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ABSTRACT 

Despite the successes of commercial cloud service e-marketplaces, opportunities still 
exist to improve user experience as these e-marketplaces do not yet enable dynamic 
composition of atomic services to satisfy complex user requirements. More so, the 
platforms employ keyword-based search mechanisms that only allow the selection of 
atomic services. The elicitation mechanisms do not consider user’s QoS requirements, nor 
support the elicitation of these requirements in ways akin to subjective human 
expressions. In addition, search results are presented as unordered lists of icons, with 
minimal comparison apparatus to simplify decision making. Existing cloud selection 
approaches do not currently provide the sophistication required to optimise user 
experience in the cloud e-marketplace, hence this study proposed a framework to address 
the observed limitations. First, a state-of-the-art survey was conducted and six design 
criteria were identified for a selection framework suitable for cloud e-marketplaces. These 
criteria guided the formulation of an integrated framework, Fuzzy-Oriented Cloud 
Service Selection (FOCUSS) framework. The proposed framework comprises four 
modules: Cloud ecosystem and service directory, Graphical User Interface (GUI) & 
Visualisation, QoS Requirement Processing, and Service Evaluation & QoS Ranking 
modules. In the first module, atomic services are combined to realise the set of composite 
services offered in the e-marketplace; subjective QoS requirements are then inputted via 
the GUI module, and processed in the QoS requirements processing module. In service 
evaluation and ranking module, the requirements are optimised and used to rank services 
and the ranking results are shown to the users via bubble graph visualisation. The utility 
of the proposed framework was demonstrated via a Java-based web application prototype 
using a case study of a Customer Relationship Management-as-a-Service e-marketplace. 
Simulation experiments and user studies were performed to evaluate the performance of 
the proposed framework in terms of its scalability, ranking accuracy, and quality of user 
experience. A linear regression analysis showed that the proposed framework is linearly 
scalable when measured by the time it took to rank top-20 services as the number of 
alternatives increased. Kruskal-Wallis and Mann-Whitney tests revealed that ranking 
accuracy of proposed framework is not compromised by using subjective descriptors to 
approximate user’s QoS requirements, and the ranking accuracy is higher compared to 
existing approaches. Based on Wilcox signed tests, the results of the user studies showed 
that users can complete tasks faster and easier compared to traditional tabular 
representations. These results confirmed that the proposed framework is viable for cloud 
service selection in cloud e-marketplaces. This study contributes to knowledge by 
providing an integrated framework for cloud service selection that organises atomic 
services within the cloud ecosystem and guides formal service composition on the fly 
beyond what atomic services can deliver; handle both subjective users QoS preferences 
and aspiration, and enable easy comparison of query results along multiple QoS 
dimensions. In addition, it provides a framework will improve user experience, which in 
turn boosts the commercial viability of cloud e-marketplaces. 

Keywords: Cloud Service Selection, Cloud Ecosystem, Cloud e-Marketplace, Feature 
modelling, Fuzzy set theory, Information visualisation 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND 

Advancement in information and communications technology has significantly influenced 

the computing landscape, as more than ever, it is now fashionable to contract out 

technology demands to the cloud. Cloud computing is a model of internet-based service 

provisioning where dynamically scalable and virtualized resources (infrastructure, 

platform and software) are delivered and accessed as services (Rimal et al., 2011; Lewis, 

2011; Qaisar, 2012). It enables ubiquitous, convenient, on-demand network access to a 

shared pool of configurable computing resources (e.g., networks, servers, storage, 

applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction (Mell and Grance, 2011). Basic cloud 

computing service models are Infrastructure-as-a-Service (IaaS), Platform-as-a-Service 

(PaaS), and Software-as-a-Service (SaaS) (Lewis, 2011; Qaisar, 2012), with more 

complex model morphing into the concept of Anything- or Everything-as-a-Service 

(XaaS).  

Because everything and anything can be offered as a service, the maturity of cloud 

computing is fast-tracked by commoditizing services in an e-marketplace facilitated by 

cloud ecosystem (Buyya et al., 2008; Menychtas et al., 2014). A service ecosystem 

consists of a platform, a set of internal and external providers and a community of service 

brokers providing value-added services to a community of service users, who consume 

relevant services (Bosch and Bosch-Sijtsema, 2010; Menychtas et al., 2014). In the 

future, there will be a large number of cloud services available from multiple providers 

and brokers (Zeng et al., 2009; Jung et al., 2013), more so that multiple actors (for 

example, service providers, users, brokers, infrastructure providers etc.) will congregate 

in an ecosystem to provide, broker, and consume cloud services in a more sophisticated 

market environment that transcend existing traditional e-marketplaces (Khadka et al., 

2011; Vigne et al., 2013; Menychtas et al., 2014). The overabundance of services, that are 

sometimes functionally equivalent, will leave users with the dilemma of which service to 

choose; a phenomenon that can be referred to as service choice overload (Chernev et al., 

2015; Haynes, 2009; Toffler, 1970). Examples of existing cloud service e-marketplace 
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include SaaSMax, Oracle e-marketplace, Google play store, AppExchange etc. Although, 

these e-marketplaces consist of basic features that underscore the operations of an e-

marketplace, like the product (or service) search, product catalogue, billing etc., more 

sophisticated features that maximise the dynamism of service orientation and optimise 

user experience are still lacking (Akolkar et al., 2012). 

The cloud service e-marketplace of the future provides, among others, an environment 

where service providers can combine their offerings in unprecedented ways to create 

composite services that fulfil complex business processes on the fly; and users can then 

discover, consume and pay for these services (Akolkar et al., 2012; Barros and Dumas, 

2006). It is expected that these e-marketplaces incorporate service combination, service 

discovery and presentation mechanisms; service combination will be based on service 

interrelationships established on specific rules and constraints; service discovery and 

selection mechanisms that enables the elicitation of subjective user requirements, and 

ranks available services according to those requirements; presentation mechanisms for 

showcasing suitable service options in a highly interactive and easy-to-understand manner 

in response to user requirements.  

1.2 MOTIVATION 

The motivation of this study is threefold: i) Handling of complex user requirements; ii) 

Enabling flexibility to accommodate the subjective Quality of Service (QoS) 

requirements, and iii) Improved presentation format for the search results to aid decision 

making. Next, each point is discussed in details. 

1.2.1 Handling of Complex User Requirements 

An important enabler for the realisation of a true cloud service e-marketplace is the 

possibility of formal and/or incidental service composition to satisfy complex user 

requirements (Akolkar et al., 2012). Formal composition refers to the combination of one 

or more services into composite services beforehand, while the incidental composition is 

described as ‘on the spot’ service composition based on specific user request (Akolkar et 

al., 2012). Existing e-marketplaces possess basic features like product search and 

directory but lacks the sophistication that can enable dynamic service composition in 

order to support the realisation of complex business processes (Akolkar et al., 2012). A 
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cloud e-marketplace can benefit from an ecosystem, such that atomic services can be 

aggregated into composite offerings to be listed in the e-marketplace directory (Akolkar 

et al., 2012; Barros and Dumas, 2006).  

Existing proposals for a cloud service e-marketplace (Gatzioura et al., 2012; Menychtas 

et al., 2014; Akolkar et al., 2012) did not specify particular methodology of realising 

service composition but rather presented architectural blueprints of possibilities. 

Likewise, most cloud service selection methods only enable a user to make selections 

from a list of predefined atomic services, which cannot address more complex situations 

where a user’s requirements extend beyond the limit of individual atomic services (Zeng 

et al., 2009; Garg et al., 2011; Rehman et al., 2011). But some authors, such as Wittern et 

al. (2012), Quinton et al. (2014), and Quinton et al. (2013) have attempted to address 

these kinds of complex scenario, by enabling prospective users to select desirable features 

that are available in specific atomic services in order to realise their complex set of 

requirements. This usually includes specifying both the QoS requirements and selecting 

features of the services. Still, the drawback of these attempts is that it is cognitively 

demanding because the user is expected to have deep knowledge of the domain in order 

to make useful selections. This gap is bridged in this study by the aggregation of atomic 

services in a way that satisfies complex user requirements. 

1.2.2 Enabling flexibility to accommodate subjective QoS requirements 

The abundance of cloud service options leaves users in a dilemma of selecting the right 

service or services amidst a variety of similar services that conforms to certain quality 

criteria (Zeng et al., 2009; Jung et al., 2013; Garg et al., 2011; Martens et al., 2011; 

Alrifai et al., 2010). This dilemma, also referred to as choice overload (Toffler, 1970), 

underscores the paradox of choice (Schwartz, 2004), by describing how difficult it is 

making a choice in the face of multiple options, particularly when such decisions are 

made by considering several criteria. Apart from the functional capabilities they provide, 

cloud services possess non-functional or quality of service (QoS) attributes (e.g. 

reliability, response time, cost, availability etc.), which becomes the criteria by which 

selection of services are made (Chen et al., 2013; Barros and Dumas, 2006; Garg et al., 

2011).  
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Although a number of cloud service selection techniques have been proposed in the 

literature, many of these techniques require that user’s QoS requirements are specified in 

exact or precise terms. Most times, users do not provide QoS requirements in exact crisp 

terms, but rely on subjective descriptions that approximate these requirements; thus 

shrouding QoS requirements elicitation with vagueness and imprecision (Barros and 

Dumas, 2006; Wittern et al., 2012; Rehman et al., 2011; Akolkar et al., 2012). Qu and 

Buyya (2014) observed that user’s QoS requirements can indeed be specified in terms of 

preferences (user’s priority for each QoS dimension) and aspiration (user’s values of QoS 

dimension); which are two important considerations for determining which cloud services 

to select. However, some existing approaches that have considered subjectivity in user 

requirements elicit either QoS preferences or QoS aspirations alone from the user but 

rarely both (e.g. (Esposito et al., 2016; Yu and Zhang, 2014). Still, some others, like 

Esposito et al. (2016),  Mirmotalebi et al. (2012), Rehman et al. (2011), and Qu and 

Buyya (2014), require users to assign priority weights to QoS attributes, with the 

downside of being less accurate compared to a pairwise comparison of the relative 

importance of QoS attributes (Millet, 1997). 

Noting that the ranking of service alternatives depends on the user’s QoS requirements, 

the accuracy of the ranking should not be compromised by subjective approximate 

descriptions. Nonetheless, giving users the flexibility of expressing QoS requirements by 

allowing for subjective descriptions is a plus to the user experience, as the cognitive load 

of having to craft crisp or precise values is reduced (Akolkar et al., 2012). Hence, this 

study explores the elicitation of user’s requirements in a way that reduces choice overload 

and improves the user experience of cloud service e-marketplace. 

1.2.3 Improved presentation format for the search results to aid decision making 

Another dimension of user experience is how information is presented. The search results 

from existing e-marketplaces are usually presented as an unordered list of icons 

representing the services that best fit user’s keyword-based queries. The drawback of 

such presentation mechanisms is that users are not able to immediately discriminate 

among the cloud services presented. Users are required to explore each service one after 

the order to gain more insights about the QoS attributes to guide their decisions. The 

additional complexity on the part of the users impacts negatively on user experience.  
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A number of cloud service selection approaches (Esposito et al., 2016; Yu and Zhang, 

2014; Qu and Buyya, 2014; Wittern et al., 2012) have been proposed; however, some of 

these frameworks present service rankings in textual format, either in a list or tables, 

which does not fully describe the implicit trade-off factors inherent in the search results. 

Such presentations are ineffective in supporting the decision making in online e-

marketplace environment and can increase cognitive load of users (Beets and Wesson, 

2011; Lurie and Mason, 2007; Adnan et al., 2008; Pajic, 2014). Others have used 

Information Visualizations (IV) like the radar or kiviat charts; which are limited in 

presenting a large number of cloud services. In addition, such IV approaches exhibit low 

object coherence and object correlation (Teoh and Ma, 2005), referring to how compactly 

and distinctly the visual encodings represents the services and their relationships to 

facilitate easy decision making. Realising the vision of a true cloud service e-marketplace 

in the face of the growing trend for personalised products and services requires that user 

satisfaction and user experience be given top priority (Riemer and Totz, 2003; Schubert 

and Ginsburg, 2000; Liang et al., 2006). Hence the need to simplify cloud service 

selection, while optimising user experience and satisfaction in the decision-making 

process (Almulla et al., 2012). 

1.3 STATEMENT OF THE PROBLEM 

Despite the successes of commercial cloud e-marketplaces (e.g. AppExchange and 

SaaSMax), these platforms do not yet enable dynamic composition and employ keyword-

based search mechanisms that do not consider the user’s QoS requirements, nor support 

the elicitation of these requirements in ways akin to subjective human expressions (Sun et 

al, 2014; Qu et al., 2014). In addition, search results on these platforms are presented as 

unordered lists of icons, with little or no comparison apparatus that simplifies decision 

making (Gui et al., 2014).  

Existing cloud selection approaches do not currently provide the sophistication to 

optimise user experience in the cloud service e-marketplace (Akolkar et al., 2012); which 

ultimately hamper the user experience in the cloud service e-marketplace. Hence the need 

for an integrated framework that caters for observed limitations in the existing cloud 

service selection approaches. 

Concisely the questions investigated in this study include: 
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i. How do we formally combine atomic service offerings from different service 

providers in order to satisfy complex user requirements? 

ii. How do we elicit user’s QoS requirements, in a way that accommodates human 

subjective expressions and judgment? 

iii. How can we present query results in a manner that simplifies decision making? 

1.4 RESEARCH AIM AND OBJECTIVES 

The aim of this research is to develop a framework for cloud service selection that 

improves the quality of user experience in cloud service e-marketplace.  

In order to realise the aim of this study, the objectives of this study include the following: 

1. The formulation of an integrated service selection framework that will 

improve the quality of user experience in a cloud service e-marketplace. 

2. A design of models and algorithms that will enable the components of the 

cloud service selection framework. 

3. The implementation of a prototype of the cloud service selection framework 

and a demonstration of its plausibility. 

4. An evaluation of the proposed framework in terms of its performance and 

usability attributes. 

1.5 RESEARCH METHODOLOGY 

The research approach employed in carrying out this study is a design cycle that 

comprises of five sub-processes as developed by Takeda et al. (1990). The five sub-

processes include the awareness of research problem; the suggestion of a solution; the 

development and implementation of the solution; the solution validation and evaluation; 

and the conclusion. The application of each sub-process in this research is summarised as 

follows: 

a) Awareness: Based on the state-of-the-art study of the problem of cloud service 

selection in the context of cloud service e-marketplace and the various attempts at 



 

7 

 

proffering solutions by existing approaches, the gap in the literature that 

necessitates this study was identified, presenting an opportunity for contribution. 

The framed problem is accomplished by research. 

b) Suggestion: From the study of the literature, key requirements and candidate 

techniques were identified to develop a selection framework that is suitable for a 

cloud service e-marketplace and solves the problem identified above. 

c) Development: Design and implementation of a solution based on key 

requirements and techniques identified in the previous sub-process. 

d) Evaluation: Validation and evaluation of the solution developed using established 

validation methods in software engineering to answer the research questions and 

test the hypotheses. 

e) Conclusion: Present the validity of the developed solution and the possibility for 

generalisation of results.  

Within the five-phase research design described above, the research methods employed to 

carry out this study are a literature review, model formulation, prototyping, and 

experimentation. Literature survey allows the classification of the existing body of 

knowledge on the subject matter, while modelling is used to describe real world concept. 

Prototyping uses an experimental prototype implementation to demonstrate proof-of-

concept of the proposed model and experiments are employed to test a hypothesis and 

arrive at a conclusion. While the summary of research design, objectives, and methods 

employed in this study is presented in Table 1.1, the research methods employed in this 

study are details as follows: 

1.5.1 Literature Survey 

To achieve the objectives of this research and answer the research questions posed in this 

thesis, a state-of-the-art survey of the literature pertaining to cloud service selection was 

conducted and six issues were identified and captured as key requirements for a cloud 

service selection framework suitable for e-marketplace context. Based on the 

requirements identified, an integrated framework for cloud service selection was 

formulated.  
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1.5.2 Model Formulation 

The proposed framework christened Fuzzy-Oriented CloUd Service Selection (FOCUSS) 

framework is presented as an improvement to existing cloud service selection approaches. 

The framework employed an integration of relevant models and algorithms such as i) 

feature modelling and constraint-based reasoning - to organize atomic services within the 

cloud ecosystem and to guide formal service composition on the fly; ii) Fuzzy-based 

prioritization and analysis methods – to handle subjective user QoS preferences and 

aspiration; and iii) information visualization – to enable easy comparison of query results 

along multiple QoS dimensions.  

1.5.3 Prototyping 

To demonstrate the plausibility and the utility of the proposed framework, a prototype 

web application within an illustrative case study was undertaken. A collection of tools 

was identified, categorised into front-end components, and back-end components, with 

Java as the primary programming language used to implement components of the 

proposed framework in NetBeans 8.1. The front-end technologies employed consist of 

JavaServer Pages (JSP) and BootStrap 3.3.6. The bubble graph was implemented using 

customizable JavaScript classes provided by Google charts for visualising data on web 

pages. For the back-end components, Java servlets and classes were used to implement 

the business logic of the proposed framework. The application was deployed in the 

GlassFish web server. 

1.5.4 Experiments 

Lastly, an evaluation of the proposed framework was performed using controlled 

experiments. In software engineering, controlled experiments are one of the three often 

used validation methods (Wohlin et al., 2012). Simulation experiments and user studies 

were performed to compare the performance of FOCUSS in terms of scalability, ranking 

accuracy, and quality of user experience in comparison to existing techniques. The 

scalability was measured in terms of execution time it took to rank top-k services as the 

number of alternatives increased. Four ranking accuracy metrics were used as metrics to 

measure the accuracy of the rank results. User studies were carried out to ascertain the 

quality of user experience and satisfaction dimensions of the visualisation component of 
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the proposed framework. Thereafter, the results were analysed for statistical significance 

using a variety of statistical techniques.  

Table 1.1: Summary of Research Approach, Objectives, Methods and Activities 

Research Phase 
Research 

Objectives 
Research 
Methods 

Activities 

Awareness and 
Suggestions 

Objective 1 
Literature 

Survey 

 Derive taxonomy of cloud service selection 
techniques. 

 Identify Key Requirements of an e-marketplace-
worthy cloud service selection framework. 

 Identify candidate techniques for  evolving a 
suitable cloud selection framework 

Solution 
Development 

Objective 2 
Model 

Formulation 

 Evolve an integrated cloud service selection 
Framework. 

 Developed models and algorithms to implement 
key processes of the framework. 

Solution 
Implementation 

Objective 3 Prototyping 
 Implement prototype of the framework  
 Demonstrate the plausibility of the framework 

using an illustrative case study 

Evaluation and 
Conclusion 

Objective 4 
Experiments 

 

 Performance Evaluation results for: 
o Scalability Simulation Experiment 
o Accuracy Simulation Experiments 
o User Experience User Studies 

 Analysis of Results and Generalisation 

1.6 RESEARCH CONTEXT 

This work was carried out in the context of the GUISET project (Shezi et al., 2006). 

GUISET is envisioned as both an enabling infrastructure and a suite of on-demand 

Services. The primary motivation for the GUISET project is economic advantages of 

enterprise clusters over stand-alone organisation such as resource sharing, cost reduction, 

and the ability to compete with larger firms (Braun, 2005). As a cloud computing model, 

GUISET is aimed at offering affordable e-enabling and “appliance-like” technology 

services through the Internet to lower the total cost of ownership. The GUISET 

infrastructure would provide small businesses with business-relevant services on a pay-

as-you-go basis. These services are aimed at e-enabling the activities of under-resourced 

local Very Small Software Enterprises (VSSE) and provide the platform for these VSSE 

to participate in the global market of e-services. VSSE can leverage the capabilities of the 

GUISET platform to offer business-relevant services, which is then searched for and used 

by other small businesses that are part the GUISET cloud service ecosystem. In this 

research, a GUISET service use-case scenario was adopted as the basis of developing and 

demonstrating the utility and evaluation the cloud service selection approach proposed in 

this work. 
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1.7 SIGNIFICANCE OF THE STUDY 

The significance of this study is in several folds as follows: 

a) This study identifies some gaps in existing cloud service selection literature and 

proposes a set of key requirements for designing a service selection technique for 

the cloud service e-marketplace. Cloud e-marketplace platform creators will find 

these design requirements useful as fulfilling these requirements will both serve 

the e-marketplace users satisfactorily and facilitate the achievement of the 

business objectives of the marketplace platform itself. 

b) The pursuit of an ecosystem-driven e-marketplace initiative provides a viable 

platform for local under-resourced small-scale service providers to readily 

participate in a global ecosystem of e-services. Since the framework proposed in 

this study encourages variability in the ecosystem, multiple functionally 

equivalent atomic services can collaborate in service provisioning; thus promoting 

the profitability of these service providers by multiplying their revenue and 

economic impact (Venesaar and Loomets, 2006; Hamwele, 2005). 

c) The automated analysis reveals a number of useful information about the 

ecosystem. Therefore, the e-marketplace provider is abreast of the number of 

composite services that can be offered based on the number of participating 

atomic services. The provider can also determine those atomic services that will 

not fully benefit from the value-chain of the ecosystem (partly or fully due to their 

presence in a few or none of the likely compositions), and advise accordingly. 

d) The framework proposed in this study makes it easier to accommodate new 

atomic services in a manner that is seamless and natural to an e-commerce 

platform, with little or no disruption to e-marketplace operations. With each case 

of entrants or exits based on the stated entrance and exit policies on the e-

marketplace, such that if the feature model is altered;  a seamless automated 

update of the e-marketplace service directory can still be achieved. This 

presupposes that service registration and disengagement from the ecosystem is 

performed offline, not at request time. 
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e) Existing e-marketplaces (e.g. SaaSMax and AppExchange) readily benefit from 

the findings made in this study by incorporating visualisation mechanisms to aid 

effective browsing and comparison of alternatives towards improved and 

satisfactory decision-making by users of the e-marketplace. 

1.8 DELIMITATIONS OF THE SCOPE OF THE STUDY 

The functions of a cloud service e-marketplace can be summarized as follows (Menychtas 

et al., 2014; Bakos, 1998; Vigne et al., 2012; Akolkar et al., 2012): (a) Facilitate a 

structured platform for service provision and consumption within an infrastructural 

regulatory framework and policies that enable the efficient operations of the e-

marketplace. (b) Match providers’ offerings with users’ requirements. (c) Negotiate 

service pricing and conditions associated with service delivery. (d) Facilitating the 

delivery of services and payments. However, the focus of this study is limited to 

identifying those cloud services that meet the user’s QoS requirements. 

