect each word with its corresponding label in a

dictionary. However, many words have multiple meanings (depending on the context in

which it is used), making it almost impossible to choose the correct meaning of the word

considering only the highlighted word in its context. This means that in an instance, a word

in a grammatically valid sentence can be replaced by another of the same grammatical

class, maintaining the validity of the sentence. Within the same class of words, there are

groups of rules that characterise the behaviour of a subset of words from one language. A

23

morphological analyser is a key to understanding a sentence, as to form a coherent

structure, it is necessary to understand the meaning of most of his words forming. It

identifies words or phrases in one sentence alone, marking each with a token symbol. This

process is aided by delimiters (punctuation and blanks), that is recognised in the stage of

preprocessing. The tokens identified are classified according to their use (grammatical

class). The primary aim of the lexical analysis phase is the segmentation the input stream

of characters into tokens, simply grouping the characters into pieces and categorising them

(Liddy, 2001).

III. Syntactic Analysis

Syntactic analysis is also known as parsing. It is derived from the Latin word Pars

(orationis), which means parts of speech. This stage in natural language processing has to

do with the analysis of a string of symbols, either in natural language, conforming to the

rules of grammar. Ljunglof and Wiren (2010), defined syntactic analysis as the analysing

of a string of words (typically a sentence) to determine its structural description according

to a formal grammar. It involves analysis of words in the sentence for grammar and

arranging words in a manner that shows the relationship between the words. A grammar is

used to determine what sentences are legal and it is applied using a parsing algorithm. This

analytical process results in a parse tree showing their syntactic relation to each other,

which may also contain semantic and other information. The parse tree breaks down the

sentence into structured parts so that the computer can easily understand and process it.

The major purpose of the syntactic analysis is to analyse the syntactic structure of the

program and its components and to check these for errors. The string of words used as input

are outputs of lexical analysis and tokenization respectively.

There are different types of grammar, which have been developed by different researchers.

A grammar consists of one or more variables that represent classes of strings. There are

rules that say how the strings in each class are constructed. The construction can make use

of the culmination of symbols of the alphabet and strings that are already known to be in

one of the classes or make use of them separately. One of such is the Context Free Grammar

(CFG). It was introduced by Chomsky (1956). It is used to describe the syntactic structures

24

of a programming language. It describes what elementary constructs there are and how

composite constructs can be built from other constructs. A CFG can be defined as a tuple

G = (V, T, P, S)

where

i. V is the (finite) set of variables (or non-terminals or syntactic categories). Each

variable represents a language or a set of strings.

ii. T is a finite set of terminals. This refers to the symbols that form the strings of the

language being defined.

iii. P is a set of production rules that represent the recursive definition of the language.

iv. S is the start symbol that represents the language being defined.

Other variables represent auxiliary classes of strings that are used to help define the

language of the start symbol. CFG is the most influential grammar formalism for describing

language syntax. It is the most simple and most generally adopted. Also, most formalisms

are derived or related to the Context Free Grammar.

IV. Semantic Analysis

A classic view of Semantic Analysis was given by Poesio (2000), which states that the

ultimate goal, for humans as well as natural language processing systems, is to understand

the utterance, which, depending on the circumstances, may mean incorporating

information provided by the utterance into one’s own knowledge base or, more, in general,

performing some action in response to it. ‘Understanding’ an utterance is a complex

process, which depends on the results of parsing, as well as on lexical information, context,

and commonsense reasoning (Poesio, 2000).

In general, linguistics semantic analysis refers to analysing the meanings of words, fixed

expressions, whole sentences, and utterances in context.

25

2.3.2 Ontology

Ontology is a base of two Greek words “Ontos” which means “being” and “logos” which

means “word”. Although generally associated with philosophy, the term is used in different

fields. In Philosophy it is sub–category of “metaphysics” which means the study of the

nature of reality. This simply means the study of what exists. Ontology in philosophy

studies the nature of being and the categorization and interaction of the being. According

to Barry Smith, “Ontology as a branch of philosophy is the science of what is, of the kinds

and structures of objects, properties, events, processes and relations in every area of reality.

The average man unconsciously is an ontologist in his approach. This is because the human

mind organises and affects the human behaviour based on assumptions on the human minds

view of the world. Take, for example, the knowledge that a visit to the hospital for the first

time requires immediate registration, waiting in the waiting room before being attended to

in the hospital. This is common knowledge, which unconsciously affects conduct in the

hospital. This basic understanding of ontology transcends to other fields. For Artificial

Intelligence (AI) systems, what "exists" is that which can be represented. When the

knowledge of a domain is represented in a declarative formalism, the set of objects that can

be represented is called the universe of discourse. This set of objects and the describable

relationships among them are reflected in the representational vocabulary with which a

knowledge-based program represents knowledge.

In AI, ontology is generally defined as the explicit specification of a conceptualization

(Gruber, 2009). Conceptualization is an AI term which refers to the “a set of objects which

an observer thinks exist in the world of interest and relations between them (Genereseth

and Nilsson, 1987). A more compositional definition given by Mizoguchi et al. (1997)

describes ontology as a collection of concepts, the hierarchical arrangement of them and

the interrelation between them.

In Computer Science, ontology is categorised into two, based on its role. It is categorised

as a vocabulary and as a content theory. Ontology as a vocabulary, it is a representation

vocabulary, often specialised to some domain or subject matter. Mizoguchi et al. (1997)

defined ontology as a theory of concepts or vocabulary used as building blocks for

26

information processing. Ontology as a vocabulary the representation vocabulary provides

a set of terms with which to describe the facts in some domain, while the body of

knowledge using that vocabulary is a collection of facts about a domain (Chandrasekaran

et al., 1999). This, in turn, does not mean the vocabulary is the ontology but in the

conceptualization of terms, which the vocabulary is to be represented. Therefore language

translation does not affect ontology but the concept in which the vocabulary is presented.

AI focuses mainly on content theories and mechanism theories. These two are equally

important however without a good content theory to work with, a mechanism cannot work

excellently. Ontologies are content theories about the sorts of objects, properties of objects,

and relations between objects that are possible in a specified domain of knowledge

(Josephson et al., 1999).

I. Types of Ontology

Guarino (1998), identified the following as types of ontology, Figure 2.2 presents a

diagrammatical representation of types of ontologies.

Figure 2.2: Types of Ontology

Source: Guarino (1998)

a) Top level Ontology

They are also known as Foundational or Upper-Level Ontology. They are used to describe

general concepts and are applicable to various domains. They provide a basic description

of objects, relations, events, and other elements of various domains. Upper ontologies try

27

to comprehensively capture knowledge about the world in general, describing for example

space, time, object, event or action, and so forth, independently of a particular domain

(Castaneda, Ballejos et al., 2010). Examples of top-level ontologies include Descriptive

Ontology for Linguistic and Cognitive Engineering (DOLCE) and the Basic Formal

Ontology (BFO). A major benefit of upper ontology is the ability to support semantic

interoperability among a large number of domain-specific ontologies by providing a

common starting point for the formulation of definitions.

b) Domain Ontology

This refers to ontology for a specific domain or unique to an application. Domain Ontology

defines how a group of users conceptualise and visualise some specific phenomenon. They

aid in the development of object-oriented designs for applications and also building of

building large knowledge systems.

c) Task Ontology

Task ontology is forms of problem-solving ontologies, which are aimed at describing or

defining specific task or activity. Mizoguchi et al. (2010) classified the definition of Task

ontologies into 2: (i) A subtask decomposition together with task categorization such as

diagnosis, scheduling, design, etc. and (ii) An ontology for specifying problem-solving

processes.

d) Application Ontology

Malone et al. (2010), defined application ontology as an ontology engineered for a specific

use or application focus and whose scope is specified through testable use cases. They are

descriptions of concepts that are often specialisations of Domain and Task Ontology.

II. Ontologies and Requirements Engineering

The success of a developed system lies in its ability to meet set goals and requirements.

This can be dealt with at the requirements engineering stage of software development. At

this level the goals, functionalities and requirements which are necessary to make the

28

software a success are identified. There are certain activities, which make up the

requirement engineering process. Castaneda et al. (2010) summarise these activities as

Requirements Elicitation, Representation, Analysis and Communication as shown in

Figure 2.3. The use of ontologies in software engineering has gained popularity for two

main reasons: (i) they facilitate the semantic interoperability, and (ii) they facilitate

machine reasoning. There are certain characteristics that good requirements must possess.

The absence of these characteristics produces difficulties in the management of the

requirements process as a whole. Missing, incomplete or inconsistent requirements lead to

faulty software designs, implementations and tests, which produce software of improper

quality or safety risks. There are certain challenges encountered during the requirements

engineering procedures, which create problems with the requirements engineering

procedure. They include some of the following:

Figure 2.3: Requirements Engineering Activities

Source: (Castaneda et al., 2010)

a) Ambiguous Requirements

In the requirements engineering process, the customer’s vague formulations need to be

analysed and documented in a way that the software developers can implement the desired

functionality of the product. User requirements are usually expressed in natural language

(a major source of ambiguous requirements), which leaves a problem with the

expressiveness, the completeness, and the accuracy of the statements. This occurs as a

result of the interpretation by different stakeholders. Since many of these tasks are manual,

29

a skilled analyst is necessary. The analyst needs to write good specifications to avoid and

eliminate these problems. (Korner and Brumm, 2009).

b) Inconsistency and Dynamic Requirements

The human factor (stakeholders) usually presents a constant change factor, which can be

attributed to the desires and changing needs of the stakeholders. The inability of the

requirements analyst to stay abreast and effectively manage these changes will lead to

unsatisfied clients leading to an unsuccessful system (Castaneda et al., 2010). These

changes also occur as a result of the multiple and conflicting requirements from different

stakeholders. Requirements changes have a particularly significant impact on the

consistency of specifications. Changes may introduce inconsistencies; and conversely,

requirements changes may be necessary to handle existing inconsistencies. Therefore, the

ability to handle inconsistent requirements is crucial to the successful development of

requirements specifications (Castaneda et al., 2010; Nuseibeh and Russo 1999; Siegmund

et al., 2011).

c) Incomplete Specifications

Incomplete specifications arise as a result different factors. Implicit requirements for

example when not identified are left out. These requirements although not spoken are

necessary and key to the success of the system as they equally affect the overall success of

the system (Daramola et al., 2012; Onyeka, 2013). Non-identification can also result from

a lack of experience of the Requirements Analyst. This contributes to developers'

frustrations because they base their work on incorrect suppositions, hence the required

product is not developed according to the desire of the user, which leads to dissatisfied

customers (Castaneda et al., 2010).

In this era of the Semantic Web, the use of ontology is on the increase as a result of its

ability to facilitate semantic interoperability and machine reasoning. Different researchers

have suggested the synergy of ontology with the requirement engineering process. The

ontology-driven requirement engineering approach has become a popular term. The

30

following are areas in which ontology have proven to be useful to requirements engineering

(Dobson and Sawyer, 2006; Castaneda et al., 2010):

i. It affects the requirements model itself by imposing and enabling a particular

paradigmatic way of structuring requirements

ii. It enables the acquisition of structures for domain knowledge

iii. It is useful in the knowledge application domain

iv. It helps in the collection of Knowledge of the environment

Castaneda et al. (2010) gave a breakdown of some ontologies that has been applied to

requirements engineering, these include Requirements Ontology (Castaneda et al., 2010),

Requirements Specification Document Ontology (Hadad et al., 2009), Application Domain

Ontology (Castaneda et al., 2010). The detailed descriptions are as follows:

a. Requirements Ontology- At the requirements elicitation/ specification stage,

different forms of requirements are identified such as functional requirements,

nonfunctional requirements, product requirements and others. The presence of

this ontology aids in the reduction of ambiguous requirements and avoidance of

incomplete requirements (Jayadianti et al., 2013; Castaneda et al., 2010) it serves

as a tool for restrictions, verification and validation of requirements.

b. Requirements Specification Document Ontology-The use of ontology in the

Software Requirements Specification (SRS) document aids in the reduction and

elimination of insufficient specifications as well as the definition of the structure

of the SRS document. It also serves as a source for knowledge reuse in situations

of adaptations of SRS structure for requirements reuse for the similar and

dissimilar applications. Object-oriented systems representing a useful analysis

of a domain can often be reused for a different application program (Josephson

et al., 1999).

c. Application Domain Ontology-The Application Domain Ontology (ADO) aids

the development of the object-oriented design. ADO contains application

domain knowledge and business information required for building software

31

applications in a specific domain. This ontology aids in the management of

dynamism in the requirements (Castaneda et al., 2010).

III. Ontologies for Knowledge Management

Knowledge management is concerned with the representation, organisation, acquisition,

creation, use and evolution of knowledge in its many forms. In this present knowledge era,

given today’s vast, complex and dynamic information environments, the potential for using

information technology to help discover, deliver and manage knowledge is enormous

(Jurisica et al., 2004). Knowledge management systems are common with large

corporations as knowledge is considered the most important asset that enables sustainable

competitive advantage in very dynamic and competitive markets. This makes knowledge

management a crucial activity for many companies especially those based in knowledge-

based economies. The major aim of Knowledge Management Systems (KMS) is to provide

the right knowledge to the right people at the right time and in the right format, such that

users can access and utilise the rich sources of data, information and knowledge stored in

different forms (Lin and Wu, 2005).

Ontology is relevant to knowledge systems as it provides a shared and common

understanding of a domain that can be communicated across people and application

systems. For the effective management of knowledge, ontology plays an important role in

enabling the processing and sharing of knowledge between experts and knowledge users

(Sureephong et al., 2008). Going by its philosophical definition, ontology is the study of

“what exists”. For knowledge-based systems, what “exists” is exactly that which can be

represented. When the knowledge of a domain is represented in a declarative formalism,

the set of objects that can be represented is called the universe of discourse. This set of

objects and the describable relationships among them are reflected in the representational

vocabulary with which a knowledge-based program represents knowledge (Lin and Wu,

2005). Different researchers have proposed different forms of the ontology knowledge

management system. (Jennings, 2000) proposed an agent-based knowledge based

management system made up of three parts: the user interface, the search module and the

knowledge generation module with the main objective of improving the capabilities of

32

industries to monitor, predict and respond to technological, product and market trends and

changes. The system retrieved information from the web and other sources through the use

of multi-agents and ontologies. The ontologies are used to specify the queries while the

multi-agents search for information on the web and acting on a part of the original ontology.

Brandt et al. (2008) proposed a system, which is a flexible ontology-based schema with

formally defined semantics that enables the capture and reuse of design experience,

supported by advanced computer science methods. Lin and Wu (2005), proposed a

framework of ontology-based KMS that mainly focuses on performing the activity for

projects and domain experts matching in which system architecture, ontology building,

and semantic similarity calculation are addressed respectively.

IV. Ontology Learning

Ontologies are representations of reality, and as such, require frequent updates. This makes

them expensive and difficult to maintain. Ontology learning was developed to solve this

problem (Abel et al., 2015). The term “ontology learning” was coined by Madche and

Staab (2002), it was based on the proposed set of tasks and methods for the automated

generation of ontologies from natural language text including term extraction, taxonomy

induction, and relation learning. In simple terms, ontology learning can be defined as the

automatic or semi-automatic creation of ontologies, which includes the extraction of the

corresponding domain's terms and the relationships between those concepts from a corpus

of natural language text and encoding them with an ontology language for easy retrieval.

Lehman and Volker (2014) stated that “supporting the construction of ontologies and

populating them with instantiations of both concepts and relations, is commonly referred

to as ontology learning.” The primary focus of ontology learning is knowledge acquisition

and this can be carried out using different approaches. According to Lehman and Volker

(2014), the following are the various types of approaches to ontology learning:

a) Ontology learning from text

This refers to the automatic or semi-automatic generation of lightweight taxonomies by

means of text mining and information extraction. This method involves the application of

33

natural language text analysis techniques to texts. This approach is based on the Ontology

Learning Layer Cake (Cimiano, 2006). Many methods under this approach are inspired by

previous work in the field of computational linguistics, essentially designed in order to

facilitate the acquisition of lexical information from corpora. Although some ontology

learning approaches do not derive schematic structures they focus on the data level. These

methods derive facts from the text.

b) Linked data mining

This refers to the process of detecting meaningful patterns in Resource Description

Framework (RDF). Being able to detect the structure within published RDF graphs can, on

the one hand, simplify the later creation of schemata and, on the other hand, allow detecting

of interesting associations between elements in the RDF graph (Lehmann and Volker

2014).

c) Ontology reuse

This refers to a process in which available (ontological) knowledge is used as input to

generate new ontologies this involves the adaptation of existing ontologies to new domains

by partially re-using existing schematic structures. This is based on the ideology that

building an ontology from scratch is a resource-intensive process and the development of

new ontologies does not tap the full potential of existing domain-relevant knowledge

sources (Bontas et al., 2005; Lehmann and Volker, 2014).

V. Ontology Languages and Tools

a) Ontology Language

In simplistic terms, ontology language refers to formal languages used to construct

ontologies. Maniraj and Sivakumar (2010), describes an ontology language as a formal

language used to encode the ontology. It allows users to write explicit, formal

conceptualizations of domain models. Antoniou and Van Harmelen (2004) stated the

following as essential requirements of ontology language:

34

i. Well-defined syntax: this is a necessary condition for machine-processing of

information

ii. Well-defined semantics: the Semantic Web is an extension of the current web in

which information is given well-defined meaning, better enabling computers and

people to work in cooperation. Therefore, ontology plays a key role in this effort,

aiming at unifying, bridging and integrating multiple heterogeneous, international

and multilingual digital content.

iii. Efficient reasoning support: the richer the language is, the more inefficient the

reasoning support becomes. This leads to non-computability. Hence there is a need

for a language supported by efficient reasoners and also expresses large classes of

ontologies and knowledge.

iv. Sufficient expressive power: ontologies must be able to explicitly extend other

ontologies in order to reuse concepts while adding new classes and properties.

Ontology extension must be a transitive relation; if ontology A extends ontology B,

and ontology B extends ontology C, then ontology A implicitly extends ontology

C as well.

v. The convenience of expression: ontology should support the specification of

multiple alternative user-displayable labels for the resources specified by an

ontology.

Gomez-Perez et al. (2006) stated that the selection of a language for developing ontology

is dependent on the preference of the developer as well as other surrounding factors, which

include level expressiveness of a language, its underlying knowledge, representation

paradigm and reasoning mechanism attached to it amongst others.

Ontology languages can be classified into 3 categories namely: Logical Languages, Frame-

based Languages, and Graph-based Languages. Different ontology languages have been

developed over the years. These include CycL, DOGMA, RDF, WebOnto, Graffo,

OntoEdit, TODE, Hozo, Swoop, Top Braid, OWLGrEd amongst others (Barzdins et al.,

2010; Falco et al., 2014; Mizoguhi et al., 1997; Sure et al., 2003). They differ based on

structure, syntax as well as purpose.

35

b) Ontology tools

Over a number of years, environments and tools for building ontologies have grown

exponentially. These tools are aimed at providing support for the ontology development

process and for the subsequent ontology usage. Ontology tools can be applied to all stages

of the ontology lifecycle including the creation, population, implementation, and

maintenance of ontologies (Youn and McLeod, 2006). It requires users to be trained in

knowledge representation and predicate logic. Ontology tools can be broadly divided into

3 namely: Web-based Tools, Computer-based Tools, and Client Server tools. An example

of Web-based tools includes Ontolingua, OntoSaurus, WebODE, IKARUS, CO4,

APECKS, SymOntoX. Computer-based tools include Protégé, KADS22, JOE, DOE,

DUET, IODE, KAON Tool Suite, OCM, VOID, Apollo, OilEd, and Ontology Editor.

Client-Server tools include OpenKnoME and LinKFactory. Ontolingua, for example, is

based on the knowledge representation paradigm of frames and first order logic is the most

complete of the ontology languages and the one considered as a de facto standard in the

ontology community. Kalyanpur et al. (2006) developed SWOOP, which stands for

Semantic Web Ontology Editor was originally developed as a tool for creating, editing and

debugging OWL Ontologies. It presently has become an open source project with

contributions from all over the world. It has reasoning support and provides multiple

ontology environments in which ontologies can be compared, edited and merged. Another

is Apollo, a user-friendly knowledge modelling application which is based on the basic

primitives, such as classes, instances, functions amongst others. Apollo is not bound to any

knowledge representation language and can be adapted to support different storage

formats. This is via I/O plugins (Kapoor and Sharma, 2010). A more recent tool is

PROPheT- PERICLES Ontology Population Tool. This is a novel application that enables

instance extraction and ontology population from Linked Open Data (LOD) sources, such

as DBpedia and Europeana, through a user-friendly graphical user interface. It is a novel

instance extraction engine, for locating instances (realisations) of concepts and relations in

a Linked Data source, filtering them and subsequently inserting them into a domain

ontology. This tool allows the user to explore and retrieve existing knowledge in a

repository of his/her choice. (Mitzias et al., 2016).

36

Another example Protégé 5.1.0, is a tool which allows a user to construct domain ontology,

customise data entry forms and enter data. A recent tool is Graffo, which stands for

Graphical Framework for OWL Ontologies. This is an open source tool that can be used to

present the classes, properties and restrictions within OWL ontologies, or sub-sections of

them, as clear and easy-to-understand diagrams. Another tool is Anzo. It is a tool which is

used alongside Excel to generate an initial Ontology. It also includes a straightforward

Ontology Editor, two rules Engines, workflow capabilities, Pubsub, and Integration with

XML, DRFS, OWL, Relational Databases, and Web Services.

VI. Application of Ontologies in Requirements Reuse

There are different uses of ontology in requirements engineering, one of which is the

representation of requirements. They include lexical-syntactic patterns in order to capture

the semantics of the relationships in the domain. Lin et al. (1996), proposed a generic

solution, which provides an unambiguous, precise, reusable and easy to extend terminology

with dependencies and relationships among captured and stored requirements and also

provides a great advantage for the reuse of requirements. Ontology-driven requirement

engineering enables requirements specification that eliminates the presence of ambiguous

requirements, which aids traceability of the requirements. Requirements traceability entails

describing and following the life of software requirements in Software Engineering

(Winkler and Pilgrim, 2010). In order to trace requirements to their sources and to the

intermediary and final artefacts generated from them all over the development process, it

is mandatory to consider and represent information related to their source and the

requirements’ history (Castaneda et al., 2014). This facilitates the use of requirements and

other relational information. There have been different methodologies proposed on the use

of ontology in requirements reuse.

Kossmann and Odeh (2010) proposed OntoREM, as an Ontology-driven requirements

engineering methodology that was introduced in order to improve requirements quality

while reducing the efforts (such as development and maintenance) for requirements reuse.

Although the work of Kossmann and Odeh (2010) did not lay emphasis on requirement

reuse, it is however important in the sense that it reports evaluation results of the proposed

37

method in a case study on aircraft operability domain, which increases the confidence in

ontology-based methods in requirements reuse problem. Lopez et al. (2002) proposed a

requirements metamodel to define reusable requirements. This metamodel enables

requirement reuse in domains where semi-formal representations are used to capture

requirements information. Gruninger and Lee (2002) proposed a requirements

management process in the concept of reuse in product lines and shares the experience with

the proposed method in embedded software industry. This study presented findings, which

are efficient mechanisms for reusable requirements and reusable test cases development.

Marrero et al. (2008) proposed a natural language retrieval system supported by a

knowledge model as the reuse process implies a retrieval of stored requirements, but these

requirements are generally expressed in natural language. Karatas (2012), proposed an

ontology-based requirements reuse method for systematic reuse of product line

requirements, which is composed of an ontology-based approach for reusable requirements

definition and a requirements configuration approach for the reuse of requirements.

2.3.3 Analogy-Based Reasoning (ABR)

Analogy-Based Reasoning (also known as Analogical Reasoning) is the process of solving

new problems based on the solutions of similar past problems (Lung et al., 2007). This

involves adapting from the source strategy and specifying according to the form of the

target problem. There are different models and theories, which form the basis of this

reasoning.

I. Models and Theories of Analogy

The term Analogy is derived from the Greek “Analogia” which means “proportion”. There

are two common objects in the analogy, the source and the target. It entails the transfer of

knowledge/information from the source to the target. An analogy is a correlation between

two entities or systems of entities that highlight aspects in which they are believed to be

comparable. Analogical reasoning is based upon an analogy. A typical example is simply

saying subject A is like subject B. An electrical battery is like a reservoir. “The reservoir”

is serving as the base (the source) from which knowledge is generated and transferred and

38

applied to the target, in this context “An electrical battery”. These comparisons are based

on a similarity between both subjects, which their ability to store power and transfer it

when required.