1.9 ORGANISATION OF THE THESIS  

The rest of this thesis is outlined as follows (see Figure 1.1):  

i. Chapter two contains discussions of relevant cloud computing concepts and 

technologies in relations to cloud ecosystems and cloud service e-marketplaces, 

and a state-of-the-art survey of the cloud service selection techniques to reveal a 

set of requirements, which formed the basis for the design of the proposed 

framework.  

ii. In Chapter three, the general overview of the proposed framework, which is 

modelled as a decision-making framework for cloud service selection in e-

marketplace context, was presented. This chapter also presents insights into the 

strategies of the proposed framework and its underlining assumptions, process 

model, conceptual architectural framework, and a description of the sub-

components. 

iii. Chapter four reports the utility of the proposed framework as demonstrated by a 

prototype Java-based web application with an illustrative case study. This chapter 

also outlines the limitations of the proposed framework. 
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iv. Chapter five contains the reports of three experiments conducted to evaluate the 

proposed framework on account of scalability, ranking accuracy, and user 

experience; and presents the basis for generalisation of results. 

v. Chapter six concludes this thesis with a summary of the findings and opportunity 

for further research. 

 
Figure 1.1: Outline of the Thesis  

Source: Researcher (2016) 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 INTRODUCTION  

This chapter is structured into three parts that are closely linked. The first part discusses a 

general background of cloud computing concepts in relation to cloud ecosystems and 

cloud service e-marketplaces, and the effect of choice overload on the selection of cloud 

services. The overview of the background in the first part led to the second part, which 

discusses related work in cloud service selection and a comparative analysis of existing 

approaches. The emergent perspectives from the review of related work, which formed 

the basis of the framework proposed in this thesis, are presented in the last part. A 

conceptual view of the content structure of this chapter is presented in Figure 2.1. 

  
Figure 2.1: Conceptual View of the Content Structure of Chapter Two 

Source: Researcher (2016) 

2.2 CLOUD SERVICES AND CLOUD SERVICE SELECTION 

This section contains an overview of cloud computing, cloud services, and the selection 

of cloud services in the cloud service e-marketplace context. 
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2.2.1 Overview of Cloud Computing 

Cloud computing has recently emerged as a new paradigm for hosting and delivering 

services over the Internet. Cloud computing is a growing phenomenon in the IT landscape 

with over $677 billion spent on cloud services worldwide between 2013 and 2016, and 

about $310 billion spent on cloud advertising in 2014 (Gartner, 2016). Cloud computing 

has been referred to as the fifth utility along with electricity, gas, water and 

telecommunication services (Al-Shammari and Al-Yasiri, 2014). Cloud computing, as a 

paradigm, has the potential to technologically enable new business models, which may 

not have existed before (Qaisar, 2012). More than ever, new business models are finding 

relevance in the emergence of cloud computing, which promises an infinite and reliable 

source of computing facilities on a pay-as-you-go basis over the Internet (Qaisar, 2012). 

These facilities are hosted and managed by a third party, usually called the cloud 

providers, and this model of service provisioning introduces flexibility to organisations 

that rely on such cloud providers’ infrastructure (Quinton et al., 2012). This is a radical 

departure from the traditional IT provisioning models of on-premise computing, in which 

the computing facilities are owned and managed in-house by an organisation. In the 

traditional models, organisations make concrete upfront plans on expansions and 

extensions of these facilities to avoid sudden inability of IT infrastructure to cope with 

business demands. Furthermore, traditional computing models are characterised by over 

provisioning and under-provisioning due to the organisations’ inability to accurately 

predict the demands on IT resources per time (Avram, 2014). 

Some key attributes of cloud computing that makes it more desirable than traditional 

models include: Elasticity-which refers to the ability to expand and reduce the computing 

resource as required. Scalability-scalability means the ability to handle a sudden increase 

in demands for processing capabilities, storage and bandwidth as required. Multi-tenancy- 

Multi-tenancy is the ability to share a given cloud resource among many consumers 

(tenants) seamlessly to make cloud computing economically viable for commercially 

hosted public cloud providers. Pay-as-you-go Utility Model- Cloud computing offers a 

metered usage scenario in which payment is made only as resources are consumed, rather 

than a fixed cost associated with acquiring on-premise IT infrastructure. 
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2.2.2 Cloud Services and Web Services 

Cloud services are somewhat similar to web services and many existing cloud services 

(SaaS, PaaS, and IaaS) are enabled by web services (Sun et al., 2014); (For example, 

Amazon cloud services are called Amazon Web Service -AWS). Due to the connection 

between cloud services and web services, a significant body of work has been done in the 

context of web service selection, not all of which is applicable in the cloud service 

selection context. According to Sun et al. (2014), some key dimensions of cloud 

computing differ from web services such as:  

i. Different target user groups- cloud services are categorised into SaaS, PaaS and 

IaaS, targeted at different user group;  

ii. Payment policies- the cloud supports pay-as-you-use model compared to the fixed 

pricing model of web services, which adds another layer of complexity to the 

selection;  

iii. Evaluation criteria – even though quality criteria such as response time, 

reliability etc. also applies to web services, cloud service is exclusively 

characterised by other criteria such as eco-friendliness, virtual machine capacity, 

geographical location etc. (Gatzioura et al., 2012; Jung et al., 2013);  

iv. Heterogeneity in cloud providers- a standard means for representing cloud service 

properties is still in its infant stages, compared to a more established web service 

description (Sundareswaran et al., 2012). 

The differences between cloud and web service paradigms necessitate new approaches for 

service selection suitable for the cloud environment (Dastjerdi and Buyya, 2011; 

Sundareswaran et al., 2012; Sun et al., 2014). 

2.2.3 Cloud Service Ecosystem 

In spite of the promises of cloud computing, some challenges with the current monolithic 

model require an extension to the current stack. The monolithic model still imposes 

vendor lock-in such that services cannot be dynamically combined with other services 

from external third party sources to offer more value-adding functionalities to the users. 

Papazoglou et al. (2011) proposed blueprinting the cloud, a model that allows the 

syndication, configuration, and deployment of virtual service-based applications in the 
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cloud. Such proposal is followed by the emergence of the cloud ecosystem (Papazoglou 

and van den Heuvel, 2011). However, the current state of cloud ecosystem does not 

support the ultimate vision of offering XaaS (Gatzioura et al., 2012), as it is expected that 

the cloud ecosystem would evolve to offer XaaS in the future.  

The advancements in Service Orientation and Virtualization provide the opportunity to 

fast-track the evolution of cloud ecosystems (Li and Jeng, 2010); as current success in the 

cloud ecosystem domain, is hinged on the full adoption of a Service-Oriented 

Architecture (SOA). SOA is an architectural model for application development that 

supports the use of services as application building blocks (Papazoglou et al., 2007); and 

services are autonomous, technology-independent software functionalities with prescribed 

interfaces that can be described, published, discovered, and invoked over a network 

(OASIS, 2007). 

In the context of cloud computing, a cloud ecosystem describes the complex system of 

interdependent atomic services that work together to enable cloud services. The future of 

cloud computing would be fast-tracked by successful partnerships and collaborations with 

multiple service providers to tie services together, and enabling an environment where 

anything/everything as services are delivered to meet business needs (Baek et al., 2014).  

A cloud ecosystem model is a natural way to manage the evolution of cloud computing as 

an unconstrained model of possibilities and plethora of services available in and through 

the cloud. Organisations are realising that the competencies and services required to 

deliver business services cannot be domiciled in one organisation alone, as there is a need 

to collaborate with other third party providers to make up for required services. 

Therefore, in a cloud service ecosystem, several heterogeneous cloud service providers 

across the cloud computing stack come together in ways that are unprecedented to deliver 

anything/everything as a service (XaaS) that extends the value chain and meets business 

goals.  

A typical example of a cloud ecosystem is Saleforce.com (Salesforce.com, 2000-2015). 

Salesforce.com is reputed to pioneer the cloud business model based on partnerships. 

Salesforce.com is a PaaS ecosystem that allows thousands of independent software 

vendors, developers and consultants contribute to the ecosystem.  
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2.2.4 Cloud Service e-Marketplace 

The popularity of cloud computing will culminate in more service providers joining the 

cloud ecosystem, interconnecting heterogeneous computing capabilities to co-create 

value-adding services through composition strategies, to satisfy complex user 

requirements (Akolkar et al., 2012; Gatzioura et al., 2012). As this trend continues, the 

need for a platform arises to enable co-creation, showcasing and trading of value-adding 

service offerings all in one e-marketplace environment (Akolkar et al., 2012). To this end, 

the future of cloud computing comprises the evolution of cloud ecosystem and the rise of 

cloud services e-marketplaces for trading cloud-based services; enabling service 

composition, service discovery, service selection, service deployment, service 

monitoring, and payment resolutions in a single one-stop shop infrastructure (Menychtas 

et al., 2014; Akolkar et al., 2012; Gatzioura et al., 2012).  

The cloud e-marketplace extends the concept of an electronic e-marketplace, which is a 

platform where the demand and supply for certain products or services are fulfilled using 

information and communication technologies (Bakos, 1998; Menychtas et al., 2014; 

Akingbesote et al., 2014). On this platform, service providers store their offerings, and 

deploy cloud services capable of integrating with other services to form composite 

services; while users can discover, consume and pay for service offerings (Papazoglou 

and van den Heuvel, 2011; Menychtas et al., 2014; Javed et al., 2016; Gatzioura et al., 

2012; Akolkar et al., 2012; Vigne et al., 2013; Schulz-Hofen, 2007). The vision of an e-

marketplace for cloud services is similar to Amazon.com model, where multiple 

providers, showcase variety of offerings and an e-marketplace mechanism regulates the 

interactions and transactions between providers, consumers, and other participants 

(Akolkar et al., 2012). 

The e-marketplace provides a unified view of all available offerings and becomes a single 

point of access to offerings available in the ecosystem, and hides the complexity of the 

underlying interconnections among the partners of the ecosystem (Gatzioura et al., 2012). 

While offering a single portal for interaction for all ecosystem parties, the e-marketplace 

also integrates a mechanism for managing pricing, revenue sharing, service advertisement 

and promotion, and billing (Gatzioura et al., 2012; Menychtas et al., 2014).  
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Examples of commercial cloud e-marketplaces include Windows Azure Marketplace, 

Amazon Web Service, Google Apps Marketplace, App Store, AppExchange, Android 

Market, SuiteApp.com, and Zoho (Menychtas et al., 2011). Based on a survey conducted 

by Menychtas et al. (2011), AppExchange was adjudged the most advanced as covering 

e-marketplace requirements for trading services. AppExchange is the business app store 

of the Salesforce.com ecosystem, and it expands Salesforce.com’s cloud-based Customer 

Relationship Management (CRM) software into a larger business software portfolio and 

exposes this portfolio as a collection of services. AppExchange showcases thousands of 

enterprise and small business applications, and over 1.8 million users shop for services 

(Apps) from AppExchange (AppExchange, 2015). 

In spite of the success of existing commercial e-marketplace, the actualization of the true 

vision of a XaaS e-marketplace is in its early stages. On-going research provides 

blueprints and framework to enable the services e-marketplace of the future (Akolkar et 

al., 2012; Gatzioura et al., 2012; Menychtas et al., 2011; Menychtas et al., 2014). A case 

to mention is the 4CasST platform (Menychtas et al., 2014; Menychtas et al., 2011). 

4CasST is a cloud e-marketplace model that enables an integrated platform for the 

development and trading XaaS. On the 4CaaST platform, software developers are 

provided with applications, services and components that simplify the process of building 

applications and service providers can sell services by a platform infrastructure that 

support the whole process of an actual e-marketplace transaction. 

2.2.5 Key enablers for Cloud Service e-marketplaces 

Motivated by a number of existing services e-marketplaces, Akolkar et al. (2012) 

identified six enablers for the realisation of the vision of an electronic emporium of cloud-

based services, referred to as the e-marketplace of the future. They include service 

composition, consumability, social network-driven ecosystem, e-marketplace economy 

and support, producibility, and intelligence. The detailed descriptions of these enablers 

are presented as follows: 

a) Service Composition 

The ability to compose services into more complex business solutions as part of the 

ecosystem will increase the number of valuable offerings in the e-marketplace. Service 
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compositions can be formal or incidental. Formal composition refers to the combination 

of one or more services from same or heterogeneous providers; the composite services are 

offered as a commodity in the e-marketplace, and several instances of the service are 

created on-demand. The incidental composition is a one-time composition based on a 

specific user request. 

b) Consumability 

Consumability addresses how easily consumers are able to access services that match 

their requirements, noting that consumers naturally express such requirements in vague 

terms that do not necessarily relate directly to actual service descriptions. Therefore, the 

e-marketplace must possess a deep understanding of consumer requirements in a way that 

can translate into actual solutions. Desirable are alternatives in the form-based and menu-

based interfaces for eliciting requirements;  likewise, presenting the results as a table 

containing a list of alternatives makes it complex for the consumer to fully understand the 

relationships among these alternatives (Song et al., 2007). Flexibility in expressing 

requirements is a must for cloud service e-marketplace of the future; and as such 

incorporates natural language processing, and mechanisms to turn vague and imprecise 

requirements into actual search queries. Furthermore, the e-marketplace should be able to 

engage users in a conversation to further elicit details of requirements, allowing for the 

exploration of candidate solutions, and to perform trade-off analysis, after which an URL 

can be provided for the consumer to use the service. 

c) Social Network-driven Ecosystem  

This promotes the exchange of information among providers and consumers. The pattern 

of information exchange is categorised into consumer-to-provider, provider-to-provider 

and consumer-to-consumer networking. In consumer-to-provider networking, providers 

can discern popular consumer demands and get consumer’s feedback to upgrade or 

improve their service offerings; while consumers can access the available variety of 

offerings. Provider-to-provider networking allows the exchange of information among 

providers to identify opportunities for collaborations to offer more value-added offerings 

through service composition and can learn from other provider’s product reviews to 

enhance its’ own offerings. In networking among themselves, consumers willingly 

volunteer experiences on services consumed, providing a sufficient basis for other 



 

20 

 

consumers’ to make a decision as to engage a particular service. Leveraging on the 

consumer purchase information, the e-marketplace makes intelligent service 

recommendations to other users. 

d) E-marketplace Economics and Operations Support 

This is the e-marketplace’s core framework for business and operations support to enable 

the actual commoditization and commercialization of service offerings. This includes 

bringing together and managing the underlying computing infrastructure and services to 

support e-marketplace operations; while providing a mechanism for multi-tenancy, self-

service configuration, APIs, pricing management, profile management, billing, payment, 

monitoring, revenue sharing (particularly in cases of composite services), etc. supporting 

service provisioning. 

e) Producibility 

The e-marketplace should provide means for creating and enlisting services on the 

services catalogue. For example, Salesforce provides Lightning Design System, Lightning 

App Builder and Lightning Components, for developing enterprise apps on the Salesforce 

platform. These apps are available on AppExchange e-marketplace. Such move would 

attract more developers to participate in the ecosystem, promoting innovation and value 

co-creation (Baek et al., 2014). Additionally, providers should be able to publish as much 

information as possible about the service capabilities, QoS features, and pricing etc. Such 

information should be machine-readable, which is useful in matching user requirements. 

f) Intelligence 

The intelligence of a service e-marketplace refers to the e-marketplace ability to know a 

lot about the semantic properties and capabilities of service offerings either single or 

composite and what application domain it belongs to (e.g. Insurance, IT, financial, 

accounting, etc.) and the variations of those services. In addition, it should return precise 

results to request queries. It should be able to incorporate advancement in Natural 

Language Processing (NLP), information retrieval and machine learning. 
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2.2.6 Service Choice Overload 

The concept of a cloud service e-marketplace naturally culminates in a plethora of 

services, with varied quality factors that appeal differently to different users. Service 

selection in the face of so many options (along multiple decision criteria), without proper 

articulation of requirements, can be overwhelming, increasing the cognitive demand of 

the user, and affects user satisfaction of both the process and outcome of decision making 

(Javed et al., 2016; Iyengar and Lepper, 2000; Schwartz, 2004; Haynes, 2009; 

Scheibehenne et al., 2010).  

The difficulties experienced when selecting from an assortment is referred to as choice 

overload (or overchoice). According to Alvin Toffler (Toffler, 1970), who first introduced 

the term, “overchoice takes place when the advantages of diversity and individualization 

are cancelled by the complexity of the buyer's decision-making process”; in other words; 

the more the number of options, the lesser the motivation to choose or the lesser the 

satisfaction with the final choice (Chernev et al., 2015; Haynes, 2009). In the context of 

this thesis, the term Service Choice Overload was coined to describe this phenomenon; 

the consequence of which is that users may end up selecting a suboptimal option or not 

make any decision at all (Jung et al., 2013; Townsend and Kahn, 2014). Table 2.1 shows 

the four major factors, classified into extrinsic and intrinsic factors have been identified to 

impact choice overload in classical choice assortment literature (Chernev et al., 2015).  

Table 2.1: Extrinsic and Intrinsic Factors Affecting Choice Overload 

Factors Description Items 

Extrinsic 
Factors 

Decision task 
difficulty 

This includes the structural 
properties of the decision problem 

The number of alternatives available 

Number of attributes describing each 
alternative 

Time constraints 

Decision Accountability 

Information Presentation Format 

Choice set 
complexity 

This involves the particular value 
of a choice alternatives or options 

The similarity among the alternatives 

The overall attractiveness of the alternatives 

Intrinsic 
Factors 

Preference 
uncertainty 

This refers to the extent to which 
the decision maker has articulated 
preferences  

Knowledge of product and product 
properties  

The availability of a well-defined ideal point 

Decision goal 
This refers to the consumer's goal 
which involves choosing among 
the options in a given assortment 

Decision intent (buying vs. browsing) 

Decision focus (choosing a set of alternative 
vs. choosing a particular one) 

Source: Chernev et al. (2015) 
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From Table 2.1, extrinsic factors refer to the decision aspect that borders on the structural 

characteristics of the problem, defined as decision task difficulty and choice set 

complexity, whereas intrinsic factors pertain to the decision maker in particular and 

consist of preference uncertainty and decision goal (Chernev et al., 2015). Service choice 

overload can be minimised by using low cognitive demand decision support mechanisms 

for eliciting user requirements, in a way that captures the vagueness and uncertainty that 

characterise human decision making. 

2.2.7 Modelling User QoS Requirements 

Apart from the capabilities they provide, cloud services possess non-functional or quality 

attributes classified into technical concerns; for example, reliability, response time, cost, 

availability; and business concerns- security, usability, eco-friendliness, geographical 

location and political dimensions etc. (Barros and Dumas, 2006; Gatzioura et al., 2012; 

Garg et al., 2011; Rehman et al., 2011; Soltani et al., 2012). The measure of these 

attributes in service usage scenarios, as perceived by the user, is described as Quality-of-

Service (QoS). QoS factors represent the non-functional performance of cloud services 

and are among the key determinants in the selection of cloud services (Chen et al., 2013; 

Choi and Jeong, 2014), in which the system returns services that meet the required 

threshold defined by users (Qu and Buyya, 2014). QoS performance information is 

obtained using an objective and/or subjective assessment. Objective QoS assessment is 

obtained from QoS monitoring and benchmark testing, whereas subjective assessments 

are based on user feedback and rating of the service quality after use. Sometimes, service 

providers can self-publish QoS information as contained in the service-level-agreement 

(SLA). When service requestors express their expectation from services, they identify 

functional and non-functional QoS characteristics of the required service; they also have 

to identify which of the QoS criteria are more important compared to the others. One of 

the primary ways to model the importance of criteria of user’s preferences is to ask the 

user to weigh each criterion. However, the major drawback of this approach is the 

complexity of finding proper weight coefficients in the real world applications (Millet, 

1997). Furthermore, user’s QoS preferences in terms of tendencies have to be considered. 

For example, it has to be defined whether a parameter value is more desirable for a 

particular user when it is smaller or greater. In this study, the user’s QoS requirements are 
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described in terms of both QoS preferences and QoS aspirations and are discussed in 

more details below. 

a) User’s QoS Preference 

QoS preferences are determined by the relative importance given to each service attribute. 

Since cloud service cannot be evaluated based on one attribute alone, the degree of 

relevance of each attribute is not the same to the user. The user’s order of preference for 

each of the attributes contributes to the overall quality of the final option and determines 

the user’s satisfaction about the option. For example, given the QoS attributes: Cost, 

Security, Availability and Eco-friendliness; order of preference for the attributes for Users 

A and B’s is shown in Figure 2.2. The search results should only present service offerings 

that have duly considered these inputs during preference elicitation (Knijnenburg and 

Willemsen, 2009).  

 
Figure 2.2: QoS Preference and Aspiration for Two Users 

User A rates Eco-friendliness as highest priority irrespective of the cost. User B is more 
budget conscious and is willing to compromise Security for Lower Cost.  

Source: Researcher (2016) 

b) User’s QoS Aspiration 

QoS aspirations define the users’ desired ideal points for each of the service attributes. It 

comprises the goals and constraints for each QoS criteria. QoS attributes have specific 

values that define the actual non-functional performance of the cloud service. Users are 

able to define their own ideal values, and/or constraints on those values, which serve as 

inputs to generating optimal service alternatives (see Figure 2.2). 

It is obvious that QoS preferences and aspiration differ from one user to the other, as 

shown in Figure 2.2, thereby increasing the complexity of meeting user requirements 
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(Sahri et al., 2014; Javed et al., 2016). Each user desires to maximise (or minimise) to a 

certain extent the values of each attribute and requires the most optimal service that meets 

these requirement thresholds. User’s preference and aspiration define utility functions 

which form the basis for the ranking of service alternatives and ultimately determines 

which alternative is selected by the user. Moreover, the heterogeneity of service providers 

and disparity in QoS data of cloud services requires a model that can serve as a basis for 

comparison and evaluation of services based on user’s QoS requirements (Patiniotakis et 

al., 2014). Hence, a more holistic QoS model of cloud services is required. 

2.2.8 Cloud Services QoS Model 

A cloud service quality model encompasses the critical aspects and Key Performance 

Indicators (KPIs) for decision-making to adopt a particular cloud service. The cloud 

service quality model comprises the important comparable criteria (or metrics) that define 

each service, the inter-criteria relationships among those criteria. It is used for matching 

QoS requirements to available services in the service directory (Tajvidi et al., 2014; Gui 

et al., 2014).  

One of the most comprehensive cloud service QoS models is the Service Measurement 

Index (SMI) (CSMIC, 2014). The Cloud Services Measurement Initiative Consortium 

(CSMIC) was launched by Carnegie Mellon University to develop the Service 

Measurement Index (SMI). The SMI is a framework of critical characteristics, associated 

attributes, and metrics that can be used to compare and evaluate cloud-based services 

from different service providers (Garg et al., 2013; Garg et al., 2011). SMI was designed 

as the standard method to measure any type of cloud service (i.e. XaaS) based on the user 

requirements. The SMI is a hierarchical framework, with seven top level categories, and 

each category is further broken into four or more attributes that underscore the categories  

The seven main categories of the SMI framework include (see Figure 2.3): 

Accountability, Agility, Assurance, Financial, Performance, Security and Privacy, as well 

as Usability. The attributes of the various categories are described below: 

i. Accountability: Accountability refers to a set of attributes used to measure the 

properties related to the service provider organisation, and may be independent of 

the services being provided. Securing trust of the user is important to any 
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provider, as users will find it more convenient to use service from a provider that 

complies with required standards. Attributes like Ownership, Governance, 

Provider Support, Compliance, and Auditability measure the dependability of the 

service provider. 

ii. Agility: Agility indicates how seamlessly, and effectively the service/service 

provider is able to adapt to changes in user’s demand or cloud environment with 

minimal disruptions or expenditure. Attributes like Adaptability, Elasticity, 

Extensibility, Scalability, Portability, and Flexibility underscores the agility of a 

cloud service.  

iii. Assurance: This category describes key attributes that measure the likelihood that 

a service will be available as stated. Assurance is made up of the following 

attributes: Availability, Reliability, Fault Tolerance/ Resiliency, Maintainability, 

Recoverability, Service Stability, and Serviceability. 

iv. Financial: Financial indicates the cost of service and how cost effective it is to 

adopt a particular service/service provider. It is measured by Billing process, Cost, 

Financial Agility, and Financial Structure. 

v. Performance: Performance covers the features and functions of the provided 

services and users need assurance as to how the service meets expected business 

requirements as claimed. It is measured by Accuracy, Functionality, Suitability, 

Interoperability and Response time. 

vi. Security and Privacy: This category includes measures to access the 

effectiveness of a service provider’s control of access to services, data and the 

physical facilities from which services are provided. This is an important criterion, 

especially for security-critical applications in finance or health. More specifically, 

metrics include Security Management, Retention/Disposition, Access control and 

Privilege Management, Physical and Environmental Security, Data Privacy and 

Data Loss, Data Integrity, Data Geographic/Political, Proactive Threat and 

Vulnerability Management. 

vii. Usability: Usability describes how easy to use a service and it is measured in 

terms of Accessibility, Client personnel requirement, Installability, Learnability, 

Operability, Transparency and Understandability. 
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Figure 2.3: SMI 7 Top categories of attributes  

Source: CSMIC (2014) 

2.2.9 Cloud Service Selection as a Decision-Making Problem 

Some cloud services available in the service directory may have similar functionalities 

with varied QoS dimensions, and the user’s choice of these dimensions defines the basis 

on which the user evaluates available service. The need for this type of evaluation 

increases the difficulty of making an optimal selection from the list (Zeng et al., 2009; 

Jung et al., 2013; Garg et al., 2011). For many real world problems, decision making 

requires that many alternatives be evaluated along some criteria, in order to arrive at the 

best choice, which is a nontrivial process (Abraham et al., 2005; Bollen et al., 2010). 

Therefore selecting a service(s) from a cloud e-marketplace can be regarded as a Multi-

Criteria Decision Analysis (MCDA) problem, because the properties that define an 

MCDA problem are similar to the cloud service selection problem (Garg et al., 2011; Gui 

et al., 2014; Rehman et al., 2011).  

MCDA is a popular branch of the decision making and consists of decision alternatives-

representing a finite number of available alternatives. These alternatives usually have 

multiple attributes, and the attributes are the decision criteria (also referred to as goals, 

interestingness dimensions or objectives) by which the alternatives are evaluated by a 

Decision Maker (DM). The criteria often conflict (e.g. cost and availability are attributes 

of a cloud service, a service with low cost may not be high on availability); and the units 

of measurement are often disproportionate (e.g. cost can be measured in Dollars, while 

availability is measured in percentage). Furthermore, the criteria may not be of equal 

priority to the DM, therefore weights are apportioned to determine the degree of 
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importance of each criterion. To this end, an MCDA problem can be defined using a 

matrix format as described in (Triantaphyllou, 2013): 

Definition 2.1: Let	ܣ ൌ 	 ሼܣ௜, ݅	ݎ݋݂ ൌ 1, 2, 3, … ,݉ሽ be a set of decision alternatives and 

ܥ ൌ ൛ܥ௝, ݆	ݎ݋݂ ൌ 1, 2, 3, … , ݊ൟ be a set of criteria according to which the desirability of an 

alternative is evaluated. An MCDM problem is to determine the optimal alternative ܣା 

with the highest degree of desirability with respect to all relevant criteria	ܥ௝ (See Figure 

2.4). 

 
Figure 2.4: A Typical MCDM Decision Matrix  

Source: Triantaphyllou (2013) 

Multi-Criteria Decision Analysis (MCDA) is a well-established area in the field of 

operations research and has proven its effectiveness in addressing different complex real-

world decision-making problems. The requirements of MCDA are similar across all 

decision-making methods and includes the following elements- a finite or infinite set of 

actions, at least two evaluation criteria, and a decision maker (DM) (see Figure 2.4). The 

goals of MCDA include choosing, ranking, or sorting alternatives (Whaiduzzaman et al., 

2014). Typically, it is necessary to use DM’s preferences and goals to differentiate the 

solutions. An Ideal Solution is an alternative that has the highest values for all criteria; 

conversely, an Anti-ideal Solution is the alternative that has the lowest values for all 

criteria. Both ideal and anti-ideal solutions rarely exist in the decision matrix. A more 

feasible solution is referred to as a Non-dominated Solution. A non-dominated solution is 

an alternative that is not dominated by any other alternative. For example, an alternative 

ܺ is said to dominate alternative ܻ if ܺ is at least as good as ܻ against all criteria and is 

better than ܻ in at least one criterion (Rehman et al., 2012). A non-dominated solution 

has the property that without sacrificing at least one criterion, it is not possible to move 

away from it to any other solution.  

 Criteria 

݊ܥ … 3ܥ 2ܥ 1ܥ   

Alternatives ݊ݓ … 3ݓ 2ݓ 1ݓ) )

11ܽ 1ܣ  ܽ12  ܽ13  … ܽ1݊  

21ܽ 2ܣ  ܽ22 ܽ23  … ܽ2݊  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

݉ܣ 	 ܽ݉1 ܽ݉2 ܽ݉3 … ܽ݉4 
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Service selection is effectively enabled by matching the representations of the user’s QoS 

requirements of the properties of the service offerings (Wittern et al., 2012). With well-

articulated preferences and aspiration, the decision maker would be selecting an optimal 

alternative from the list of all non-dominated alternatives (Aruldoss et al., 2013; Rehman 

et al., 2012). Therefore, understanding user’s QoS requirements, which also include how 

to both elicit correct priority weights for each criterion (QoS preferences) and actual QoS 

values (QoS aspirations), is the key to solving an MCDA problem. Decision-making 

techniques that consider both dimensions are effective for searching and navigating the 

product/service space in e-marketplace environments (Pu et al., 2011). Many of such 

techniques abound in the literature, and an exploration of some of these techniques is the 

focus of the next section. 

2.2.10 Approaches to Cloud Service Selection 

In this study, the approaches to cloud service selection have been classified into five 

categories, which include-MCDM-based, Optimization-based, Recommendation-based, 

Proximity-based approaches, and others. This classification is based on the commonalities 

among cloud service selection techniques. Figure 2.5 graphically depicts a classification 

of approaches that have been used for cloud service selection so far in the literature. A 

detailed overview of each category is presented as follows: 

 
Figure 2.5: Approaches for Cloud service selection 

Source: Researcher (2016) 

I. MCDM-based Cloud Service Selection Approaches 

MCDM-based approaches are also referred to as (Multi-Attribute) Decision-Making 

(MADM) (Dastjerdi and Buyya, 2011; Whaiduzzaman et al., 2014; Triantaphyllou, 

2013), or Multi-Criteria Selection Problems (MCSP) (Rehman et al., 2012). MCDM-

based approaches are best suited for scenarios with multiple finite alternatives, known a 

Cloud Service Selection Approaches

MCDM-
based

Optimization-
based

Recommendation-
based

Proximity-
based Others
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priori (Triantaphyllou, 2013; Dastjerdi and Buyya, 2011). The aim is to select one that 

best satisfies the DM’s goals and constraints (Dastjerdi and Buyya, 2011; Sun et al., 

2014).  

Specific techniques in the MCDM-based approaches for cloud service selection include 

Multi-Attribute Utility Theory (MAUT), the Analytic Hierarchy Process (AHP), Simple 

Additive Weighting (SAW), Technique for Order Preference by Similarity to Ideal 

Solution (TOPSIS), Outranking Methods (e.g. Elimination and choice expressing reality -

ELECTRE), Compromise Programming, Min-Max, and Max-Min methods (Rehman et 

al., 2012). An overview of the popular methods in the MCDM-based approaches is 

discussed as follows: 

a) Multi-Attribute Utility Theory 

Multi-Attribute Utility Theory (MAUT) is a value-based model that uses a utility function 

to aggregate the decision makers’ preferences on the decision criteria. The goal of MAUT 

is to find a certain function reflecting usefulness (or utility) of a particular alternative 

(Ehrgott et al., 2009). According to MAUT, the overall evaluation ݒሺݔሻ of an object x is 

defined as a weighted addition of its evaluation with respect to its relevant utility 

objectives (Schäfer, 2001). The overall utility function is defined as ܷሺݔሻ ൌ

∑ ሻݔ௜ሺݑ௜ݓ
௡
௜ୀଵ ,	 where ݊ is the number of evaluation criteria relevant to the decision 

problem; ݓ௜ represents the weight of the decision makers’ preference on the ݅௧௛ criteria; 

and ݑ௜ሺݔሻ is the marginal utility for the ݅௧௛ criteria. 

b) Analytic Hierarchy Process 

Analytic Hierarchy Process (AHP) was developed by Saaty (1988), and it is based on 

priority theory, founded on mathematics and psychology. AHP is applicable to complex 

problems that involve the consideration of multi-criteria/alternatives simultaneously by 

reducing multidimensional problem into one dimension (Saaty and Sodenkamp, 2010). 

Apart from its application in cloud service selection, AHP and has been applied 

extensively in problems such as choice, ranking, prioritisation, resource allocation, 

benchmarking, quality management, and conflict resolution (Forman and Gass, 2001). 

AHP uses the straightforward mathematical structure of consistent matrices and 

eigenvectors to determine priority weights of each criterion relative to other criteria 

(Forman and Gass, 2001; Garg et al., 2013). In contrast to MAUT method, the AHP 
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method uses pairwise comparisons of decision criteria based on the Saaty scale as shown 

in Table 2.2, rather than utility and weighting functions. Details of the AHP method are 

available in (Forman and Gass, 2001). 

Table 2.2: Saaty’s Relative Rating Scale  

INTENSITY OF IMPORTANCE DEFINITION 
1 Equal importance 
3 Somewhat more important 
5 Definitely more important 
7 Much more important 
9 Extremely more important 

Source: Forman and Gass (2001) 

c) Simple Additive Weighting 

The SAW method is the simplest and one of the most commonly known and very widely 

applied approaches for solving MCDM problems (Afshari et al., 2010; Chou et al., 2008). 

It combines the values of criteria and priority weights associated with them into a relevant 

estimation value used to evaluate each alternative (Abdelhamid, 2012). SAW is also 

known as a weighted linear combination or scoring methods (Abdelhamid, 2012; Afshari 

et al., 2010), and is based on a weighted average using the arithmetic mean. An 

evaluation score for each alternative is obtained by the summation of all the products of 

the value of each criterion and the weight of relative importance of that criterion 

(Abdelhamid, 2012). The weights can be assigned directly by the decision maker or 

obtained by determining the relative importance of each criterion to each other by 

pairwise comparison prioritisation methods (e.g. Eigenvector method of AHP). The 

weight assigned to a criterion affects the final score for all alternatives, and also the 

eventual ranking of alternatives. The linear transformation of the raw data is proportional 

to the order of magnitude of the standardised evaluations (Abdelhamid, 2012). The 

strength of the SAW method is its ease of implementation and use (Abdelhamid, 2012). 

The details of the steps of SAW method are available in (Abdelhamid, 2012; Afshari et 

al., 2010). 

d) Technique for Order Preference by Similarity to Ideal Solution 

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method 

was originally developed by Hwang et al. in 1981 (Hwang and Yoon, 1981; Yoon, 1987; 

Hwang et al., 1993). TOPSIS method ranks as best the alternative that is both closest to 
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the ideal solution (Positive Ideal Solution [PIS]) and far from the anti-ideal solution 

(Negative Ideal Solution [NIS]) (Abdelhamid, 2012).  

The PIS maximises the ‘performance’ criteria and minimises the ‘cost’ criteria. In 

TOPSIS, the decision matrix is first normalised into a dimensionless scale using vector 

normalisation in order to identify the ideal and anti-ideal solutions. This is done to 

achieve monotonically increasing or decreasing criteria values that have commensurable 

units. Next, the distance of each alternative to both the ideal and anti-ideal solution is 

determined using a similarity or distance metrics. Each alternative is ranked according to 

the value obtained from the similarity or distance metrics, which is a measure of the 

relative distances or similarity to both the ideal and anti-ideal solutions. The ‘best’ 

alternative simultaneously is one with the shortest distance from the PIS and the farthest 

from the NIS. The computation involved is not complex compared to outranking 

methods. The detailed steps of the TOPSIS methods are available in (Jahanshahloo et al., 

2006). 

e) Outranking Methods 

In outranking methods, one alternative is evaluated to be higher than another, or 

otherwise, denoted by outranking relations derived by pairwise comparison (Bouyssou, 

1996; Garg et al., 2013). The underlying principle of outranking method is evaluating the 

extent to which an alternative dominates another, without necessarily seeking to derive 

one best alternative (Garg et al., 2013). Outranking Methods compares the performance 

of alternatives for each criterion and identifies the extent of a preference of one 

alternative over another, and is applied if the unit of measurement of criteria is 

incomparable and when it is complex to aggregate criteria metrics (Garg et al., 2013). 

Besides the technicality of implementation, another drawback of the outranking method is 

that it does not always arrive at a decision because Outranking Methods allows for the 

expression of incomparability (Garg et al., 2013; Bouyssou, 1996). Two methods fall 

under the outranking approaches: ELECTRE (Benayoun et al., 1966; Roy, 1991) and 

PROMOTHEE (Brans et al., 1986).  

II. Optimization-based Cloud Service Selection Techniques 

Generally, the application of optimisation approaches in decision making usually favours 

scenarios with a large set of alternatives. These alternatives are often times not known a 
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priori (Triantaphyllou, 2013; Dastjerdi and Buyya, 2011). The aim is to select an 

alternative that best satisfies the decision maker’s preference, goals and constraints, by 

minimising or maximising one or several criteria (Dastjerdi and Buyya, 2011; Sun et al., 

2014). The constraints imposed by a decision maker demands that the preferable 

alternative minimises or maximises one or several criteria while observing the imposed 

constraints (Dastjerdi and Buyya, 2011).  

The cloud service selection problem has been formulated as a Constraint Satisfaction 

Problem (CSP), Multiple Choice Knapsack Problem (MCKP) and its variants, tree-search 

problem etc. The solutions to these optimisation problems are either optimal solutions or 

near-optimal solutions and employed the use of heuristics, greedy algorithm, evolutionary 

algorithm etc. (Dastjerdi and Buyya, 2011; Sun et al., 2014).  

III. Recommendation-based Cloud Service Selection Techniques  

Cloud service selection has also been formulated as a recommendation problem. The field 

of recommendation is concerned with assisting consumers to deal with information and 

choice overload by providing more personalised items recommendations (e.g. products or 

services) from a large assortment of items. Recommendation techniques have been 

applied in recommender systems, which are a type of decision-support systems that 

leverage historical data on consumer, consumer preferences, and items, to provide 

recommendations (Han et al., 2009).  

Recommender systems have been successfully deployed in e-commerce, movies and 

book retail and rental sites, with success (e.g. Amazon.com, Netflex.com) and have been 

adapted to the domain of cloud service selection also. Cloud service selection approaches 

based on recommendation proposed service alternatives to a potential user based on the 

similarity between existing/previous users of that service and the potential user. There are 

basically two types of filtering techniques in the recommendation, collaborative filtering 

or content-based filtering approaches, together with a hybrid of the two techniques.  

Collaborative filtering approaches recommend to the current user, items that other users 

with similar tastes (ratings) liked in the past. The similarity in the rating of two users is 

calculated based on the similarity in the rating history of the users. The drawbacks of the 

collaborative filtering approach are cold-start and data sparseness (Han et al., 2009). In 

content-based filtering approach, the system learns to recommend items that are similar to 
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the ones that the user liked in the past. The similarity of items is calculated based on the 

properties associated with the compared items. Collaborative and Content-based filtering 

approaches are often combined with hybrid approaches for more effective 

recommendation result. 

IV. Proximity-based Approaches 

Proximity-based cloud service selection approaches employed similarity or distance 

metrics to rank cloud services. The similarity metric is a measure of proximity between 

two or more objects or variables (Ayeldeen et al., 2015). A number of cloud service 

selection methods are based on such proximity-driven scheme that explores the similarity 

between the QoS attributes of the user’s requirements and the features description of 

specific cloud services in order to rank them (Mirmotalebi et al., 2012). The most 

popularly used distance metric for cloud service selection in the literature is the Euclidean 

distance metrics and its variants. 

V. Other Cloud Service Selection Approaches 

Apart from the cloud service selection approaches discussed in preceding sub-sections, 

some methods for cloud service selection can be classified according to specific 

methodologies used to rank cloud services. A number of these methods employ semantic 

models, that includes the use of ontologies or specific data model to represent cloud 

service QoS information. These methods also use logic-based techniques, like constraint 

programming, to reason on the models in order to evaluate or rank cloud services with 

respect to users’ requirements (Sun et al., 2014). 

2.3 STATE-OF-THE-ART IN CLOUD SERVICE SELECTION 

This section contains the review of the state-of-the-art in cloud service selection, as well 

as a comparative review of existing works in the literature. 

2.3.1 Review of Cloud Service Selection Techniques 

Cloud service selection techniques provide means to capture decision alternatives, elicit 

and interpret user QoS requirements, evaluate and ranks alternatives, according to user 

requirements, and present results to users in a manner that is easy to understand. While 
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these techniques can be distinguished by their support for handling fuzziness or 

subjectivity in QoS information, in this section, various techniques have been classified 

into the following five categories. These categories include the following: 

i. MCDM-based approaches 

ii. Optimization-based approaches  

iii. Recommendation-based approaches 

iv. Proximity-based techniques approaches 

v. Other approaches 

Figure 2.6 summarises the techniques in the literature grouped under each cloud service 

selection approach. 

 
Figure 2.6: Taxonomy of cloud service selection techniques  

Source: Researcher (2016) 

I. Review of MCDM-based Cloud Service Selection Techniques 

A systematic framework to filter, evaluate and select cloud services was proposed in (Gui 

et al., 2014). Specifically, the framework comprises a hierarchical information model for 

bringing together disparate cloud information from a variety of providers; a cloud service 

classification model; a schema for generating rules for creating specific solutions; a 

dynamic preference-driven evaluation model that recommends service solutions based on 

application’s provider preferences; and visually communicate a comparison of solutions 

through an interactive user interface. The service evaluation is performed using MAUT-

based and TOPSIS-based techniques. Another proposed scalable service selection 

algorithm that considers user preferences for optimal performance at minimum cost is 

presented by Zeng et al. (2009). The service selection algorithm proposed computes the 

service cost and gains, as the user only needs to specify two goals (maximum gains or 
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performance and minimum cost). The service proxy will then review the service attributes 

and select the optimal service that aligns with the goals specified by the user. The proxy 

selects all related services from the cloud service repository, evaluates the services’ state 

and availability and based on a SAW technique, aggregated score of each service against 

a threshold. The proxy then computes the performance and cost utility functions and 

ranks the optimal services that satisfy the goal of the clients using an MAUT. 

CloudIntegrator is another MAUT-based approach that performs service composition by 

searching for services that fulfil the activities designated in a workflow and generates 

candidate execution plans as an orchestration of a set of actual services (Cavalcante et al., 

2012). The proposed algorithm employs the cost and the metadata of services’ QoS 

parameters to optimise the selection process by first filtering out what the authors called 

coincident services. They described coincident services as services that are always part of 

any execution plan, contributing to any execution plans, in terms of cost and quality 

values. The authors argue that this filtering would reduce the time it takes to select 

services since the evaluation process considers fewer services. The identification and 

removal of coincident services precede the actual service selection process, while the 

process itself involves computing the global cost and quality values based on each QoS 

dimension and then combine these values in MAUT-based technique to rank and select 

the alternatives with maximal utility value. 

Some approaches based on aggregated weighted sum include Cloud service recommender 

system (CSRS) and Multiple Attribute Decision Methodology for Adoption of Clouds 

(MADMAC). CSRS is a cloud service selection framework proposed for the cloud 

market (Han et al., 2009). The CSRS is based on a Service-Rank (S-Rank) algorithm that 

ranks services with respect to user requirements. S-Rank value is the weighted aggregate 

of quality of virtualization hypervisors, QoS values, and user feedback (ܵ െ ܴܽ݊݇௙௜௡௔௟ ൌ

ߙ ∗ ݁௏ெ೑ೌ೎೟೚ೝ ൅ ߚ ∗ ݁ொ௢ௌ ൅ ܷ݂), and services can be selected based on the result of S-

rank after applying cost filters. MADMAC is a cloud adoption framework that utilizes a 

careful description of attributes, alternatives and priority weights on attributes in order to 

build a decision matrix, for generating relative rankings in identifying the optimal 

alternative (Saripalli and Pingali, 2011). MADMAC uses a modified Wideband Delphi 

method for determining relative weights for each QoS attribute and rankings are achieved 

using the SAW that incorporate these weights. Wideband Delphi is a highly moderated 
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iterative convergent expert opinion survey, used to collect input from subject matter 

experts to determine unanimity on the relative importance of the weights. 