Another way of defining analogy-based reasoning (ABR) is through the lens of problem-

solving. It can be described as a process of solving new problems based on the solutions of

similar past problems. A great way of understanding analogy is through mathematics. In

trying to solve a problem in mathematics, past solved problems similar to the existing

problem are viewed and studied to solve the new problem. This knowledge used in solving

the past problem say A is used either the same way or adjusted to suit the uniqueness of

this existing problem let’s say B. This is known as an analogous approach in solving

problems. Analogy is used in various fields and one of its major benefits is that it aids in

the development of a new procedure to solve problems as shown in the example above (Yu

et al., 2014). However, in order to solve new problems, it is necessary that attention is

placed on gathering information on past problems as without it; it is difficult to apply the

knowledge adequately. This is the basic principle of the approach of ABR in the field of

AI.

The form of an analogical argument is as given below (Copi and Cohen, 2005):

a. S is similar to T in certain (known) aspects.

b. S is said to have some other feature F.

c. Therefore, T can be said to also have the feature F, or certain feature F* similar to

F.

Where S is the source domain and T is the target domain. A domain is formally made up

of a set of objects, properties, relations and functions and an inferred set of statements about

them. (a) and (b) are premises while (c) is called the inference of the argument. The form

of the argument is inductive; the inference is not guaranteed to follow from the premises.

An analogy between S(Base Object1) and T(Target Object1) can be formally stated as a

one-to-one mapping between objects, properties, relations and functions in S and those in

T. Analogy could exist between some of the sets in S and T, not necessarily all the

39

corresponding sets. In practice, analogies are evaluated based on the most significant

similarities (at times differences) that exist in both domains. Figure 2.4 shows a graphic

representation of the structure mapping process of analogical reasoning.

Figure 2.4: Diagram of the Structure Mapping Process of Analogical Reasoning

Source: (Stojkovic et al., 2015)

Keynes (1921) further presented some terminology on analogy. They are as follows:

a) Positive analogy

Let K be a set of propositions {K1, …, Kn} about a source domain S. Suppose that the

corresponding set of propositions {K*1, …, K*n}, abbreviated as K*, are all accepted as

holding for the target domain T, so that K and K* represent accepted (or known)

similarities. Then K is referred to as the positive analogy.

b) Negative analogy

Let N stand for a set of propositions {N1, …, Nj} that is known to hold in S, and M* for a

set {M1*, …, Mk*} of propositions that are holding in T. Supposing the analogous

propositions N* ={N1*, …, Nj*} fails to hold in T, and likewise the propositions M = {M1,

…, Mk} fails to hold in S, so that N, ~N* and ~M, M* represents accepted (or known)

differences. Then N and M is referred to as the negative analogy.

40

c) Neutral analogy

The neutral analogy consists of a set of accepted propositions about S for which it is not

known whether an analogue holds in T.

d) Hypothetical analogy

The hypothetical analogy is simply the proposition Z in the neutral analogy that is the focus

of attention.

Different researchers have given theories and views on analogies dating back to the early

days to the medieval days where the subject of analogy was greatly discussed (same

meanings different words).

One of the foundational theories of analogy is the “Shared Abstraction” (Bao, 2008). This

is as described by Plato and Aristotle. This is based on the view that analogies do not

necessarily share any form of relationship but an idea or attribute, or philosophy but

comparisons, metaphors and "images" (allegories) could be used as arguments, which are

sometimes referred to as analogies. Hesse (1966) gave a refined version of Aristotle's

theory, particularly centred on analogical arguments in the sciences. The author formulated

three requirements that an analogical argument must satisfy in order to be acceptable i)

requirement of material analogy i.e. observable similarities between domains; ii) causal

condition i.e. a tendency to co-occurrence and iii) no-essential-difference condition. In

suggesting an alternative approach of classifying analogical arguments, Bartha (2010)

proposed the articulation model. The classification was on the basis of vertical relations

within each domain as opposed to starting with horizontal relations. The central ideology

was that a good analogical argument must satisfy two conditions: i) Prior Association

which suggests that there must be a distinct link, in the source domain, between the known

similarities (the positive analogy) and the further similarity that is expected to hold in the

target domain (the hypothetical analogy); ii) Potential for Generalization which suggests

that a reason must exist to think that a similar sort of link could be obtained in the target

domain.

41

 In Ancient Greek, analogy was understood as identity of relation between any two ordered

pairs. This was supported by Kant’s Critique of Judgment where Kant argued that there

can be exactly the same relation between two completely different objects. A typical

example of an Analogical question is this- HAND: PALM:: FOOT: ____; (sole). This

relation is not based on the terminal definition palm and sole but based on the fact that they

are both undersides of the hand and feet respectively, hence the similarity between the two

(Gentner, 1983).

Modern research work expounded on this foundational framed view of analogy. A major

theory developed is structure mapping theory by Gentner's (1983), which aims to capture

the psychological processes that carry out analogical mapping.

Analogical mapping is the core process in analogy, which requires two aligning situations.

A typical instance of analogical mapping includes a familiar situation which is the base or

source description and is matched with a less familiar situation, which is the Target. The

familiar situation suggests ways of viewing the newer situation as well as further inferences

about it. According to Gentner (1983), the structure mapping theory refers to the

comparison process (analogical mapping), which involves finding an alignment between

the base and target representations that reveals common relational structure. Another

theory is the Pragmatic Mapping theory given by Holyoak (1985). This theory views the

analogical mapping processes as goal-oriented in nature, hence it views analogical

mapping as a problem-solving process. This theory was further developed by Holyoak and

Thaggard (1989) in the development of the Multi- Constraint theory. This theory defends

structural mapping theory that the coherence of an analogy depends on structural

consistency, semantic similarity and purpose.

II. Analogical Problem Solving

Analogical Reasoning is a source of knowledge and therefore it transcends to different

domains from basic daily activities to Engineering. The transfer of knowledge between

the source/ base and target shows the problems solving use of analogical reasoning.

Analogical reasoning in problem-solving is dependent on the similarity of relational

42

structure between a known solved problem (source) and a novel problem (target). Different

Researchers have shown the application of the problem-solving abilities of analogies

(Duncker, 1945). “Radiation problem” is an example of Analogical problem-solving. It

states - Suppose you are a doctor faced with a patient who has a malignant tumour in his

stomach. It is impossible to operate on the patient, but unless the tumour is destroyed the

patient will die. There is a kind of ray that can be used to destroy the tumour. If the rays

reach the tumour all at once at a sufficiently high intensity, the tumour will be destroyed.

Unfortunately, at this intensity, the healthy tissue that the rays pass through on the way to

the tumour will also be destroyed. At lower intensities, the rays are harmless to healthy

tissue, but they will not affect the tumour, either. What type of procedure might be used to

destroy the tumour with the rays and at the same time avoid destroying the healthy tissue?

This is an example of a problem (ill-defined), which creates an allowance for a creative

solution. Duncker was able to propose solutions without using an analogy. Duncker

proffered 3 possible solutions i) reducing the rays as they pass through a healthy tissue; ii)

avoiding contact between rays and healthy tissues and iii) altering the relative sensitivity

to rays of healthy tissue and tumour. Dunckers problem could be solved using analogies of

past problem solved, which may be directly or indirectly related.

A major analogy used in tackling the above-stated problem is the attacker’s dispersion

story. In this story, a General wishes to capture a fortress located in the centre of the

country. With many roads leading up to the fortress, they have been mined such that only

a small group of men can pass through each road and a large force will lead to a detonation.

To tackle this problem, a divide and conquer strategy is applied. That is the army can split

into small groups and attack from different routes. Although this story is parallel to the

Radiation problem, an analogy is used from the Attackers dispersion (source base) to the

radiation problem (target). Just like the divide and conquer strategy is used as an analogous

solution, which simply involves multi-directing the rays from different points at the multi

low intensity. This will leave the Healthy tissues unharmed and in the end destroy the

existing tumour. Although totally unrelated, the necessary details can be applied to solving

a problem. The human mind is replete of analogies hence its use in problem-solving.

43

Different Logicians and philosophers of science (Copi and Cohen, 2005; Moore and

Parker, 1998; Woods et al., 2004) have given ‘textbook-style’ general guidelines that can

be used for evaluating analogical arguments. A cross section of the important ones are as

follows:

a. The more similarities (between two domains), the stronger the analogy.

b. The more differences (between two domains), the weaker the analogy.

c. The more the level of our ignorance about the two domains, the weaker the analogy.

d. The weaker the conclusion, the more acceptable the analogy.

e. Analogies involving causal relations are more plausible than those not involving

causal relations.

f. Structural analogies are stronger than those based on superficial similarities.

g. The significance of the similarities and differences to the conclusion (i.e., to the

hypothetical analogy) must be taken into account.

h. Multiple analogies supporting the same conclusion make the argument stronger.

III. Case-Based Reasoning

Case-Based Reasoning (CBR) is a problem-solving paradigm, which is able to utilise the

specific knowledge of previously experienced, concrete problem situations (cases). This is

applicable to different fields. For example, Lawyers make use of legal precedents in

presenting their cases in court usually to seek justice in their favour. Another example is

financial consultants, who while working on a difficult credit decision task, uses a

reminding to a previous case, which involved a company in similar trouble as the current

one, to recommend that the loan application should be refused. A case denotes a problem

situation in CBR terminology. Solving a problem by CBR involves obtaining a problem

description, measuring the similarity of the current problem to previous problems stored in

a case base (or memory) with their known solutions, retrieving one or more similar cases,

and attempting to reuse the solution of one of the retrieved cases, possibly after adapting it

to account for differences in problem descriptions (De Mantaras et al., 2005).

44

Aamodt and Plaza (1994), provided what is regarded as a classic model of case-based

reasoning as shown in the diagram. This represents the CBR cycle as shown in Figure 2.4.

It includes the following steps:

i. RETRIEVE the most similar case or cases

ii. REUSE the information and knowledge in that case to solve the problem

iii. REVISE the proposed solution

iv. RETAIN the parts of this experience likely to be useful for future problem solving

Figure 2.5: The CBR Cycle

Source: Aamodt and Plaza (1994)

IV. Analogy as a Paradigm for Specification Reuse

Different researchers have discovered reuse as a form of analogical problem-solving. This

is because knowledge about existing systems embedded in specifications is transferred to

specifications of new systems after identifying analogies between them. The reuse of

specifications from the existing system in similar systems has its benefits. Amongst other

benefits, it improves the completeness and correctness of specifications thus reducing the

probability of improper design and implementation decisions with substantial delays and

adverse cost effects in software projects (Spanoudakis, 1996). It exploits analogical

similarities to identify ambiguity, incompleteness and inconsistency in new specifications

as well as improve productivity during the costly requirements engineering phase of

45

software development. They can also provide a basis for communication by describing

complex concepts in terms of well understood, existing specifications. Reusable

specifications can provide solution templates for specifying new systems. This may be

particularly beneficial for inexperienced software engineers because empirical studies of

program design tasks suggest that novice software engineers do not have memory schemata

to recall and are unable to structure and scope the domain space effectively (Maiden, 1991).

Requirements Specifications define the functions as well as necessary characteristics of a

system. The presence of incomplete, inconsistent and ambiguous requirements presents

the challenge of capturing the requirements and its elicitation. Without proper

elicitation/specification of requirements, the functionality of the developed system is

faulted. This can also create dissatisfaction with the user as well as incur high costs. It is,

therefore, necessary that they are effectively managed and one of such ways is through

requirements specification reuse. There are different forms of specification reuse. The

specifications can be used in its original format for a similar system or can be adjusted to

suit a less relative system (for example reversing the engineering code of an existing system

for another system or larger applications). According to Maiden (1991), specification reuse

across applications requires extensive customization to fit a reusable specification to the

target domain.

2.4 SOURCES OF IMPLICITNESS IN REQUIREMENTS

This section gives a presentation of the various sources of implicitness in requirements as

identified in literature and efforts that have been made to address them thus far.

2.4.1 Implicit Knowledge

There are implicit factors, which affect the performance of a system. Implicit knowledge

(also known as tacit knowledge) is derived from Polanyi’s Theory of Personal Knowledge,

which states “we know more than we can tell”. Another definition given by Nonaka et al.

(2009) is that tacit knowledge refers to knowledge, which cannot be put into words. It

simply refers to knowledge that is not known or communicated. According to Stone and

Sawyer (2006), tacit knowledge exhibits the following characteristics:

46

i. Tacit-like knowledge may exhibit a presence in the requirements specification.

ii. The behaviour associated with tacit-like knowledge may already exist within the

organisation in a physical or procedural way.

iii. The identification of tacit-like knowledge may impact on other requirements.

Tacit knowledge is crucial to the requirements elicitation stage, and Sawyer describes it as

a problem and an advantage. It is a problem because if it stays implicit, it affects

communication resulting into incomplete explicit knowledge. Tacit knowledge if not

identified, will affect the performance of the user of the system. This is because it falls

below the expectations of the user in terms of performance and other aspects of the system.

Tacit knowledge can lead to challenges if not efficiently managed.

Tacit knowledge is the basis for tacit requirements. According to Jha (2009), tacit

requirements or implicit requirements, are inexplicit requirements that are not directly

expressed or captured but are essential to meet system's goal. In order to fulfil the objective

of a system, it is essential that implicit requirements be made explicit as this can affect the

overall performance of the system and the satisfaction of consumers of the system.

According to Douglass (2009), IMR is included as a matter of professional duty.

Identification of implicit requirements requires proper understanding and experience and

touch on such subjects as implicit requirements, tacit knowledge, unknown assumptions

and other implicit factors that are important to the functionality and acceptance of a system.

However, as a result of their nature, they are difficult to manage and identify.

2.4.2 Outsourced Software

According to Deshpande and Richardson (2009), when a software organisation develops a

product in a new domain or subcontracts the software to an external organisation with a

different operational background via outsourcing this could bring about the emergence of

implicit requirements. This in most cases is due to the fact that the external organisation to

which the development of a software system or new domain is subcontracted is usually not

present at the point of software elicitation or might realise other requirements essential to

47

the development of the software that was not explicitly stated thus bringing about

implicitness in requirements engineering.

2.4.3 Ambiguity in Requirements Documents

In software development, ambiguity is considered a harmful aspect that needs to be

eradicated (Garcia and Medinilla, 2007). Sinha and Husain (2016) describe ambiguity as

for the biggest problem in the System Development Life Cycle of any software. According

to Bussel (2009), ambiguity is best defined by ‘having more than one meaning’, and is

inherent in natural language. Renkema (2004) attributed that ambiguity leads to noise in

the communication channel. Based on these definitions, ambiguities or ambiguous

requirements can be described as requirements that are unclear and vague, which pose a

problem to the functionality of a developed system.

At the Requirements Specification Stage, the intended purpose of the software is defined.

The requirements for the software are stated at this stage. According to Bussel (2009), a

Requirements Specification (RS) is a written document in which an organisation writes out

its understanding of a system prior to the actual design of the system. This stage provides

clarity on the functions, requirements and expectations of the system to be developed. With

Requirements Specification being a crucial basis for system development, it is essential

that requirements stated at this stage be complete and concise. According to Berry and

Kamsties (2004), Software requirements specifications need to be precise and accurate, to

be self-consistent and to anticipate all possible contingencies. They also are not to be

contradictory to one another. Errors at this stage will cause much more expensive errors in

later phases of software engineering. A major source of errors is the ambiguity of the

natural languages initially used to write the user requirements. Ambiguities are greatly

associated with the use of natural language. As a result of the multiple meaning of words,

it creates misconceptions, redundancy and errors, which will inherently affect the systems

performance and consumer satisfaction. For this reason, they should be greatly avoided.

Singh and Saikia (2015) classified ambiguities into four (4) types namely:

i. Lexical Ambiguity: ambiguity which occurs when a word has multiple meaning.

48

ii. Syntactic Ambiguity: this occurs when a given sequence of words can be given more

than one grammatical structure and each having a different meaning. Example:

SMALL CAR FACTORY. This sentence can have two meanings.― (small car)

factory OR (small) car factory

iii. Semantic Ambiguity: It occurs when a sentence has more than one way of reading

it within its context although it contains no lexical or structural ambiguity.

Example: ALL CITIZENS SHOULD HAVE A SOCIAL SECURITY NUMBER.

The sentence can be interpreted as:

Every citizen has an individual social security number.

All citizens have same social security number.

iv. Pragmatic ambiguity: It occurs when a sentence has several meaning in the

context in which it is uttered. It depends upon the background of the requirement

engineers and thus has multiple interpretations. It influences the understanding of

a phrase positively or negatively.

Example: Do you want to have a cup a tea? There are two meanings to this

question. An informative question —

"Do you feel a desire to a cup of coffee?”

Or a polite offer

"I can make you a cup of coffee if you want".

Different researchers have proposed different methods of identifying or detecting

ambiguities. Kiyavitskaya et al. (2008), proposed a three-step, semi-automatic method,

which combines the strength of human reasoning and also automation methods that are

supported by a prototype tool, for identifying inconsistencies and ambiguities in natural

language requirements specification. Tjong et al. (2006), classified 3 approaches to

detecting and resolving ambiguity in writing natural language requirements: i) approaches

that define linguistic rules and analytical keywords; ii) approaches that define guideline

rules, and iii) approaches that define language patterns. Gleich, Creighton, and Kof (2010)

presented a tool that is able not only to detect ambiguities but also to provide explanations

for detected ambiguities. Sinha and Husain (2016) proposed a concept of a tool, which

aims at avoiding ambiguity at every stage of the SDLC of the software. The proposed tool

49

will be able to identify the ambiguous words and provide all the possible meanings

of those ambiguous words clarifying the meaning of the sentence. Popescu et al. (2008)

presented a three-step, semi-automatic method, supported by a prototype tool, for

identifying inconsistencies and ambiguities in natural language software requirements

specifications. The method combines the strengths of automation and human reasoning to

overcome difficulties with reviews and inspections. First, the tool parses a natural language

software requirements specification according to a constraining grammar. Second, from

relationships exposed in the parsing, the tool creates the classes, methods, variables, and

associations of an object-oriented analysis model of the specified system. Third, the model

is diagrammed so that a human reviewer can use the model to detect ambiguities and

inconsistencies. Schneider (2002) developed a new inspection technique, denoted

Constructive Reading Inspection Process which is used to explore requirements inspection.

It involves extracting the conceptual entities and their interrelationships as opposed to

looking solely for defects.

Table 2.1 gives a summary of some tools that detects and resolves ambiguity based on the

following parameters: approach used by the tool, technologies used, support for

requirements per-processing, ambiguity concerned, the level of user interaction (viz.

medium, low, high), and relevant information as remarks.

Some of these approaches used by this tools include:

I. Knowledge Based Approach

To extract and manipulate the meaning of the text, NLP system must have an extensive

knowledge about the world and the domain of discourse. Knowledge-based approach

applies this knowledge to resolve ambiguities. The knowledge-based system can be viewed

as a search system that uses different types of knowledge with a view to constraining the

search space. It offers optimal, acceptable and efficient search results. The Knowledge-

based NLP systems are domain specific. To make it domain independent, language specific

(i.e. lexical) knowledge and domain/world knowledge are separated, called ontology.

50

II. Controlled Language

A Controlled Language is used to reduce the ambiguities by restricted grammar and a fixed

vocabulary. It improves readability and provides automatic semantic analysis. Languages

are formed using grammar, e.g. grammar G = (V, T, S, PR), where V is a set of variables,

T is a set of terminal symbols, S is a start symbol and PR is a set of production rules.

III. Style Guides

Style guides are used to avoid syntactic and semantic ambiguities by allowing inputting

requirements in a specific manner (e.g. use active voice instead of passive voice, include

braces, insert comma etc.). Sentence pattern is an alternative approach to avoid ambiguities

where requirements are rewritten with minor modifications to match the predefined

patterns.

IV. Heuristics Based Approach

This approach is based on machine learning, which makes use of corpus as an example for

deducing further knowledge. Such approach usually guarantees a solution with high

probability. In addition, employing heuristics, in these approaches, one can realise

deterministic solution with a defined bound. The accuracy of the machine learning based

system depends on the size of the corpus on which it is trained.

51

Table 2.1: Comparative Analysis of Ambiguity Resolving Tools

Feature

Support

Approach Technologies

Used

Pre-

Processing

Concerned

Ambiguity

User

interaction

Remarks

OOV

of

NLRS

(Automatic)

(Mala and Uma,

2006)

Knowledge based

to ontology

Brill tagger,

GATE tool

Yes Pronoun Anaphora Medium Nonfunctional

Requirements elicitation.

Ontology generation.

RA in via

OOM (Semi-

automatic)

(Popescu et al.,

2008)

Controlled

Language

Dowser parser

No Semantic Medium Cannot deal with modal

verbs and negations.

Recall 78.8% (Compound-

noun)

Recall 93.9% (Single noun)

SREE (Semi-

automatic)

(Tjong, 2008)

Rule based,

Style guide

WordNet,

POS tagger

No Identify Plural,

Coordination,

Pronoun,

Quantifier,

Vague

Low Report summary of

ambiguous and incomplete

requirements statements.

Recall 100% (w.r.t SREE’s

scope)

RESI

(Semi-

automatic)

(Korner and

Brumm, 2009)

Knowledge based

to ontology

Stanford

parser, Cyc,

ConceptNet,

WordNet

Yes Avoid Lexical,

Scope,

Language Error

High Input must be in the graph

GrGen format.

52

NAI

(Automatic)

(Yang et al.,

2010; Yang et

al., 2011)

Machine

learning/heuristics

based

LogitBoost,

Named entity

recognition

Yes Noun and Verb

compound

coordination,

Anaphora

ambiguity

Medium Establish the degree of

nocuity that the system

should tolerate.

Precision 70% and Recall

100% (Coordination)

Precision 82.4% and Recall

74.2% (Anaphora)

SR-Elicitor

(Automatic)

(Umber et al.,

2011)

Controlled

Language

SBVR,

POS tagger

No Lexical,

Syntactic,

Scope-

Quantifier

Low SBVR rule generation.

Recall 80.12% and Precision

85.76%

NL2OCL

(Automatic)

(Bajwa, et al.,

2012)

Knowledge based

to ontology

SBVR,

Stanford parser

No Attachment

Homonymy

Low A UML class model is

required as an input. Recall

92.85% Precision 92.85% (

Attachment) Accuracy 99.0%

(Homonymy)

CKCO

(Automatic)

(Al-Harbi et al.,

2012)

Knowledge based

to ontology

WordNet,

WSD

No Lexical –

Polysemy

(ambiguity of

nouns)

Low Resolve ambiguity posed to a

Question System. Precision

83.4%

Source: (Shah et al., 2015)

53

2.5 OVERVIEW OF RELATED WORK

This section reviews other research efforts that are related to the issues of implicit

requirements in software engineering that have been reported in the literature.

Different researchers have developed various systems or tools, which are aimed at solving

the problem of requirements management. In the past, prominent tools have been proposed

for managing requirements in Requirements Engineering. However, these tools lack

specific provisions for managing implicit requirements (IMR). An example of such tools

includes CORE Enterprise, DOORS, Caliber-RM, RDD-100, RequisitePro, icCONCEPT-

RTM, SLATE, Vital-Link and XTie-RT (Larsson et al., 2008; Choi, 2000).

Also, a number of other research efforts have been reported in the literature that has

evaluated and reviewed implicit (tacit) knowledge and its effect on IMR. Some valuable

works have developed techniques to expose sources of tacit knowledge during

requirements elicitation and its negative effect on the quality of the requirements.

 In Liddy (2001), a knowledge model that caters for capturing both implicit and explicit

knowledge in the software engineering domain was proposed. The model integrates both

explicit knowledge in the form of software artefacts and implicit knowledge in the form of

arguments that constitute the context of the creation and validation criteria of captured

knowledge. The work is limited in scope to a model that just captures both implicit and

explicit knowledge. A method to highlight requirements that are potentially based on

implicit or implicit like knowledge was proposed in Lang and Duggan (2001). The

identification was made possible by examining the origin of each requirement, effectively

showing the source material that contributes to it. It was demonstrated that a semantic-level

comparison enabling technique was appropriate for this purpose. The work helped to

identify the source of the explicit requirement based on tacit-like knowledge but it does not

specifically categorise tacit requirements and its management. Mohammed (2008)

proposed a method of tacit knowledge identification by solving pre-requirements

specification tracing using statistical natural language processing techniques. A tool, which

supports the identification of candidate cases of implicit knowledge, was developed. To

54

achieve this, an examination of the origins of requirements in the requirements

specification was done by matching requirements to their respective sources in order to

determine requirements that are not firmly derived from the source material, thereby

reflecting an instance of either poorly sourced knowledge or tacit knowledge. However,

the focus of the work is not to provide support for managing implicit requirement but

identifying tacit knowledge in RE through pre-requirement tracing. Also, in MaTREx

(Gacitua et al., 2009), a brief review and interpretation of the literature on the implicit

knowledge that is useful for requirements engineering was presented. The authors

described a number of techniques that offer analysts the means to reason about the effect

of implicit knowledge and improve the quality of requirements and their management. The

focus of the work was on evolving tools and techniques to improve the management of

requirements information through automatic trace recovery; discovering the presence of

tacit knowledge from the tracking of presuppositions and unprovenanced requirements;

and the detection of nocuous ambiguity in requirements documents that imply the potential

for misinterpretation. However, the focus of this thesis is more on managing IMR in RE

while MaTREx deals more with handling implicit knowledge in RE. The relationship of

the work to this is that implicit knowledge is just one of the sources of the emergence of

IMR during RE.