Rather than considering QoS evaluation results in real-time or average historical QoS 

information of cloud services when recommending a service alternative as the best, the 

approach presented by Rehman et al. (2014) utilises the QoS history of cloud services 

from different time periods. A parallelized MCDM-based method is used to rank all cloud 

services in each time period with respect to users’ preferences before combining the 

results used in ranking the alternatives. Rehman et al. (2014) argued that utilising an 

average historical QoS hides the frequent variations in QoS performance, and real-time 

QoS monitoring does not consider the performance history; hence may yield a sub-

optimal alternative in both cases. The approach integrates users’ preference information 

in a TOPSIS and ELECTRE-based approach to rank services at different non-overlapping 

time slots. The evaluations at each time slot are independent of each other and are 

executed in parallel after which the results are aggregated to determine the overall best 

alternative. The entropy method used in information theory was employed to estimate the 

relative weights of the importance of the criteria (Wang et al., 2007). 

Since the interdependence between each QoS attribute affects the service evaluation 

process, and its impact on overall ranking depends on their eventual priority weight in the 

overall selection process, Garg et al. (2013) proposed SMICloud, an approach based on 

SMI QoS model and uses historical QoS measurements, combined with self-published 

QoS information from service providers to derive the actual QoS values. The SMICloud 

is an AHP-based implementation that assigns weights to QoS attributes by considering 

the interdependence between them, thereby providing a quantitative basis to rank cloud 

services. In the same vein, DBaaS-Expert is an AHP-based framework proposed to assist 

in choosing the right DBaaS provider among several Database-as-a-Service (DBaaS) 

offerings (Sahri et al., 2014). The DBaaS-Expert framework consists of an ontology 

modelling and a ranking module. The ontology model is employed to capture the 

concepts of data management systems such as workload type, data model etc. The 

ranking module based on AHP to rank DBaaS offerings according to quality, capacity and 

cost of service dimensions. After the user submits a query, the list of DBaaS offerings 

that does not match user requirements is filtered out, while the pruned list is then ranked 

based on priorities assigned to each criterion by the user. The Weight Service Rank 
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(W_SR) approach for cloud service ranking, proposed by Jahani et al. (2014), is similar 

to the Min-Max algorithm elaborated by Rehman et al. (2012), and it compares the 

different services based on user defined preference on QoS, so as to select the most 

optimal service. When compared to AHP, the performance of the W_SR approach 

showed a significant computational advantage. 

A number of MCDM-based approaches do consider uncertainty information in the service 

evaluation process. Specifically, a cloud service selection model was proposed by Mu et 

al. (2014), which combines both the uncertainty inherent in user’s subjective preference 

information and objective weights. In this approach, subjective weight preferences are 

explicitly expressed by users using linguistic terms and these inputs are processed using 

intuitionistic fuzzy set theory. The objective weight preference is useful when the user has 

no knowledge of the preference and based on the user’s incomplete history of preference 

information on that service; the rough set is used to derive objective weights. The 

aggregation of the subjective and objective weights is integrated with TOPSIS to obtain a 

ranking of the alternatives. Wang et al. (2014) introduced an approach to accurately 

evaluate the QoS of cloud services for a service-oriented cloud computing context. The 

approach employs fuzzy synthetic decision to estimate cloud services in accordance with 

users’ preferences and computes the uncertainty of cloud services based on monitored 

QoS data. After which final evaluation of cloud service is obtained using fuzzy logic 

control. A personalised trust evaluation system to support IaaS selection is proposed by 

Qu and Buyya (2014). The approach measures the trust of cloud services as the degree of 

satisfaction of specific user requirements based on past QoS performances. Membership 

functions and fuzzy hedges were used to elicit users’ subjective QoS requirements and 

generated trust levels for each cloud service through a hierarchical fuzzy inference 

system.  

In order to address uncertainty in the input into MCDM-based evaluation process and the 

evaluation itself, such as uncertainty in service requests, QoS descriptions, user 

preferences, Sun et al. (2014) proposed a hybrid fuzzy MCDM-based framework for 

cloud service selection that uses fuzzy-ontology for function matching and service 

filtering. Based on the pruned alternatives, a Fuzzy-AHP technique was adopted to derive 

informed criteria weights based on vague expression, and, together with fuzzy TOPSIS 

approach, the fuzzy weights were used for service ranking based on fuzzy descriptions on 
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service performance. In the same line of work, Kwon and Seo (2013) present an IaaS 

selection model based on Fuzzy-AHP, to enable the user to select a suitable service 

provider that aligns with the goals of the company. Furthermore, Tajvidi et al. (2014) 

proposed a four-phase fuzzy-based multi-criterion decision-making framework that works 

with cloud service data gathered from third party runtime QoS monitoring tools, together 

with user feedback about the past performance of services. This approach handles the 

imprecision in user’s QoS preferences by capturing the linguistic weight of criteria using 

fuzzy logic, which then converts the triangular fuzzy numbers into precise numbers. 

These numbers were later used in the ranking algorithm, located in the service selection 

process module. This module has two components, metrics calculation and ranking, and 

the ranked resulted was presented to the user via the user interface layer. Complementing 

the hierarchical SMI cloud QoS model, this approach employed a fuzzy AHP-based 

technique to rank cloud services. The ranking is based on the fuzzy perception of users’ 

preferences on QoS dimensions, expressed as weights derived using the Buckley’s 

method (Buckley, 1985). 

An approach was presented by Esposito et al. (2016) to handle uncertainty in users’ QoS 

preferences in the face of untrustworthy indications concerning the QoS levels and prices 

of services posed by selfish providers. The approach, based on multi-objective 

optimisation, maximises the satisfaction and minimises the cost based on user 

requirements. The proposed approach uses fuzzy set theory to handle uncertainty in users’ 

subjective preferences to derive priority weights and employs a TOPSIS-based method to 

rank the alternatives. The approach further integrates the Dempster-Shafer theory of 

evidence to perform a distributed selection of services; and a Mechanism Design, based 

on game theory to reveal actual QoS performance evaluation of service offerings; which 

the authors’ believe promotes truth-telling among service providers. The distribution of 

the selection process is motivated by the limitation of the centralization of the overall 

process, which often results in performance bottleneck that reduces the efficiency of the 

overall infrastructure. 

Apart from the single cloud user, there are scenarios where a cloud service is to be 

selected based on the preferences of members of a group, and the service selected must 

optimise all preferences of members of that group. To solve this problem, a QoS-aware 

SaaS Services Selection with Interval Numbers for Group User (QSSSIN_GU) is 
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proposed by Yu and Zhang (2014). The approach integrates vague QoS preferences of 

members of a group in the evaluation process using Interval Numbers (IN). The authors 

argue that the vagueness in QoS preferences of group users can be expressed in a range of 

values, using IN. Since the QoS preference of the member of a group varies, the use of IN 

can conveniently capture the variety of QoS preferences and obtain a collective 

satisfactory ranking. To normalise the varying dimensions of QoS properties, 

QSSSIN_GU applies a linear scale transform normalisation function to ensure that the 

range of normalised interval numbers belongs to [0, 1]. QSSSIN_GU applies TOPSIS to 

rank and identify the most optimal alternatives. 

Following the review of the MCDM-based techniques, it is observed that none of them 

provided a means to organise or aggregate atomic services to meet composite user 

request. Also, a number of these techniques require users to express their requirements 

using crisp or exact entities. Some other MCDM-based techniques elicit either subjective 

QoS preferences or QoS aspirations but do not elicit both subjective QoS preferences and 

aspirations. Hitherto, the most techniques did not include a user interface to elicit those 

requirements nor provide a means to visualise the ranking results to simplify decision 

making. 

II. Review of Optimization-based Cloud Service Selection Techniques 

Noting that the number of service alternatives is very large in a cloud service 

marketplace, Sundareswaran et al. (2012) proposed a brokerage model that uses a unique 

indexing technique for handling the large information from a large number of services 

and efficient service selection algorithms that rank potential service providers. The cloud 

broker analyses and index providers, according to similarities in their properties using the 

B+-tree as the base structure.  A k-means algorithm is used to group all the service 

providers according to the Hamming distance between the encodings of the service 

information, after which the concept of iDistance is used to generate the indexing key to 

index service points as data points on the B+-tree. The indexing enables efficient 

arrangement of services in a way that the speed of retrieval is enhanced. A simplified GUI 

is provided to facilitate requirement elicitation and based on those requirements the 

broker will search the index, using a greedy algorithm, to generate a ranked list of 

candidate services (single or composite) that best match user requirements.  
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CloudAdvisor enables interactive exploration of various cloud configurations and 

recommends optimal configurations in line with the users’ workload and preferences 

(Jung et al., 2013). The preference dimensions include budget, performance expectation, 

and energy saving for a given workload. It also allows the comparison of a present 

configuration to other cloud offerings. The approach includes an easy to use interface for 

specifying preferences and making a comparison such that the user need not specify 

preferences in crisp terms. The estimated near optimal configuration is determined using 

a constraint optimisation method that considers user’s preferences, availability of 

resources, and dependency of proper hardware and software. The constraint optimisation 

problem is solved using A* search algorithm, while the comparison of current 

configuration to other near-optimal configurations offered by other providers are 

formulated as a knapsack problem, solved by a benchmarking based approximation 

technique based on a greedy algorithm.  

A greedy algorithm was also employed in the MSSOptimiser (Multi-tenant SaaS 

Optimiser) approach (He et al., 2012). The multi-tenant nature of cloud services, in which 

a single computing resource is shared by a large pool of users, necessitates that a multi-

tenant SaaS serves same functional SaaS to multiple end-users with varying QoS 

requirements. The decision process to customise and deploy SaaS for multiple tenants is 

complex; more so, because SaaS developers usually composed services with varied QoS 

to fulfil end-users’ requirements in a way that optimises the cost of resources with the 

best system performance. Since existing QoS-aware service selection approaches are 

targeted at a single tenant, MSSOptimiser (Multi-tenant SaaS Optimiser) (He et al., 2012) 

is proposed to overcome this limitation. MSSOptimiser capture and model users’ QoS 

requirements and constraints; and both assist in selecting services to be composed into 

SaaS that approximates the QoS requirements, while generating a near optimal 

deployment environment that minimises the cost of resource usage and maximises overall 

SaaS performance irrespective of usage cost. The selection problem is formulated as a 

constraint optimisation problem, which employed a greedy algorithm to efficiently find a 

near optimal solution. 

CloudPick simplifies cross-cloud deployment via QoS modelling and deployment 

optimisation (Dastjerdi et al., 2015). Ontology-enriched cloud service description can be 

discovered with improved accuracy, particularly considering QoS descriptions from a 
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variety of domains. CloudPick uses two deployment optimisation algorithms based on 

genetic and Forward-Checking-Based Backtracking (FCBB) algorithms to deploy 

networks of virtual appliances based on minimum cost, high reliability and low latency. 

Through CloudPick, the deployment optimisation is expected to yield the near optimal 

configuration (combination of cloud virtual machines) that optimises the cost of data 

communication, latency and reliability between multiple clouds based on user 

preferences. The VM configuration is achieved through the aggregation of multiple cloud 

services. Qian et al. (2013) argued that proximity plays an important role in choosing 

IaaS, and designed an approach called Cloud Service Selection (CSS), which considers 

the location of IaaS cloud infrastructures, the application clients, and how the 

intercommunication among application components affect IaaS selection. The approach 

manages the scalability issue arising from a large number of data centres and applications 

by introducing a heuristic-based stepwise application placement optimisation algorithm 

that is able to discover near optimal solution in a short time, with the objective of 

minimising cost and maximising high QoS performance of the applications. The trade-off 

between cost and proximity is determined by assigning importance weights. 

The review of the optimization-based cloud service selection techniques revealed that 

these techniques scarcely provided means to compose atomic services or consider 

subjective user requirements; instead, the techniques rely on definite or exact QoS 

preference provided by the user. In addition, only the techniques proposed by 

Sundareswaran et al. (2012), Dastjerdi et al. (2015), and Jung et al. (2013) included a 

user interface to elicit user requirements; meanwhile just the technique presented by Jung 

et al. (2013) technique integrates a visualization mechanism to explore alternatives. 

III. Review of Recommendation-based Cloud Service Selection Techniques 

Since the cold start problem inherent in collaborative filtering and differences in client-

side context (location, device, or integrated development environment [IDE]), the 

accuracy of QoS evaluations and feedback cannot be uniform as its best to express such 

variation in a range rather than real, binary or integer numbers. To this end, Ma and Hu 

(2014) proposed RecTIN, a cloud service recommendation approach to cater for this 

variation by using ternary interval numbers (TIN). TIN enabled the description of QoS 

evaluations from existing users in order to determine the QoS trustworthiness of a cloud 

service for potential cloud service users. K-means clustering algorithm was employed on 
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the basis of multi-attributes trust aggregation, which uses Fuzzy-AHP to rank TIN while 

selecting trustworthy services.  

The trustworthiness of a cloud service will be in question if the feedback from service 

usage is at variance with the expectations on such service expectations. Therefore, trust is 

recognised as a key point of consideration in cloud service selection. Sometimes, the 

information that determines trust degree of service is determined through objective and/or 

subjective feedback assessments. Objective assessment is obtained from QoS monitoring 

and benchmark testing, whereas subjective feedback is obtained from user rating of the 

service quality. Adopting either assessment approach has inherent drawbacks. 

Specifically, it is difficult to evaluate the qualitative aspect of the services using objective 

assessment; whereas subjective assessments are based on the subjective feelings of the 

cloud user, and may contain biases and also depends on the context of the user. 

Considering the fact that many trustworthiness evaluation problems require both objective 

and subjective assessments some cloud service recommendation approaches have 

combined both assessment methods.  

CSTrust, proposed by Ding et al. (2014), is a framework for determining the 

trustworthiness of cloud services by combining QoS prediction obtained from objective 

assessment, and subjective user satisfaction estimation. CSTrust uses collaborative 

filtering and a utility function, referred to as Constant Relative Risk Aversion (CRRA), to 

improve the accuracy of QoS value prediction, by predicting the missing QoS value of 

quantitative attributes from the previous usage scenario of other similar services. 

Furthermore, Yu (2014) advocated that sole dependence on the performance evaluation 

reports from the service providers or experts is not in alignment with the distributed 

nature and openness of the cloud. CloudRec is proposed as a cloud selection framework 

that utilises a user-focused strategy for personalised QoS evaluation of cloud services 

(Yu, 2014). CloudRec is able to use an iterative algorithm on community-based QoS 

assessment model to discover a set of similar user and service communities from scarce 

and large-scale QoS data, as users connect to approximate the QoS values of unknown 

cloud services. CloudRec employs the Regularised Posterior Probabilistic Nonnegative 

Matrix Factorization (RPPNMF). Since RPPNMF is able to handle data scarcity 

characteristic of a cloud environment, it is used to capture the inherent cloud-related 

features, and group cloud services and its users into communities based on this feature. 
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Arising from the review recommendation-based techniques for cloud service selection, 

the following observations were made: apart from Ma and Hu (2014), all the 

recommendation-based techniques expect crisp QoS inputs from the users. Moreover, 

none of the techniques aggregates atomic service to form composite offerings, in addition 

to built-in means by which user requirements can be elicited and the mechanism to 

visualise the services recommended. 

IV. Review of Proximity-based Cloud Service Selection Techniques 

Mirmotalebi et al. (2012) argue that modelling users’ online behaviour would profit 

search engines as well as e-commerce sites and those benefits could be extended to the 

software service selection context. According to Mirmotalebi et al. (2012), ranking 

services would be more satisfactory when users’ preferences are understood, and the 

authors proposed an approach to generate a personalised ranking of cloud services based 

on both explicitly stated and implicitly determined user preferences on non-functional 

properties. While the explicitly stated requirements are clearly expressed by the decision 

maker, the implicit preferences are determined based on information from a stored user 

profile of the decision maker of past usage. The approach by Mirmotalebi et al. (2012) 

assumes the existence of an exact matching algorithm and the personalised ranking is 

computed as the similarity between user’s non-functional preferences and the values of 

the non-functional properties of services. Services with higher matching scores with the 

user’s profile are ranked higher in the result list.  

The need for a search engine for cloud services motivated the work of (Kang and Sim, 

2010), in which Cloudle was proposed. Cloudle is a multi-criteria search engine for cloud 

services with a matching algorithm for cost, technical and functional requirements. The 

search engine’s accuracy is powered by a cloud ontology model, which is designed to 

determine similarity among cloud services, based on the following similarity dimensions- 

concept, object property and datatype property similarities. The functional aspects of 

Cloudle include Query processing module, where the user query is received and 

processed via a web page and sent to the Similarity Reasoning Module to perform 

similarity reasoning. The query is also sent to the price and timeslot utilise Matching 

Module to determine which services match the price and time slot. Finally, in the Rating 

Functional Module, each service from the providers is evaluated based on a utility score. 
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The service with the highest utility score is ranked as the best match and the search result 

is presented as a textual ranked list of cloud services. 

Based on the formal description of the cloud service selection problem, Rehman et al. 

(2011), proposed two weighted sum-based cloud service selection methods (Weighted 

Difference and Exponential Weighted Difference) that compute the similarity between 

two vectors representing user requirement criteria and each service’s properties. Based on 

the similarity index, the service whose properties best match user requirements is selected 

as the best. Three comparison cases were identified which include 1) Exact match 

between properties vector and user requirement vector. 2) Properties vector has 

(generally) lower values than user requirement vector. 3) Properties vector has (generally) 

higher values than user requirement vector. The Weighted Difference (WD) approach is a 

sum of the weighted difference between the criteria of the user and service properties 

(ܵ݅݉ሺܷݍܴ݁ݎ݁ݏ, ሻݎ݁ܵ ൌ ∑ ௜ݓ ∗ ሺܷݐܸܿ݁ݍܴ݁ݎ݁ݏ௜ െ ௜ሻݐܸܿ݁ݏ݁ܦ݁ܿ݅ݒݎ݁ܵ
௡
௜ୀଵ ); while the 

Exponential Weighted Difference (EWD) overcomes the drawback of WD in that the 

criteria in which the service’s properties is below the user requirement is balanced by 

those exceeding user requirements. EWD (ܵ݅݉ሺܷݍܴ݁ݎ݁ݏ, ሻݎ݁ܵ ൌ

∑ ݁ି௪೔∗ሺ௎௦௘௥ோ௘௤௏௘௖௧೔	ି	ௌ௘௥௩௜௖௘஽௘௦௏௘௖௧೔ሻ௡
௜ୀଵ ) utilizes an exponential function to limit the 

effect of mutual elimination between criteria that is below or exceeds the user 

requirement. 

Qu et al. (2014) proposed a context-sensitive service selection model that compares and 

aggregates subjective assessment extracted from the feedback of previous cloud service 

users and objective assessment obtained from quantitative performance testing. Biased 

subjective assessment is eliminated by objective assessment; while both subjective and 

objective assessments and their context information (relating to time-based and location-

based contexts) are combined in evaluating the global performance of cloud services with 

respect to personalised requirements of a potential user. The comparison is performed by 

using a modified bipartite SimRank algorithm to compute the context similarity of the 

objective and subjective assessments, so as to dynamically adjust the benchmark level, in 

order to enhance the exactitude aggregation process to reflect the total quality of cloud 

services. Based on the rating matrix obtained, potential user’s preference is acquired via 

linguistic weights and converted to fuzzy numbers to determine the importance weights 
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assigned to both objective and subjective attributes. Services ranking is then achieved 

using fuzzy-SAW computation. 

Resulting from the review of proximity-based cloud service selection techniques, it is 

observed that just two of the techniques consider either subjective QoS aspiration (Qu et 

al., 2014) or subjective QoS preferences (Mirmotalebi et al., 2012) in the evaluation of 

service alternatives with respect to user requirements, as well as integrating a user 

interface to elicit user requirements. So far, the techniques in this category did not include 

any visualisation mechanism nor focused on the composition of atomic services to meet 

complex user requirements. 

V. Review of Other Cloud Service Selection Techniques 

An extensible approach for cloud storage service selection was proposed by Ruiz-Alvarez 

and Humphrey (2011). The approach is used to select the service that best matches each 

dataset of a given target user application by relying on XML schema containing service 

capabilities and attributes of each cloud storage system. The XML schema is 

algorithmically processed using a matchmaking framework based on the work of Raman 

et al. (1998) to match services and users’ requirements, such that data storage 

recommended satisfies users' requirements of availability and durability, meets 

performance expectations of latency and throughput, and with corresponding cost 

estimates. Based on the SMI QoS model, Baranwal and Vidyarthi (2014) applied ranked 

voting method for ranking and selecting cloud services combined with Data Envelopment 

Analysis (DEA) technique. In ranked voting methods, voters rank the alternatives in order 

of preference. More specially, the approach considers each QoS criteria as voters, and the 

cloud providers are alternatives to be voted for. Since DEA suggests more than one 

optimal alternative, additional rank voting techniques are required to discriminate optimal 

alternatives. However, the ranking order is usually affected by the information about 

other non-optimal alternatives. The approach presented here is formulated as a linear 

programming model (Obata and Ishii, 2003). The model augments DEA with a rank 

voting technique, while eliminating inefficient candidates, and identifying efficient 

candidates derived from the DEA in order to consequently determine the best alternative. 

CloudRecommender, proposed by Zhang et al. (2012), is a declarative approach for 

selecting Cloud-based infrastructure services. In CloudRecommender, cloud service 
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configurations are captured in an ontology-based data model and manipulated using 

regular expressions and SQL. The domain knowledge representing a variety of 

infrastructure service configurations is identified and formalised by a declarative logic-

centred language and implemented as a recommender module atop a relational data 

model. CloudRecommender work based on transactional SQL queries semantics used to 

query, insert, and delete infrastructure services’ configurations. Users interact with 

CloudRecommender via an intuitive widget-based interface both to set criteria, and to 

browse recommendation results. 

Furthermore, the cloud ecosystem involves the interplay of a wide variety of cloud 

capabilities at a different scale of functionalities that must be correctly combined or 

configured by a variety of stakeholders for the application to work efficiently (Quinton et 

al., 2014). The plethora of cloud providers and the variability among cloud services 

usually increases the complexity and the error propensity of configuration choices made 

in an ad hoc manner (Quinton et al., 2014). Software Product Line (SPL) Engineering is a 

software engineering approach that supports the systematic reuse of software assets in a 

pre-planned way to achieve quick, cost effective and quality software products. It enables 

the effective capture of the commonalities and variabilities of software artefacts under 

one variability model and reuses those artefacts to derive the software products 

automatically, therefore reducing the cost of development while the reliability of software 

products is increased. The concept of adopting SPL-based approaches in the cloud service 

context has been explored in (Benlachgar and Belouadha, 2013; Wittern et al., 2012; 

Garcıa-Galán, 2013). 

An SPL-based approach for cloud service selection that employs feature models, 

extended with cardinalities and attributes, to describe the variability in cloud 

environments has been proposed by Quinton et al. (2014). The approach utilises a domain 

model to support the consistent configuration of the complete stack of cloud services that 

comply with user’s functional and quality requirements and automates the deployment of 

such configurations by generating executable deployment scripts. Feature models provide 

the template for how artefacts are to be combined to yield a complete software product 

that satisfies a set of defined constraints. A tool support was developed based on 

Constraint Satisfaction, as part of an earlier SALOON framework to demonstrate the 

plausibility of this approach (Quinton et al., 2013). Meanwhile, the limitation imposed by 
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using a given cloud service and the benefit inherent in using several cloud platforms to 

deploy multi-cloud applications necessitate approaches that can handle the intrinsic 

variabilities among heterogeneous cloud service providers.  

SALOON is a model-driven Ontology-based approach founded on feature models, to 

handle the variability in cloud services while managing the derivation of specific cloud 

configurations (Quinton et al., 2013). Ontology was employed to model the semantics 

underlying the description of a variety of cloud systems. SALOON is proposed as a 

solution that can assist in deploying the multi-cloud application, particularly when one 

provider is incapable meeting all application requirements rather than doing so in an ad 

hoc manner. The SALOON framework is extensible by adding new feature model that 

conforms with the originating SALOON-based feature model meta-model. Cloud services 

are modelled as features, and selected features are transformed into propositional logic 

and constraints, and satisfiability (SAT) solvers (e.g. Sat4j) are used to confirm the 

validity of the configuration. 

In the same line, Wittern et al. (2012) argue that the increase in cloud services provides 

the need for a means to capture the variety of capabilities, and asserts that many cloud 

service section approaches assume the underlying representation of the cloud service 

capabilities which should serve as input to the selection process. Therefore, Wittern et al. 

(2012) presented an approach to harness cloud service capabilities using variability 

model. The variability models serve as representation mechanisms and are called Cloud 

Feature Models (CFMs). CFMs are used to elicit requirements and to perform filtering 

operations within a process the authors referred to as a cloud service selection process 

(CSSP). The CSSP prunes the list of likely candidates based on decision makers’ 

requirements, and these candidates (called Alternative models) are configurations that can 

be deployed. The Alternative models are subjected to a preference-based ranking process, 

subject to decision maker preferences on QOS values. The QoS values expressed by the 

decision maker are considered as the minimum threshold by the CSSP and the CSSP 

allows for evolutionary Cloud service selection, in which requirements can be updated in 

an iterative manner.  

The approach is encapsulated in a prototypical tool based on the Eclipse Modelling 

Framework (EMF) that uses a Choco-based reasoning engine to perform automated 
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analysis on the CFM; and requirement matching module, to determine alternative models 

that satisfy the decision makers’ requirements. 

The review of techniques for cloud service selections in this category showed that a 

number of these techniques made provision for the mechanism to aggregate atomic 

services, as well as a user interface to elicit the users’ QoS preferences and aspirations. 

However, these techniques do not support the elicitation of subjective user requirements, 

and most of the techniques lack the means to present ranking results in a manner that 

reduces the complexity of exploring service alternatives. 

2.3.2 Comparative Analysis of Cloud Service Selection Techniques 

In order to foster the objectives of this study, a comparative analysis of cloud service 

selection techniques was conducted to identify gaps in the literature using a comparative 

framework that embraced some of the key issues in cloud service selection. As the first 

step, 35 related works in the literature were carefully selected based on their relevance to 

the objectives of the comparative survey. These identified works were analysed along six 

dimensions based on the issues observed in the review, and the analyses were captured in 

a tabular format. The comparison framework comprises six analysis dimensions, which 

are:  

i. Organisation and Composition of Atomic Services- describes how a specific 

cloud service selection technique organises and combines atomic services to 

satisfy more complex user requirements. 

ii. The techniques employed to evaluate and rank service alternatives- which 

includes the specific method employed to rank services. 

iii. Elicitation of users’ QoS requirements- explores how the selection technique 

elicits subjective user’s QoS requirements as it relates to QoS preferences and 

aspiration. 

iv. Interactive GUI support- analyse the presence of a user interface mechanism to 

elicit QoS information from users. 

v. Presentation of ranking results- describes the visualisation mechanism 

employed to display ranking result in a manner to aid easy decision making. 
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vi. Evaluation metrics employed- explores the metric for evaluating the 

performance of the cloud service selection techniques. 

The findings of the comparative review are as follows: 

I. Organise and Compose Atomic Services 

Most techniques in the literature, except for (Wittern et al., 2012), (Quinton et al., 2013) 

and (Quinton et al., 2014), assume an underlying decision matrix, comprising of service 

alternatives together with their QoS properties (see Table 2.3). To effectively galvanise 

the potentials of cooperating atomic services, feature models from the domain of 

Software Product-line engineering were employed in Wittern et al (2012), Quinton et al. 

(2013) and Quinton et al. (2014).  

Table 2.3: Summary of method for organising atomic services 

# Method Source 

1 
Feature 
Models 

 SALOON (Quinton et al., 2013), 
 CSSP (Wittern et al., 2012) 
 Quinton et al. (2014) 

2 None 

 Qu and Buyya (2014) 
 ALPHA (Sun et al., 2014) 
 Kwon et al. (2013) 
 Tajvidi et al. (2014) 
 Mu et al. (2014) 
 QSSSIN_GU (Yu and Zhang, 

2014) 
 Esposito et al. (2016) 
 Wang  et al. (2014) 
 SMICloud (Garg et al., 2013) 
 Gui et al. (2014) 
 Zeng et al. (2009) 
 CSRS (Han et al., 2009) 
 MADMAC (Saripalli and 

Pingali, 2011) 
 CloudIntegrator (Cavalcante et 

al., 2012) 
 W_SR (Jahani et al., 2014) 

 Rehman et al. (2014) 
 DBaaS-Expert (Sahri et al., 2014) 
 MSSOptimiser (He et al., 2012) 
 Sundareswaran et al. ( 2012) 
 CloudAdvisor (Jung et al., 2013) 
 CloudPick (Dastjerdi et al., 2015) 
 CSS (Qian et al., 2013) 
 Qu et al. ( 2014 ) 
 Kang and Sim (2010) 
 Mirmotalebi et al. (2012) 
 Rehman et al. (2011) 
 CSTrust (Ding et al., 2014),  
 CloudRec (Yu, 2014) 
 RecTIN (Ma and Hu, 2014) 
 CloudRecommender (Zhang et al., 

2012) 
 Ruiz-Alvarez et al. (2011) 
 Baranwal et al. (2014) 

Source: Researcher (2016) 

II. Techniques Employed to Evaluate and Rank Service Alternatives 

Specific methods employed by existing techniques to evaluate, rank and select services 

were classified into five categories, which include approaches based on MCDM, 

optimisation, recommendation, proximity metrics, and others. Within each category, 

techniques that provide a mechanism to handle fuzziness in relation to the user’s QoS 

requirements were also explored.  
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Table 2.4 shows that existing techniques employ a variety of techniques for service 

evaluation, ranking and decision making to assist users to select the most optimal cloud 

services. Specifically, MCDM-based techniques employ AHP, TOPSIS, SAW, MAUT, 

and ELECTRE. To manage subjectivity in QoS information, other MCDM-based 

techniques employed uncertainty theories like fuzzy set theory, rough sets, interval 

number arithmetic, fuzzy inference and the fuzzy synthetic decision to evaluate service 

alternatives.  

In optimization-based techniques the cloud service evaluation and selection problem were 

formulated as Constraint Satisfaction and/or Optimization Problem (CSP/CSOP), multi-

objective optimization problem, the Multiple-Choice Knapsack Problem (MCKP) and its 

variants, tree-search problem etc.; while solutions are either optimal solutions or near-

optimal solutions by the use of heuristics, greedy algorithm, and genetic algorithms. 

Recommendation-based approaches rely on historical QoS information on services and 

evaluations from previous users to provide recommendations (Han et al., 2009), while 

similarity computation based on similarity/distance metrics is applied in proximity-based 

techniques to determine the closeness of the user’s QoS requirement to the QoS 

description of cloud services. Some other techniques employ semantic models based on 

ontology and custom matching algorithms to determine optimal services. 
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Table 2.4: Summary of Service evaluation and ranking methods 

Category Source 
Summary of QoS-based Service Ranking and 

Evaluation Techniques 

Fuzzy-
MCDM-
based 

Qu and Buyya  (2014) Hierarchical Fuzzy Inference 

ALPHA (Sun et al., 2014) 
Fuzzy-based Ontology Similarity Matching,  Fuzzy-
AHP, Fuzzy-TOPSIS 

Kwon and Seo (2013) Fuzzy-AHP 
Tajvidi et al. (Tajvidi et al., 2014) AHP and Fuzzy-AHP,  
Mu et al. (Mu et al., 2014) Intuitionistic Fuzzy Set, Rough Set, and TOPSIS 
QSSSIN_GU (Yu and Zhang, 
2014) 

Arithmetic on Interval Numbers and TOPSIS 

Esposito et al. (2016) 
Fuzzy Inference, TOPSIS, Dempster-Shafer theory of 
Evidence, Mechanism Design (Game Theory) 

Wang  et al. (2014) Fuzzy Synthetic Decision 

MCDM-
based 

SMICloud (Garg et al., 2013) AHP 
Gui et al. (Gui et al., 2014) MAUT, TOPSIS 
Zeng et al. (2009) SAW, MAUT 
CSRS (Han et al., 2009) SAW 
MADMAC (Saripalli and Pingali, 
2011) 

SAW 

CloudIntegrator (Cavalcante et al., 
2012) 

MAUT 

W_SR (Jahani et al., 2014) Min-Max (Rehman et al., 2012) 
Rehman et al. (2014) TOPSIS, ELECTRE 
DBaaS-Expert (Sahri et al., 2014) Ontology, AHP 

Optimization
-based 
 

MSSOptimiser (He et al., 2012) Constraint Optimisation (Greedy Algorithm) 
Sundareswaran et al. (2012) B+-Tree indexing, Greedy Algorithm 

CloudAdvisor (Jung et al., 2013) 
Constraint optimisation Satisfaction with Greedy 
Algorithm, benchmarking-based approximation 
technique 

CloudPick (Dastjerdi et al., 2015) 
Description Logic Matching Algorithm based on Genetic 
Algorithm 

CSS (Qian et al., 2013) Multi-objective Optimization- heuristic algorithm 

Proximity -
based 

Qu et al. (2014) Similarity Computation, Fuzzy-SAW-based approach  
Kang and Sim (2010) Ontology similarity reasoning, Matching Algorithm 
Mirmotalebi et al. (2012) Similarity Computation 

Rehman et al. (2011) 
Similarity Computation based on Weighted Difference 
and Exponential Weighted Difference methods 

Recommenda
tion-based 

CSTrust (Ding et al., 2014) Collaborative Filtering and Utility Computation 
CloudRec (Yu, 2014) Regularised posterior probabilistic nonnegative matrix 

factorization 
RecTIN (Ma and Hu, 2014) Ternary Interval Number, Fuzzy-AHP 

Others 

CloudRecommender (Zhang et al., 
2012) 

Declarative SQL, Ontology Mapping 

Ruiz-Alvarez et al. ( 2011) Matching Algorithm 
Baranwal et al. (2014) Rank Voting Method, Data Envelope Analysis 
Quinton et al. (Quinton et al., 
2014) 

Feature Modelling, Constraint Satisfaction 

CSSP (Wittern et al., 2012) 
Matching Algorithm, Constraint Satisfaction 
Programming 

SALOON (Quinton et al., 2013) 
Feature modelling, Ontology Similarity Reasoning,  
Prepositional Logic based on SAT 

Source: Researcher (2016) 
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III. Elicitation of Users’ QoS Requirements 

Decision-making has been defined as a process in which alternative(s) are identified and 

selected choosing an alternative(s) in accordance with the goals of, preferences of and 

constraints imposed by a decision maker. The assumption is usually that there are many 

alternatives available and the aim is to select the one that best approximates decision 

makers’ requirements. Most techniques unrealistically assumed that the user would 

provide perfectly crisp, precise and exact preference and aspiration information in the 

evaluation process, which is not congruent with the way humans think and communicate 

(Esposito et al., 2016; Sun et al., 2014; Qu and Buyya, 2014). The analysis explored how 

existing techniques elicit users’ preferences and aspirations in these three dimensions: 

Handling subjectivity in user’s QoS requirements, evaluating interrelationship of QoS 

criteria when eliciting preferences, and if the requirements elicitation covers both users’ 

QoS preferences and QoS aspirations. 

a) Managing Subjectivity of Users’ QoS Requirements 

The complexity of QoS factors blurs the preference perception of users (Dastjerdi and 

Buyya, 2011), thereby affecting how users express the degree of relative importance of 

each criterion and expected ideal points. Some techniques focused on measuring precise 

quantitative data and expect users to express requirements in the same manner, which 

sometimes requires expert knowledge (Qu and Buyya, 2014). Although user requirements 

are elicited in the form of weights and/or aspiration values, the difficulty inherent in 

expressing such requirements in exact or crisp values necessitates a QoS-aware 

techniques that can capture the vagueness in both user’s QoS preferences and aspiration 

(Barros and Dumas, 2006; Sun et al., 2014; Qu and Buyya, 2014; Esposito et al., 2016). 

In the literature, a few techniques have considered fuzziness in the elicitation process for 

QoS preferences by using fuzzy set and rough set theory; while the predominant 

technique for handling fuzziness in determining preference weights is fuzzy-AHP, as 

shown in Table 2.6. Table 2.5 shows that the subjectivity inherent in the users’ QoS 

aspiration requirements is elicited using: fuzzy set theory e.g. (Qu and Buyya, 2014), 

(Esposito et al., 2016) and (Mirmotalebi et al., 2012); interval numbers (e.g. (Ma and Hu, 

2014) and (Yu and Zhang, 2014)). However, the approach presented in (Wang et al., 

2014) engaged fuzzy synthetic decision method of eliciting QoS requirements, and all 

other techniques elicit expected QoS values by users expressing crisp values. 
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Table 2.5: Eliciting QoS aspiration in Cloud Service Selection Techniques 

QoS Aspiration 
Information 

Method Sources 

Fuzzy 

Interval Number 
 RecTIN (Ma and Hu, 2014) 
 QSSSIN_GU (Yu and Zhang, 2014) 

Fuzzy Set Theory 
 Qu and Buyya (2014) 
 Esposito et al. (2016)  
 Mirmotalebi et al. (2012) 

Fuzzy Synthetic 
Decision  Wang  et al. (2014) 

Non-Fuzzy 
Direct Crisp 
Elicitation 

 CloudRecommender (Zhang et al., 2012) 
 Gui et al. (2014) 
 Sundareswaran et al. (2012) 
 Ruiz-Alvarez and Humphrey ( 2011) 
 Quinton et al. (2014) 
 Zeng et al. (2009) 
 CSSP (Wittern et al., 2012) 
 CloudAdvisor (Jung et al., 2013) 
 Kang and Sim (2010) 
 CloudPick (Dastjerdi et al., 2015) 
 CSS (Qian et al., 2013) 
 CSRS (Han et al., 2009) 
 MSSOptimiser (He et al., 2012) 
 SALOON (Quinton et al., 2013) 
 Rehman et al. (2011) 
 W_SR (Jahani et al., 2014) 
 Rehman et al. (2014) 
 DBaaS-Expert (Sahri et al., 2014) 

Source: Researcher (2016) 

b) Considering Relationship among QoS Criteria 

When evaluating multiple criteria in decision-making scenarios, the priority of 

importance of each criterion in relation to other criterion is important in determining the 

overall best alternative(s). In most cases, user preferences are captured as weights 

denoting the priority of each criterion. Quantifying the relative importance of each 

criterion to another criterion is a precise means to capture user preferences, and promotes 

objectivity in the evaluation of services (Garg et al., 2013; Sun et al., 2014). It is 

desirable that techniques should objectively determine the priorities by catering for the 

interrelationships among criteria and one way to achieve this is by employing pairwise 

comparison.  

The approaches for eliciting weights that denote relative importance were summarised 

and classified into pairwise comparison and non-pairwise comparison approaches while 

analysing how fuzziness is handled in the elicitation process (see Table 2.6).  
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Table 2.6: Eliciting QoS preferences in Cloud Service Selection Techniques 

Domain 
Preference 

Information 
Method Sources 

Pairwise 
Comparison 

Fuzzy Fuzzy-AHP 

 RecTIN (Ma and Hu, 2014) 
 Qu and Buyya (2014) 
 ALPHA (Sun et al., 2014) 
 Kwon and Seo (2013) 
 Tajvidi et al. (2014) 

Non-fuzzy AHP  
 DBaaS-Expert (Sahri et al., 2014) 
 SMICloud (Garg et al., 2013) 
 Wang  et al. (2014) 

Non-pairwise 
Comparison 

Fuzzy 

Arbitrarily fuzzy weights 
assigned by users (Fuzzy 
set and rough set 
theories) 

 Mu et al. (2014) 

Arbitrarily fuzzy weights 
assigned by users using 
fuzzy set theory 

 Qu et al. (2014 ) 
 Esposito et al. (2016) 

Non-Fuzzy 

Arbitrarily static weights 
assigned by users 

 Gui et al. (2014) 
 Sundareswaran et al. (2012) 
 Baranwal and Vidyarthi (2014) 
 Zeng et al. (2009)  
 Kang and Sim ( 2010) 
 CSS (Qian et al., 2013) 
 CSRS (Han et al., 2009) 
 Mirmotalebi et al. (2012) 
 CloudIntegrator (Cavalcante et al., 2012) 
 MSSOptimiser (He et al., 2012) 
 Rehman et al. (2011) 
 W_SR (Jahani et al., 2014) 

From Expert (Wide-band 
Delphi method)  MADMAC (Saripalli and Pingali, 2011) 

Significance Weighing 
Method  
(Zheng et al., 2011) 

 Kang and Sim  (2010) 

Entropy Method  
(Wang et al., 2007)  Rehman et al. (2014) 

Source: Researcher (2016) 

As presented in Table 2.6, the techniques classified under pairwise comparison that used 

AHP include Sahri et al. (2014), Garg et al. (2013), Wang et al. (2014); while those that 

employed fuzzy-AHP include Ma and Hu (2014), Qu and Buyya (2014), Sun et al.(2014), 

Kwon and Seo (2013), and Tajvidi et al. (2014).  

However, it is observed that more techniques are classified under non-pairwise 

comparison as priority weights are arbitrarily assigned by users as static weights to 

signify the importance of criteria, without consideration for the interrelationships among 

the criteria. Qu et al. (2014), Esposito et al. (2016) and Mu et al., (2014) are classified 

under non-pairwise comparison, and they allow users’ to express subjectivity in 

arbitrarily assigning priority weights using fuzzy set theories and rough sets. Apart from 



 

55 

 

the user directly assigned weights arbitrarily, weights are sometimes obtained from expert 

surveys employing Wideband Delphi method, significance weighing method (Zheng et 

al., 2011) and entropy method (Wang et al., 2007). 

c) Service Evaluation Based on both QoS Preferences and Aspirations 

QoS factors are rarely of equal importance to users (Sahri et al., 2014; Javed et al., 2016), 

and the importance of each QoS criteria is specified by weights that reflect QoS 

preferences, with which a ranking of the cloud services can be realised. QoS aspirations 

define the user’s desired ideal points for each criterion, and it comprises the goals and 

constraints for each QoS criteria as it pertains to each user; as such, users should be able 

to define their own ideal values, and/or constraints on those values, which serve as 

important inputs to the evaluation process of service alternatives.  

Simultaneously considering both user preferences and aspiration in the service evaluation 

process requires a service evaluation and ranking approach that is able to incorporate 

subjective preference weights while resolving the subjective goals and constraints on QoS 

values expressed by the user. The analysis of QoS preference and aspiration information 

employed in techniques was classified into three categories: those that employ 

information of both QoS preference and aspiration, QoS preference alone, and QoS 

aspiration alone; the consideration of subjectivity in this QoS information was also 

surveyed. Although Table 2.7 shows that a lot of techniques incorporate both weights and 

aspiration values in the evaluation of service alternatives, most of these techniques do not 

cater for subjectivity in QoS requirements.  

As shown in Table 2.7, the techniques that absolutely catered for the fuzziness in both 

QoS preference and aspiration include (Ma and Hu, 2014), (Qu and Buyya, 2014) and 

(Esposito et al., 2016); however, (Mirmotalebi et al., 2012) and (Wang et al., 2014) 

elicited QoS aspiration as fuzzy inputs, while the priority weights are captured as crisp 

values (see footnote in Table 2.7). Other techniques require users to express either 

preference or aspiration information, which is sometimes based on the assumption that 

the alternatives have met all other user’s criteria. 