An approach for modelling and managing tacit product line requirements knowledge was

presented in Stone et al. (2006). The approach builds on modularizing variable feature

requirements with aspects, using explicit join relationships for their integration semantics,

modelling the commonality and the variability of the product line in a single aspectual

model, describing details of the variability including variability constraints in tabular form,

and visualising variability constraints graphically. It was further demonstrated that, with

their approach, they could document various product line requirements knowledge

explicitly that previously was distributed in the organisation and was handled implicitly,

relying on the expertise and experience of the involved stakeholders. However, the model

only caters for documentation of knowledge but does not provide room for the extracting

IMR and its onward management.

55

A number of studies have aimed at a more practical approach of requirements reuse. These

recent works include practical approaches to requirements reuse in product families. Stone

et al. (2006), presented an incident report of requirement reuse in a case study of On-Board

systems. The study aimed at discovering how requirements reuse can be integrated into

DOORS. However, the focus was not to provide systematic support for Requirements

Engineering within a framework.

In Singer et al. (2009) the application of rules derivation for the elicitation of implicitly

expressed requirements in IT ecosystem was reported. By introducing rules into the

infrastructure of the ecosystem, which is being observed for adherence by agents

interacting in the system, deviations from these rules can be harnessed for finding potential

candidates for new or changed requirements. These deviations are then processed using

techniques like data mining and pattern recognition and then forwarded to requirements

engineers for review. These implicitly expressed requirements are then leveraged to

identify actual changes in the needs of the users of the systems, thereby enabling further

advancements of the IT ecosystem. The emphasis of this work was the discovery of new

IMR or changed requirements by using agents.

In Daramola et al. (2012), a system that uses semantic case-based reasoning for managing

IMR was proposed. The model of a tool, which facilitates the management of IMR through

the analogy-based requirements reuse of previously known IMR was presented. The

system comprises two major components, semantic matching for requirements similarity

and analogy-based reasoning for fine-grained cross domain reuse. This approach ensures

the discovery, structured documentation, proper prioritisation, and evolution of IMR,

which would improve the overall success of software development processes.

So far in the literature, there are not many empirical studies that focused specifically on the

issue of implicit requirements within software organisations. The ongoing work reported

in Dreyer et al. (2015) was done to identify the impact of tacit and explicit knowledge

transferred during software development projects. An inductive, exploratory, qualitative

methodology was applied in order to validate the tacit knowledge spectrum in software

development projects. The work aims to create a conceptual model that supports future

56

software development projects in their tacit to explicit knowledge transfers. No concrete

findings of the study were reported.

There are many studies that have addressed issues of requirements engineering within

software organisations as a whole. For example in Quispe et al. (2010), the results of a

diagnostic study of requirements engineering (RE) practices in very small software

companies in Chile was presented. The study identified the state of the practice in these

companies and the potential limitations that can hinder adoption of appropriate

requirements engineering practices in the Chilean very small software enterprises. In

Jantunen (2010), the report of an explorative study of software engineering practices in

five small and medium-sized organisations was presented. Although the work did not focus

particularly on RE practices, the study reveals interesting issues about software

development practices in small organisations. In Aranda et al. (2007), a report of RE

practices in seven very small scale enterprises (VSSE) in Canada was presented. The

exploratory study found that RE practices in VSSE were diverse and are being successfully

applied, the organisation's engaged experienced personnel in charge of their RE processes,

requirements errors were rarely severe, and the organisations had strong cultural

orientations. In Kauppinen et al. (2004), authors identified critical factors that affect

organisation-wide implementation of RE processes. The work was based on a broad

literature review and three longitudinal case studies that were carried out using action

research. In Nikula et al. (2000), a study of the current RE practices, development needs

and preferred ways of technology transfer of twelve small to medium-sized companies in

Finland was reported. The study gave attention to the level of adoption for several RE

practices and degree of adherence to general guidelines for RE practices.

Other surveys or field studies that focussed on requirements engineering practices in

software organisations include Lubars et al. (1993) – requirements modelling; (Kamsties

et al., 1998; Matulevičius, 2005; Solemon et al., 2010; Gorschek and Svahnberg, 2005) –

adoption of standard RE practices; Rech et al. (2007) – intelligent assistance; and (Ihme et

al., 2014; Thörn, 2010) – variability management. What is of note is that none of these

previous empirical studies has focussed specifically on the management and handling of

implicit requirements as discussed in this research.

57

2.6 THE CONTEXT OF THIS RESEARCH

From the foregoing issues, a number of gaps exist in the literature which defines the context

of this research. The first is there is yet a lack of empirically proven evidence through

research studies that have assessed the impact of IMR on the success or failure of software

development projects. The second is the need for the generation of more elaborate approach

that has the potential to address issues of managing IMR during RE. These two gaps

become the premise for the central research question being investigated in this thesis,

which is:

i. What is the impact of IMR on system development in practice?

ii. How can IMR be efficiently managed within an organisational context to promote

successful RE during software development?

This thesis aims at proposing a viable solution to these questions.

2.7 SUMMARY

The chapter presents the issues that define the research context of this thesis. It started with

a discussion on the important aspects of requirements engineering. It further looked at the

core technologies that were used in this research, which are Ontology, Natural Language

Processing and Analogy-Based Reasoning. Thereafter, the chapter reviewed sources of

implicitness. The key aspects discussed include implicit knowledge, outsourced software

and Ambiguity in the requirements document. The chapter closes by an overview of related

work looking at the limitations of existing approaches and the gaps that this thesis attempts

to fill.

58

CHAPTER THREE

METHODOLOGY

3.1 INTRODUCTION

This chapter describes the research methodology adopted by this thesis. The first part

discusses the design and implementation of the empirical survey, while the second parts

describe the architecture of the process framework for managing implicit requirements.

For the purpose of this study, the primary research methods used are empirical survey and

design science research methods. This includes literature review, empirical survey, tool

prototyping, case study and controlled experimentation.

For the empirical survey, a web-based questionnaire was drawn up. This questionnaire

contained closed-ended questions and were distributed to fifty-six (56) participants from

twenty-three (23) countries. The respondents are software developers of different

companies, which fall into the category of small and medium-sized enterprises.

The survey investigated how IMR is managed within small and medium-sized software

organisations and sought to understand the extent of consideration given to implicit

requirements in the practice of software development by software developers and software

development companies.

3.2 SURVEY RESEARCH DESIGN

In the survey, the applied research methodology used is quantitative research. This method

is selected as a result of the nature of data gathered from the survey. The quantitative

research is aimed at identifying the fundamental connection between empirical observation

and mathematical expression of quantitative relationships (i.e. hypotheses). An overview

of the adopted research process is presented in Figure 3.1.

59

Figure 3.1: Overview of the Survey Research Process

The various components of this survey research process are as explained below.

3.2.1 Framework and Hypothesis Development

In this section, the proposed framework developed for the factors influencing IMR

management during software development process in small and medium-sized enterprises

is discussed. There are six factors that were considered in the framework as considered in

Jantunen (2010), which include the number of years the organization has been in business,

the size or number of the software development team, the scope of market operations of

the organization; whether local, international or both, the professional status of the

respondent, the personal experience of the respondent and that of the organization in RE.

Figure 3.2 shows the proposed framework.

The Number of years in Business: this factor is selected to determine if the number of

years of existence of a firm affects the knowledge and experience of the organisation in

dealing with IMRs. The subject of IMR is one that is believed to be well-managed over

time as experience is gathered over the years. This factor is to determine if its influence

can be analytically proven.

60

Software Development Team Size: In a software development team, irrespective of its

size, it consists of individuals with different levels of experience and knowledge level in

the field of requirements engineering and implicit requirements. The selection of this factor

is to assess whether truly there is power in numbers or it is more about the culmination of

the knowledge of the implicit requirements irrespective of the size of the software

development team.

The scope of the Market: the participation of organisations at different levels of markets

determines their level of exposure to issues as they differ across the board. Although the

Software Development Life Cycle (SDLC) of any software is fundamentally the same, the

issues encountered might differ. Hence the need to determine if the scope of market that

an organisation deals in, determines the kind of business

Professional Status: the position in the hierarchy of an organisation determines the kind

of responsibility handled. This is also usually a determinant to the level of knowledge and

experience in the field/ area of specialisation. This factor was selected to determine its

influence on handling implicit requirements

Personal Experience in RE: Expertise in the said field is assumed to be directly

proportionally to the knowledge in the field. However, this might not necessarily be true

as expertise can be hindered by the level of exposure in the field and knowledge acquired.

This factor is selected to determine if expertise in the field of RE has a direct influence on

the knowledge of handling implicit requirements

Experience of the Organization: The level of experience of an organization in a field is

believed to lead to acquired knowledge and expertise, which is shared with employees

through possible training programmes, and other forms of interactive forums. This can

have an influence in the organisations’ policy in handling issues in the specialised field.

This factor was considered to determine if the experience of the organisation influences the

knowledge in the handling of implicit requirements.

61

Figure 3.2: Framework for the hypothesis development

3.3 STRUCTURE OF THE SURVEY

The questionnaire was web-based. It had two pages containing two sections of questions

to be answered by the respondents. The first section of the instrument contained

introductory questions such as the name of the country where the software company is

based, the name of the respondent’s company or organisation and the professional

background of the respondent. This section of the research instrument was used to gain

information about the level of experience possessed by the respondent in the area of

Requirements Engineering (RE) and the number of years that the respondents’ company

has had to engage actively in RE.

The second section of the questionnaire, however, contained close-ended questions that

were aimed at eliciting information on the perception of implicit requirements within the

respondent’s organisation and how it is managed. The questions in this section sought to

know the relevance attached to the deployment of implicit requirements in the software

development process in respondents’ organisations.

3.4 DATA COLLECTION METHOD

A web-based questionnaire was used to draw the participation of diverse respondents from

different parts of the world. An open call was made through survey invites in relevant

online requirements engineering and software engineering communities such as Yahoo

Requirements Engineering Group, Linked-in Requirements Engineering Specialist group

62

(RESG), and Requirements Engineering Conference mailing list, AISWorld, and

SEWORLD. This was to ensure that interested and qualified persons from these

communities that have diversified global memberships were notified of the survey. Direct

contact was also made with a few local companies in Nigeria, and some of the academic

colleagues that are based in Europe and the US to help disseminate information about the

survey. Many of them did this, by sending email invites to their colleagues within the

software engineering community. The survey was online for a period of 6 months. At the

end, 56 respondents participated in the survey, with respondents from 23 countries as

shown in Table 3.1. The data collected from the online survey formed the basis of the

analysis.

The questionnaire form is as shown in Appendix B, while the online survey questions and

data are available at https://sites.google.com/a/covenantuniversity.edu.ng/resurvey1/. All

of the respondents claimed to be software developers, with majority specialising in the

development of business and enterprise software solutions.

63

Table 3.1: Number of Participants in each country

S/N Country No of Participants

1 Afghanistan 1

2 Australia 2

3 Austria 3

4 Brazil 2

5 Canada 3

6 Chile 1

7 Germany 4

8 India 5

9 Ireland 1

10 Israel 2

11 Italy 2

12 Macedonia 1

13 Netherland 3

14 Nigeria 2

15 New Zealand 2

16 Norway 2

17 Poland 1

18 Serbia 1

19 Spain 3

20 Sweden 1

21 United Kingdom 4

22 United States of America 9

23 Yugoslavia 1

 Total 56

3.5 TEST METHOD

The correlation analysis test, using the Spearman’s rank correlation coefficient

(Spearman’s rho) was the major test carried out in this study. It was used to test each of the

six hypotheses that were formulated and put forward in this study. For each hypothesis, the

64

correlation analysis technique was used to determine the relationship between certain

factors and or characteristics of the respondents and their responses to the close-ended

questions in the instrument. An investigation was also carried out to determine if the six

factors or characteristics put forward in this study have any significant impact on the

perception and handling of implicit requirements, and if so, the strength of the relationship.

The hypotheses are outlined below:

i. H1: Number of years in business has a significant relationship with the knowledge

and views of an organisation on implicit requirements.

ii. H2: Size of software development team of an organisation has a significant impact

on the knowledge and handling of implicit requirements.

iii. H3: The organisation’s scope of market operation has a significant impact on its

knowledge and views on implicit requirements.

iv. H4: Professional Status of an employee in an organisation has a significant impact

on his/her knowledge and views of implicit requirements.

v. H5: Years of personal experience of an individual in RE has a significant impact on

the knowledge and views of implicit requirements.

vi. H6: Experience of an organisation in RE has a significant impact on its knowledge

and handling of implicit requirements.

3.6 SAMPLE PROCEDURE

Due to the nature of the study, purposive sampling is the type of sampling method

employed in this study. The use of probability sampling, which is the alternative to the

earlier method stated, was not employed in the study due to limitations arising from time

and resources.

Contact was made with potential respondents via e-mails to seek their participation in the

survey. An electronic mail was sent to each respondent explaining the purpose of the study.

They were also be given a time frame of three (3) months within which the survey is to

65

take place which was later extended by another three (3) months to accommodate for more

respondents.

Participants were also selected on the basis of their knowledge and practice of RE in their

respective software development organisations.

A sample size of at least 50 participants was used for the survey for this study. The chosen

sample size is to enable the effectiveness, efficiency and quality of the study.

3.7 DATA ANALYSIS AND RESULTS

There were 56 respondents (n=56) from different parts of the world. The data on the

background of respondents as it pertains to the six factors is presented in section 3.2.1

Table 3.2 shows that a larger number of the respondents work for companies with over 20

years’ experience (46.4%) in software development business, while 89.3% of the sampled

population has more than 5 years’ experience in software development. 19.6% of the

respondents came from companies that have the international scope of operation; 42.9%

from companies with a local scope of operation, while 37.5% described the operational

scope of their company as both local and international. In terms of the professional status

of respondents, 33.9% belong to the managerial level, 62.5% to a middle career level, while

3.6% belong to the lower level. The information in Table 3.2 shows that a greater

percentage of respondents belong to middle-level personnel cadre compared to

management and junior level employees.

66

Table 3.2: Data on Characteristics of Respondents

S/no Factor Analysis

1 Years of Business

(years)

> 20 yrs = 26 (46.4%)

16 - 20 yrs = 6 (10.7%)

11 – 15 yrs = 9 (16.1%)

 6-10 yrs = 9 (16.1%)

 0-5 yrs = 6 (10.7%)

2 Software Development Team size

(persons)

> 50 = 10 (17.9%)

21 - 50 = 5 (8.9%)

16 - 20 = 6 (10.7%)

11 – 15 = 9 (16.1%)

 6-10 = 8 (14.3%)

 0-5 = 18 (32.1%)

3 Scope of Market Operation

Local = 24 (42.9%)

International = 11(19.6%)

Both = 21 (37.5%)

4 Professional Status of

Respondent’s within their

organization

Management level = 19 (33.9%)

Middle level = 35(62.5 %)

Lower level = 2(3.6 %)

5 Respondent’s years of experience

in RE

> 20 yrs = 15%

16 - 20 yrs = 2%

11 – 15 yrs = 21%

 6-10 yrs = 34%

 0-5 yrs = 28%

6 Experience of the Organization in

RE

> 20 yrs = 18 (32.1%)

16 - 20 yrs = 5 (8.9%)

11 – 15 yrs = 9 (16.1%)

 6-10 yrs = 14 (25%)

 0-5 yrs = 10 (17.9%)

In terms of experience in requirements engineering (RE), 41% of respondents’

organisations have at least 15 years of experience in RE, while 38% of respondents claimed

to have more than 10 years’ experience in RE practice. This showed that over 70% of the

survey respondents used had been in RE Practice for an upward of 10years thereby giving

the survey result good credibility.

67

3.7.1 Reliability Test

The reliability test was conducted in order to measure the consistency and stability of the

data used for the analysis. The Cronbach’s Alpha Test was used to determine the reliability

of the data used in this study. According to Gliem and Gliem (2003), Cronbach’s Alpha is

a reliability test measure involving only one test administration to provide a given test with

a unique evaluation. It is represented by the symbol α. During the process of establishing

content validity of the questionnaire, a pilot survey was conducted using five (5) experts,

who acted as a respondent in order to review the questions and offer suggestions for

improvement. From the pilot survey conducted, it was observed that the initial questions

were lacking in terms of the domain in which the organisations were developing their

software products, the experience of the organisation in RE and finally if there exist

specialised approach for handling IMR in their organisation. The revised questionnaire and

additional suggested questions were then used in the survey instrument. The data collected

is reliable under the Cronbach’s Alpha test when α has a minimum of 0.7. For this study,

the Cronbach’s Alpha Test is valued at 0.783. This indicates that the data collected from

the set questionnaire is suitable for carrying out further test and analysis.

Table 3.3: Reliability Test Table

Reliability Statistics

Cronbach's Alpha N of Items

.783 23

3.7.2 Hypothesis Testing

For the survey, Spearman Correlation Analysis was adopted to determine the impact of the

six selected factors on the knowledge and perception of implicit requirements by software

developers. The aim was to determine if certain factors have significant influence or

relationship with the knowledge and perception of implicit requirements. The Spearman’s

Correlation Coefficient is a statistical measure of the strength of a monotonic relationship

between two variables. It is represented by the spearman’s rho (rs). In this study, the

selected factors were tested against all the set of questions. However, the tables below

68

reflect responses which show the questions with significant relationship with the respective

factor and all non-significant responses were excluded.

I. Number of Years in Business

H1: Number of years in business has significant relationship with the knowledge and view

of implicit requirements

H1o: Number of years in business has no significant impact on the knowledge and view of

implicit requirements

The number of years in business represents the number of years in the practice of software

development by a company. From the result extracted as shown in Table 3.4 the questions

with the significant relationship are as listed below. Although there were a few significant

relationships, they were however weak not exceeding 0.4. This means that there exists

significant influence although it is not very strong.

Where:

Q2.7.1. A specialised approach, possibly with some automation support will be useful for

managing implicit requirements (0.296)

Q2.14. Established RE management methods are adequate to handle implicit requirements

for now (0.295)

Q2.6. Using experience plus tool support will be perfect for managing implicit

requirements (0.379)

Q2.4. Implicit requirements does not have any impact on correctness of system architecture

(0.295)

Q2.3. Implicit requirements does not have any effect on the acceptability of software

product (0.344)

69

Table 3.4: Result of Correlation Testing for H1

Table 3.4 shows that although the number of years in the business of software engineering

has some effect on the knowledge and views of implicit requirements, there are other

factors that affect the knowledge and perception of how implicit requirements should be

handled in an organisation. The results of the analysis show that the greater the number of

years in business the better the knowledge and perception of implicit requirements. This

means that those with longer years in the business have a lot more regard for the subject of

implicit requirements. It also shows that they recognise the need for improvement in the

way implicit requirements are handled and its importance to the functionality of the

developed system. Hence, H1 is accepted.

70

II. Size of Software development team

H2: Size of software development team has significant impact on the knowledge and

handling of implicit requirements

H2o: Size of software development team has no significant impact on the knowledge and

handling of implicit requirements

The size of software development teams differs per company depending on the size of the

organisation. In many instances, the larger the organisation, the larger the workload, and

hence the need for a large software development team. The result of the analysis showed

that the size of the software development team had a significant impact on the perception

and knowledge of implicit requirements. However, these relationships are not very strong

as none of the correlation coefficients exceeded 0.5 as shown in Table 3.5.

Table 3.5: Result of Correlation Testing for H2

71

Where:

Q2.8. Improper handling of implicit requirements can lead to poor system design and poor

product performance (-0.288)

Q2.14. Established RE management methods are adequate to handle implicit requirements

for now (0.271)

Q2.3. Implicit requirements do not have any effect on the acceptability of software product

(0.384)

Q2.4. Implicit requirements do not have any impact on correctness of system architecture

(0.343)

Q2.13. There is no need to evolve new methods to specially handle implicit requirements

(0.308)

The size of the software development team shows a positive correlation with questions

Q2.14, Q2.3, Q2.4, Q2.13 with the exception of Q2.8, which had a negative value of (-

0.288). This connotes that with an increase in the size of software development team the

negative impact of implicit requirements on the correctness of system architecture, the

acceptability of software product will reduce. Also, established RE methods will become

adequate to handle implicit requirements, while reducing the size of software development

team will increase improper handling of implicit requirements. From this analysis, it can

be inferred that although the size of the software development team has a significant impact

on the perception and handling of implicit requirements, there are other factors that also

play a role since the values are closer to zero than to +1, which is a perfect positive

correlation. Therefore, H2 is selected.

III. Level of Market Operation

H3: The organisation’s scope of market operation has significant impact on the knowledge

and view of implicit requirements

72

H3o: The organisation’s scope of market operation has no significant impact on the

knowledge and view of implicit requirements

From the analysis conducted, the level of operation was classified based on the type of

target market, which is local, global and both local and global. A larger percentage of the

population of the respondents operate at either local level or at both local and global levels.

The analysis showed that the target market of the company or level of operation of the

organisation has no significant impact on the views and knowledge of implicit

requirements. Hence, there is no table showing any significant relationship between any of

the question, therefore H3 is rejected and H3o is selected.

IV. Professional Status in Organisation

H4: Professional Status of an employee in an Organization has significant impact on the

knowledge and view of implicit requirements

H4o: Professional Status of an employee in an Organization has no significant impact on

his/her knowledge and views of implicit requirements.

The professional status of an employee within an organisation has been categorised into

three levels. These are the Junior Level, Middle Level and Managerial Level. The analysis

result in Table 3.6 showed that there was only one significant relationship between one of

the questions and the professional status.

Table 3.6: Result of Correlation Testing for H3

73

Where:

Q8. Your professional status in your organisation.

Q2.5. Relying principally on experience is sufficient for the discovery of implicit

requirements during requirements elicitation (0.347).

The result of the analysis showed that the higher the professional status, the greater the

disagreement with the statement or close ended question. This means that those that are

higher up in the career hierarchy do not believe that experience alone is sufficient for the

discovery of implicit requirements. Although they agree that experience plays an important

role, other approaches are required. Therefore, H4 is selected.

V. Years of Personal Experience in RE

H5: Years of personal experience in RE has significant impact on the knowledge and view

of implicit requirements

H5o: Years of personal experience in RE has no significant impact on the knowledge and

view of implicit requirements.

The result of the analysis showed that years of personal experience in RE had a significant

impact on some of the responses to the close-ended questions. These questions include the

following:

Q8. Your experience in Requirements Engineering (RE) practice in terms of years

Q2.5. Relying principally on experience is sufficient to the discovery of implicit

requirements during requirements elicitation (0.290)

Q2.6. Using experience plus tool support will be perfect for managing implicit

requirements (0.365)

Q2.14. Established RE management methods are adequate to handle implicit requirements

for now (0.263) Q 2.3 Implicit requirements do not have any effect on the acceptability of

software product (0.291)

74

This analysis showed that although there is a significant relationship, it is however not

strong as the coefficients are closer to 0 than +1, which is an indicator of a perfect positive

correlation. The analysis in Table 3.7 shows that developers with longer years of

experience have more regard and understanding of implicit requirements. This could be

due to many practical cases of implicit requirements that they have handled during in the

course of their career. Therefore, H5 is selected.

Table 3.7: Result of Correlation Testing for H5

VI. Experience of the Organization in RE

H6: Experience of an Organization in RE has significant impact on the knowledge and

view of implicit requirements

H6o: Experience of an Organization in RE has no significant impact on the knowledge and

view of implicit requirements.

Q9. The experience of your organisation in RE.