  



 

56 

 

Table 2.7: QoS Preference and Aspiration in Cloud Service Selection Techniques 

QoS 
Requirement 
Information 

QoS Aspiration and QoS 
Preferences 

Preferences Only Aspiration Only 

Fuzzy 

 RecTIN (Ma and Hu, 2014) 
 Qu and Buyya (2014) 
 Esposito et al. (2016) 
 Mirmotalebi et al. (2012) *  
 Wang et al. (2014)* 

 Kwon and Seo (2013) 
 ALPHA (Sun et al., 2014) 
 Mu et al. (2014) 
 Tajvidi et al. (2014) 
 Qu et al. (2014 ) 

 QSSSIN_GU (Yu and 
Zhang, 2014) 

Non-fuzzy 

 Gui et al. (Gui et al., 2014) 
 Sundareswaran et al. (2012)  
 Zeng et al. (2009) 
 Kang and Sim (2010)  
 DBaaS-Expert (Sahri et al., 

2014) 
 Rehman et al. (2014) 
 W_SR (Jahani et al., 2014) 
 Rehman et al. (2011) 
 MSSOptimiser (He et al., 

2012) 
 CSRS (Han et al., 2009) 
 CSS (Qian et al., 2013) 
 Mirmotalebi et al. (2012) ** 
 Wang  et al. (2014)** 

 SMICloud (Garg et al., 2013),  
 Baranwal and Vidyarthi 

(2014) 
 CloudIntegrator (Cavalcante et 

al., 2012)  
 MADMAC (Saripalli and 

Pingali, 2011) 
 CSTrust (Ding et al., 2014) 

 CloudRecommender 
(Zhang et al., 2012) 

 Ruiz-Alvarez and 
Humphrey  ( 2011) 

 Quinton et al. (2014) 
 CSSP (Wittern et al., 

2012) 
 CloudAdvisor (Jung et 

al., 2013) 
 SALOON (Quinton et 

al., 2013)  
 CloudPick (Dastjerdi et 

al., 2015) 

* QoS aspiration are elicited as fuzzy inputs(fuzzy) 
** QoS preference weights are elicited as crisp weights (non-Fuzzy) 

Source: Researcher (2016) 

IV. Interactive GUI Support 

Users’ engagement with the marketplace to select cloud service should be facilitated by 

intuitive and interactive Graphical User Interfaces (GUI). The essence of such interfaces 

is not to overwhelm users with excessive input fields, so as to reduce the cognitive load 

on users when specifying requirements (Zhang et al., 2012). The interface captures the 

requirements and converts it into queries used to search for optimal alternatives. 

Therefore, such interfaces should support the input of the subjective requirements by 

incorporating fuzziness in the input process in a manner that is easy to understand. Noting 

the complexity of eliciting exact, crisp numerical values, the interface should intuitively 

allow for and interpret vague user input requirements by incorporating linguistic 

expressions and on-screen interaction elements such as sliding and clicking (Sundar et al., 

2014).  

However, observed in Table 2.8 is that most techniques (22 out of 35 techniques 

reviewed) do not incorporate intuitive user interfaces in their approaches. The GUI 

support identified with techniques can be mainly classified into two domains: web-based 

and window-based; with the exception of (Sundareswaran et al., 2012) and (Kwon and 
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Seo, 2013). User interface support was reported in (Sundareswaran et al., 2012), but it 

was difficult to ascertain the domain it belonged; also, the techniques proposed in (Kwon 

and Seo, 2013) employed a third party desktop application, called Expert Choice 11.5 to 

capture user requirements. 

Table 2.8: The use of GUI in Cloud Service Selection Techniques 

GUI Domain Sources 

Web-based 

 Qu and Buyya (2014),  
 Gui et al. (2014),  
 CloudAdvisor (Jung et al., 2013) 
 Kang and Sim (2010) 

 CloudPick (Dastjerdi et al., 2015) 
 CloudRecommender (Zhang et al., 

2012) 

Windows-based 
 Ruiz-Alvarez and Humphrey (2011) 
 Quinton  et al. (2014) 
 CSSP (Wittern et al., 2012) 

 Mirmotalebi et al. (2012) 
 SALOON (Quinton et al., 2013) 

Third Party Software 
(Expert Choice 11.5)  Kwon and Seo ( 2013)  

Unspecified  Sundareswaran et al. (2012)  

No GUI Support 
Reported 

 RecTIN (Ma and Hu, 2014) 
 ALPHA (Sun et al., 2014) 
 SMICloud (Garg et al., 2013) 
 Baranwal and Vidyarthi (2014) 
 Zeng et al. (2009) 
 CSTrust (Ding et al., 2014)  
 Qu et al. (2014 ) 
 CSS (Qian et al., 2013) 
 CSRS (Han et al., 2009) 
 Tajvidi et al. (2014) 
 MADMAC (Saripalli and Pingali, 

2011) 
 Esposito et al. (2016) 
 Mu et al. (2014) 

 CloudIntegrator (Cavalcante et al., 
2012) 

 QSSSIN_GU (Yu and Zhang, 
2014) 

 MSSOptimiser (He et al., 2012) 
 Wang  et al. (2014) 
 Rehman et al. (2011) 
 W_SR (Jahani et al., 2014) 
 CloudRec (Yu, 2014)  
 Rehman et al. (2014) 
 DBaaS-Expert (Sahri et al., 2014) 

Source: Researcher (2016) 

V. Presentation of Ranking Result 

Analysis of techniques in the literature revealed a minimal emphasis on presentation of 

ranking results; with respect to means to explore evaluation and ranking results (see Table 

2.9). Only 5 out of 35 studies incorporated visual exploration mechanisms, including: 

charts (line and radar chart), as in (Gui et al., 2014); and kiviat charts, as in (Garg et al., 

2013); multi-cloud comparison tables, as in (CloudAdvisor (Jung et al., 2013)); web-

based widgets, as in CloudRecommender (Zhang et al., 2012) and third party desktop 

application software, Expert Choice 11.5, as in the work of Kwon and Seo (2013); while 

most techniques did not incorporate any intuitive mechanism for visualizing service 

evaluations and rankings. 
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Table 2.9: Visualisation Mechanism Employed in Cloud Service Selection 

Visualization Type Sources 
Charts  
(e.g. line, kiviat and radar) 

Gui et al. (Gui et al., 2014),  
SMICloud (Garg et al., 2013) 

Multi-cloud Comparison 
Table 

CloudAdvisor (Jung et al., 2013) 

Web Widgets CloudRecommender (Zhang et al., 2012) 
Third-party Software  
(Expert Choice 11.5) 

Kwon and Seo (2013) 

No Information Visualization 
support Reported 

 ALPHA (Sun et al., 2014) 
 Baranwal and Vidyarthi (2014) 
 CloudIntegrator (Cavalcante et 

al., 2012) 
 CloudPick (Dastjerdi et al., 

2015) 
 CloudRec (Yu, 2014) 
 CSRS (Han et al., 2009) 
 CSS (Qian et al., 2013) 
 CSSP (Wittern et al., 2012) 
 CSTrust (Ding et al., 2014)  
 DBaaS-Expert (Sahri et al., 

2014) 
 Esposito et al. (2016) 
 Kang and Sim (2010) 
 MADMAC (Saripalli and 

Pingali, 2011) 
 Mirmotalebi et al. (2012) 

 MSSOptimiser (He et al., 2012) 
 Mu et al. (2014) 
 QSSSIN_GU (Yu and Zhang, 

2014) 
 Qu and Buyya (2014) 
 Qu et al. (Qu et al., 2014 ) 
 Quinton et al. (2014) 
 RecTIN (Ma and Hu, 2014) 
 Rehman et al. (2011) 
 Rehman et al. (2014)  
 Ruiz-Alvarez and Humphrey 

(2011) 
 SALOON (Quinton et al., 2013) 
 Sundareswaran et al. (2012) 
 Tajvidi et al. (2014) 
 W_SR (Jahani et al., 2014) 
 Wang  et al. (2014) 
 Zeng et al. (2009) 

Source: Researcher (2016) 

VI. Metrics for Evaluating Cloud Service Selection Techniques 

Performance evaluation results are vital benchmarks to determine the utility, plausibility 

and applicability of existing techniques. It forms the basis to appraise the pros and cons of 

techniques in order to motivate new proposals or identify new research directions. A 

summary of performance evaluation methods of existing techniques was presented in 

Table 2.10 and five main performance metrics employed in the techniques under review 

was identified. They include accuracy, efficiency, scalability, use case/case study, and 

usability. Accuracy describes the ability of the proposed techniques to evaluate and rank 

service alternatives with respect to approximating users’ requirements. Efficiency is a 

measure of the time cost and computational overhead of the proposed approach, while 

scalability describes the performance of the techniques with an increase in the number of 

service alternatives. To show the practicality of the techniques, use case or case studies 

were employed and usability describes empirical user studies to test the applicability of 

techniques. As illustrated in Table 2.10, accuracy metric topped the list of performance 

evaluation methods as it was employed in 18 out of 35 sources.  
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Table 2.10: Performance Evaluation Metrics Employed for Cloud Service Selection 

# Sources 
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1 ALPHA (Sun et al., 2014) ● ● ◌ ◌ ◌ ◌ ◌ 
2 Baranwal et al. (2014) ◌ ◌ ◌ ◌ ◌ ◌ ◌ 
3 CloudAdvisor (Jung et al., 2013) ● ◌ ◌ ◌ ◌ ◌ ◌ 
4 CloudIntegrator (Cavalcante et al., 2012) ◌ ◌ ◌ ◌ ◌ ◌ ◌ 
5 CloudPick (Dastjerdi et al., 2015) ◌ ● ● ◌ ◌ ◌ ◌ 
6 CloudRec (Yu , 2014) ● ◌ ◌ ◌ ◌ ◌ ◌ 
7 CloudRecommender (Zhang et al., 2012) ◌ ◌ ◌ ● ◌ ◌ ◌ 
8 CSRS (Han et al., 2009)  ●  ● ◌ ◌ ◌ 
9 CSS (Qian et al., 2013) ● ● ● ◌ ◌ ◌ ◌ 
10 CSSP (Wittern et al., 2012)  ◌ ◌ ◌ ◌ ◌ ◌ 
11 CSTrust (Ding et al., 2014),  ● ◌ ◌  ◌ ◌ ◌ 
12 DBaaS-Expert (Sahri et al., 2014)  ◌ ◌ ● ◌ ◌ ◌ 
13 Esposito et al. (2016) ● ● ◌ ◌ ◌ ◌ ◌ 
14 Gui et al. (2014) ● ◌ ◌ ◌ ◌ ◌ ◌ 
15 Kang and Sim (2010) ● ◌ ◌ ◌ ◌ ◌ ◌ 
16 Kwon and Seo (2013) ◌ ◌ ◌ ● ◌ ◌ ◌ 
17 MADMAC (Saripalli and Pingali, 2011) ◌ ◌ ◌ ● ◌ ◌ ◌ 
18 Mirmotalebi et al. (2012) ● ◌ ◌ ● ◌ ◌ ◌ 
19 MSSOptimiser (He et al., 2012) ● ● ◌ ◌ ◌ ◌ ◌ 
20 Mu et al. (2014) ●  ◌ ◌ ◌ ◌ ◌ 
21 QSSSIN_GU (Yu and Zhang, 2014)  ● ◌ ● ◌ ◌ ◌ 
22 Qu and Buyya (2014) ● ◌ ● ● ◌ ◌ ◌ 
23 Qu et al. (2014 ) ● ◌ ◌ ◌ ◌ ◌ ◌ 
24 Quinton et al. (2014)  ◌ ● ◌ ● ◌ ◌ 
25 RecTIN (Ma and Hu, 2014) ● ◌ ◌ ◌ ◌ ◌ ◌ 
26 Rehman et al. (2014) ● ◌ ◌ ◌ ◌ ◌ ◌ 
27 Rehman et al. (2011) ◌ ◌ ◌ ◌ ◌ ◌ ◌ 
28 Ruiz-Alvarez et al. (2011) ◌ ● ◌ ◌ ◌ ● ◌ 
29 SALOON (Quinton et al., 2013) ● ◌ ◌ ● ◌ ◌ ◌ 
30 SMICloud (Garg et al., 2013) ◌ ● ● ● ◌ ◌ ◌ 
31 Sundareswaran et al. (2012) ◌ ● ◌ ◌ ◌ ◌ ◌ 
32 Tajvidi et al. (2014) ◌ ◌ ◌ ● ◌ ◌ ◌ 
33 W_SR (Jahani et al., 2014) ◌ ◌ ● ◌ ◌ ◌ ◌ 
34 Wang  et al. (2014) ● ◌  ◌ ◌ ◌ ◌ 
35 Zeng et al. (2009) ◌ ◌ ● ◌ ◌ ◌ ● 

Count 18 12 7 14 1 1 1 
Extendibility: refers to the cost of extending the proposed algorithm to process new elements and attributes 
in the XML descriptions of the cloud provider;  
Availability: Describing the ubiquitous nature of the algorithm to be deployable to any device by context-
awareness. 
●= Present ◌= Absent 

Source: Researcher (2016) 

Accuracy metric is closely followed by the use of use cases to demonstrate how the 

techniques work. The time efficiency of techniques in relation to baseline approaches or 

other techniques occurred 12 times, with scalability evaluations occurring 7 times out of 

35 sources. A user study to determine the utility and applicability of the technique was 

only reported in (Quinton et al., 2014), where authors conducted the experiment with a 

group of real participants to evaluate the effectiveness compared to a manual process. 
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Extendibility and availability (see footnote on Table 2.10) are other metrics found during 

analysis. Based on this analysis, there seems to be more emphasis on performance metrics 

such as accuracy, efficiency and scalability compared to user satisfaction. 

2.3.3 Gaps Identified in the Literature 

From the foregoing, the comparative survey revealed that a number of key issues have 

attracted the attention of authors on the subject of cloud service selection and this has 

influenced the trends of research in this domain so far. However, there exist some gaps 

with respect to the suitability of the existing techniques for service selection in cloud e-

marketplaces. The gaps have been identified based on the following – the organisation 

and composition of atomic services; elicitation of users’ QoS preferences and QoS 

aspiration; interactive GUI support to elicit QoS information from users; mechanisms for 

the presentation of ranking results; and the evaluation processes employed. The gaps in 

the existing techniques were summarised in Table 2.11.  

The analysis of the 35 techniques summarised in Table 2.11 shows that only 3 out of 35 

techniques reviewed provided a means to organise and aggregate atomic services into 

composite offerings to meet complex user requirements. Meanwhile, 8 techniques possess 

the mechanism to elicit subjective QoS preferences and only 6 techniques elicit subjective 

QoS aspirations. Besides, RecTIN (Ma and Hu, 2014), as well as, the techniques 

proposed by Qu and Buyya (2014) and Esposito et al. (2016), are the only techniques that 

elicit both the QoS preferences and aspirations from the users. Five techniques employed 

the use of a user interface through which users can express their QoS requirements, while 

only 5 techniques reviewed used a form of visualisation to present ranking results. 

Although user experience is a vital consideration when designing a cloud service 

selection technique, only one technique reported a usability evaluation of its service 

selection technique. Meanwhile, the result of our analysis showed that no technique 

completely addressed the vital dimensions that are required to reduce service choice 

overload and improve user experience in cloud service e-marketplaces. Therefore, this 

study fills these gaps by formulating a framework for cloud service selection that will 

improve the quality of user experience in cloud service e-marketplace. 
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Table 2.11: Summary of Gaps Identified in the Literature 

# Source Summary of Technique 

O
rg

an
is

e 
A

to
m

ic
 S

er
vi

ce
s 

E
li

ci
t 

S
u

b
je

ct
iv

e 
Q

oS
 P

re
fe

re
nc

e 

E
li

ci
t 

S
u

b
je

ct
iv

e 
Q

oS
 A

sp
ir

at
io

n
 

E
m

p
lo

y 
G

U
I 

In
co

rp
or

at
e 

V
is

ua
li

za
ti

on
 

U
sa

b
il

it
y 

E
va

lu
at

io
n

 

1 
Qu and Buyya  
(2014) 

A cloud service evaluation system using hierarchical fuzzy inference 
system 

     

2 Sun et al.(2014) A fuzzy framework for cloud service selection      

3 
Kwon and Seo 
(2013) 

A model to choose a cloud service using fuzzy AHP      

4 Tajvidi et al. (2014) A Fuzzy-based cloud service selection framework      
5 Mu et al. (2014) service selection based on uncertain user preference      
6 Yu and Zhang (2014) Group user SaaS services selection using interval numbers      

7 Esposito et al. (2016) 
Smart cloud storage service selection based on fuzzy logic, theory of 
evidence and game theory 

     

8 Wang  et al. (2014) 
A fuzzy synthetic decision and fuzzy logic based cloud service 
selection framework 

     

9 Garg et al. (2013) An AHP-based framework for comparing and ranking cloud services      

10 Gui et al. (2014) 
A service brokering and recommendation mechanism for better-
selecting cloud services 

     

11 Zeng et al. (2009) A SAW and MAUT-based approach for cloud service selection      
12 Han et al. (2009) A service recommendation system for cloud computing market      

13 
Saripalli and Pingali 
(2011) 

A multiple attribute decision methodology for adoption of clouds      

14 
Cavalcante et 
al.(2012) 

An approach to optimize service selection in cloud Multiplatform 
Scenarios 

     


15 Jahani et al. (2014) A Min-Max QoS-based ranking approach for ranking cloud services      
16 Rehman et al. (2014) Parallel cloud service selection and ranking based on QoS history      
17 Sahri et al. (2014) A recommender system for the selection of the right cloud database      
18 He et al. (2012) A QoS-driven service selection for multi-tenant SaaS      

19 
Sundareswaran et al. 
(2012) 

A brokerage-based approach for cloud service selection      

20 Jung et al. (2013) A recommendation platform for cloud configuration and pricing      

21 
Dastjerdi et al. 
(2015) 

A cross-cloud framework for QoS-aware service deployment      

22 Qian et al. (2013) An approach for cloud service selection in IaaS platforms      
23 Qu et al. (2014) Context-aware cloud service selection based on assessment aggregation      

24 
Kang and Sim 
(2010) 

A multi-criteria cloud service search engine      

25 
Mirmotalebi et al. 
(2012) 

A preference-based approach for personalized service ranking      

26 Rehman et al. (2011) Distance-based approach for cloud service ranking      
27 Ding et al. (2014) An approach for evaluating trustworthiness of cloud services      
28 Yu (2014) A framework for personalized service recommendation in the cloud      
29 Ma and Hu (2014) Cloud service recommendation using ternary interval numbers      
30 Zhang et al. (2012) A recommender system for cloud infrastructure services selection      

31 
Ruiz-Alvarez and 
Humphrey (2011) 

An approach to cloud storage service selection based on matchmaking      

32 
Baranwal et al. 
(2014) 

A framework for cloud service selection using ranked voting method      

33 Quinton et al. (2014) A selection and configuration of Cloud environments using SPL        
34 Wittern et al. (2012) Cloud service selection based on variability modelling      

35 Quinton et al. (2013) 
An approach for cloud configurations using feature models and 
ontologies 

     

Count 3 8 6 9 5 1 
 = Supported     = Not Supported 
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2.4 EMERGENT PERSPECTIVES IN CLOUD SERVICE SELECTION 

Consequent on the findings from the comparative survey, a number of emerging 

perspectives on the key ingredients of a service selection framework that will improve the 

user experience in a cloud service e-marketplace are highlighted in this section. These 

emergent perspectives cover the key requirements for a cloud service selection 

framework that will suffice for a cloud service e-marketplace context, as well as relevant 

concepts that enable the realisation of the framework.  

2.4.1 Key Requirements for Cloud Service Selection Framework  

Addressing some of the open issues based on the comparative review is the first step to 

uncovering the requirements for an effective technique suitable for the e-marketplace 

context. The key requirements for a cloud service selection framework are listed and 

described as follows: 

a) Requirement 1: Organise and Compose Cloud Ecosystem Atomic Services 

A cloud marketplace is an ecosystem of heterogeneous services from multiple providers. 

The different ways in which these services are aggregated creates a plethora of potential 

offerings with varied QoS factors that can satisfy complex user needs of users (Barros and 

Dumas, 2006). There is a need to explicitly capture the cloud service attributes 

(functional and non-functional), and the cross-service relationships and constraints that 

guide the cloud service compositions (Akolkar et al., 2012) in a logical and structural 

manner (Wittern et al., 2012). Previous works have proposed the use of feature models to 

capture the variabilities of Cloud services and applied automated means generate valid 

cloud service offerings (Wittern et al., 2012; Quinton et al., 2014). However, users are 

still expected to painstakingly configure cloud services, with the assumption that all users 

are full domain experts. A cloud marketplace should among others, provide a real online 

shopping experience similar to existing e-commerce platforms (Akolkar et al., 2012; 

Menychtas et al., 2014), where available service offerings can be listed in the marketplace 

catalogue and seamlessly updated in a manner completely transparent to the users.  
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b) Requirement 2: Elicit both Fuzzy QoS Preference and Aspirations from users 

An accurate elicitation of user requirements involves the interpretation of fuzzy 

expressions in evaluating services (Qu and Buyya, 2014; Esposito et al., 2016; Sun et al., 

2014). The ability to naturally express vague preferences or aspiration using linguistic 

terminologies is a better way to explore cloud services for selection purposes and would 

enable easier and quicker expression of requirements (Esposito et al., 2016; Qu and 

Buyya, 2014; Gatzioura et al., 2012). For example, it is more convenient to use the 

following linguistic terminologies when expressing QoS aspiration “the threshold of 

reliability metric should be in the vicinity of x”, or “cost should be the in the range of x 

and y” or “High availability close to the value z” etc., (where x, y and z are specific QoS 

values).  