75

The analysis showed that the level/years of experience of an Organization in RE have an

impact on the knowledge and perception of implicit requirements. The results as shown in

Table 3.8 shows that the years of experience of the Organization had a significant influence

on 7 out of the 17 questions. They include the following:

Q2.5. Relying principally on experience is sufficient to the discovery of implicit

requirements during requirements elicitation (0.293)

Q2.6. Using experience plus tool support will be perfect for managing implicit

requirements (0.373)

Q2.14. Established RE management methods are adequate to handle implicit requirements

for now (0.397)

 Q2.3. Implicit requirements do not have any effect on the acceptability of software product

(0.301)

Q2.4 Implicit requirements do not have any impact on correctness of system architecture

(0.314)

Q2.15. During requirements elicitation, stakeholders deliberately withhold certain

information, which creates implicit requirements scenarios (0.387)

Q2.13. There is no need to evolve new methods to specially handle implicit requirements

(0.297)

76

Table 3.8: Result of Correlation Testing for H6

The results of the analysis show that companies with longer years of experience in RE

acknowledge the importance of implicit requirements, regards them as crucial to the

functionality of a system and that they have an effect on the consumer satisfaction.

Although there is a significant relationship, the relationship is however not a strong one as

it is below 0.5. With the correlation coefficients closer to zero, this indicates a weak

relationship. This implies that there are other factors, which play a major role in the

knowledge, understanding and view of implicit requirements. Hence, H6 is selected.

77

3.8 DISCUSSION

Based on the outcome of the analysis of the result of the survey, four salient issues can be

identified, which shall now be discussed. First, it was observed that there are critical

organisational factors such as number of years in business of an organisation, and the years

of experience of an organisation in dealing with RE, and size of software development

team that have a positive correlation with the views, and handling of implicit requirements

within an organisation. From this, one can safely argue that the level of maturity of the

software process in an organisation will affect the way implicit requirements are managed,

although high maturity of software process may not automatically translate to handling

implicit requirements the right way because of the existence of other factors. Also, the

scope of operation of an organisation whether local or global is a key determinant factor of

how well an organisation handles implicit requirements. Second, there are critical human

factors such as the general professional experience of employees, and the level of

experience in RE that determines the way implicit requirements are perceived and managed

within an organisation. Therefore, it is safe to say that organisations that have persons with

significant professional experience in software development and RE in managerial

positions, and also a significant bunch of these type of personnel in mid-level positions are

more likely to perform better in terms of handling of implicit requirements than those

where this is not the case.

The result of this survey also points to the fact that although so far the use of experience

has played a significant role in handling implicit requirements, a significant number of

practitioners believe that additional means that can complement the use of experience such

as tool support are necessary. There also exists a significant number of practitioners that

believe that existing requirements management tools are sufficient to handle implicit

requirements for now, if maximised, and there is no need for new tools. In addition, there

is a consensus that implicit requirements are real, and there are many deliberate situations

caused by users that lead to the emergence of implicit requirements exist.

The findings from this survey revealed a number of issues and claims by respondents that

need empirical verification by the requirements engineering community. For example, it

78

will be interesting to ascertain the strength of specific RE tools to manage implicit

requirements in terms of addressing specific concerns across the RE lifecycle such as the

discovery of hidden requirements, analysing implicitness, traceability, prioritisation and

change impact analysis of implicit requirements. Also, a comparative evaluation of the

existing support tools for implicit requirements is necessary in order to validate the

potential of these tools to solve existing challenges and ascertain gaps that still exist.

3.9 DISCUSSION OF VALIDITY THREATS

The results obtained in this empirical study needs to be understood within the strengths and

limitations of the selected research methodology. Hence, in this section how this study

addressed specific validity threats are explained.

Conclusion Validity: this refers to whether the right conclusions can be drawn about the

relationship treatment and the result obtained from the survey. Some of the concerns

addressed in this aspect of validity are:

Low statistical power: In a highly technical domain such as requirements management,

having a large number of respondents is not so much of a strength as identifying persons

that are truly knowledgeable on the issue of managing implicit requirements. The 56

respondents that are located in 38 distinct organisations and across 23 countries is sufficient

for a small scale empirical studies that seek to give a first empirically based opinion on the

handling of implicit requirements in the industry.

Reliability of measure: the spearman‘s correlation coefficient that was used to investigate

the relationship between the variables in the stated hypotheses (H1-H6) is a standard

statistical measure that is suitable for the task it was used to perform. Also, in order to

enhance the reliability of the measuring instrument, a pilot study was conducted initially,

which improved the quality of questions.

Reliability of treatment: all respondents had the same kind information. The questions were

in English, which happens to be the main language for business in the respondents’

organisations.

79

Construct validity: this refers to the extent to which the operational measures that are

studied truly represent the theoretical constructs on which those operational measures were

based (Wohlin et al., 2012). To achieve this, all respondents had the same instructions as a

guide for completing the questionnaire. The task was the same for all, which is to complete

the online questionnaire. Hence, the results obtained from the survey depends on only one

variable, which eliminates any mono-method bias effect.

Internal Validity: this refers to whether other factors other than the treatment influenced

the outcome of the survey. For the survey, all respondents were software practitioners who

claimed to have ample experience in requirements engineering. The bulk of participants

were recruited from professional online communities such as Linkedin Requirement

Engineering Specialist Group (RESG), Yahoo Requirements Engineering Group,

SEWORLD and AISWORLD. Generally, the respondents have significant experience in

RE with 38% having more than 10 years’ experience, while 72% have more than 5 year

experience in RE. Also, they were given sufficient background introduction, which they

had to read before the questions were presented to them.

External Validity: The key interest of this aspect of validity is whether we can generalise

the outcome of the survey to a larger context. The respondents have mostly experienced

software engineers, who have practical experience on issues that deal with implicit

requirements and located in different parts of the world. A concern could be that possibly

the result would have been different results if a larger pool of qualified respondents was

used for the survey. However, we waited six months to have the 56, it could not be

ascertained if the number would have been significantly more if we have waited for a

longer time. Although, we do not consider this as a major threat to the reliability of the

outcome of this survey, an interesting point for future study is to have a wider group of

requirements engineers participate in the survey.

80

3.10 REQUIREMENTS OF THE PROCESS FRAMEWORK

From previous work done by authors (Fabbrini, et al., 2001; Kamsties et al., 2001; Lami

et al., 2004; Meyer, B. 1985; Wilson et al., 1997), the following are instances or scenarios

that could possibly make a requirement implicit:

i. The occurrence of ambiguity in a requirement statement;

ii. The presence of vague words and phrases;

iii. The presence of vague imprecise verbs;

iv. The presence of weak phrases; and

v. The occurrence of incomplete knowledge in a requirement statement.

Hence, these factors enable the fulfilment of the second objective of the proposed

framework for managing IMR.

3.11 PROCESS FRAMEWORK FOR MANAGING IMR PROCESS

 Based on the identified requirements this thesis proposed a framework that is shown in

Figure 3.3. The components of the framework are presented in the sections following.

3.11.1 Components of the Framework

The framework proposed in this thesis integrates three core technologies NLP, ABR and

ontology for discovery and managing of IMR. The architectural view of the process

framework is presented in Figure. 3.3. The core system functionalities are depicted as

rectangular boxes, while the logic, data and knowledge artefacts that enable core system

functionalities are represented using oval boxes. A detailed description of the framework

is given below.

81

Figure 3.3: IMR Process Framework

I. IMR Identification and Extraction

In this section, the part of the framework that deals with knowledge representation and

extraction are described.

a) Data Preprocessing

A preprocessed requirements document is the input to the framework. Preprocessing is a

manual procedure that ensures that the requirements document is in the required format

82

acceptable for use in the system. This entails extraction of boundary sentences from the

requirements document and further representing images, figures, tables etc. in their

equivalent textual format.

b) NL Processor

The NL processor component facilitates the processing of natural language requirements

for the process that enables feature extractor. The core natural language processing

operations implemented in the architecture are as follows:

a) Sentence selection: This helps in splitting the requirements statements

into sentences for onward processing.

b) Tokenization: This further splits the requirements sentences into tokens.

Tokens are usually words, punctuation, numbers, etc.

c) Parts of speech (POS) tagging: This classifies the tokens (words) into

parts of speech such as noun, verb, adjective and pronoun.

d) Entity Detection: The process of dividing a text into syntactically

correlated parts of words, like noun groups, verb groups, but does not

specify their internal structure, nor their role in the main sentence.

e) Parsing: This creates the syntax tree which represents the grammatical

structure of requirements statements, in order to determine phrases,

subjects, objects and predicates.

The Apache OpenNLP library1 for natural language processing was used to implement all

NLP operations.

c) Ontology Library

The ontology library and ABR modules, make up the knowledge model of the process

framework. The ontology library serves as a storehouse for the various domain ontologies

(.owl/.rdf). The domain ontologies are those that have been developed for a specific

1 https://opennlp.apache.org/

83

purpose or those of business rules. The ontology library was implemented using Java

Protégé 4.1 ontology API, while the ABR module was implemented using the concept

proposed by Maiden (1991).

d) Feature Extractor

The feature extractor heuristic gives underlying assumptions for identifying potential

sources of IMR in a requirement document. Due to semantic features on which natural

language text exist and by taking into account previous work done by authors such as

(Fabbrini et al., 2001; Kamsties et al., 2001; Lami et al., 2004; Meyer, B. 1985; Wilson et

al., 1997), the following characteristic features underline what to look out for in a text in

terms of surface understanding that could possibly make a requirement implicit:

a) Ambiguity such as structural and lexical ambiguity.

b) The presence of vague words and phrases such as “to a great extent”.

c) Vague imprecise verbs such as “supported”, “handled”, “processed”, or

“rejected”

d) The presence of weak phrases such as “normally”, “generally”.

e) Incomplete knowledge.

Based on this underlying characteristics, the feature extractor is made up of various

algorithms (lexical, pragmatic, syntactic, vagueness, incomplete knowledge) and also

repository (weak phrases, vague words and phrases) of keywords that identify potential

IMR.

II. Implicit Requirements Management

This section describes the parts of the architecture that deals with IMR management and

its knowledge reuse.

a) ABR Module

The ABR component facilitates the knowledge reuse capability of the framework. This

component is influenced by Maiden (1991), as stated earlier which consist of three type of

84

knowledge (domain, solution and goal). These three dimensions have been considered in

the formulation of the Implicit Requirements Model (IRMM).

In order to manage IMR, a reuse-based IRMM is outlined below, which is a formal

representation of requirements that create a basis for the reuse of implicit requirements

associated with existing requirements in order to discover the implicitness of new

requirements. This formal representation is an extension of the formalisation presented in

Daramola et al., (2012).

The IRMM is an eight-tuple denoted as IRMM = < D, S, G, O, Rid, RQi, IMRid, IMRi >

where

D is a description of the domain of the software project;

S is a description of the solution approach adopted by software project;

G is the goal of the system under development;

O is a description of the domain Ontology of the Requirement R;

Rid is the unique id of the requirement; and

RQi is the requirement statement represented by Rid;

IMRid is the unique id of the implicit requirements associated with Rid;

IMRi is the description of implicit aspects associated with the requirement RQi denoted as

Rid.

The goal of the IRMM is to provide a uniform structure for describing requirements such

that it will be possible to establish a basis for analogy reasoning. A case-based

representation of requirements will classify the known parts of IRMM as problem

specification of a case at hand, while the unknown part will constitute the solution part.

From our IRMM, the set {D, S, G} represent the domain, solution and goal parts of both

the source and target project.

85

b) ABR Model and Similarity/Difference Measure

The ABR model is partitioned into a problem part and a solution part. Both parts of the

model shares a common domain abstraction, which is made up of the eight-tuple of the

IRMM model. In order for analogical matching to be performed, the source domain, target

domain and their domain abstractions must share a coherent structure of semantically

equivalent facts. The extent of the analogical match is determined by the degree of overlap

between these mapped structured facts. At the instance of a new (target) case, the

analogical matcher identifies candidate analogical matches with one or many domain

abstractions using a semantic matching algorithm (S-matcher) to compute the similarity

between the problem parts of the new case and all existing relevant cases in the case library

to determine suitable candidates for retrieval. The matching task is either at the element

level or structure level (Yatskevich, and Giunchiglia, 2004).

Element level matchers consider only the information at the atomic level of both and

returns the semantic relation that exist between them (e.g. equivalence, disjoint, part-of,

kind-of) while structure level matchers take into consideration also the information about

the structural properties of both schemas to determine the whole similarity coefficient,

which is usually between ([0-1]). In carrying out the similarity matching for requirements

similarity, a general knowledge base or upper-level ontologies, WordNet was used as the

concept hierarchy. The model also supports using an existing domain ontology as concept

hierarchy where such an ontology already exists or can be developed. The selected concept

hierarchy then provides the basis for computing the semantic relatedness of two

requirements. The solution part of a chosen retrieved case is then used verbatim or revised

as the solution part of the target case. Figure 3.4 shows a flowchart of the process for

analogical matching used in the ABR model. Firstly, the analogical matcher identifies

candidate analogical matches with one or many domain abstractions. The abstraction

selector then reasons heuristically about key differences between these abstractions to

select the best match. Thirdly, the analogy determiner combines quantitative measures of

similarity from the analogy matcher and selector to determine the degree of overall

analogical match.

86

An example of a network demonstrating the structural isomorphism of the analogical match

between a University Course Management System and a Smart City Parking System is

shown in Figure 3.5. These two domains are case projects used in this study (oval shapes

represent domain objects, rectangles and lines show domain terms). The possible reuse that

can be exploited from this analogy is the structural and functional details such as processes

(e.g., “sensor car park” and “course placement”), data stores (e.g., “sensored parking

space” and “course place”) and external agents (“driver” and “student”). Although both

systems are in different domains, they both share significant surface features (e.g.,

reservations, waiting lists, places) which assist analogical recognition and understanding.

Figure 3.4: Flowchart for Analogical Matching

87

Figure 3.5: An Example of a Structural Isomorphism Network between Two Domains

3.12 SUMMARY

This chapter presents the research methodology adopted by this thesis. The first part has

discussed the design and implementation of the empirical survey, while the second part has

described the architecture of the process framework for managing implicit requirements.

From the first part, the result of the empirical survey, the result of this survey points to the

fact that although so far the use of experience has played significant role in handling

implicit requirements, a significant number of practitioners believe that additional means

that can complement the use of experience such as tool support are necessary. Also, the

fact that no other empirical study so far has looked specifically at the issue of implicit

requirements makes the outcome of the survey potentially valuable to practitioners.

From the second part, an architectural framework that integrates three core technologies

NLP, ABR and ontology for discovery and managing of IMR has been proposed for

onward implementation and evaluation.

88

CHAPTER FOUR

SYSTEM DESIGN AND IMPLEMENTATION

4.1 INTRODUCTION

This chapter presents a description of the design and implementation of the support tool-

PROMIRAR (PROduct for Managing Implicit Requirement using Analogy-based

Reasoning) for identification and managing IMR.

4.2 MOTIVATION FOR PROMIRAR

The vision of PROMIRAR originated from the way implicit requirements are handled by

requirements engineers who use their initiative and experience to address the challenges

that the absence of such requirements pose to the overall purpose and functions of the

system.

PROMIAR is essentially a prototype implementation of the architectural framework as

given in Chapter 3.

4.2 Performing IMR Management with PROMIRAR

The process of using the PROMIRAR is as follows:

Step 1: The requirements document is preprocessed to get the requirements in a text file

format, without tables, images and graphs.

Step 2: The available domain ontologies are selected or a new one is created semi-

automatically for further use in the IMR identification.

Step 3: The requirements documents and the domain ontologies are imported into the

PROMIRAR environment.

Step 4: The analyse button is clicked to permit the feature extractor to recognize likely

sources of IMR in the requirement document.

89

Step 5: The prospective IMR are flagged by PROMIRAR using the heuristic classifier

module.

Step 6: The analogy engine is called. If existing analogy exists, the best match for the

supposed IMR to be explicated is selected and returned to the user for possible

modification or direct use.

Step 7: Expert approves/disapproves the recommendations by either accepting/rejecting

the recommendations by PROMIRAR.

Step 8: Each approved IMR and its explicated part are then added to the case base of

PROMIRAR. Requirements that do not have recommendations for explicating the

requirement, the ABR Module is called.

A flowchart of the above steps is a shown in Figure 4.5.

4.3 SYSTEM MODELLING FOR PROMIRAR

In this section, a full description of the system design using different models of the Unified

Modelling Language (UML) was given below which includes:

1. Use Case: This is a demonstration of the interaction a user has with the system. It

illustrates the association between the different use cases and the user’s

involvement. The use case diagram identifies the different use cases and the

various types of users of the system.

2. Class Diagrams: This is a type of static structure diagram that describes the

structure of a system by showing the system's classes, their attributes, operations

(or methods), and the relationships among objects.

3. Activity Diagram: This is a graphical representation of workflows of stepwise

activities and actions with support for choice, iteration and concurrency. Activity

diagrams show the overall flow of control.

4. Sequence Diagram: This is an interaction diagram that shows how objects

operate with one another and in what order. It is a construct of a message sequence

chart. It shows object interactions arranged in time sequence.

90

4.3.1 Use Cases for PROMIRAR

Use cases specify the functionality that the system will offer from the user’s perspective.

A use case specifies a set of interactions between a user and the system to achieve a

particular goal. Unlike cases where the principal actors are more than one, which may

include the user and the administrator. PROMIRAR was designed as a plug-in tool which

has only one actor which is the user of the application. The use case diagrams summarise

graphically, the interactions of the user with the PROMIRAR.

The use case diagram in Figure 4.1 models the functionality that the PROMIRAR tool

provides from the perspective of the user of the system who is the requirements engineer.

The following are identified functions from the system use case model.

i. Open SRS file

a. Search File Browser for SRS Document (text file)

ii. Edit Text file

a. Edit Text

b. Save Text

iii. Select Output File Directory

a. Search File Browser for Output Directory

iv. Ontology Management

a. Create new Ontology

b. Import existing Ontology

v. Select Analysis

a. Lexical (General)

b. Lexical (Context Disambiguation)

c. Vagueness

d. Incomplete Knowledge

vi. Start Analysis

vii. Logs

a. View Log

viii. Help

91

a. Check For Updates

b. About PROMIRAR

c. About Analysis Types

The system use case for the PROMIRAR can be shown as below according to the functions

available to the actor (The User):

SYSTEM USE CASE

PROMIRAR

User
(Requirement

Engineer)

Open SRS .txt

Document

Edit/Save SRS

Text

Select Output

File Directory

Ontology

Manaagement

Select Analysis

Start Analysis

Help

Figure 4.1: Combined Use Case of PROMIRAR

The Use Case Narratives of specific use cases of PROMIRAR are presented in Tables 4.1-

4.8.

Use Case Narrative 1(Import SRS): this use case will enable PROMIRAR to import SRS

document in text format.

92

Table 4.1: Use Case Narrative for Importing SRS Document

Use Case 1 Open SRS .txt Document

Goal in content User would be required to Open an SRS .txt file to be analysed

Level This is a basic Open File use case

Parameters In: SRS .txt File Out: Read and Output file Content

Preconditions The file must be a .txt file. Example: “Input.txt”.

The file must exist

Post-conditions

(success end)

File successfully read and opened to view and edit text content

Post-conditions

(failed end)

File Open failed

File not found. I.e. File does not exist

Actor(s) User (Requirement Engineer)

Trigger User require to Open SRS .txt document for analysis

Description (event

flow)

Actor action System respond Affected data

object with

operation

1. Request to

Open SRS .txt

file

2. Open File browser to

select/search for SRS .txt

file

Reads and

displays Selected

File

93

Use Case Narrative 2(Edit SRS): this use case will enable PROMIRAR to modify SRS

document.

Table 4.2: Use Case Narrative for Edit SRS .txt Document

Use Case 2 Edit SRS Text

Goal in content To Modify/Edit an already opened SRS document or Enter text to

be analysed

Level This is a basic Edit Text use case

Parameters In: Text (Entered Text)

Pre-conditions File Opened

Post-conditions

(success end)

Get user keyboard input and update text

Post-conditions

(failed end)

Actor(s) User (Requirement Engineer)

Trigger User require to Edit/Modify an Opened SRS .txt document

Description

(event flow)

Actor action System respond Affected data

object with

operation

1. Request to Edit

an Opened SRS

.txt file

2. Reads keyboard input

and updates SRS

document.

Updates SRS .txt

document

94

Use Case Narrative 3(Edit SRS): this use case will enable PROMIRAR to save an

edited SRS document.

Table 4.3: Use Case Narrative for Save SRS Text

Use Case 3 Save SRS Document

Goal in content To Save an Edited/Modified SRS document.

Level This is a basic Save Text File use case

Parameters In: Text (Entered Text), File Name, Directory

Preconditions File/Text Modified, Text Entered, Valid Directory has been

selected to save file

Post-conditions

(success end)

File Successfully Saved

Post-conditions

(failed end)

File Save Failed

Actor(s) User (Requirement Engineer)

Trigger User require to Save a Modified or Edited SRS Text to File

Description

(event flow)

Actor action System respond Affected data

object with

operation

1. Request to

Save Text to

File.

2. Opens File Browser for the

user to select a directory and

enter preferred name of the

file.

Saves Text File

to Selected

Directory

95

Use Case Narrative 4 (Output File Directory): this use case will enable PROMIRAR

to select a directory to output the IMR document.

Table 4.4: Use Case Narrative for Output File Directory

Use Case 4 Select Output File Directory

Goal in content To Select A directory to save the .pdf Report file of the analysis

Level This is a basic Select a Directory use case

Parameters In: Valid Directory Path

Preconditions Directory/Path is Valid (i.e. The Inputted Directory Exists)

Post-conditions

(success end)

Directory Successfully Selected

Post-conditions

(failed end)

Invalid Directory Please Select a Valid Directory

Actor(s) User (Requirement Engineer)

Trigger User require to Select a Directory to save the report of the

Analysis

Description

(event flow)

Actor action System respond Affected data object

with operation

1. Request to

Select a

Directory

2. Opens the Directory

Browser for user to

select a directory

Reads and Validates

the Path of the

selected Directory

96

Use Case Narrative 5 (Ontology Management): this use case will enable PROMIRAR

to either select an existing ontology or create one.

Table 4.5: Use Case Narrative for Ontology Management

Use Case 5 Ontology Management

Goal in content To Select an existing ontology or create one where such does not

exist.

Level This is a basic Selection use case using combo box

Parameters In: Create Ontology / Import Ontology

Preconditions

Post-conditions

(success end)

Successfully imported Ontology/Created Ontology

Post-conditions

(failed end)

No Ontology imported/Created

Actor(s) User (Requirement Engineer)

Trigger The user is required to Select an existing ontology or create one

otherwise.

Description

(event flow)

Actor action System respond Affected data object

with operation

1. Import/Create

an Ontology

2. Accepts/Creates

Ontology

Domain Ontology will

be available for use for

onward analysis.

97

Use Case Narrative 6 (Select Analysis): this use case will enable PROMIRAR to either

select an existing ontology or create one.

Table 4.6: Use Case Narrative for Select Analysis

Use Case 6 Select Analysis

Goal in content To Select an Analysis to be carried out on the inputted text or

opened SRS Document

Level This is a basic Selection use case using check boxes

Parameters In: Inputted Text / Opened SRS File

Preconditions

Post-conditions

(success end)

Successfully Selected Analysis

Post-conditions

(failed end)

No Analysis Selected

Actor(s) User (Requirement Engineer)

Trigger User require to Select one or more Type of analysis to be carried

out on the opened file or inputted Text

Description

(event flow)

Actor action System

respond

Affected data object

with operation

1. Select one analysis

type or more from the

set of analysis types

2. marks

analysis as

selected

Inputted Text will be

ready for analysis based

on selected analysis

98

Use Case Narrative 7 (Start Analysis): this use case will enable PROMIRAR to

execute the selected analysis.

Table 4.7: Use Case Narrative for Start Analysis

Use Case 7 Start Analysis

Goal in content To Analyse inputted Text or Opened SRS document

Level This is where the analysis takes place and further generates reports

based on the analysis selected

Parameters In: Inputted Text / Opened SRS File, Valid Directory, One or more

selected analysis. Out: Analysis Reports

Preconditions Directory/Path is Valid (i.e. The Inputted Directory Exists)

Inputted Text / Opened SRS File

One Analysis or More have been Selected

Post-conditions

(success end)

Analysis Successful

Analysis Reports Generated and saved to selected Directory

Post-conditions

(failed end)

Analysis cannot Start (No Analysis Selected, Invalid Directory

Inputted, No text Entered/ File Opened to be analysed)

Actor(s) User (Requirement Engineer)

Trigger User require to Analyse the inputted SRS text or opened SRS

document

Description

(event flow)

Actor

action

System respond Affected data object

with operation

1. Selects to

Start

Analysis

2. Starts analysis by analysing

inputted text based on selected

analysis and displays progress

to the user during the process.

3. Saves Analysis Report files

for each selected analysis to

the selected directory

Selected Directory is

Updated with

analysis report files

of the analysis

99

Use Case Narrative 8 (Help): this use case will enable PROMIRAR to access the help

menu.

Table 4.8: Use Case Narrative for Help

Use Case 8 Help

Goal in content To give the user a Brief description of all the functions of the

overall system and how they work for usability reasons

Level This is a Basic Help Use Case

Parameters

Preconditions Select a Help Sub Menu

Post-conditions

(success end)

View Selected Help Text

Post-conditions

(failed end)

Actor(s) User (Requirement Engineer)

Trigger User is required to understand how the system can be used or how

the different analysis types work, i.e. the algorithm of the analysis

types

Description (event

flow)

Actor action System respond Affected data

object with

operation

1. Selects A

Help Sub

Menu

2. Displays A Description

of the selected Menu

4.3.2 Class Diagram for PROMIRAR

This depicts a static view of the classes or instances in the model. The combined class

diagram for PROMIRAR models the data elements in the system, the ways in which data

may be grouped together, and the association between them. The attributes associated with

each class are also identified. The class diagram is shown in Figure 4.2 and the relationship

between the classes and their functionalities is as shown in Table 4.9.

100

PROMIRAR

DetectDanglingElse()

Others

-Text
-FilePath

main()
Ipdfprint()
Save()

SRSIMRMGT

M_Similarity()
M_Difference()
SemanticAlgor()

ABR

-TextDetectlexical()
DetectVagueness()
DetectSytAmb()
DetectIK()
WSD()

Detectors

-Text
-FilePath

0 *

1 *

1 * 1 1 *

Figure 4.2: Combined Class diagram for PROMIRAR

Table 4.9: Table showing the Architecture’s Classes and their Functionalities

Class Functions Description

Detectors Detectlexical()

DetectVagueness()

DetectSytAmb()

DetectIK()

WSD()

This class contains all the functions

required to identify a requirement document

containing IMR.

SRSIMRMGT Main()

Ipdfprint()

Save()

This class contains the main function that

executes every other class as well as calling

the IPDF to print the identified IMR and

then Save function to save the IMR.

ABR M_Similarity()

M_Difference()

SemanticAlgor()

This class contains functions to do the ABR

processing of finding similarity and

difference computation of requirements

documents as well as execute the semantic

matching algorithm.

Others DetectDanglingElse() This class is put in place for other

ambiguity functionalities such as

danglingelse ambiguity.

101

4.3.3 Activity Diagram for IMR Classification

The sequence of flow of some of the activities within PROMIRAR was also modelled using

the activity diagram. Figure 4.3 depicts the activity diagram for IMR classification in

PROMIRAR when a software requirements specification document is inputted in

PROMIRAR.

Open SRS .txt Document

Select Text File

Not a Text File

A Text File

Select A Directory

Valid Directory

InValid directory

Select Analysis

Lexical Analysis (General) Lexical Analysis (Context Disambiguation) Vagueness Analysi Other Analysis

Start Analysis

Generate Report

Figure 4.3: Activity Diagram for IMR Identification in PROMIRAR

102

4.3.4 Sequence diagram for IMR Identification in PROMIRAR

Sequence diagram depicts the interaction of messages between the system and users in time

sequence. Figure 4.4 shows the sequence diagram for identifying implicit requirements in

PROMIRAR.

Figure 4.4: Sequence Diagram for IMR Identification in PROMIRAR

4.3.5 Workflow of PROMIRAR’s Operation

The flowchart of PROMIRAR’s workflow starting from the point where the user inputs

the software requirements specification document to the output of the implicit requirements

detected is as shown in Figure 4.5.

103

Figure 4.5: Flowchart Diagram for PROMIRAR’S Workflow

4.4 FILE DESIGNS

The File System used in PROMIRAR is divided into 3, which includes: The Input Files,

The Output Files and The Corpus Files.

4.4.1 Input Files

Input Files are text documents, they are the SRS documents to be analysed by the

system. They contain a natural language representation of the requirements to be

analysed by the system for ambiguities.

The System is designed to open only files/documents in .txt, .doc, .pdf formats. All

formats are converted and processed in .txt format. This is because system

requirements are represented in natural language, and the use of text files helps to

achieve this goal. Text files only give room for natural language representation (plain

text) and eliminate the issue of us having diagrams, models, tables, etc. in the

requirement document to be analysed.

104

4.4.2 Output/Report Files

The Output files are “.pdf” files which are stored in the directory selected by the user.

The output files are stored with different filenames which are made up of the type of

analysis which the file is reporting and the name of the analysed text file. This file

basically documents the analysis results during the analysis and can be viewed by

opening the selected directory after the analysis is completed or automatically opened

after the analysis is finished by activating the auto view option in the system menu.

The Report files are generated based on the analysis selected by the user before starting

the analysis. Each selected analysis has its own report file. The report file basically

rewrites the analysed text document and highlights using colours and font type to show

detected ambiguous words and phrases in the text document, the report file also

contains a percentage figure of the detected ambiguities for the selected analysis.

4.4.3 Corpus Files

Corpus Files are read-only text files stored in the corpus folder/directory, the corpus

directory serves as a database containing several files where each file stores keywords

and phrases that are tagged as “potentially IMR” for a particular type of IMR, these

keywords were gotten from literature reviews. The list of this keywords is in exhaustive

and more keywords can be added as deemed fit by the requirements engineer.

During analysis, the text document checks the corpus directory for the text file that is

tied to the selected analysis and fetches all the keywords contained in the selected

analysis corpus file and scans the text document to be analysed if any of those keywords

exists. Not all analysis requires the corpus to carry out analysis.

4.5 ONTOLOGY DESIGN

This section gives the design of the ontology used in this research. Part of a Course

Management System (CMS) ontology is used to describe the design process.

105

4.5.1 Domain Requirements

Some of the ontology’s requirements were defined using the following competency

questions:

i. What is the minimum number of course units to register for in a session?

ii. What courses are to be taken in each of the levels?

iii. What is the procedure for registration?

iv. What necessary information does a student need from his/her level adviser?

4.5.2 Conceptual Modelling of the Domain

The following steps were taken in building the course registration ontology for use with

the Course registration requirements specification document:

i) Define classes in the ontology,

ii) arrange the classes in a taxonomic (subclass–superclass) hierarchy

iii) define slots and describing allowed values for these slots,

iv) fill in the values for slots for instances,

v) Define relationships among the various classes.

Protégé 4.1 (an ontology editor) was used to model the class hierarchy.

The Entities of the domain and their subclasses are shown below:

i. Student

a. Matriculation Number

This was made a functional requirement since no two students can have

the same matriculation number

ii. Course Registration

iii. Get Form Online

iv. Pay Fees

v. Get Manual Form

vi. See Level Adviser

106

a. 100 Level

b. 200 Level

c. 300 Level

d. 400 Level

e. Maximum Unit

f. Minimum Unit

g. Advice

h. ReRuns

i. Course Codes and Titles

vii. Fill Form

viii. Submit Form

The Relationships between Entities are:

i. A STUDENT IS_IN a LEVEL

ii. A STUDENT OFFERS some COURSES

iii. Some COURSES are OFFERED in a LEVEL

iv. Some COURSES have PREREQUISITES in Some LEVELS

v. Some COURSES are being OFFERED BY a STUDENT (This is an inverse

functional requirement to “A STUDENT OFFERS some COURSES”

vi. COURSE_CODE HAS TITLE

vii. COURSE_CODE HAS UNIT

A cross section of some sample screenshots of the various ontographs of the CMS domain

ontology such as the course registration, course advisor, and 100 level courses is as shown

in Figure 4.6-4.8.

107

Figure 4.6: An Ontograph of the Various Steps Needed for Registration

Figure 4.7: An Ontograph of the basic things to get from a Level Adviser

108

Figure 4.8: Result of a Query of 100 Level Courses

4.6 ALGORITHM DESIGN

The algorithms implemented in the PROMIRAR tool are developed from the knowledge

gotten from reviewing relevant literature to understand different ambiguity types and

further developing algorithms for detecting each type. The following types of ambiguity

where considered in the implementation: lexical ambiguity, vagueness, incomplete

knowledge and others (e.g. Dangling Else, Ambiguous Variables, Implicit Cases, etc.).

4.6.1 Lexical Ambiguity

According to Berry et al., (2003), lexical ambiguity occurs when a word can have more

than one meaning, and this can be further divided into two which includes homonym and

polysemy.

109

I. Homonym

This is when two different words have the same written or phonetic representation.

For example, the word “bank” can mean a financial institution, or a sloping land

beside a body of water.

II. Polysemy

This occurs when a word has more than one related meanings but a single

etymology.

From the above understanding of lexical ambiguity, an algorithm to automatically detect if

a word in a sentence is lexically ambiguous or not was developed, and this was achieved

by using the Wordnet dictionary to check if a word has more than one meaning in the

context (Part of Speech) in which it was used in the sentence.

Figure 4.9: Lexical Analysis Algorithm for PROMIRAR

The algorithm in Figure 4.9 ignores the fact that a word that has more than one meaning in

the dictionary might not be ambiguous in the context in which it is used in the document,

in the sense that a word with more than one meaning can be used in different sentences in

the document but referring to the same meaning in the dictionary, the above algorithm do

not handle this scenario as it just concludes that a word with more than one meaning is

lexically ambiguous. This brings us to the concept of word sense disambiguation.

1. Identify all sentences in the Document

2. Break identified Sentences into words

3. Identify the part of speech of each word

4. Check the dictionary for the meaning of each word

in the sentence based on the identified part of

speech

5. If the word exist in the dictionary count the

available meanings of the word based on the part

of speech

6. If the available meaning is >1 then the word is

ambiguous

7. Else if the available meaning is <= 1 then mark

the word as not ambiguous (available meaning <1

means the word does not exist in the dictionary).

110

Word Sense Disambiguation (WSD) is the act of finding the actual meaning that matches

the context in which a word that has more than one meaning was used in a sentence. For

example in the sentence “I have an interest in arts”, the word “interest” is an ambiguous

word in the sense that it may mean: appreciation, or a charge for borrowing money. For

humans it is easy to tell that interest in that context is talking about appreciation and not

otherwise but it is not so for computers (Banerjee, 2005). In this project, the GANNU

WSD2 was used as was used for lexical ambiguity detection called “Lexical Analysis –

context disambiguation”. This algorithm tends to carry out some degree of disambiguation

using the part of speech and the number of occurrence of words marked as ambiguous by

the algorithm in Figure 4.10.

Figure 4.10: Lexical Analysis –Context Disambiguation Algorithm

2 https://sourceforge.net/p/gannu/wiki/WordSenseDisambiguation/

1. Identify all sentences in the document

2. Break identified sentences into words

3. Identify the part of speech of each word

4. Check the dictionary for the meaning of each word

in the sentence based on the identified part of

speech.

5. If the word exist in the dictionary count the

available meanings of the word based on the part

of speech

6. If the available meaning is <=1 then we say the

word is not ambiguous (available meaning <1 means

the word does not exist in the dictionary).

7. If the available meaning is >1 check if the word

appears again in the document

8. If the word does not appear again in the document

then we say the word is not ambiguous

9. If the word appears again in the document compare

the part of speech of the next appearance of the

word with that of initial appearance of the word

10. If the part of speech is the same we say the word

is not ambiguous

11. Else if the part of speech is different then we

say the word is ambiguous

12. Go back to step 9 until all word appearance in the

document is treated

111

The algorithm in Figure 4.10 puts a form of control in the lexical ambiguity detection

process by minding the context in which the word is used in the document and says a word

is not ambiguous in a document unless it is used more than once in the document with

differences in the context (part of speech).

4.6.2 Vagueness

Another ambiguity type treated in this project is Vagueness, Vagueness occurs when a

phrase has a single meaning from the grammatical point of view, but still leaves room for

interpretation, when considered as a requirement. For example in the sentence “The system

should react as fast as possible” the word “fast” is a vague word in the sense that it leaves

room for us to further define how fast the system should be in carrying out its operations

(Gleich, 2010).

According to research, it is observed that most words referred to as vague in the ambiguity

handbook (Berry et al., 2003) are adjectives and adverbs this lead to the conclusion that all

adverbs and adjectives are potentially vague and should be treated as such (Gleich, 2010).

From the above understanding gotten from reviewing relevant literature, an algorithm was

developed to automate the detection of vagueness in an SRS document. The algorithm is

as shown in Figure 4.11:

Figure 4.11: Vagueness Analysis Algorithm

1. Identify all sentences in the document

2. Break identified sentences into words

3. Identify the part of speech of each word

4. If the part of speech is == ADVERB or part of

speech == ADJECTIVE then mark the word as vague

5. Else mark the word as not vague

112

4.6.3 Other Ambiguities

The term “Other Ambiguities” was coined mainly in this project. “Other ambiguities” do

not refer to a special type of ambiguity but refers to the detection of ambiguities in an SRS

document by making use of the corpus.

A corpus or text corpus can be defined as a large and structured set of texts (nowadays

usually electronically stored and processed). They are used to do statistical analysis and

hypothesis testing, checking occurrences or validating linguistic rules within a specific

language territory.

In this project, the corpus refers to a directory, which contains text files where each text

file contains a list of keywords and phrases referred to as potentially ambiguous to a

specific type of ambiguity.

 The keywords or phrases in each file are not randomly generated but gotten from research

documents such as the Ambiguity Handbook (Berry, 2003). A linear search algorithm was

implemented for searching the corpus text files for keywords and phrases. The algorithm

is as shown in Figure 4.12.

Figure 4.12: Corpus Search Algorithm

1. Identify all sentences in the document

2. Break identified sentences into words

3. Read the Corpus text file of the Ambiguity Type

4. Get the first word

5. Compare the word to each line of the corpus text

file

6. If match found mark the word as ambiguous and go

to next word

7. Else mark the word as not ambiguous and move to

next word

8. Go back to step 5 until all words in the document

is compared to each line of the corpus text file.

113

4.7 IMPLEMENTATION LANGUAGE AND PLATFORM

The Eclipse Platform was chosen as the implementation platform. It is an open source tool

that is designed for building Java applications. The Eclipse Platform’s principal role is to

provide the tool providers with mechanisms to use and rules to follow that lead to

seamlessly integrated tools. It also provides useful building blocks and frameworks

facilitating the development of new tools. Eclipse operates under an open source paradigm,

with a common public license that provides royalty free source code and worldwide

redistribution rights for tool developers with flexibility and control over their software

technology.

Eclipse-based tools give developers freedom of choice in a multi-language, multiplatform,

multivendor environment. Eclipse provides a plug-in based framework that makes it easier

to create, integrate and utilise software tools. The Eclipse Platform is written in the Java

programming language and comes with extensive plug-in construction toolkits and

examples.

The Eclipse Platform is designed to meet the following requirements:

i. Support the construction of a variety of tools for application development

ii. Support an unrestricted set of tool providers, including independent

software vendors (ISVs)

iii. Support tools to manipulate arbitrary content types (HTML, Java, C, JSP,

etc.)

iv. Facilitate seamless integration of tools within and across different content

types and tool providers

v. Run on a wide range of operating systems, including Windows and Linux

vi. Capitalise on the popularity of the Java programming language for writing

tools

114

4.8 IMPLEMENTATION OF PROMIRAR

This section states the modules of PROMIRAR and further gives a detailed description of

each of the modules and how they are implemented. Each of the modules is integrated

together to make the whole system. The modules are as follows:

a. File Module

b. Edit Module

c. Select Directory Module

d. Select Ontology Module

e. Select Analysis Module

f. Analysis Module

g. View Module

h. Help Module

A view of the main screen of a PROMIRAR is shown in Figure 4.13.

Figure 4.13: A Snapshot of PROMIRAR Main Screen

115

A description of the APIs used in this module and their functions in this module:

i. Wordnet Java API

WordNet is a large lexical database of English, developed under the direction of George

A. Miller. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive

synonyms, each expressing a distinct concept.

This API was used to get the meaning of words and number of senses/meaning of words

in the analysed text file.

ii. Apache Open NLP

Apache OpenNLP library is a machine learning based toolkit for the processing of natural

language text. It supports the most common NLP tasks, such as tokenization, sentence

segmentation, part-of-speech tagging, named entity extraction, chunking, parsing, and co-

reference resolution. This API was used to achieve the sentence detection process, breaking

the sentence into words, and getting the part of speech of the words.

iii. IText PDF API

IText is a PDF library that is used to CREATE, ADAPT, INSPECT and MAINTAIN

documents in the Portable Document Format (PDF). This API was used to create and write

into PDF files (Analysis Reports) during the analysis process.

iv. Gannu API

Gannu is a Java API, command line and graphical tools for performing AI tasks such as

Word Sense Disambiguation.

The Gannu WSD module used in this thesis allowed for the following: i) Perform

comparisons between different Bag of Words Model WSD systems; ii) Disambiguate

RAW text

116

v. Protege-OWL API

The API provides classes and methods to load and save OWL files, to query and manipulate

OWL data models, and to perform reasoning based on Description Logic engines.

4.9 DESCRIPTION OF PROMIRAR VIEWS

A description of the various views of PROMIRAR is as explained below while Figure 4.14

shows the highlighted part and numbers representing each interface goal.

4.9.1 The Main PROMIRAR Window

i. Select Analysis: The highlighted part with tag number “1” provides the user with

all the available analysis types in the system where the user is allowed to select

from the list of items (Analysis Types) by checking the box associated with the

analysis type.

ii. Open-File: The highlighted part with tag number “2” provides the user with a file

chooser, which allows the user to select a text file by browsing the system

directories.

iii. Select Directory: The highlighted part with tag number “3” provides the user with

a directory chooser, which allows the user to select a directory to save the output

file.

iv. Start Analysis: The highlighted part with tag number “4” provides the user with a

Start Button, which initiates the analysis after the file has been opened and a valid

directory has been selected and also provides the user with a progress bar which

shows the progress of the analysis in percentage.

v. Edit Text: The highlighted part with tag number “5” provides the user with a Text

area, which outputs the content of the selected text file and also enables the user to

be able to modify the content of the text file before starting the analysis.

117

Figure 4.14: PROMIRAR Main Screen with Highlight of Interface of Major Goals

4.9.2 The About PROMIRAR Window

This window displays information about the PROMIRAR in an inactive text area. The

windows are accessed by clicking on the Help Menu >> About PROMIRAR menu item or

by using the shortcut “Ctrl + Shift + A”. The screen shot of about PROMIRAR window is

as shown in Figure 4.15.

118

Figure 4.15: PROMIRAR Help Window

4.9.3 The About Analysis Window

This window displays information about PROMIRAR Analysis types (see Figure 4.16) and

how they work i.e. the algorithm. This was achieved by using a window, which contains

multiple tabs where each tab carries information about a particular type of analysis

provided by the system.

119

Figure 4.16: PROMIRAR Help Window (About Analysis)

4.9.4 Report Generation in PROMIRAR

After the SRS text file has been opened and a valid directory has been selected and

modification has been made to the file if necessary then the analysis can be started, once

the analysis is done (i.e. when the progress bar gets to 100%) reports are generated and

stored in the selected directory, this report can be set to open automatically once the

analysis is complete by activating the check box menu item “Auto Open Report” under the

option menu as shown in Figure 4.17.

120

Figure 4.17: PROMIRAR Main Screen Activating the “Auto view Report” Option

The reports generated are “pdf” files, so the software requires the system user to have any

version of Adobe Reader application installed on the system to be able to view the reports.

The content shows the type of IMR analysis done, which entails the content of the analysed

SRS document, highlighting the detected IMR by using colours and italic font as well as

its explicated requirements are shown in Figure 4.18-4.19.

121

Figure 4.18: Screen of PROMIRAR Vagueness Report File

Figure 4.19: Screen of PROMIRAR Lexical Ambiguity Report File

122

4.10 SUMMARY

In this chapter, the full scope of the design and implementation of PROMIRAR for

identification and management of implicit requirements has been discussed. The various

UML diagrams (Class Diagram, Use Case diagram, Activity diagram, etc) which make up

the design of PROMIRAR was reported. The various ontology design, algorithm design

(Lexical, Vagueness and other ambiguities), API’s (Wordnet, Apache Open NLP, IText

PDF, Gannu, Protégé-OWL) used to develop each module, language and platform for

developing PROMIRAR was discussed. The chapter concludes with the various

screenshots and descriptions showing the various interfaces and outputs of PROMIRAR.

123

CHAPTER FIVE

EVALUATION

5.1 INTRODUCTION

This chapter gives a report of the evaluation of PROMIRAR tool and the process

framework. Two kinds of evaluation were performed. Firstly, an evaluation of the

performance of the tool using three (3) different requirements specification documents in

three different experiments was conducted. Secondly, an evaluation of the application of

the tool as a support for the process of handling implicit requirements within software

organisations was conducted using two (2) software development organisation as a case

study.

5.2 PERFORMANCE EVALUATION OF PROMIRAR

A performance evaluation of PROMIRAR was conducted using three (3) different

requirements specification document in three different experiments. This approach was

adopted so as to assess the quality of the detected IMR.

5.2.1 Overview of Source Requirements Documents

The following requirements specifications were used for the evaluation as discussed below.

These requirements are standard requirements documents that are open and available

online.

i. Course Management System Requirements specification: The Course

Management System (CMS) requirements (see Figure 5.1) as used in Abma (2009)

describes some basic functionality like course enrollment, course lecture material

and timetable upload, students grading and e-mails notification to students. The

requirements document contains sixteen requirements as artefacts and seventeen

relations that connect them.

124

ii. Smart City (EMbedded MOnitoring): The EMMON project (EMMON, 2010) is

a European Research and Development (R&D) project. The motivation for

EMMON originated from the increasing societal interest and vision for smart

locations and ambient intelligent environments (smart cities, smart homes, smart

public spaces, smart forests, etc). The development of embedded technology allows

for smart environments creation and scalable digital services that increase the

human quality of life.

iii. Tactical Control System (TCS) requirements: This project (Naval, 2000) was

designed for the Naval Surface Warfare Center-Dahlgren Division and Joint

Technology Center/System Integration Laboratory, Research Development and

Engineering Center, U.S. Each of the requirements is as shown in Appendix A.

Figure 5.1: Structure of Relations of CMS Requirements

Source: Abma (2009)

5.2.2 Background of the Subjects

Eight (8) subjects were used to conduct three different experiments with each of the

requirements documents. The background of the subjects is as follows (see Table 5.1). The

subjects include:

125

i. 2 software engineering experts with industrial experience,

ii. 2 software engineering master students at the Montclair State University (MSU)

USA.

iii. 2 PhD students and 2 Faculty members at the MSU. All of who are doing research

in software engineering.

Table 5.1: Subjects’ Profession and Experience Index

#Subjects Profession Organization Experience

2 Software Engineer Software Engineering Assoc. 10-15 years.

2 Masters Student MSU(Software Engr. Major) 0-5yrs.

2 PhD Student MSU(Software Engr. Major) 0-5yrs.

2 Faculty MSU(Researcher + Industry

experience)

6-10 yrs.

5.2.3 Description of Experimental Procedure

In each case, they were asked to mark implicitness in the sample IMR identification form

as shown in Table 5.2 and also make use of the PROMIRAR tool. The subjects who are a

group of computing professionals, comprising software developers, academics and

research students are skilled in ambiguity detection and were further provided with the

Ambiguity Handbook (Berry et al., 2003), and as well were trained on identifying implicit

requirements. They were given the following instructions:

i. For each specified requirement, mark each requirement based on its implicit nature

noting that a requirement may contain more than one form of implicitness.

ii. Secondly, for each requirement specify the degree of criticality of each implicitness

on a scale of 1 to 5. 1 being least critical to 5 being most critical.

The defined sources of implicitness include:

i) Ambiguity (A);

ii) Incomplete Knowledge (IK);

iii) Vagueness (V); and

iv) Others

126

Table 5.2: Sample IMR Identification Form

S/N

Requirement Type of

Implicitness

Criticality

1 The system shall provide a

password reset function, which

resets the password and emails it to

the user

 (A) 1 2 3 4 5

 (IK) 1 2 3 4 5

 (V) 1 2 3 4 5

 (O) 1 2 3 4 5

2 The system shall facilitate searches

within all dynamic information and

files in a course

 (A) 1 2 3 4 5

 (IK) 1 2 3 4 5

 (V) 1 2 3 4 5

 (O) 1 2 3 4 5

3 The system shall enable students to

subscribe/unsubscribe to courses

5.2.4 Metrics for the Performance Evaluation

Precision and Recall are the two main evaluation metrics used in information retrieval

system. The measures were defined in Sanderson (2010). Generally, these measures are

evaluated using the actual values as against the predicted outcome as shown in Figure 5.2.