Furthermore, the advantage of pairwise comparisons is that it allows the derivation of 

priority weights of the criterion from comparison matrices, rather than arbitrarily 

assigning weights directly (Javanbarg et al., 2012). Since human judgment is shrouded 

with impression and vagueness in most practical cases, users might be reluctant or unable 

to assign exact numerical values in comparison judgements (Mikhailov and Tsvetino, 

2004). It has been proposed that a better approach to capturing the user’s claim about the 

relative importance of criteria is to delineate comparison ratios as fuzzy numbers (Cakir 

and Canbolat, 2008; Tajvidi et al., 2014; Mikhailov and Tsvetino, 2004). In addition, a 

cloud service selection framework should consider both users’ QoS preferences and 

aspiration in the service evaluation process. 

c) Requirement 3: Evaluation and Rank a Large Assortment of Service 

Alternatives 

Cloud services are characterised by multiple QoS attributes, and there is need to evaluate 

the overall performance of all services by some utility functions, with respect to users’ 

QoS requirements.  The cloud e-marketplace context requires approaches that can deal 

efficiently with a large number of alternatives without accruing high computational 

overhead (Dastjerdi et al., 2015). 
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d) Requirement 4: Integrate Fuzzy-based User Interfaces 

The user interface underscores input and output features of the cloud service e-

marketplace; input is how a user expresses QoS requirements, whereas the output 

presents the result of those requests to the user (Galitz, 2007). In eliciting users’ 

requirements, user interface designs that intuitively capture these requests that are 

subjective in nature are desirable, because the user’s perception of the interface affects 

attitude to what comes out through it (Sundar et al., 2014), and ultimately affects user 

satisfaction (Kuniavsky, 2003; Sundar et al., 2014). Furthermore, integrating fuzzy-

enabled web-based widgets for eliciting vague preferences and aspirations under one 

integrated visual interface can also enhance user experience. 

e) Requirement 5: Visualise Cloud Service Ranking Results 

One of the laws of e-commerce states that if users cannot find it, they cannot buy it either; 

the primary medium of user’s engagement of the cloud service e-marketplace is visual, 

enabling an information visualisation mechanism aid effective user interaction and 

simplifies decision making. Most cloud service selection approaches act like black boxes 

that generate a ranked list of cloud services without providing insight into the basis of the 

rankings (Chen et al., 2013). Cloud service selection frameworks should incorporate 

visualisation mechanism that improves users’ understanding of the rationale of rankings. 

f) Requirement 6: Take into cognizance usability and user experience factors 

Apart from the efficiency and accuracy evaluations which are predominant in the 

literature, more user studies should be carried out on techniques to ascertain its suitability 

for a cloud service e-marketplace context. The user interface obscures all the technical 

and computational processes underlying marketplace operations while showcasing a 

productive, enjoyable and satisfying means to explore and select services. Cloud service 

selection frameworks should include unobtrusive graphical user interfaces to both 

exploration and selection. An unduly complex design increases the difficulty in 

performing the both tasks, and negatively impacts on user experience (Galitz, 2007). 
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2.4.2 Considerations for the Design of a framework for Cloud Service Selection 

Having identified the key requirements for a service selection technique that will suffice 

for selecting services in a cloud service e-marketplace, this subsection elaborates on 

considerations of relevant concepts and techniques that could realise a cloud service 

selection framework that meets these requirements. These concepts and techniques 

formed the basis for the framework proposed in this study. The concepts and techniques 

include the following: i) Organize cloud ecosystem atomic services and populate the 

service e-marketplace directory; ii) Elicit user fuzzy QoS preferences and aspirations; iii) 

Perform QoS-based evaluation and ranking of cloud service alternatives with respect to 

user QoS requirements; iv) Wrap the underlying functionalities of (i), (ii) and (iii) in a 

tidy graphical user interface. Figure 2.7 shows the elements of the considerations for the 

design of a cloud service selection framework, and details concerning each of the 

elements are presented in subsequent sections. 

 
Figure 2.7: Considerations for designing a suitable framework  

Source: Researcher (2016) 

2.4.3 Variability Management for Atomic Services in Cloud Ecosystems 

The cloud service e-marketplace provider is the one who manages the ecosystem and 

decides on the strategies for enhancing the value chain of the ecosystem. Enhancing the 

value inherent in the ecosystem entails deciding how services can be combined to deliver 

maximum value. Besides, to determine valid combinations of service in an ad hoc 

manner, would undermine the net value characteristic of ecosystems; more so, such ad 

hoc processing is error-prone and time-consuming (Deelstra et al., 2005; White et al., 
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2008; Rabiser et al., 2009). Therefore, to adequately estimate the value of the ecosystem, 

first, there is a need for a logical hierarchical arrangement of all the participating services 

into a knowledge model based on a specific combinatorial blueprint and, secondly, a 

means to automatically derive useful information from the analysis of the logical 

hierarchy of these services. Automating the analysis of the ecosystem knowledge model 

produces a number of useful information about the ecosystem and aids the e-marketplace 

to make informed decisions about the ecosystem. For example, the provider may be 

interested in knowing how many valid combinations are possible in the ecosystem; this 

information implies the number of composite services indexed in the service directory 

and provisioned via the e-marketplace. Potentially, this number can be very high 

depending on the number of collaborating atomic services and knowing the number of 

possible composite services is enough basis for the e-marketplace provider to decide the 

range of services the e-marketplace would offer. Other useful information is identifying 

atomic services that will not fully benefit from the value chain in the ecosystem (partly or 

fully due to their presence in a few or none of the possible combinations). Consequently, 

a structured model and automated analysis would offer some strategic benefit to service 

providers, so that service providers can estimate the profitability of the e-marketplace 

platform to make strategic decisions for improving the competitiveness in the ecosystem.  

The structure of the cloud ecosystem is analogous to the concepts of Software Product 

Line Engineering (SPLE) and product configuration (PC) (Hubaux et al., 2012; Berger et 

al., 2014) Therefore, the variability modelling techniques used in the SPLE and PC is 

applicable and can be adapted to effectively structure the hierarchical interrelationships 

among the ecosystem services. The PC domain is concerned with the ability to mass 

customise products targeted at specific requests and/or user segments, which is a crucial 

determinant of reducing lead time, and increase business process efficiency in mass-

manufacturing (Haug et al., 2011). Mass-customization techniques have been applied to 

concrete products, for example, bicycles (bikeconfig.com) and baby strollers 

(bugaboo.com), as well as insubstantial products like software and services (e.g. 

insurance, tourism, etc.). Configuration software is employed to adapt products or 

services to suit specific requirements by combining components, characterised by 

specified attributes, based on the constraints that underlay the valid combinations of those 

components (Hvam et al., 2008). On the other hand, a software product line is a “set of 

software-intensive systems that share a common, managed a set of features satisfying the 
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specific needs of a particular market segment or mission and that are developed from a 

common set of core assets in a prescribed way” (Bass and Kazman, 2003). The 

cornerstone of achieving product configuration and coming up with software instance 

from a software product line is:  

i. The knowledge representation of the component/software features based on 

variabilities and commonalities; 

ii. The computer-aided reasoning techniques employed to support both product 

configuration and software product line;  

On the grounds that the domains of product configuration and software product lines 

share a lot of similarities with the concept of cloud ecosystems, the application of 

variability modelling and automated reasoning techniques to organise and populate the 

service directory with valid composite services were explored in this study. 

I. Variability Management Techniques 

Variability models are used to describe and centrally organise variabilities in the product 

line and product configuration and to support product derivation and configuration. 

Modelling variability is the core of any software product line engineering and product 

configuration endeavour and has received a lot of attention in the research community, 

with several techniques reported in the literature (Deelstra et al., 2005; Czarnecki et al., 

2012; Hubaux et al., 2012). These approaches are classified into two main categories: 

Feature-based Modelling and Decision-based Modelling. While feature model first 

abstracts the product line constituents as hierarchical features with cross-tree 

relationships, creating a basis for product derivation, decision models are the set of 

decisions that are adequate to distinguish among the products of an application 

engineering product line and to guide the adaptation of outputs of application 

engineering. For the purpose of this study, the feature-based modelling approach was 

adopted since both approaches are equally viable for managing variability (Czarnecki et 

al., 2012). 

a) Feature Model 

In software product line engineering, a feature model is a graphical representation of 

common aspects and di�erences in a collection of products in a product line and is used 
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to structure and constrain the product options. A feature is defined as the end-users’ 

understanding of the capabilities of systems in the domain (Berger et al., 2014). A feature 

model is a hierarchically arranged collection of features and consists of the 

interrelationships between a parent feature and its child features, and a set of cross–tree 

constraints that define the criteria for feature inclusion or exclusion. A feature model 

represents in a single model, all possible alternatives that the scope of the feature covers. 

Each solution is a valid instance of the feature model.  

In this study, each participating atomic service has been defined and abstracted as a 

feature in a feature model, and the range of possible solutions that are obtainable from the 

ecosystem is defined by the entire model. Cross-tree constraints provide a ‘legal’ basis of 

how services and their QoS attributes can be legally combined. Benavides et al. 

(Benavides et al., 2010), identified three main types of feature-based models: basic 

feature models (Kang et al., 1990), cardinality-based feature models (Czarnecki et al., 

2005); and extended feature models (Benavides et al., 2006).  

The basic feature model describes three feature types-Mandatory, Optional, and 

Alternative, and two cross-tree constraints-Requires and Excludes. A mandatory feature 

is a feature that must be included in a product, while an optional feature is a feature that 

may or may not be included in a feature. Given a set of features from which only one 

feature is selected to be included in a product is called an alternative feature. However, 

the inadequacy of alternative relationship to model situations with multiple children 

features motivated cardinality-based feature model, in which numbers are introduced to 

denote the multiplicities of the set of features of the basic feature model.  

Although basic feature model and cardinality-based feature model can be used to provide 

a basis for automated configuration of actual products, there is need to sometimes include 

in the feature model quality information about features (such as non-functional attributes). 

In extended feature models, feature model is annotated with quality information; the 

analysis could use these qualities as a basis to determine valid combinations. In classic 

software product line domain, extended feature models are desirable variability modelling 

techniques for modelling cloud ecosystem; they can capture cloud services, their QoS 

attributes and interrelationships constraints, which is important in order to generate valid 

combinations to populate the e-marketplace service directory; an example of a feature in 
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the extended feature model is shown in Figure 2.8. Benavides et al. (2010) presented the 

concepts that describe the extended feature model as follows: 

i. Feature: A functional characteristic of a product or an increment in product 

functionality. E.g. an SMS notification cloud service, or an email cloud service 

ii. Attribute: Any measurable characteristic of a feature that can be measured. For 

example, the SMI factors defined by the CSMIC are measurable entities that form 

the attributes of a cloud service. For Example, reliability is a cloud service QoS 

attributes. 

iii. Attribute domain: The attribute domain specifies the range of values that an 

attribute can assume. Domain covers either qualitative or quantitative (discrete 

and continuous) values corresponding to the heterogeneous QoS of cloud services. 

iv. Attribute value: Attribute values define the actual value that belongs to a 

particular domain. The attributes values of a concrete product are usually an 

aggregation of all the values of corresponding features of the final product. For 

example, the cost of a product aggregates all the cost of the features included in a 

product. 

 

Figure 2.8: Extended Feature Model 
Showing, mandatory, alternative, Optional and ‘Or’ features and relationships  

Adapted from Benavides et al. (2010) 

b) Automated Analysis of Feature Model 

Deriving useful information from the ecosystem model requires an automated mechanism 

that is able to reason on and analyse the knowledge model upon which the service 

interrelationship is built (Benavides et al., 2006; Benavides et al., 2010; Karataş et al., 

2012; Elfaki et al., 2012). Automated analysis of feature models uses computer-aided 

mechanisms to extract important information from feature models (Batory et al., 2006; 

Benavides et al., 2010). The automated approach entails mapping the feature models into 

a specific formal logic-based representation, which becomes inputs to solvers, and 
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analysis operations are performed to obtain useful information. A Solver is a software 

package that accepts formal representations as inputs and determines some satisfiability 

criteria (Benavides et al., 2010). Logic representations are classified into description 

logic, propositional logic, and constraint programming. 

i. Description Logic- Description logic represents a family of formal languages 

used to conceptualise, reason about knowledge and are more expressive than 

propositional logic. Feature models are mapped into description logic formalism 

and logic reasoners such as RACER or Pellet are used for analysis and provide 

explanations for the result. 

ii. Propositional Logic- Propositional logic (PL) is the branch of logic that studies 

propositions defined over a set of Boolean variables and the logical operators: ൓	,

∧, ∨, ⇒ ܽ݊݀	 ⇔. In the PL approach, the feature models are translated into a 

propositional formula and solvers are used to perform analysis operations based 

on the propositional formulae. The propositional formulae is either encoded as a 

conjunctive normal form (CNF), and then solvers such as satisfiability solvers 

(SAT solvers) is employed to perform, or as Directed Acyclic Graph (DAG), used 

by Binary Decision Diagram Solvers (BDD solver) (Benavides et al., 2010; 

Benavides et al., 2006). 

iii. Constraint Programming- Constraint programming uses constraints as a 

programming method to encode and solve Constraint Satisfaction Problems 

(CSP). Formally, CSP is fined as:  

Definition 2.2 (CSP): A Constraint Satisfaction Problem (CSP) is defined as a finite set 

of variables, each of which is associated with a finite domain, and a set of constraints that 

restrict the values the variables can simultaneously take.  

Feature models are mapped into a CSP model and CSP solvers use constraint 

programming to find an assignment for each variable that satisfies the constraints 

(Benavides et al., 2010). The mapping from a feature model to a particular CSP solver is 

less straightforward than with propositional logic because the encoding structure is 

solver-dependent. However, the following steps apply (Benavides et al., 2010):  
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i. Step 1: Each feature of the feature model maps to a variable of the CSP with a 

domain of ሾ0. .1ሿ (i.e. true or false), depending on the kind of variable supported 

by the solver. 

ii. Step 2: Each relationship in the model is mapped into a constraint depending on 

the type of relationship. 

iii. Step 3: The resulting CSP is the one defined by the variables of step 1 and the 

corresponding domains and constraints that are the conjunction of all precedent 

constraints plus additional constraint assigning true to the variable that represents 

the root, depending on the variable’s domain. 

The rules mapping feature model to propositional logic and CSP are presented in Table 

2.12. 

Table 2.12: Feature Model Mapping to CSP and PL 

Relationships in CEFM CSP Mapping PL Mapping 

 
Mandatory 

ܣ ൌ ܣ ܤ ↔  ܤ

 
Optional 

݂݅ሺܣ ൌ 0ሻ  
ܤ ൌ 0

ܤ →  ܣ

 
OR 

݂݅ሺܣ ൐ 0ሻ 
,ଵܤሺ	݉ݑܵ					 ଶܤ ௡ሻ݅݊ܤ… ሺ1…݊ሻ  
 ݁ݏ݈݁

1ܤ ൌ 0, 2ܤ ൌ 0. . . ௡ܤ ൌ 0 

ܣ ↔ ሺܤଵ ∨ ଶܤ ∨ …∨  ௡ሻܤ

 
Alternative 

݂݅ሺܣ ൐ 0ሻ 
,ଵܤሺ	݉ݑܵ					 ଶܤ ௡ሻ݅݊ܤ… ሺ1…1ሻ  
 ݁ݏ݈݁

1ܤ ൌ 0, 2ܤ ൌ 0. . . ௡ܤ ൌ 0 

൫ܤଵ ↔ ሺ൓ܤଶ ∧ …∧ ൓ܤ௡ ∧ ሻ൯ܣ ∧ 
൫ܤଶ ↔ ሺ൓ܤଵ ∧ …∧ ൓ܤ௡ ∧ ሻ൯ܣ ∧	 
ሺܤ௡ ↔ ሺ൓ܤଵ ∧ ൓ ଶܤ …∧ ൓ܤ௡ିଵ ∧  ሻሻܣ

 
Requires 

݂݅ሺܣ ൐ 0ሻ 
ܤ					 ൐ 0 ܣ →  ܤ

 
Excludes 

݂݅ሺܣ ൐ 0ሻ 
ܤ					 ൌ 0

൓ሺܣ ∧  ሻܤ

Source: Benavides et al. (2010) 

c) Automated Analysis Operations on Feature Models 

After the transformation of the knowledge model into a formal logic-based representation, 

mathematical operations based on the semantics of the underlying logic-representation 

can be performed to derive useful information about the feature model. A number of 
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analysis operations exist (Benavides et al., 2006; Benavides et al., 2010), but the 

following analysis operations are relevant to the cloud ecosystem context are: Determine 

the Satisfiability of a feature model, solutions count, and generate all the valid solutions. 

Next, each of the operations is discussed in details.  

i. Determine the Satisfiability of a model- This operation examines the feature 

model and determines returns a verdict that determines the satisfiability of the 

feature model, by telling if the feature model is void or not. A feature model is 

said to be satisfiable, when at least one valid combination, can be derived from it.  

ii. Count Number of Products- This operation returns the number of valid 

combinations that can be derived from the feature model. The e-marketplace 

provider can estimate at every point the number of services that can be offered in 

the e-marketplace. 

iii. Generate all the valid products- This operation generates all valid combinations 

in the feature model that satisfies all the constraints in their interrelationship. In 

the context of this study, the set of valid combinations forms the set of services 

from which the user selects a cloud service that approximates user requirements. 

II. Feature Modelling for Cloud Service Ecosystem  

Based on the foregoing discussions, Figure 2.9 depicts a way of organising ecosystem 

information into a model for obtaining useful information pertinent to operationalizing 

the cloud service e-marketplace: 

 
Figure 2.9: Process for Organising and Composing Ecosystem Atomic Services  

Source: Researcher (2016) 
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One way to model the cloud ecosystem is the adopt feature models (Berger et al., 2014); 

and term Cloud Ecosystem Feature Model (CEFM) can be adopted. The CEFM employs 

the extended feature model due to its flexibility for modelling of services, their QoS and 

the constraints that exist among them. This decision is further strengthened by the 

availability of existing tool support. The CEFM can then be encoded as a formal 

representation using constraint programming approach. The CSP-based logic encoding 

was engaged in this study for its suitability for automated reasoning on attributed feature 

models, such as CEFM. The CSP-based encoding could then be cast into the solver to 

perform automated analysis of the CEFM. The overall QoS attributes of the valid 

combinations are determined by the QoS factors of constituent services. The result of the 

analysis operations is used to update the e-marketplace service directory with candidate 

solutions that would be offered via the e-marketplace platform (Wittern et al., 2012). 

However, this approach also automatically captures scenarios of entrants and exits of 

services. With each case of entrants or exists based on the stated entrance and exit 

policies of the e-marketplace, the CEFM is altered; and a seamless automated update of 

the e-marketplace service directory can still be achieved. 

2.4.4 Fuzzy-Oriented Elicitation of User QoS Requirements 

An accurate elicitation of user requirements involves the interpretation of fuzzy 

expressions and the use of this information in evaluating service alternatives. The 

difficulty imposed by expecting users to use exact or crisp values when expressing 

requirements necessitates the employment of uncertainty theories, such as fuzzy set 

theory, to effectively capture and interpret the vagueness that characterizes user QoS 

requirements for services (Qu and Buyya, 2014; Esposito et al., 2016; Sun et al., 2014). 

To this end, vague QoS preferences or aspirations can be expressed using linguistic 

terminologies, which is a preferable mode of communicating such requirements (Esposito 

et al., 2016; Qu and Buyya, 2014; Gatzioura et al., 2012). This section discusses how 

fuzzy set theory applies in the elicitation of user’s QoS preferences and aspirations. More 

specifically, the preference weights derivation is achieved using the fuzzy pairwise 

comparison of the fuzzy extension of the AHP technique, Fuzzy AHP (or FAHP). Also, 

the fuzziness in user’s QoS aspirations can be elicited and analysed as a system of fuzzy 

goals and constraints using fuzzy linguistic variables and linguistic hedges. The decision-

making technique used to determine optimal service alternative is based on fuzzy multi-
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objective optimisation, in which the objectives of the user, which is mainly to maximise 

their private utility (of the most optimal alternative available) while satisfying their 

aspiration and constraints. A depiction of a proposed fuzzy decision-making model is 

shown in Figure 2.10. 

 
Figure 2.10: User Requirements Elicitation Model  

Source: Researcher (2016) 

I. Overview of Fuzzy Set Theory 

Many classes of objects encountered in the real world do not have precisely defined 

inclusion criteria, e.g. the class of expensive holiday resorts, the class of cheap cars, etc., 

and such class expressions underlie human judgements, particularly in decision making 

(O’Hagan, 1993). Fuzzy Theory, proposed by Zadeh (Zadeh, 1974), is one way to handle 

such vagueness. The use of fuzzy theory is a potent tool that allows us to represent 

objects or concepts in a vague or ambiguous way, similar to a human concept and thought 

process (Bai and Wang, 2006). However, a formal definition of a fuzzy set is given as 

follows: 

Definition 2.3: Let ܺ ൌ ሼݔሽ denote a collection of objects denoted generically by	ݔ. Then 

 :is a set of ordered pairs ܺ	݊݅	ܣ	ݐ݁ݏ	ݕݖݖݑ݂

ܣ ൌ ൛൫ݔ, ,ሻ൯ൟݔ஺ሺߤ ݔ ∈ ܺ (2.1) 

:஺ߤ and ,ܣ	݊݅	ݔ	ሻ is the grade membership ofݔ஺ሺߤ ܺ →  is a function from ܺ to a ܯ

space	ܯ, called the	membership	space; ܯ represents the interval ሾ0,1ሿ, with 0 and 1 

representing the lowest and highest membership grades respectively.  

a) Basic Definitions of Fuzzy Sets  

Definition 2.4 (Intersection): Intersection (or logical and) is the membership function of 

the intersection of two fuzzy sets ܣ and ܤ defined as: 

μ஺∩஻ሺܺሻ ൌ min൫μ஺ሺݔሻ, μ஻ሺݔሻ൯, ݔ∀ ∈ ܺ (2.2) 

Linguistic 
Variable & 
Membership 
Function

Aspiration 
Elicidation

Fuzzy AHP

Pairwise comparsion 
for Preference 

weight Derivation

User QoS 
Requirement
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Definition 2.5 (Union): Union (or exclusive or) is the membership function of the union 

of two fuzzy sets ܣ and ܤ defined as: 

μ஺∪஻ሺܺሻ ൌ max൫ μ஺ሺݔሻ, μ஻ሺݔሻ൯, ݔ∀ ∈ ܺ (2.3) 

b) Linguistic Variable 

To overcome the complexity involved in quantifying certain real world phenomena, 

Zadeh (1974) introduced the notion of linguistic variables to conveniently describe and 

quantify real-world concepts using linguistic terminologies. A linguistic variable is 

decomposed into a set of linguistic terms or values, and each term (or value) represents a 

fuzzy set and makes up a portion of the variable’s domain (or Universe of Discourse). A 

linguistic term can be described using a fuzzy number, connecting the linguistic variable 

to a base numeric value, and are defined by an associated membership function. Formally, 

the linguistic variable is defined as follows: 

Definition 2.9: A linguistic variable is characterised by a quintuple ሺݔ, ܶሺݔሻ, ܷ, ,ܩ  ෩ሻܯ

in which ݔ is the name of the variable, ܶሺݔሻ (or simply	ܶ) denotes the term set of	ݔ, that 

is, the set of names of linguistic values of	ݔ. Each of these values is a fuzzy variable, 

denoted generically by ܺ and ranging over a universe of discourse	ܷ, which is associated 

with the base variable	ܩ ;ݑ is a syntactic rule (which usually has the form of a grammar) 

for generating the name,	ܺ, of values of ܯ .ݔ is a semantic rule for associating with each 

ܺ its meaning. ܯ෩ሺܺሻ	is a fuzzy subset of ܷ. A particular	ܺ, that is, a name generated 

by	ܩ, is called a term. 

c) Fuzzy Numbers 

A much larger class of fuzzy sets represents approximate numbers of one type or another. 