Where:

Precision is the fraction of retrieved documents that are relevant to the query.

Precision =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}∩{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|

|{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡}|
 (5.1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5.2)

Recall is the fraction of the documents that are relevant to the query that is successfully

retrieved.

Recall =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}∩{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|

|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡}|
 (5.3)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (5.4)

127

F-Measure is the harmonic mean of precision and recall.

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5.5)

Figure 5.2: Performance Evaluation (Actual Value vs. Predicted Outcome)

Where:

True Positive (TP): The true label of the given instance is positive, and the classifier also

predicts it as a positive.

True Negative (TN): The true label is negative, and the classifier also predicts a negative.

False Positive (FP): The true label is negative, but the classifier incorrectly predicts it as

positive.

False Negative (FN): The true label is positive, but the classifier incorrectly predicts it as

negative.

In the context of this thesis, the performance evaluation was conducted using manual

human experts’ performance measure against that of PROMIRAR as shown in Figure 5.3.

The performances were measured in terms of precision (P), recall (R) and F-measure (F)

defined as follows:

i. Precision: It shows the percentage of IMR judged by experts that were also

retrieved by the tool.

True

Positive

False

Positive

False

Negative

True

Negative

Actual Value

Predicted Outcome

128

ii. Recall: It shows the percentage of IMR judged by experts in the set of IMR

retrieved by the tool.

iii. F-Score: It is the harmonic mean of Precision and Recall.

Figure 5.3: Performance Evaluation (Human Expert vs. PROMIRAR)

Where:

a. TP (True Positives) is the number of correctly identified IMR by both expert and

PROMIRAR

b. FN (False Negatives) is the number of IMR judged by expert as correct but

identified by PROMIRAR as not IMR,

c. FP (False Positives) is the number of Requirements judged by experts as non-IMR

but was classified by PROMIRAR as IMR,

d. TN (True Negative) is the number of correctly identified non-IMR by both expert

and PROMIRAR.

5.2.5 Performance Evaluation Results

For each of the requirements document given in Section 5.2.1, each requirements document

was coded RS1 to RS3 (i.e. R1: CMS Requirements Document, R2: EMMON Project, R3:

TCS Requirements Document). The Precision, Recall and F-Score for each expert as the

benchmark against PROMIRAR using each requirements documents were calculated as

shown in Table 5.3.

True

Positive

False

Positive

False

Negative

True

Negative

Human Expert

PROMIRAR

129

Table 5.3: Recall, Precision & F-Score Result from Experts (E1-E8) using RS1-RS3

A chart was plotted to show the Precision and Recall result of the eight expert’s outcome

for each requirements documents evaluation as shown in Figure 5.4.

(a)

(b)

Figure 5.4: Precision (a) Recall (b) Chart from 8 Experts (E1-E8) using the R1-R3

0

20

40

60

80

100

E1 E2 E3 E4 E5 E6 E7 E8

Precision

R1 R2 R3

0

20

40

60

80

100

1 2 3 4 5 6 7 8

Recall

R1 R2 R3

130

5.2.6 Discussion of Performance Evaluation Results

From the evaluation results obtained using the three requirements documents, the mean

precision, recall and F-score were computed with results 86.16%, 83.20% and 84.51%

respectively. For a detection tool, the recall value is definitely more important than

precision. In the ideal case, the recall should be 100%, as it would allow relieving human

analysts from the clerical part of document analysis (Kiyavitskaya et al., 2008).

PROMIRAR with a mean recall value of 83.20% shows that the tool is fit for practical use,

as it marked a minimum of six out of eight IMR detected by a human expert and this is

consistent with best practices. The mean precision of 86.16% shows that the percentage of

IMR judged by experts that were also retrieved by the PROMIRAR is well above average

and is consistent with best practices. The F-score, which is the harmonic mean of Precision

and Recall is 84.51%. This clearly shows that PROMIRAR is very efficient. As for the

IMR marked by human evaluators but missed by PROMIRAR, the manual examination

has shown that they represent implicit factors where PROMIRAR could not identify

explicit patterns that would allow for automated IMR detection. A further observation from

the simulation experiment (see Table 5.3), revealed that the performance of the tool also

depends significantly on the quality of the domain ontology (i.e. the richness of vocabulary

and coverage of the ontology with respect to a specific domain increases the accuracy of

PROMIRAR).

5.2.7 Comparative Evaluation of PROMIRAR and Other Tools

This section gives a comparative evaluation of PROMIRAR with other related tools. Table

5.4 shows the comparative analysis of some related tools based on the following: approach

used by the tool, technologies used to perform tagging and parsing, pre-processing of

requirements supported or not, and concern IMR aspect.

The tools were selected because they shared a similar purpose with PROMIRAR in that

they are also used for managing an aspect of IMR (ambiguity). These tools have been used

and reported in the literature and have shown significant performance evaluation in

comparison to other tools to be used as a benchmark for comparison with PROMIRAR.

131

Table 5.4: Overview of other Relevant Tools

Tool Approach
Technologies

Used

Pre-

processing

Concerned IMR

aspect

NAI

(Yang et al., 2010;

Yang et al., 2011)

Machine

learning/heuristics

based

LogitBoost,

Named entity

recognition

Yes Noun and Verb

compound

coordination,

Lexical and

Structural

ambiguity

SR-Elicitor

(Umber et al.,

2011)

Controlled

Language

SBVR, POS

tagger

No Lexical,

Syntactic, Scope-

Quantifier

ARUgue

(Shah and Jinwala,

2015)

Knowledge based

to ontology

WordNet,

WSD

Yes Anaphora,

Coordination and

Vagueness

A performance evaluation of PROMIRAR was conducted alongside these tools and the

result is as shown in Table 5.5.

Table 5.5: Comparing PROMIRAR’s Performance with other Selected Tools

Tools
IMR Aspect

Addressed
Recall (%) Precision (%) F-Score (%)

NAI Lexical

Ambiguity
70 74.2 85.4 82.36 77.73 78.28

Structural

Ambiguity
82.4 85.75 84.2 80.91 82.7 83.34

SR-

Elicitor

Lexical

Ambiguity
80.12 78.22 85.76 83.1 79.4 78.23

ARUgen Vagueness 87.51 89.63 91.12 93.51 89.28 90.71

5.2.8 Discussion of Performance Evaluation Results

The tools were tested using the requirements documents in Section 5.2.1 with a focus on

the concerned IMR aspects. From the comparative analysis done (see Table 5.5), it was

observed that the Lexical Ambiguity and Structural Ambiguity analysis of PROMIRAR

performed better than NAI in terms of Recall and F-Score but was almost at par in terms

132

of Precision. When the Lexical Analysis of PROMIRAR was compared with SR-Elicitor,

they both performed at par across all metrics. Finally, when the vagueness analysis of

PROMIRAR was compared with ARUgen it was observed that PROMIRAR performed

better across all metrics.

5.2.9 Discussion of Validity Threats of Performance Evaluation

A short discussion on the validity of the performance evaluation using the expert evaluation

and comparative tool evaluation is based on the categories defined by Wohlin et al. (2000).

The threats are considered first before giving a summary of the validity of the results.

Conclusion Validity: In order to ensure reliable treatment, all participants were provided

with an introduction and instructions for the experiment prior to the experiment. Also,

standard measures (recall and precision) were used to assess recommendations by

PROMIRAR in order to avoid misunderstanding or misinterpretation of the results.

Ordinarily using eight participants in the experiment will translate to low statistical power,

but for a highly technical domain like Requirements Engineering and a preliminary

evaluation, this is considered to be sufficient for a first trial.

Internal Validity: A key requirement is that participants have sufficient experience or

knowledge of the domain. The participants had minimum master-level education in the

area of Requirements Engineering. The experts were also provided with detailed

instructions on what should be done. Therefore, there were no factors other than the

treatment that influenced the outcome of the experiment.

Construct Validity: In order to ensure a realistic experiment, all participants had the same

instruction for the experiment. Also, they performed exactly the same task, which is to

identify implicit requirements. Hence, the results obtained from participants depend only

on this task (one single variable), which eliminates any mono-method bias effect.

External Validity: The key issue here is whether the results can be generalised from the

preliminary evaluation to the Requirements Engineering industry. For the simulation

experiment, six expert researchers all affiliated with MSU, while the industrial assessment

133

was done by two RE experts at software industry based in the USA. A concern could be

that possibly there would have been different results if the evaluations had been performed

with a bigger group of participants with more diverse background, not only in terms of

coming from different institutions and countries but also with more different educational

backgrounds and covering a wider spectrum of software engineering domains than could

be achieved with only eight persons. The involved persons mainly had experience in RE

and it is impossible to know if the tool would have been found equally promising by experts

from other domains. The mitigation to this threat is to try to avoid including any domain-

specific limitations in the general approach, but this does not entirely remove the threat.

So, while there is currently no reason why the approach should not also be usable in other

companies and other domains, an interesting point for further research is to have a wider

group of experts to try out PROMIRAR.

Hence, no serious threats to validity can be foreseen for the conclusions on the evaluation

performed. Also, the feedback from industry experts proved that PROMIRAR has

sufficient merit for application in an industrial setting.

5.3 PROCESS FRAMEWORK EVALUATION OF PROMIRAR IN AN

ORGANISATIONAL CONTEXT

It is essential to evaluate PROMIRAR in an organisational setting in order to assess its

suitability to support the proposed process framework. In order to do this, an industrial case

study approach was selected by using two test cases.

The structure of this section is as follows: first, the background for the case study and an

overview of the requirements management tool used by the industry is introduced. This is

to assess how well PROMIRAR can integrate with existing RM tools in the cause of an RE

endeavour. Then, the process evaluation scenario of the case study is presented. After that,

experiences of the use of the tool and improvement proposals for the improving the process

is discussed.

134

5.3.1 Background for the Case Study

In conducting the industrial case study evaluation, two case companies were used for the

process framework evaluation. The purpose of the case study was to evaluate and see how

well the process for managing IMR with PROMIRAR integrates well into the requirements

management framework of these companies. The evaluation also looked to find out

weaknesses and problems, not just successes that might arise from the integration of

PROMIRAR.

I. Overview of Case Companies

All of the companies involved in the case study were selected based on existing

relationships with the researchers. Two companies were selected for the study both in the

software engineering domain. The names of the companies are omitted for privacy

concerns. This company will be referred to as Company A and B in this thesis.

a) Company A

Company A which is located in the US has an international standing of being a front-runner

in the data centre software solutions field. It ranks amongst one of the best enterprises in

Data Center software industry, with software products being used worldwide. Company A

has over 18 software engineers with 5 majoring in requirements engineering. Their

experience ranges from 10-15years as a RE experts. The dominant requirements

management tool used is the IBM Rational RequisitePro.

b) Company B

Company B is also a US based software subsidiary that offers products for the development

of engineering processes and management via Scrum. Company B develops and publishes

Scrum applications lifecycle management tool. Company B also runs a ScrumCORE

training section that offers Scrum training via organised community courses as well as

private on-site training. Company B has well over 12 software engineers with 3 as core RE

experts with experience ranging from 15-20 years. The core requirements management tool

used in Company B is the CaliberRM.

135

II. Overview of the Requirements Management Tools

a) Tool A (IBM Rational RequisitePro)

IBM Rational RequisitePro is a requirements management tool for finding, documenting,

organising, and tracking requirements. It also includes some features such as Microsoft

Word and requirements database. Software project teams can gather, enter and manage

requirements within the document or in a database. Some of its features enable customers

and development team to establish and maintain the agreement. RequisitePro is designed

for a multiuser environment.

b) Tool B (CaliberRM)

CaliberRM is a requirements management system that enables project teams to deliver

higher quality applications that meet end-user specifications. It helps applications to meet

end-user needs by allowing all project stakeholders (marketing teams, analysts, developers,

testers, and managers) to collaborate and communicate the voice of the customer

throughout the software delivery lifecycle. According to The Borland Software

Requirements Definition and Management, the CaliberRM solution is an iterative and

collaborative approach for defining and managing software requirements across the five

critical requirements process areas—elicitation, analysis, specification, validation and

management. It enables teams to fully define, manage and communicate changing

requirements. Changes to requirement data are recorded and stored in the database,

providing reliable and up-to-date information for effective requirements based application

development and testing.

5.3.2 Approach Used to Integrate PROMIRAR with RM Tools

a) Tool A (Requisitepro)

The direct method for collecting case study was used in this research, where the researcher

is in direct contact with the interviewees and collects report in real-time (Salim et al., 2002).

The case study was done in Company A in their Requirements Engineering Lab. At the

136

time of the evaluation, the company was working on a project of a “virtual camera

prototype” in collaboration with another company. The project included the following files:

i. The requirements specification document.

ii. The design and code files.

There are three possible approaches to the connection between PROMIRAR and

RequisitePro. The first one is using RequisitePro API a shown in Figure 5.5, the second is

using a direct link to the requirements database through JDBC-driver as shown in Figure

5.6 and the third approach is using RequisitePro baseline files as a source of requirements

information.

Figure 5.5: Conceptual Architecture of the First Alternative

137

Figure 5.6: Conceptual Architecture of the Second Alternative

In going about the process for integrating PROMIRAR with Requisite Pro, the second

alternative was chosen as the preferred option, since the input into PROMIRAR was the

SRS document as captured in the database of Requisite Pro.

The approach works well as PROMIRAR was able to integrate with RequisitePro and

access the database for retrieval of relevant SRS files.

b) Tool B (CaliberRM)

Company B was working on a microprocessor monitoring application when the project

evaluation was carried out. In going about the integration of PROMIRAR with CaliberRM,

the approach was seamless as PROMIRAR integrated with CaliberRM by directly

importing the database files.

5.3.3 Method used to conduct the Case Study

A Use Case method (Heiskanen et al., 2006) was used to describe the separate events that

took place during the case study because it helps to introduce the various operations that

were done at that moment. The Use Cases described in Tables 5.6-5.9 shows the various

138

activities in the requirements management process while using PROMIRAR with the RM

tools (RequisitePro and caliberRM).

Table 5.6: Use Case Narrative to Create a Project

Use Case 1 Create a Project

Summary: The administrator creates a project and defines user accounts and

access rights for all project members.

Frequent: Once when the project begins. Users can be added later if new project

members join in the project.

Purpose: Create a project, where requirements management issues are handled

during the project. In addition, user accounts and access rights for

them are defined, so that different users have appropriate access rights

to the required data.

Preconditions: PROMIRAR is configured with RM tools and it works well.

Description: The administrator creates a project to the requirements database in a

central repository. Identification fields, such as project name,

database path, etc. are defined, and thereby every project can be

distinguished from each other. When a project is created, the

administrator creates user accounts and access rights for every user.

This makes it certain that the user can edit the change requirements

only if it is necessary. Access rights can be, for example, role-based

or project-based.

Figure 5.7: Use

Case for

Creating a

Project

Adminstrator

Create a Project

Fill up
fields

Create user
accounts

Define access
rights

<<extend>>

<<extend>>

<<extend>>

139

Table 5.7: Use Case Narrative to Import a Document

Use Case 2 Document importing

Summary: Existing requirements specification document is imported to the

PROMIRAR.

Frequent: Once in the beginning of the project.

Purpose: To import an existing requirements specification document.

Preconditions: Requirements specification exists and project is running.

Description: Requirements Manager imports the existing requirements

specification document into PROMIRAR by using its document

importing feature. In order for PROMIRAR to be able to recognise

requirements from the document, they have to be identified by using

certain identification methods. In practice, every requirement must be

chosen by marking them manually in the document, or they can be

identified by using a certain identification tag that is repeated in every

requirement (e.g. REQ1, REQ2,… REQ can be the identification tag).

The RM tool automatically adds the identified requirements to the

database.

Figure 5.8: Use

Case for

importing a

Document

Requirements
Manager

Document Importing

Requirements
identification

Requirement Storing

Requirments
Database

<<extend>>

140

Table 5.8: Use Case Narrative for Requirements Management

Use Case 3 Requirements management

Summary: The Requirements are analysed as either explicit or implicit in

nature, which means all its links and relations to the other

requirements are clarified.

Frequent: Always when a requirement is created, later if necessary.

Purpose: To analyse all requirements, thereby making it easier to explicate

all implicit requirement.

Preconditions: The requirements, that are being managed, exist.

Description: The requirements manager analyses all requirements. The various

recommendations are revised and approved for onward use.

Figure 5.9: Use Case

for Requirements

Management

Requirements
Manager

Requirements Management

Analyse Requirements

Explicate Requirements

Requirments
Database

<<extend>>

<<extend>>

141

Table 5.9: Use Case Narrative to add Explicated Requirements

Use Case 4 Add explicated Requirements.

Summary: After analysis are concluded the explicated requirements are

moved to the database.

Frequent: Once in a while, when necessary.

Purpose: Requirements management has been concluded.

Preconditions: The requirements manager is satisfied with the outcome.

Description: The explicated requirements are good enough for onward use

in the software development process.

Figure 5.10: Use Case to

add explicated

Requirements

Requirements
Manager

Store Requirements

Requirments
Database

5.3.4 Evaluation Report for the case studies

I. Report of Case A

During the case studies, the requirements for the Virtual Camera prototype was fed into

PROMIRAR. The Virtual Camera prototype requirements documents contained 1,836

requirements both functional and non-functional. Since the project was new and no

ontology existed for use. The requirements documents were used to semi-create a seed

ontology for the projects. This took quite some time to create due to the large size of the

requirements document. The seed ontology could not be populated due to unavailability of

142

domain expert given the short timeframe for the evaluation. The project team evaluator

comprised of 2 experts. The requirements were analysed for IMR management. 11.2% of

the requirements were found to be implicit in nature. On further explication of the

discovered IMR, the explication process took a while for the RequisitePro platform before

the output for the requirements was generated. This was attributed to the numerous

requirements documents that PROMIRAR had to explore using its ABR module. After the

explicated requirements were generated, saving it to the database on RequisitePro was

problematic. This was a weakness in the RequisitePro version used. One weakness of the

RequisitePro version used was its inability to add requirements in the Word document after

their addition to the tool interface. Updating the document can only be done manually by

cutting and pasting the addition. This makes RequisitePro unsuitable for projects where

numerous requirements can be added directly through the tool interface. On the other hand,

RequisitePro maintains a relationship between the repository and the requirements

document when the existing requirements are updated in any way.

II. Report of Case B

The requirement of a ride sharing app was imported into PROMIRAR tool, which was

integrated into CaliberRM environment. There was also no available domain ontology to

use in the evaluation process. The requirements document contained 632 requirements,

which took less time in comparison to RequisitePro to process in order to produce a seed

ontology. The requirements were analysed for detecting IMR, 5.3% of the requirements

were found to be implicit in nature. The identified implicit aspects were further explicated

by the requirements engineer manually because the implicit concerns identified were less

in number. The IMR and its explicated part were stored in the case base of PROMIRAR

for subsequent use by other similar projects. Conducting the IMR process had a good

turnaround time when compared to that of RequisitePro as CaliberRM’s platform provided

a feature that enabled for easy export of the requirements to its database.

143

III. The Procedure of the Evaluation Process and the Result

a) Description of Procedure

The industrial evaluators were asked to complete the form as shown in Table 5.11 as they

make use of the PROMIRAR tool.

The evaluation process in each case was based on a four level criteria framework

(González-Prida et al., 2011)

i. Level 1: The software does not meet the minimum criteria required.

ii. Level 2: The software does meet the minimum criteria required.

iii. Level 3: The software has largely met the minimum criteria although there are some

significant weaknesses.

iv. Level 4: The software meets all the criteria required with no significant weakness.

Table 5.10 shows the evaluation report form used by each evaluator. The form gives the

evaluation criteria against the various levels for which each evaluator conducted the

process evaluation.

Table 5.10: Evaluation Report Form used by each Evaluator

b) Evaluation Process Results

Two (2) industrial experts completed the forms in Company A and Company B, in Table

5.11 shows the combined evaluation process result for the process evaluation conducted in

No Criteria Level 1 Level 2 Level 3 Level 4

1 Import/Export of data.

2 Integration with system and databases

connection.

3 Security. Access management and profiles

4 Support at every stage of the analysis.

5 Outputs of the tool

144

Company A and Company B using experts 1 and 2 (i.e. A1 signify expert 1 of company A,

and A2 expert 2 of Company A; same rule applies to Company B with the use of B1 and

B2)).

Table 5.11: Process Framework Evaluation Result by two Expert in Company A & B

IV. Discussion of Two Case Scenarios with PROMIRAR

The evaluation of the process framework was successful as the integration of PROMIRAR

with the requirement management tools and performing the IMR identification and

management process produced acceptable outcomes. From the feedback form,

PROMIRAR was able to import requirement documents, connect with the various

databases for retrieval and saving of explicated requirements document. The various

analysis produced results that showed the areas of IMR concerns.

 However, the following were recommendations from the experts in order to enhance the

robustness PROMIRAR:

No
Criteria

Level 1 Level 2 Level 3 Level 4

A1 A2 B1 B2 A1 A2 B1 B2 A1 A2 B1 B2 A1 A2 B1 B2

1 Import/Export

of data.

 √ √ √ √

2 Integration

with system

and databases

connection.

 √ √ √ √

3 Security.

Access

management

and profiles

 √ √ √ √

4 Support at

every stage of

the analysis.

 √ √ √ √

5 Outputs of the

tool

 √ √ √ √

145

i. Enabling other file formats such as .xls, .xml for import as PROMIRAR only

provided support for importation of txt/pdf/.doc files

ii. Improving on the module for ontology creation as PROMIRAR only provided

semi-automated functionality for creating seed ontology.

iii. Addressing other ambiguities such as coordination, pragmatic.

iv. Providing other output formats to support XML processing as PROMIRAR only

supports .txt/pdf.

5.3.5 Discussion of Validity Threats of Industrial Case Evaluation

The results obtained in the industrial case evaluation study are presented within the

strengths and limitations of the selected research methodology. Some specific validity

threats are explained in this section.

Conclusion Validity

This refers to whether right conclusions can be drawn about the relationship in the data and

the result obtained from the evaluation. Some of the concerns addressed in this aspect of

validity are:

Construct validity: this refers to the extent to which the operational measures that are

studied truly represent the theoretical constructs on which those operational measures were

based (Wohlin et al., 2012). To achieve this, all respondents had the same instructions as a

guide for completing the evaluation form. The task was the same for all, which is to

complete the IMR identification form. Hence, the results obtained from the industrial

evaluation depend only on one variable, which eliminates any mono-method bias effect.

Internal Validity: this refers to whether other factors other than the treatment influenced

the outcome of the evaluation. For the evaluation, all respondents were software

practitioners who claimed to have ample experience in requirements engineering. The two

participants were fully employed software developers, who have experience in SE ranging

from a minimum of 10 years.

146

External Validity: The key interest of this aspect of validity is whether we can generalise

the outcome of the evaluation to a larger context. The respondents were mostly experienced

software engineers, who have practical experience on issues that deal with implicit

requirements, and have worked in top industries that do advanced software.

147

CHAPTER SIX

CONCLUSION AND RECOMMENDATIONS

This Chapter summarises and discusses the contribution of the thesis, and presents an

outlook of the opportunities for future research work. The thesis presents a process

framework for managing implicit requirements using analogy-based reasoning.

6.1 CONCLUSION

The presence of IMR in software requirements specification document has been found to

pose major defects in the software development process. It has grossly affected

architectural designs as well as project cost overrun.

This thesis aim of providing a process framework for managing implicit requirements

within an organisation has been achieved by addressing our earlier stated objectives in

Chapter one.

The first objective of empirically investigating the impact of IMR on success or otherwise

of software development in practice was achieved by conducting a survey investigating the

perception and handling of implicit requirements in small and medium-sized software

organisations. A report on the findings from the survey was given in Chapter three. As a

contribution, this thesis presents a pioneering effort that is aimed at providing an

understanding of implicit requirements management practices in small and medium-sized

organisations based on empirical investigation. The survey results revealed that

organisational experience in terms of age in business, experience in RE, and experience of

personnel in RE, and software team size have a positive correlation with effective

management of implicit requirements within an organisation. The report also revealed that

although the use of experience has played a significant role so far, the need for tool support

is also desirable for better handling of implicit requirements. However, a significant

number of practitioners believe that existing RE tools are equally sufficient for managing

implicit requirements if they are maximised, and there is no need for new tools. It can be

148

deduced from the report that there is need to promote general understanding of implicit

requirements and the need for more significant interest in issues of implicit requirements

compared to explicit requirements, which have received the most attention in the literature.

The thesis further achieved the second objective of designing a process framework that

both discovers and manages IMR in a systematic way as reported in Chapter three. The

proposed process framework integrated three core technologies NLP, ABR and ontology

for discovery and management of IMR. The framework consists of two core modules, the

first module was responsible for the identification of implicit requirements in a

requirements specification document while the second module was responsible for

managing and explicating the identified IMR. The components of the first module

comprised of the NL Processor, Feature Extractor, Ontology, and Heuristic Classifier while

the component of the second module was made up of solely the analogy based reasoner.

The design of this framework informed the next objective.

The third objective of providing a prototype tool support for the process framework for

managing IMR was reported in Chapter Four. The tool was developed using the Eclipse

IDE. Some of its associated components such as the NLP Processor made use of the Apache

OpenNLP API, the ontology component made use of the Protégé-OWL API, the heuristic

classifier component made use of the WordNet Java API, Gannu API and IText PDF API.

The developed tool (PROMIRAR) can be integrated into the RE process of software

development organisations. This is a direct response to problems in the practice of many

organisations, which have not been addressed by existing requirements management tools.

Finally, the last objective of evaluating the process framework and prototype tool using

industrial case studies and controlled experiments was reported in Chapter five.

Two kinds of evaluation were performed. Firstly, an evaluation of the performance of the

tool was benchmarked against both industry experts and other existing tools using three (3)

different requirements specification documents in three different experiments. Secondly,

an evaluation of the application of the tool as a support for the process of handling implicit

requirements within a software organisation was conducted using two (2) software

149

development organisations as a case study. The Evaluation result showed that the tool

works well with the test conducted using requirements specification from three different

domains. The results also showed that the PROMIRAR performed well above average in

managing IMR when compared with other tools. For the evaluation done in the industry,

the tool fits well into their requirement management process. The results of the evaluation

revealed that PROMIRAR produced a good outcome with respect to IMR. However,

recommendations were given to help improve the tool outcome in the future.

In conclusion, the ability to discover unknown and un-elicited requirements will mitigate

many risks that can adversely affect system architecture design and project cost.

This research work has reported findings from a survey of implicit requirements

management practices in small and medium-sized organisations. The research also tackled

two concerns in the requirement engineering domain which is the need for software

developers to move from focusing on explicit requirements to seeking for practical ways

of handling implicit requirements and to improve on existing requirements management

tools to tackle the issue of implicit requirements.

The research has also provided a theoretical and product-oriented framework that can be

leveraged for the management of implicit requirements during software developments

processes.

Finally, the results of this research endeavour if adopted will give the quality boost needed

in promoting the efficiency of the Requirements Engineering processes in software

development organisations, by reducing software budget overrun. It will further enhance

the quality of the software product delivered thereby bringing about greater user

satisfaction in delivered software products.

150

6.2 CONTRIBUTIONS TO KNOWLEDGE

This study contributes to the general research areas of Requirements Engineering both at

the global and local context. More specifically, the main contribution of this study caters

for the observed limitations in existing Requirements Management approaches and tools

as follows:

i. Observations and general opinions of RE practitioners suggest that IMR poses a lot

of challenges for software developers, however, there is yet a lack of empirically

proven evidence through research studies that have assessed the impact of IMR on

the success or failure of software development projects. This research effort ranks

among the first set of pioneering efforts geared at providing empirically-based

evidence on the impact of implicit requirements on software process outcomes in

terms of success or otherwise.

ii. Although several researchers have developed various approaches, systems or tools,

which are aimed at solving the problem of requirements management, these

approaches and tools lack specific provisions for managing implicit requirements

(IMR). Explicit Requirements have received the most attention because of their

clearly defined nature (Daramola et al., 2012; Kotonya and Sommerville, 1998). So

far IMR is handled by the requirements engineers who use their initiative and

experience to address the challenges that they pose (Jha, 2009; Parameswaran,

2011). Hence, this study offers a new approach to solving the challenges of implicit

requirements in software development by evolving a systematic tool support

framework which can be integrated into an organisation’s Requirements

Engineering procedure for managing IMR in systems development process.

iii. This research work adds to the existing body of knowledge in the area of

requirements management as there is currently few relevant literature that deals

with the issues of managing implicit requirements.

151

6.3 RECOMMENDATIONS AND FUTURE WORK

This thesis provides several opportunities for further research in the immediate future. The

process framework for managing implicit requirements as implemented in this thesis found

a number of issues that provides ample research possibilities to enhance the concept in the

following areas:

i Empirical Survey

Firstly, there is need to evaluate the capability of existing RE management tools for

managing implicit requirements, and the potentials of existing automated tools so far

proposed in the literature to support management of implicit requirements throughout the

RE lifecycle.

Secondly, dealing with a subject matter addressing implicitness, there is need to use mixed

methods such as interviewing to complement the use of a questionnaire or using a semi-

structured questionnaire rather than a closed-ended format. This would give ample

opportunity for respondents to express their viewpoints (particularly in a situation where

respondents know more than they can tell).

ii Enhanced Domain Ontology

This thesis made provision for the automatic creation of seed ontology from requirements

specification document for a domain that does not have an ontology. There is a need for

research efforts on how this seed ontology can be automatically updated so as to make for

quick use instead of being enriched by the domain ontology engineer.

Furthermore, there is a need for the development of an upper level ontology of reusable

software artefacts in several domains.

iii Ambiguity Detection Component

There is need to increase the number of ambiguities covered as the current tool only

addresses lexical, syntactical/structural ambiguity. Other forms of ambiguities such as

Pragmatic ambiguity which occurs when a sentence has several meanings in the context in

152

which it is uttered; Semantic ambiguity which occurs when a sentence has more than one

way of reading it within its context although it contains no lexical or structural ambiguity.

This will enrich the IMR identification module of the PROMIRAR tool.

153

REFERENCES

Aamodt, A., and Plaza, E. (1994): Case-based reasoning: Foundational issues,

methodological variations, and system approaches. AI Communications, 7(1): 39-

59.

Abel B., Maimon. O (2015): Ontology Learning from Text. International Journal of Signs

and Semiotic Systems 4: 21-14.

Abma, B. J. M. (2009): Evaluation of requirements management tools with support for

traceability-based change impact analysis. Master's thesis, University of Twente,

Enschede.

Ahamed, S. R. (2010): An Integrated and comprehensive approach to software quality.

International Journal of Engineering Science and Technology, 1(2): 59-66.

Al-Harbi, O., Jusoh, S., and Norwawi, N. (2012): Handling ambiguity problems of natural

language interface for question answering. International Journal of Computer

Science Issues (IJCSI), 9(3): 245-265.

Antoniou, G., and Van Harmelen, F. (2004): Web ontology language: Owl. In Handbook

on ontologies (pp. 67-92). Springer Berlin Heidelberg.

Aranda, J., Easterbrook, S., and Wilson, G. (2007): Requirements in the wild: How small

companies do it. In Requirements Engineering Conference, 2007. RE'07. 15th

IEEE International (pp. 39-48). IEEE.

Arnold, R.S. and Bohner, S.A. Eds. (1996): Software Change Impact Analysis. Los

Alamitos, California, USA, IEEE Computer Society Press.

Bajwa, I. S., Lee, M., and Bordbar, B. (2012): Resolving syntactic ambiguities in natural

language specification of constraints. In International Conference on Intelligent

Text Processing and Computational Linguistics (pp. 178-187). Springer Berlin

Heidelberg.

Bartha, P. (2010): By parallel reasoning. Oxford University Press.

154

Barzdins J, Barzdins G, Cerans K, Liepins R, Sprogis A. (2010): OWLGrEd: a UML Style

Graphical Notation and Editor for OWL 2. OWLED 2010 Proceedings of 7th

International Workshop OWL; Experience and Directions. (pp. 614).

Berry, D. M., and Kamsties, E. (2004): Ambiguity in requirements specification. In

Perspectives on software requirements (pp. 7-44). Springer US.

Berry, D. M., Kamsties, E., and Krieger, M. M. (2003): From contract drafting to software

specification: Linguistic sources of ambiguity. A Handbook.

Banerjee, S., and Pedersen, T. (2002): An Adapted Lesk algorithm for word sense

disambiguation using WordNet. In International Conference on Intelligent Text

Processing and Computational Linguistics (pp. 136-145). Springer Berlin

Heidelberg.

Bao, D. (2008): A Survey on Similarity-based Reasoning. http://www4.ncsu.edu/~dbao/

Analogy Survey_final.pdf

Bontas, E. P., Mochol, M., Tolksdorf, R. (2005): Case studies on ontology reuse. In

Proceedings of the IKNOW05 International Conference on Knowledge

Management (pp. 345–353). Graz, Austria.

Brandt, S. C., Morbach, J., Miatidis, M., Theißen, M., Jarke, M., and Marquardt, W.

(2008): An ontology-based approach to knowledge management in design

processes. Computers & Chemical Engineering, 32(1): 320-342.

Bussel, D. V. (2009): Detecting ambiguity in requirements specifications. (Doctoral

dissertation, Master’s thesis, Tilburg University).

Castañeda, V., Ballejos, L., Caliusco, M. L., and Galli, M. R. (2010): The use of ontologies

in requirements engineering. Global Journal of Research in Engineering, 10(6):

2-8.

Chandrasekaran, B., Josephson, J. R., and Benjamins, V. R. (1999): What Are Ontologies?

Why Do We Need Them? IEEE Intelligent Systems, 14(1): 20-26.

155

Choi, F. Y. (2000): Advances in domain independent linear text segmentation. In

Proceedings of the 1st North American chapter of the Association for

Computational Linguistics conference (pp. 26-33). Association for Computational

Linguistics.

Chomsky, N. (1956): Three models for the description of language. IRE Transactions on

information theory, 2(3): 113-124.

Chopra, A., Prashar, A., Sain, C. (2013): Natural language processing. International

Journal of Technology Enhancements and Emerging Engineering Research, 1(4):

131-134.

Cimiano, P. (2006): Ontology Learning and Population from Text. Algorithms, Evaluation

and Applications, ISBN: 978-0-387-30632-2, Springer, New York.

Copi, I. and Cohen C. (2005): Introduction to Logic. 12th edition, Upper Saddle River,

New Jersey: Prentice-Hall.

Daramola, O., Moser, T., Sindre, G., and Biffl, S. (2012): Managing implicit requirements

using semantic Case-based Reasoning research preview. In International Working

Conference on Requirements Engineering: Foundation for Software Quality (pp.

172-178). Springer Berlin Heidelberg.

Davies, T., and Russell, S. J. (1987): A logical approach to reasoning by analogy. In

Proceedings of the Tenth International Joint Conference on Artificial Intelligence

(IJCAI-87), Milan, Morgan Kaufmann Publishers, Inc (pp. 264-270).

De Mantaras, R. L., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., and Keane,

M. (2005): Retrieval, reuse, revision and retention in case-based reasoning. The

Knowledge Engineering Review, 20(03): 215-240.

Deshpande, S., and Richardson, I. (2009): Management at the outsourcing destination-

global software development in India. In Global Software Engineering, 2009.

ICGSE 2009. Fourth IEEE International Conference on (pp. 217-225). IEEE.

156

Dobson, G., and Sawyer, P. (2006): Revisiting ontology-based requirements engineering

in the age of the semantic web. In Proceedings of the International Seminar on

Dependable Requirements Engineering of Computerised Systems at NPPs (pp.

27-29).

Douglass, D.: Understanding Implicit Requirements of Software Architecture (06-08-

2009), http://alturl.com/wauae

Dreyer, H., Wynn, M. G., and Bown, G. R. (2015): Tacit and Explicit Knowledge in

Software Development Projects: Towards a Conceptual Framework for Analysis.

In eKnow 2015 7th International Conference on Information, Process and

Knowledge Management (pp. 49-52). ThinkMind.

Drysdale, D. (2007): High-Quality Software Engineering: Lessons from Six-Nines World.

Lulu.com.

Duncker, K. (1945): On problem-solving (L. S. Lees, Trans.).Psychological Monographs,

58(5): 270.

Fabbrini, F., Fusani, M., Gnesi, S., and Lami, G. (2001): An automatic quality evaluation

for natural language requirements. In Proceedings of the Seventh International

Workshop on Requirements Engineering: Foundation for Software Quality

REFSQ 1: 4-5.

Falco, R., Gangemi, A., Peroni, S., Vitali, F. (2014): Modelling OWL ontologies with

Graffoo. In Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai,

A. (Eds.), The Semantic Web: ESWC 2014 Satellite Events, Lecture Notes in

Computer Science 8798: 320–325. Berlin, Germany: Springer. DOI:

10.1007/978-3-319-11955-7_42

Gacitua, R, Ma, L., Nuseibeh, B., Piwek, P., de Roeck, A.N., Rouncefield, M., Sawyer, P.,

Willis, A and Yang, H, (2009): Making tacit requirements explicit. In Managing

Requirements Knowledge (MARK), 2009 Second International Workshop on (pp.

40-44). IEEE.

157

Garcia and N. Medinilla (2007): The ambiguity criterion in software design. In

International Workshop on Living with Uncertainties (IWLU’07). ACM.

Genesereth, M. R., and Nilsson, N. J. (1987). Logical foundations of artificial. Intelligence.

Morgan Kaufmann, 58.

Gentner, D. (1983): Structure-mapping: A theoretical framework for analogy. Cognitive

Science, 7(2): 155-170

Ghezzi, C., and Nuseibeh, B. (1998): Special Section-Managing Inconsistency in Software

Development-Guest Editorial: Introduction to the Special Section. IEEE

Transactions on Software Engineering, 24(11): 906-907.

Gleich, B., Creighton, O., and Kof, L. (2010): Ambiguity Detection: Towards a tool

explaining ambiguity sources. In International Working Conference on

Requirements Engineering: Foundation for Software Quality (pp. 218-232).

Springer Berlin Heidelberg.

Gliem, R. R., and Gliem, J. A. (2003): Calculating, interpreting, and reporting Cronbach’s

alpha reliability coefficient for Likert-type scales. Midwest Research-to-Practice

Conference in Adult, Continuing, and Community Education (pp. 82-88). Ohio,

USA.

Glinz, M., and Fricker, S. A. (2015): On shared understanding in software engineering: an

essay. Computer Science-Research and Development, 30(3-4): 363-376.

Goguen, J. and Jirotka, M. (Ed.) (1994): Requirements Engineering: Social and Technical

Issues, London: Academic Press.

Gomez-Perez, A., Fernández-López, M., and Corcho, O. (2006): Ontological Engineering:

with examples from the areas of Knowledge Management, e-Commerce and the

Semantic Web. Springer Science & Business Media.

158

González-Prida, V., Carlos, C., and Barberá, A. C. L. (2011): Review and Evaluation

Criteria for Software Tools Supporting the Implementation of the RCM

Methodology. International Journal of E-Business Development. (pp. 18–27).

Gorschek, T., and Svahnberg, M. (2005): Requirements Experience in Practice: Studies of

Six Companies. In Engineering and Managing Software Requirements. (pp. 405-

426) Springer Berlin Heidelberg.

Gotel, O. C., and Finkelstein, C. W. (1994): An analysis of the requirements traceability

problem. In Requirements Engineering, 1994., Proceedings of the First

International Conference on (pp. 94-101). IEEE.

Grehag, Å.(2001): Requirements Management in a Life-Cycle Perspective - A Position

Paper. In: Proceedings of the 7th International Workshop on REFSQ 2001,

Interlaken, Switzerland, (pp. 183–188).

Gruber, T. (2009): Ontology in Encyclopedia of Database Systems, Ling Liu and M. Tamer

Özsu (Eds.), Springer-Verlag, 2009.

Gruninger M. and Lee J. (2002): Ontology: Applications and Design. Communications of

the ACM, 45(2): 39.

Guarino, N. (1998): Formal ontology and information systems. In Proceedings of FOIS

(Vol. 98, No. 1998, pp. 81-97).

Hadad, G., Doorn, J., Kaplan, G. (2009): Explicitar Requisitos del Software usando

Escenarios. In: Proceedings WER‟09, Workshop on Requirements Engineering.

Heiskanen, N., Raatikainen, K., and Heinonen, S. (2006): Fetal macrosomia–a continuing

obstetric challenge. Neonatology, 90(2): 98-103.

Hesse, M. B. (1966): Models and Analogies in Science. Notre Dame: University of Notre

Dame Press

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004): Design Science In Information

Systems Research. MIS Quarterly, 28 (1): 75-105.

159

Holyoak, K. J. (1985): The pragmatics of analogical transfer. Psychology of Learning and

Motivation, 19: 59-87. New York: Academic Press.

Holyoak, K. J., and Thagard, P. (1989): Analogical mapping by constraint satisfaction.

Cognitive Science, 13(3): 295-355.

Ihme, T., Pikkarainen, M., Teppola, S., Kääriäinen, J., and Biot, O. (2014): Challenges and

industry practices for managing software variability in small and medium sized

enterprises. Empirical Software Engineering, 19(4): 1144-1168.

 Jantunen, S. (2010): Exploring software engineering practices in small and medium-sized

organisations. In Proceedings of the 2010 ICSE Workshop on Cooperative and

Human Aspects of Software Engineering ACM (pp. 96-101).

Jayadianti, H., Pinto, C. S., Nugroho, L. E., Santosa, P. I., and Widayat, W. (2013): Solving

Different Languages Problem (Portuguese, English, and Bahasa Indonesia) in

Digital Library with Ontology. In: International Conference on Information &

Communication Technology and Systems (ICTS), Bali.

Jennings, N. R. (2000). On agent-based software engineering. Artificial Intelligence,

117(2): 277-296.

Kauppinen, M., Vartiainen, M., Kontio, J., Kujala, S., and Sulonen, R. (2004):

Implementing requirements engineering processes throughout organisations:

success factors and challenges. Information and Software Technology, 46(14):

937-953.

Leffingwell, D., and Widrig, D. (2000): Managing software requirements: a unified

approach. Addison-Wesley Professional.

Lehmann, J., and Völker, J. (Eds.) (2014): Perspectives on Ontology Learning, Studies on

the Semantic Web. AKA Heidelberg /IOS Press.

Ljunglof, P., and Wirén, M. (2010): Syntactic parsing. In Handbook of Natural Language

Processing, Second Edition (pp. 59-91). Chapman and Hall/CRC.

160

Lung, C. H., Urban, J. E., and Mackulak, G. T. (2007): Analogy-based domain analysis

approach to software reuse. Requirements Engineering, 12(1): 1-22.

Jha, R.: Gathering Implicit Requirements (10-06-2009), http://alturl.com/ocyb5

Jurisica, I., Mylopoulos, J., and Yu, E. (2004): Ontologies for knowledge management: an

information systems perspective. Knowledge and Information Systems, 6(4): 380-

401.

Kalyanpur, A., Parsia, B., Sirin, E., Grau, B. C., & Hendler, J. (2006): Swoop: A web

ontology editing browser. Web Semantics: Science, Services and Agents on the

World Wide Web, 4(2): 144-153.

Kamsties, E., Berry, D. M., and Paech, B. (2001): Detecting ambiguities in requirements

documents using inspections. In Proceedings of the first workshop on inspection

in software Engineering (WISE’01) (pp. 68-80).

Kamsties, E., Hörmann, K., and Schlich, M. (1998): Requirements engineering in small

and medium enterprises. Requirements engineering, 3(2): 84-90.

Kano, N., Nobuhiku, S., Fumio, T., Shinichi, T.(1984): Attractive Quality and Must-be

Quality. Journal of the Japanese Society for Quality Control 14(2): 39–48.

Kapoor, B., and Sharma, S. (2010): A comparative study ontology building tools for

semantic web applications. International Journal of Web & Semantic Technology

(IJWesT), 1(3): 1-13.

Karatas, E., K., (2012): An Ontology-Based Approach to Requirements Reuse Problem in

Software Product Lines. Master’s Thesis, Middle East Technical University.

Kalyanpur, A., Parsia, B., Sirin, E., Grau, B. C., and Hendler, J. (2006): Swoop: A web

ontology editing browser. Web Semantics: Science, Services and Agents on the

World Wide Web, 4(2): 144-153.

Keynes, J.M. (1921): A Treatise on Probability, London: Macmillan.

161

Kiyavitskaya, N., Zeni, N., Mich, L., and Berry, D. M. (2008): Requirements for tools for

ambiguity identification and measurement in natural language requirements

specifications. Requirements Engineering, 13(3): 207-239.

Korner, S. J., and Brumm, T. (2009): Resi-a natural language specification improver. In

Semantic Computing, 2009. ICSC'09. IEEE International Conference on (pp. 1-

8). IEEE.

Kossmann, M., and Odeh, M. (2010): Ontology-driven requirements engineering a case

study of ontorem in the aerospace context. INCOSE. In International Symposium.

Kotonya G. and Sommerville, I. (1998): Requirements Engineering: Processes and

Techniques. Chichester, UK: John Wiley & Sons.

Lami, G., Gnesi, S., Fabbrini, F., Fusani, M., and Trentanni, G. (2004): An automatic tool

for the analysis of natural language requirements. Informe técnico, CNR

Information Science and Technology Institute, Pisa, Italia, Setiembre.

Land, L. P. W., Aurum, A., and Handzic, M. (2001): Capturing implicit software

engineering knowledge, in Software Engineering Conference Proceedings,

Australian, pp. 108-114. IEEE.

Lang, M., and Duggan, J. (2001): A tool to support collaborative software requirements

management. Requirements Engineering, 6(3): 161-172. Springer-Verlag London

Limited.

Larsson, A., Steen, O. (2008): Tool Support for Requirements Management Quality from

a User Perspective. In: Proceedings of IRIS29, Helsingör, Denmark

Lehmann, J., and Voelker, J. (2014): An introduction to ontology learning. Perspectives on

ontology learning. AKA/IOS Press, Heidelberg, 9-16.

Liddy E.D., (2001): Natural Language Processing. 2 ed. Encyclopaedia of Library and

Information Science. NY. Marcel Decker, Inc.

162

Lin, C., and Wu, C. (2005): Managing knowledge contributed by ISO 9001: 2000.

International Journal of Quality & Reliability Management, 22(9): 968-985.

Lin, J., Fox, M. S., and Bilgic, T. (1996). A requirement ontology for engineering design.

Concurrent Engineering, 4(3): 279-291.

Ljunglöf, P. and Wirén, M. (2010): Syntactic parsing. In Nitin Indurkhya and Fred J.

Damerau, editors, Handbook of Natural Language Processing,2nd edition,

chapter 4. CRC Press, Taylor and Francis. ISBN 978-1420085921

Lopez, O., Laguna, M.A., Garcia, F.J. (2002): Metamodeling for requirements reuse.

WER02—Workshop em Engenharia de Requisitos. Valencia, Spain, (pp. 76–90).

Loucopoulos, P., and Karakostas, V. (1995): System requirements engineering. McGraw-

Hill, Inc.

Lubars, M., Potts, C., and Richter, C. (1993): A Review of the State of the Practice in

Requirements Modeling. In Requirements Engineering, Proceedings of IEEE

International Symposium on (pp. 2-14). IEEE.

Maedche, A., and Staab, S. (2002). Measuring similarity between ontologies. In

International Conference on Knowledge Engineering and Knowledge

Management (pp. 251-263). Springer Berlin Heidelberg.

Maedche, A.D., (2003): Ontology Learning for the Semantic Web, Norwell,

Massachusetts, Kluwer Academic Publishers.

Maiden, N. A., and Rugg, G. (1996): ACRE: selecting methods for requirements

acquisition. Software Engineering Journal, 11(3): 183-192.

Maiden, N. (1998): CREWS-SAVRE: Scenarios for Acquiring and Validating

Requirements. Automated Software Engineering, 5(4): 419-446.

Maiden, N. A. M. and Sutcliffe, A. G. (1992): Exploiting Reusable Specifications through

Analogy. Communications of the ACM, 34(5): 55-64.

163

Maiden, N. (1991): Analogy as a Paradigm for Specification Reuse. Software Engineering

Journal 6(1): 3–15.

Mala, G. A., and Uma, G. V. (2006): Object oriented visualization of natural language

requirement specification and NFR preference elicitation. IJCSNS, 6(8): 91.

Malone, J., Brown, A., Lister, A. L., Ison, J., Hull, D., Parkinson, H., and Stevens, R.

(2014): The Software Ontology (SWO): a resource for reproducibility in

biomedical data analysis, curation and digital preservation. Journal of biomedical

semantics, 5(1): 25.

Maniraj, V., and Sivakumar, R. (2010): Ontology languages-A review. International

Journal of Computer Theory and Engineering, 2(6): 887.

Marrero, M., Sánchez-Cuadrado, S., Fraga, A., and Llorens, J. (2008): Applying

Ontologies and intelligent text processing in requirements reuse. In First

Workshop on knowledge reuse (KREUSE’08) (pp. 25-29).

Matulevičius, R. (2005): Survey of requirements engineering practice in Lithuanian

software development companies. Information Systems Development, 327-339.

Meyer, B. (1985): On formalism in specifications. IEEE Software, 2(1): 6.

Mitzias, P., Riga, M., Kontopoulos, E., Stavropoulos, T. G., Andreadis, S., Meditskos, G.,

and Kompatsiaris, I. (2016): User-Driven Ontology Population from Linked Data

Sources. In International Conference on Knowledge Engineering and the

Semantic Web (pp. 31-41). Springer International Publishing.

Mizoguchi R, Sunagawa E, Kozaki K, Kitamura Y. (1997): A Model of Roles within an

Ontology Development Tool. Hozo. Journal of Applied Ontology. 2(2): 159-79.

Mizoguchi, F. and Ohwada, H., (1995): Using Constraint Programming to Design an

Option-based Decision Support System. Intelligent Systems in Accounting,

Finance and Management, 4: 13–26.

164

Mohammed, A. (2008): Concept relation extraction using natural language processing: the

CRISP technique. Theses and Dissertations. Iowa State University.

Monzon, A. (2008): A Practical Approach to Requirements Reuse in Product Families of

On-Board Systems. In: International Requirements Engineering, pp. 223–228,

IEEE Press.

Mooney, R. J. (2014): CS 343: Artificial Intelligence Natural Language Processing,

University of Texas at Austin. Available at: http://www.cs.utexas.edu/

mooney/cs343/slide-handouts/nlp.pdf.

Moore, B. N., and Parker, R. (1997): Critical Thinking Instructor's Manual: The Logical

Accessory. Mayfield Publishing Company.

Naval surface warfare center, Dahlgren Division - Naval Sea Systems (12-07-2000)

www.navsea.navy.mil/Portals/103/Documents/NSWC_Dahlgren/.../E3/E3.pdf

Nikula, U., Sajaniemi, J., and Kälviäinen, H. (2000): A State-of-the-practice Survey on

Requirements Engineering in Small and Medium-sized Enterprises.

Lappeenranta, Finland: Lappeenranta University of Technology.

Noman I, Mohammed SS, Zubair AS. (2010): TODE. A Dot Net Based Tool for Ontology

Development and Editing. ICCET 2010. Proceedings of the 2nd International

Conference on Computer Engineering and Technology; Chengdu: China. p. 229-

3.

Nonaka, I., and Von Krogh, G. (2009): Perspective—Tacit knowledge and knowledge

conversion: Controversy and advancement in organisational knowledge creation

theory. Organisation Science, 20(3): 635-652.

Nuseibeh, B., and Russo, A. (1999): Using abduction to evolve inconsistent requirements

specification. Australasian Journal of Information Systems, 6(2).

165

Nuseibeh, B., and Easterbrook, S. (2000): Requirements engineering: a roadmap. In

Proceedings of the Conference on the Future of Software Engineering (pp. 35-

46). ACM.

Odeh, M. (2009): Towards a universal requirements engineering process. In: The

International Arab Conference on Information Technology, Yemen.

Onyeka, E. (2013): A process framework for managing implicit requirements using

analogy-based reasoning: Doctoral consortium paper. In IEEE 7th International

Conference on Research Challenges in Information Science (RCIS) (pp. 1-5).

IEEE.

Palmer, D. D. (2010): Text preprocessing. In Handbook of Natural Language Processing,

Second Edition (pp. 9-30). Chapman and Hall/CRC.

Parameswaran, A.: Capturing Implicit Requirements (02-08-2011), http://alturl.com/emeej

Pittke, F., Leopold, H., and Mendling, J. (2015): Automatic detection and resolution of

lexical ambiguity in process models. IEEE Transactions on Software

Engineering, 41(6): 526-544.

Poesio, M (2000): Semantic Analysis. In R. Dale, H. Moisl and H. Somers (eds.),

Handbook of Natural Language Processing. Marcel Dekker.

Pohl, K. (1997): Requirement Engineering, In A. Kent, J. Williams, C.M. Halls (eds),

Encyclopaedia of Computer Science and Technology, M. Dekker, New York, vol

36: 345-386.

Polyani, M. (1983): The Tacit Dimension. Paul Smith Publishing ISBN 0-8446-5999-1.

Popescu, D., Rugaber, S., Medvidovic, N., and Berry, D. M. (2008): Improving the quality

of requirements specifications via automatically created object-oriented models.

Innovations for Requirements Engineering, 71.

Popescu, D., Rugaber, S., Medvidovic, N., and Berry, D. M. (2008): Reducing ambiguities

in requirements specifications via automatically created object-oriented models.

166

In Innovations for Requirement Analysis. From Stakeholders’ Needs to Formal

Designs (pp. 103-124). Springer Berlin Heidelberg.

Popper, K. (2009): Science: Conjectures and refutations. The philosophy of science: an

historical anthology, 471.

Quispe, A., Marques, M., Silvestre, L., Ochoa, S. F., and Robbes, R. (2010): Requirements

engineering practices in very small software enterprises: A diagnostic study. In

Chilean Computer Science Society (SCCC), 2010 XXIX International Conference

of the IEEE (pp. 81-87).

Rech, J., Ras, E., and Decker, B. (2007): Intelligent assistance in German software

development: A survey. IEEE Software, 24(4): 72-79.

Renkema, J. (2004): Introduction to Discourse Studies. Amsterdam/Philadelphia: John

Benjamin Publishing Company.

Salim, M. D., Villavicencio, A., and Timmerman, M. A. (2002). A method for evaluating

expert system shells for classroom instruction. Journal of Industrial Technology,

19(1): 1-11.

Sambasiva R., (1992): “A Model based Approach to Analogical Reasoning and Learning

in Design” Thesis Proposal for Georgia Institute of Technology.

Sanderson, M. (2010): Test collection based evaluation of information retrieval systems.

Foundations and Trends® in Information Retrieval, 4(4): 247-375.

Schneider, R. J. (2002): System and software requirements validation through inspections:

constructive reading and mining requirements from natural language requirements

documents. Information Knowledge Systems Management, 3(2-4): 173-194.

Shah, U. S., and Jinwala, D. C. (2015): Resolving ambiguity in natural language

specification to generate UML diagrams for requirements specification.

International Journal of Software Engineering, Technology and Applications,

1(2-4): 308-334.

167

Shah, U. S., and Jinwala, D. C. (2015): Resolving ambiguities in natural language software

requirements: a comprehensive survey. ACM SIGSOFT Software Engineering

Notes, 40(5): 1-7.

Shaw, M. L. and Gaines, B. R. (1996): Requirements acquisition. Software Engineering

Journal, 11(3): 149-165.

Siegmund, N., Rosenmuller, M., Kastner, C., Giarrusso, P. G., Apel, S., and Kolesnikov,

S. S. (2011): Scalable prediction of non-functional properties in software product

lines. In Software Product Line Conference (SPLC), 2011 15th International (pp.

160-169). IEEE.

Singer, L., Brill, O., Meyer, S., Schneider, K. (2009): Utilising Rule Deviations in IT

Ecosystems for Implicit Requirements Elicitation. In: Proceedings of the Second

International Workshop on Managing Requirements Knowledge (MaRK), pp. 22–

26.

Singh, S., and Saikia, L. P. (2015): Ambiguity in Requirement Engineering Documents:

Importance, Approaches to Measure and Detect, Challenges and Future Scope.

International Journal of Advanced Research in Computer Science and Software

Engineering, 5(10), ISSN: 2277 128X

Sinha, S., and Husain M. S.(2016): Proposal for Avoiding Ambiguity in Requirement

Engineering using Artificial Intelligence. In Proceedings of the ACEIT

Conference. pp 1-4.

Software Requirements Specification – EMMON (12-07-2010) http://www.artemis-

emmon.eu/deliverables/FP7-JU-EMMON-2010-DL-WP7-003-D7.1-software-

requirements-specification-document.pdf.

Solemon, B., Sahibuddin, S., and Ghani, A. A. A. (2010): Adoption of requirements

engineering practices in Malaysian software development companies. In

International Conference on Advanced Software Engineering and Its Applications

(pp. 141-150). Springer, Berlin, Heidelberg.

168

Spanoudakis, G. (1996): Analogical reuse of requirements specifications: A computational

model. Applied Artificial Intelligence, 10(4): 281-305.

Spanoudakis, G., and Zisman, A. (2001): Inconsistency management in software

engineering: Survey and open research issues. In Handbook of Software

Engineering and Knowledge Engineering, World Scientific, 329–380.

Stoiber, R., & Glinz, M. (2009): Modelling and managing tacit product line requirements

knowledge. In Managing Requirements Knowledge (MARK), 2009 Second

International Workshop on, pp. 60-64. IEEE.

Stojkovic, M., Trifunovic, M., Misic, D., and Manic, M. (2015): Towards analogy-based

reasoning in semantic network. Computer Science and Information Systems,

12(3): 979-1008.

Stone, A., and Sawyer, P. (2006): Identifying tacit knowledge-based requirements. IEE

Proceedings-Software, 153(6): 211-218.

Sure, Y., Angele, J., and Staab, S. (2003): OntoEdit: Multifaceted inferencing for ontology

engineering. In Journal on Data Semantics I (pp. 128-152). Springer Berlin

Heidelberg.

Sureephong, P., Chakpitak, N., Ouzrout, Y., and Bouras, A. (2008): An ontology-based

knowledge management system for industry clusters. In Global Design to Gain a

Competitive Edge (pp. 333-342). Springer London.

Swoop. Semantic Web Ontology Overview and Perusal. 2004. Available from:

http://www.mindswap.org/2004/SWOOP/

TCS Software Requirements Specification (02-12-1999)

https://fas.org/irp/program/collect/docs/sss_20.pdf.

Tjong, S. F (2008): Avoiding ambiguity in requirements specifications.Thesis submitted to

the University of Nottingham for the degree of Doctor of Philosophy.

169

Tjong, S.F., Hallam., N. and Hartley, M. (2006): Improving the Quality of Natural

Language Requirements Specifications through Natural Language Requirements

Patterns. In Proceedings of the 6th IEEE International Conference on Computer

and Information Technology (CIT06), pp. 199.

Thörn, C. (2010): Current state and potential of variability management practices in

software-intensive SMEs: Results from a regional industrial survey. Information

and Software Technology, 52(4): 411-421.

Umber, A., Bajwa, I. S., and Naeem, M. A. (2011): NL-based automated software

requirements elicitation and specification. In International Conference on

Advances in Computing and Communications (pp. 30-39). Springer Berlin

Heidelberg.

W3C.TopBraid. (2001) Retrieved from W3C: http://www.w3.org/2001/sw/wiki/TopBraid

Welcome to Apache OpenNLP (24/10/2012) http://opennlp.apache.org/

Wei, C. H., Harris, B. R., Kao, H. Y., and Lu, Z. (2013): tmVar: a text mining approach

for extracting sequence variants in biomedical literature. Bioinformatics, 29(11):

1433-1439.

Wilson, W. M., Rosenberg, L. H., and Hyatt, L. E. (1997): Automated analysis of

requirement specifications. In Proceedings of the 19th International conference

on Software engineering (pp. 161-171). ACM.

Winkler, S., and Pilgrim, J. (2010): A survey of traceability in requirements engineering

and model-driven development. Software and Systems Modeling (SoSyM), 9(4):

529-565.

Woods, J., Irvine A., and Walton D. (2004): Argument: Critical Thinking, Logic and the

Fallacies, 2nd edition, Toronto: Prentice-Hall.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2012):

Experimentation in software engineering. Springer Science & Business Media.

170

Xu, Q.L., Jiao, R.J., Yang, X., Helander, M.G., Khalid, H.M., Anders, O. (2007): Customer

Requirement Analysis Based on an Analytical Kano Model. In: Industrial

Engineering and Engineering Management, pp. 1287–1291. IEEE Press.

Yang, H., De Roeck, A., Gervasi, V., Willis, A., and Nuseibeh, B. (2011): Analysing

anaphoric ambiguity in natural language requirements. Requirements

Engineering, 16(3): 163.

Yang, H., Willis, A., De Roeck, A., and Nuseibeh, B. (2010): Automatic detection of

nocuous coordination ambiguities in natural language requirements. In

Proceedings of the IEEE/ACM international conference on Automated software

engineering (pp. 53-62). ACM.

Yatskevich, M., and Giunchiglia, F. (2004): Element level semantic matching using

WordNet. In Meaning Coordination and Negotiation Workshop, ISWC

Youn, S., and McLeod, D. (2006): Ontology development tools for ontology-based

knowledge management. In Encyclopedia of E-Commerce, E-Government, and

Mobile Commerce (pp. 858-864). IGI Global.

Yu, L., Kittur, A., and Kraut, R. E. (2014): Distributed analogical idea generation:

inventing with crowds. In Proceedings of the 32nd annual ACM conference on

Human factors in computing systems (pp. 1245-1254). ACM.

Zave, P. (1997): Classification of Research Efforts in Requirements Engineering. ACM

Computing Surveys, 29(4): 315-321.

Zave, P., and Jackson, M. (1997): Four dark corners of requirements engineering. ACM

Transactions on Software Engineering and Methodology (TOSEM), 6(1): 1-30.

Zhdanova A.V and Keller, U (2005): Choosing an ontology language. In Proceedings of

World Academy of Science, Engineering and Technology. 2: 47-50.

171

APPENDIX A

Requirements Documents used for Evaluation

Requirements for Course Management System (CMS)

The CMS used to determine the performance of the tool described in Section 1 contains

the following sixteen requirements:

Req1: The system shall allow end-users to provide profile and context information for

registration.

Req2: The system shall provide functionality to search for other people registered in the

system.

Req3: The system shall provide functionality to allow end-users to log in the system with

their password.

Req4: The system shall support three types of end-users (administrator, lecturer and

student).

Req5: The system shall allow lecturers to set an alert on an event.

Req6: The system shall maintain a list of events the students can be notified about.

Req7: The system shall notify the students about the occurrence of an event as soon as the

event occurs.

Req8: The system shall actively monitor all events.

Req9: The system shall notify students about the events of the lectures they are enrolled

for.

Req10: The system shall allow students to enrol for lecturers.

Req11: The system shall allow lecturers to send e-mail to students enrolled for the lecture

given by that lecturer.

172

Req12: The system shall allow assigning students to teams for each lecture.

Req13: The system shall allow lecturers to send e-mail to students in the same group.

Req14: The system shall allow lecturers to modify the content of the lectures.

Req15: The system shall give different access rights to different types of end-users.

Req16: The system shall support two types of end-users (lecturer and student) and it shall

provide functionality to allow end-users to log in the system with their password.

Requirements for Tactical Control System (TCS) System/Subsystem Specification

Brief Description: The TCS consists of the software, software-related hardware and the

extra ground support hardware necessary for the control of the Outrider, and the Predator

UAV, and future tactical UAVs. The TCS provides hardware and software necessary to

allow operators conduct the following major functions 1) mission planning, 2) mission

control and monitoring, 3) payload product management, 4) targeting, and 5) C4I system

interface.

1. The TCS shall have the functionality to allow the operator to generate a UAV

mission plan.

2. The TCS shall have the functionality to receive and process UAV mission plans

from service specific mission planning systems.

3. The TCS Mission plan shall include all necessary information required to be

interoperable with the service specific mission planning systems including the

Tactical Aircraft Mission Planning System (TAMPS), Aviation Mission Planning

System (AMPS), and Air Force Mission Support System (AFMSS).

4. The TCS shall have the functionality to transmit UAV mission plans to service

specific mission planning systems.

5. The TCS shall facilitate automated processing of mission plan data received via

C4I interfaces in order to extract the appropriate mission planning data.

173

6. The TCS shall have the functionality to receive and process UAV mission plans

from other TCSs.

7. The TCS shall have the functionality to transmit UAV mission plans to other TCSs.

8. The TCS shall be capable of storing a minimum of 500 mission plans under unique

names to allow for later retrieval.

9. The TCS mission planning function shall provide a graphical user interface that

gives the operator the ability to define waypoints on a map based display using a

pointing device with full keyset redundancy.

10. The TCS shall provide the capability to compute the range and bearing between

two geographic positions on the map display.

11. The TCS shall permit dynamic mission and payload retasking during all phases of

operational mission execution.

12. The TCS shall allow the operator to enter as well as review mission plan

parameters, including AV flight parameters, payload control parameters, data link

control parameters, AV VCR control parameters (if applicable to the selected AV),

and AV loiter patterns.

13. The TCS shall provide the capability to enter system configuration characteristics

in the mission plan, to include selected AV type, AV identification number, selected

payload type, ground control authorization information, and required

communications pre-set for data links, tactical communications, and C4I data

dissemination.

14. The TCS shall provide the system functionality necessary to upload a flight route

plan and payload plan (if applicable) to the AV via the selected system data link as

well as direct ground connection. [SSS070]

15. TCS shall provide the capability for the operator to retrieve a mission plan for

viewing, modification, as well as deletion at the operator's discretion [SSS071], and

allow the operator to save the mission plan under a different name, for future

retrieval [SSS072].

16. The TCS shall automatically check the validity of the intended mission plan prior

to being uploaded including altitude constraints, payload constraints, data link

174

range constraints, airspace restrictions, fuel limitations, threat constraints, data link

terrain masking effects, and Loss of Link (LOL) Plan. [SSS073]

17. The TCS shall notify the operator of all discrepancies found during the mission plan

check as well as indicate successful completion of the mission plan check.

[SSS074]

18. The TCS shall provide the capability to override validation faults after the fault is

acknowledged by the operator. [SSS540]

19. The TCS shall allow the operator to set the LOL delay timer(s) during mission

planning. [SSS075] The LOL delay is the time from when the AV detects an

unplanned LOL to the time it initiates LOL procedures.

20. The TCS shall provide the capability to print waypoint data in alphanumeric format.

Requirements for Smart City (Embedded Monitoring)

Brief Description: The EMMON project is a European Research and Development (R&D)

project. EMMON motivation is originated from the increasing societal interest and vision

for smart locations and ambient intelligent environments (smart cities, smart homes, smart

public spaces, smart forests, smart parking system etc.). The development of embedded

technology allows for smart environments creation and scalable digital services that

increase the human quality of life.

1. The C&C shall provide the users with real-­time data regarding the measured

values, as collected from the various sensors part of the network.

2. The C&C shall support the configuration of ranges for sensor readings (maximum

and minimum allowed values).

3. The C&C shall report potential sensor malfunctions to the users when the reading

is "Suspicious" or "Invalid".

4. The C&C shall allow users to validate readings that were qualified as "Suspicious"

or "Invalid". This means that users shall be allowed to qualify as "Good", sensor

readings that were classified as "Suspicious" or "Invalid" automatically.

5. The C&C shall notify users if there are manually modified values, whenever it

presents sensor data to them.

175

6. The C&C shall have the sensor readings displayed in a GIS environment.

7. The C&C shall represent the sensor nodes in the system as two-­dimensional sets

of dots (or symbols) in a rectangular panel.

8. The C&C shall provide a visual display of sensor readings to the users, by clicking

on each sensor node's representation.

9. The C&C shall allow for the visual selection of elements of interest by using layers

of information.

10. Each layer shall be associated with a particular type of element of interest.

11. The C&C shall set the appropriate endangerment level, according to the sensor

readings.

12. The C&C shall provide the users with historical data regarding the measured values.

13. The C&C shall keep a history of collected sensor readings of up to 1 year.

14. The C&C shall allow the management (create, update, delete) of user accounts.

15. The C&C shall allow the definition of different access privileges for each account

type.

16. The C&C shall allow loading a file with spatial data (shapefile) containing nodes.

17. The C&C shall allow users to setup the sensors' operating parameter.

18. The C&C shall allow for scheduling of node maintenance procedures.

19. The C&C shall allow distribution of data to the relevant authorities, through SMS

and email.

20. The C&C shall provide a geographical visualisation of all areas in alarm/alert

status.

21. The C&C shall provide the values of parameters at most 30 seconds after the

reading was ordered by the user and the data has been received from the Sensor

Network after it has been requested by the C&C.

22. The C&C shall update the information available to the users every minute.

23. The C&C shall access the interface provided by the EMMON middleware for

retrieving sensor data.

24. The C&C shall access the interface provided by the event propagation module.

25. The C&C shall support multi-­language. The default language shall be English.

176

APPENDIX B

The Questionnaire Form

The purpose of this survey is to assess the impact of Implicit Requirements (IMR) on the

success or failure of requirements engineering during software development. IMR is the

hidden or assumed requirements that usually do not get mentioned by stakeholders during

requirements elicitation but which a system is expected to fulfil, in order to be wholly

accepted by users. Some opinions seem to suggest that IMR throws up substantial

challenges during software development, this survey seeks to empirically investigate the

impact of IMR on software development.

Section 1: Introductory Questions

Company

1. Name of Company/Organisation ………………………………

2. Name of Country………………………………………………

3. Number of years of business

0 – 5 years

6 – 10 years

11 – 15 years

16 – 20 years

above 20 years

4. Size of software development team

0 – 5 years

6 – 10 years

11 – 15 years

16 – 20 years

21 – 50 years

above 50 years

177

5. The domain of software development?

Business/enterprise information systems

System software/operating systems

Game engines/computer games/graphics software

Computer packages

Web/Internet-based development

Mobile apps and software

Industrial automation software

Control software and embedded systems

Telecommunications software

Military and defence software systems

Middleware/ CASE tool

others…………………………………

6. The target market of the software product?

Local/Domestic only

International/global

Both Local and International.

178

Organisation’s Background

7. Your professional status in your organisation

Junior level

Middle level

Managerial level

8. Your experience in Requirements Engineering (RE) practice

0 – 5 years

6 – 10 years

11 – 15 years

16 – 20 years

above 20 years

9. Experience of your organisation in RE

0 – 5 years

6 – 10 years

11 – 15 years

16 – 20 years

above 20 years

10. Specific area(s) of expertise in RE

Requirements elicitation

Requirements analysis

Requirements modeling

Requirements specification

Requirement validation

Requirements management

179

Section 2: Process Requirements Engineering

Please answer the following question as appropriate and applicable.

2.1. IMR, if not well managed can have a negative impact on the quality of software

product?

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

2.2. Lack of proper management of IMR can lead to cost/budget overrun during software

product?

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

2.3. IMR does not have any effect on the acceptability of software product?

 Strongly Agree

 Agree

 Neutral

 Disagree

180

 Strongly Disagree

2.4. IMR does not have any impact on the correctness of system architecture?

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

2.5. Relying principally on experience is sufficient to the discovery of IMR requirements

during requirements elicitation

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

2.6. Using experience plus tool support will be perfect for managing IMR

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

181

2.7. A specialised approach, possibly with some automation support will be useful for

managing IMR

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

2.8. Improper handling of IMR can lead to poor system design and poor product

performance

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

2.9. Proper handling of IMR will reduce maintainability of software products

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

182

2.10. My organisation uses specialised approach for handling IMR

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

2.11. The approach for handling IMR in my organisation is sufficient

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

2.12. My organisation use a specific requirements prioritisation technique(s) to identify

IMR

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

183

2.13. There is no need to evolve new methods to specially handle IMR

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

2.14. Established RE management methods are adequate to handle IMR for now

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

2.15. During requirements elicitation, stakeholders deliberately withhold certain

information which creates IMR scenarios

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

184

2.16. Stakeholders inadvertently fail to mention IMR during requirements elicitation

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

2.17. Tacit knowledge which stakeholders find difficult to express is often a cause of IMR

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

185

APPENDIX C

List of Publications from the Thesis

1. Emebo, O., Daramola, O., & Ayo, C. (2017): A survey on implicit requirements

management practices in small and medium-sized enterprises. Tehnički vjesnik,

24(Supplement 1), 219-227.

2. Emebo, O., Olawande, D., & Charles, A. (2016): An automated tool support for

managing implicit requirements using Analogy-based Reasoning. In Research

Challenges in Information Science (RCIS), 2016 IEEE Tenth International

Conference on (pp. 1-6). IEEE.

3. Emebo, O., Varde, A. S., & Daramola, O. (2016): Common Sense Knowledge,

Ontology and Text Mining for Implicit Requirements. In Proceedings of the

International Conference on Data Mining (DMIN) (p. 146). The Steering

Committee of The World Congress in Computer Science, Computer Engineering

and Applied Computing (WorldComp).

4. Onyeka, E. (2013): A process framework for managing implicit requirements using

analogy-based reasoning: Doctoral Consortium paper. In Research Challenges in

Information Science (RCIS), 2013 IEEE Seventh International Conference on (pp.

1-5). IEEE.