Some of these fuzzy sets are explicitly “fuzzified” numbers, whereas others simply 

represent fuzzy numeric intervals over the domain of a particular variable. Fuzzy numbers 

can take many shapes: bell curves, triangles, and trapezoids. Within each of these shapes, 

the actual meaning of the fuzzy set depends on the width or spread of the set itself. The 

flexibility and robustness of fuzzy sets are made possible by fuzzy numbers. A bell-

shaped, triangular-shaped, or trapezoid-shaped fuzzy set represents a central value and is, 

in essence, a fuzzy number.  
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i. Bell Shaped Fuzzy Number- Figure 2.11 illustrates a typical bell-shaped fuzzy 

number. This is a numeric quantity, Around 20. The fuzzy set About 20 shows 

two principal attributes of fuzzy numbers: a central value and a degree of spread 

around the value. 

`  
Figure 2.11: Bell-shaped fuzzy set: ‘Around 20’  

Source: Cox (2005) 

ii. Trapezoid fuzzy number- The descriptions of a trapezoidal number are 

somewhat different from the bell and triangular numbers because the set does not 

hinge around a single central crisp value. However, a trapezoidal fuzzy number 

can be considered a special case of the triangular fuzzy set (with a plateau width 

of zero) (Cox, 2005). The trapezoidal fuzzy number is defined by: 

ሻݔெ෩ሺߤ ൌ

ە
ۖ
۔

ۖ
ۓ
ݔ െ ܽ
ܾ െ ܽ

, ܽ ൑ ݔ ൑ ܾ

1,																		ܾ ൑ ݔ ൑ ܿ
݀ െ ݔ
݀ െ ܿ

, ܿ ൑ ݔ ൑ ݀

0, ݁ݏ݅ݓݎ݄݁ݐܱ

	 (2.4) 

iii. Triangular fuzzy number- Triangular fuzzy number (TFN) is popular for its low 

computational cost; however, it is less flexible than a bell-shaped fuzzy number. 

The form of a triangular fuzzy number is	 ෤ܽ ൌ ሺ݈, ݉, ݈ ሻ, whereݑ ൑ ݉ ൑  ݈ and ,ݑ

is the lower bound of ෤ܽ, ݉ is the middle value of ෤ܽ, while ݑ is the upper bound of 

෤ܽ. A TFN can be described by: 

ሻݔெ෩ሺߤ ൌ

ە
ۖ
۔

ۖ
ۓ
ݔ െ ݈
݉ െ ݈

, ݈ ൑ ݔ ൑ ݉

ݑ െ ݔ
ݑ െ݉

, ݉ ൑ ݔ ൑ ݑ

0, ݁ݏ݅ݓݎ݄݁ݐ݋

	 (2.5) 
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d) Membership Function 

A Membership Function (MF) is considered as a curve that defines how a crisp input is 

mapped to a membership grade. Each fuzzy set, quantified by a linguistic variable, is 

defined by an associated membership functions. There are several types of membership 

functions, which includes (but not limited to): triangular, trapezoidal, Gaussian, bell-

shaped, and sigmoidal MF. The type of MF to employ depends on the specific situation 

(Bai and Wang, 2006). 

i. Triangular membership function- A triangular MF is described by three 

parameters ܽ, ܾ and	ܿ; where ܽ	and	ܿ, is located at the base of the triangle, and the 

parameter ܾ locate the peak. Variable ݔ is the crisp value, whose membership 

grade is to be determined by the membership function within the UoD. The 

triangular MF is defined as follows: 

݂ሺݔ; ܽ, ܾ, ܿሻ ൌ max ቀmin ቀ
ݔ െ ܽ
ܾ െ ܽ

,
ܿ െ ݔ
ܿ െ ܾ

ቁ , 0ቁ (2.6) 

ii. Trapezoidal membership function- A trapezoid MF is described by four 

parameters	ܽ, ܾ, ܿ and	݀; where ܽ	and	݀, is located at the base of the trapezoid, and 

the parameters ܾ and ܿ is located at the ‘shoulder’. The shoulder of a trapezoid can 

either be narrow or wide. Variable ݔ is the crisp value, whose membership grade 

is to be determined by the membership function within the UoD. The trapezoid 

MF is defined as follows: 

݂ሺݔ; ܽ, ܾ, ܿ, ݀ሻ ൌ max ൬min ൬
ݔ െ ܽ
ܾ െ ܽ

, 1,
݀ െ ݔ
݀ െ ܿ

൰ , 0൰	 (2.7) 

iii. Gaussian membership function- A Gaussian MF is described by two 

parameters	ܿ and	ߪ; where c, is the centre of the distance from the origin, 

corresponding to the centre of the graph, ߪ is the width of the graph, while ݔ is the 

crisp value, whose membership grade is to be determined by a membership 

function. The Gaussian MF is defined as follows: 

݂ሺݔ; ܿ, ሻߪ ൌ ݁
ିሺ௫ି௖ሻమ

ଶఙమ
(2.8) 
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iv. Bell-shaped membership function- A bell-shaped MF has a symmetrical shape 

and it is described by three parameters ܽ, ܾ and	ܿ. The parameter c is the centre of 

the curve, ܾ is usually positive, (a negative ܾ value would produce an inverted 

bell), while ܽ represents the width of the curve. The bell-shaped MF is smooth 

and non-zero at all possible points of	ݔ. The bell-shaped MF is defined as follows: 

݂ሺݔ; ܽ, ܾ, ܿሻ ൌ
1

1 ൅ ቚݔ െ ܿ
ܽ ቚ

ଶ௕ (2.9) 

v. Sigmoidal membership function- Generally, a sigmoidal MF is open to the left 

or right and has two parameters ܽ and	ܿ. The parameter ܿ is the centre of the 

curve, while ܽ determines the gradient of the curve at crossover point	ݔ ൌ ܿ; and 

determines the direction (left or right) of the opening of the curve (when ܽ is 

positive, MF curve opens to the right and left otherwise). In linguistic terms, the 

MF can be used to represent concepts such as ‘very large’ or ‘very negative’, 

depending on the sign of parameter	ܽ. The sigmoidal MF is described as follows: 

݂ሺݔ; ܽ, ܿሻ ൌ
1

1 ൅ ݁ି௔ሺ௫ି௖ሻ
(2.10) 

II. Preference Weight Derivation Using Fuzzy Pairwise Comparison 

Although the AHP method proposed by (Saaty, 1980) allows for some flexibility in 

judgment by providing intermediate values in the Saaty’s discreet scale, it requires that 

users make comparison judgements based on the crisp or exact numerical values (Cakir 

and Canbolat, 2008). However, in many practical cases, the human judgment is shrouded 

with impression and vagueness and users' decision- makers might be reluctant or unable 

to assign exact numerical values to the comparison judgements (Mikhailov and Tsvetino, 

2004). Comparison judgement using on crisp numerical values lacks the flexibility and 

robustness required to effectively capture the vague perception inherent in human 

judgement, and sometimes, lead to unsatisfactory decisions (Yang and Chen, 2004; Cakir 

and Canbolat, 2008; Torfi et al., 2010; Javanbarg et al., 2012; Mikhailov and Tsvetino, 

2004). It has been proposed that a better approach to capturing the user’s claim about the 

relative importance of criteria is to define comparison ratios as fuzzy numbers (Yang and 

Chen, 2004; Cakir and Canbolat, 2008; Torfi et al., 2010; Javanbarg et al., 2012; 
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Mikhailov and Tsvetino, 2004). The application of a fuzzy model to handle the user’s 

vague perception of priorities of all QoS factors is presented in this section.  

a) Main Steps in Fuzzy AHP 

The main steps of fuzzy AHP are as follows: Establish the dimension for evaluation using 

fuzzy numbers and linguistic variables; Perform pairwise comparison judgments; Check 

consistency of judgments, and determine the fuzzy priority weights. 

i- Step 1: Evaluation Dimension using Fuzzy Number and Linguistic Variables 

The blurriness in human judgement can be best captured as an approximation of the crisp 

or exact comparison ratio; such that, when an exact comparison ratio	ܽ௜௝ is represented as 

a fuzzy number,	 ෤ܽ௜௝, the assessment of users’ judgement can correspond to ‘about ܽ௜௝’ or 

‘close to ܽ௜௝’ which is closer to how humans think. Fuzzy linguistic variables are used to 

define comparison judgement values and to represent the underlying fuzzy numbers; and 

Triangular Fuzzy Numbers (TFN), characterised by triangular membership function, are 

popularly used in this regards. As earlier discussed, linguistic variables are variables, 

whose values are words or sentences in a natural language and each fuzzy comparison 

judgment can be performed by using linguistic terms such as “absolutely important”, 

“very strongly important”, “essentially important”, “weakly important”, and “equally 

important” with respect to a fuzzy comparison scale (as shown in Table 2.13). So rather 

than users making comparison judgements mapped to exact values, Nine fuzzy linguistic 

terms, defined by TFN would naturally capture the imprecision and vagueness inherent in 

human judgment and preferences (Cakir and Canbolat, 2008). 

ii- Step 2: Perform Pairwise Comparison Judgements 

Based on the established dimensions, users can use linguistic terms to evaluate the 

importance of QoS criteria, thus performing the mutual pairwise comparison for each of 

the QoS factors. The user assigns a fuzzy weight that reflects the user’s subjective 

preference using fuzzy linguistic terms. The total number of comparisons is	݊ሺ݊ െ 1ሻ/

2,	where	݊	is the number of criteria, and the output of the pairwise comparisons is 

captured in a comparison matrix as shown in Figure 2.12. 
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Table 2.13: Fuzzy Version of Saaty’s 9-point Comparison Scale 

Linguistic 
Term 

Description 

Comparing Criterion ࢏ to 
Criterion ࢐ 

Comparing Criterion ࢐ to 
Criterion ࢏ (Reciprocal) 

Saaty 
Scale 

Fuzzy 
Number 

TFN 
Saaty 
Scale 

Fuzzy 
Number 

TFN 

Equally 
Important 

Criterion ݅ is fuzzily equally as 
important as criterion ݆ 1 1෨  ሺ1, 1, 2ሻ 1 1෨ିଵ ൬

1
2
,
1
1
,
1
1
൰

Moderately 
Important 

Criterion ݅ is fuzzily moderately 
more important than criterion ݆ 3 3෨  ሺ2, 3, 4ሻ

1
3

 3෨ିଵ ൬
1
4
,
1
3
,
1
2
൰

More 
Important 

Criterion ݅ is fuzzily more 
important compared to criterion ݆ 5 5෨  ሺ4, 5, 6ሻ

1
5

 5෨ିଵ ൬
1
6
,
1
5
,
1
4
൰

Strongly 
Important 

Criterion ݅ is fuzzily more 
strongly important than criterion ݆ 7 7෨  ሺ6, 7, 8ሻ

1
7

 7෨ିଵ ൬
1
8
,
1
7
,
1
6
൰

Absolutely 
Important 

Criterion ݅ is fuzzily absolutely 
more important than criterion ݆ 9 9෨  ሺ8, 9, 9ሻ

1
9

 9෨ିଵ ൬
1
9
,
1
9
,
1
8
൰

Intermittent Values between two adjacent scales 

2 2෨  ሺ1, 2, 3ሻ
1
2

 2෨ିଵ ൬
1
3
,
1
2
,
1
1
൰

4 4 ̃ ሺ3, 4, 5ሻ
1
4

 4෨ିଵ ሺ
1
5
,
1
4
,
1
3
ሻ

6 6 ̃ ሺ5, 6, 7ሻ
1
6

 6෨ିଵ ሺ
1
7
,
1
6
,
1
5
ሻ

8 8 ̃ ሺ7, 8, 9ሻ
1
8

 8෨ିଵ ሺ
1
9
,
1
8
,
1
7
ሻ

Criterion ݅ or criterion ݆ is compared to itself  (i.e. 
݅ ൌ ݆, representing the diagonals) 

1 1ሖ  
ሺ1, 1, 1ሻ
 

1 1ିଵሖ  
ሺ1, 1, 1
) 

Source: Ayhan (2013) 

 
Figure 2.12: Fuzzy Comparison Matrix 

Source: Ayhan (2013) 

iii- Step 3: Check Consistency of Judgement 

Checking for consistency in comparison judgement is an important step before deriving 

the priorities from the pairwise comparison matrix. Saaty’s AHP requires that the 

regularity of the crisp comparison judgements be checked to ensure consistency. The 

Consistency Ration (CR) is employed to check consistency in comparison judgement, and 

is determined using the formula ܴܥ ൌ ஼ூ

ோூ
. 

Where CI is the Consistency Index and defined as:	ܫܥ ൌ ఒ೘ೌೣି௡

௡ିଵ
 where ߣ௠௔௫ is the largest 

Eigen value of comparison matrix and RI is the random index, a 9-point scale consistency 

index generated through pairwise comparison. The value of CR is expected to be ൑ 0.1 



 

81 

 

for a matrix larger than 4 ൈ 4 (Saaty, 1990). However, for fuzzified comparison matrix, 

Csutora et al. (Csutora and Buckley, 2001) provided a proof that, for a fuzzy, positive, 

and reciprocal matrix	ܣሚ ൌ ሾ ෤ܽ௜௝ሿ, where	 ෤ܽ௜௝ ൌ ሺߙ௜௝, ,௜௝ߚ ,௜௝ߛ  ௜௝ሻ, (a trapezoidal fuzzyߜ

number) select a value ෤ܽ௜௝ ∈ ሾߚ௜௝, ܣ	௜௝ሿ to generate a corresponding crisp matrixߛ ൌ ሾܽ௜௝ሿ. 

The consistency of the generated matrix ܣ confirms the consistency of matrix	ܣሚ.  

According to (Sun et al., 2014), ߚ௜௝ ൌ  can be ܣ ௜௝, for TFN, and the crisp matrixߛ

generated using values	ܽ௜௝௠ ൌ ሺߚ௜௝ ൅ ௜௝ߛ 2⁄ ሻ of all the fuzzy numbers in fuzzy matrix	ܣሚ, 

while the consistency ratio is computed.	

iv- Step 4: Determine Fuzzy Priority Weights to obtain Crisp Priority Weights 

The fuzzy priority vector ݓ෥்can be obtained by applying prioritization methods, after 

comparison matrix ܣሚ	passes the consistency check. Prioritization is the process of 

deriving the priority values for column vector	்ݓ 	ൌ 	 ሾݓ௜ሿ, ݅	 ൌ 	1, . . . , ݊ from the 

comparison judgment matrix	ܣሚ. There are two ways in which priorities can be derived 

(Zhu et al., 2012):  

i. By deriving fuzzy weights from the comparison matrix. For example, the 

Logarithmic Least Square (LLS) method (Van Laarhoven and Pedrycz, 1983), 

Lambda-Max Method and, the Geometric means method (Buckley’s Method) 

(Buckley, 1985). 

ii. Deriving a set of crisp weights directly from the comparison matrix. For example, 

the Synthetic Extent Analysis method (SEA) (Chang, 1996), and the fuzzy 

preference programming method (Mikhailov, 2003). 

In the former category, fuzzy weights are converted to crisp weights by applying 

defuzzification methods, whereas the defuzzification step is not required in the latter. 

b) Overview of Buckley’s Prioritisation Method 

Buckley (Buckley, 1985) initially investigated fuzzy weights and fuzzy utility for AHP 

technique, extending AHP by the geometric mean method to derive the fuzzy weights. 

The Buckley’s method considered a fuzzy positive reciprocal matrix ܣ ൌ ሾܽ௜௝ሿ extending 

the geometric mean technique to define the fuzzy geometric mean of each row ̃ݎ௜ and 

fuzzy weight	ݓ෥௜, corresponding to each criterion as follows:  
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௜ݎ̃ ൌ ቎ෑ ෤ܽ௜௝

௡

௝ୀଵ

቏

ଵ
௡

, ݅ ൌ 1,2, …݊ (2.11) 

And the fuzzy weight is obtained by 

෥௜ݓ ൌ ప෩ݎ̃ ⊗ ሺ̃ݎଵ 	⊕	 ଶݎ̃ ⨁ ଷݎ̃ ⨁…⨁ ௡ሻݎ̃ , ݅ ൌ 1,2, … , ݊ (2.12) 

Where ෤ܽ୧୨ is fuzzy comparison value of dimension ݅ to criterion ݆, thus, ̃ݎ௜ is a geometric 

mean of fuzzy comparison value of criterion ݅ to other criteria; ݓ෥௜ is the fuzzy weight of 

the ݅௧௛ criterion, can be indicated by a TFN, ݓ ൌ ሺ݈ݓ௜,݉ݓ௜,  ௜ݓݑ ௜, andݓ݉,௜ݓ݈	௜ሻ. Theݓݑ

stand for the lower, middle, and upper values of the fuzzy weight of the ݅௧௛ dimension 

(Sun, 2010). Since the fuzzy weight ݓ෥௜is a fuzzy number, defuzzification is applied to 

obtain crisp values using centre of area method. The result is then normalized to obtain 

the weight vector. More details on the application of the Buckley’s method are available 

in (Ayhan, 2013). 

III. Aspiration Elicitation as Fuzzy Goals and Constraints 

Fuzzy decision making is concerned with the decision-making process in which the goals 

and/or the constraints are fuzzy in nature. In other words, the goals and/or constraint 

constitute set of elements whose boundaries are not sharply defined, as they refer to an 

objective which can be characterised as a fuzzy set in an appropriate space. Examples of a 

fuzzy goal and constraints are “The Cost of the service should be low”, or “Cost should 

be close to c; in the vicinity of c or substantially less than c”, where c is a specified 

constant or cost value as indicated by the user. The linguistic words term “low”, “vicinity 

of”, “close to” and “substantially less than” represent the source of fuzziness and model 

human judgement. Bellman and Zadeh (Bellman and Zadeh, 1970) were the first to 

explore decision-making problems in a fuzzy environment, and they introduced the 

concepts of fuzzy decision based on fuzzy goals and fuzzy constraints. This is done with 

the assumption that the goals and constraints are fuzzy, but the system under control (in 

this case, the cloud service e-marketplace) is deterministic (Yager, 1977; Bellman and 

Zadeh, 1970).  
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User’s QoS aspiration towards the selection of a cloud service can be modelled using 

fuzzy goals and constraints. Modelling user’s aspiration as a combination of fuzzy goals 

and constraints, based on the proposal in (Bellman and Zadeh, 1970; O’Hagan, 1993) 

would allow cloud users to articulate QoS aspirations in a way that captures the 

vagueness in such judgement. By illustration, a simple example of a fuzzy goal would be 

that Security should be high, and a fuzzy constraint could be, it should be that the QoS 

value of security should be substantially larger than a specific crisp threshold value, or in 

the vicinity of a particular threshold value, or approximately within a given range.  

As earlier mentioned, the italicised items represent the fuzziness inherent in the elicitation 

process and are defined by linguistic variables, linguistic terms and linguistics hedges 

characterised by different membership functions. Linguistic hedges are employed to 

modify membership functions to further allow user naturally express their QoS 

aspirations. Approximation Hedges are used as constraints on QoS goals. For example, 

the user can express that security should be high and uses the approximation hedges to 

indicate that the QoS value of security should be around, about or in the vicinity of a 

specific threshold. The decision maker is often faced with the problem of selecting among 

a set (usually finite) of alternatives while simultaneously satisfying a set of objective 

criteria (goals) and observing (not violating) a set of constraints.  The main contribution 

of Bellman and Zadeh (1970) to this theory was in recognising that a ‘good’ decision had 

to satisfy both goals and constraints and that for decision purposes, they should be treated 

alike.  That is to say, that a ‘good’ decision had to satisfy some conjunctive form of goals 

and constraints associated with the decision-making environment.  An optimal decision 

would be one that ‘best’ satisfied all the criteria in some sense.  

For example, Let	ܺ ൌ 	 ሼݔሽ, a set of alternatives. Then the fuzzy goal ܩ is represented as a 

fuzzy set with the triangular membership function, denoted as: 

ሻݔሺீߤ ൌ max ൬min ൬
ݔ െ ݈
݉ െ ݈

,
ݑ െ ݔ
ݑ െ݉

൰ , 0൰ (2.13) 

Where ݈, ݉ and ݑ respectively correspond to values lower, medium and upper values of a 

fuzzy set. 
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In the same regard, a fuzzy constraint,	ܥ, could be that “the value of ݔ should be in the 

vicinity of	ܽ”, representing a fuzzy set whose membership function is bell-shaped, given 

as: 

ሻݔ஼ሺߤ ൌ
1

ሺ1 ൅ ሺݔ െ ܽሻସሻ
(2.14) 

Where ܽ represents a specific constant indicated by the decision maker; the intersection 

of both fuzzy sets of the goal,	ܩ and constraint,	ܥ is denoted as	ܩ ∩  The membership .ܥ

function that represents the intersection is determined by: 

ሻݔ஼ሺ∩ீߤ ൌ min ൤max ൬min ൬
ݔ െ ݈
݉ െ ݈

,
ݑ െ ݔ
ݑ െ݉

൰ , 0൰ ,
1

ሺ1 ൅ ሺݔ െ ܽሻସሻ
൨	 (2.15) 

A formal and more generic definition is presented next: 

Definition 2.6: (Bellman and Zadeh, 1970): Suppose there are ݊ Goals ሺܩଵ  ݉ ௡ሻ andܩ…

Constraints	ሺܥଵ, … ,  is the intersection of all Goals and ܦ	௠ሻ, then the resultant decisionܥ

Constraints, denoted as: 

ܦ ൌ ଵܩ ଶܩ	∩ 	∩ ⋯∩ ௡ܩ ∩ ଵܥ ∩ ଶܥ ∩ ⋯∩ ௠ܥ (2.16) 

Corresponding to: 

ሻݔ஽ሺߤ ൌ 	min ቀ	μீ೔ሺݔሻ, μீమሺݔሻ… , μீ೙ሺݔሻ, μ஼భሺݔሻ, μ஼మሺݔሻ, … , μ஼೘ሺݔሻቁ		 (2.17) 

The fuzzy set of alternatives is populated by the intersection of goals and constraints, 

better still, “a confluence of goals and constraints” according to (Bellman and Zadeh, 

1970). A maximising decision is a point in the set of alternatives at which the 

membership function of a fuzzy decision attains its maximum value. The optimal 

alternative is found using a maximising decision	ܦ∗ corresponding to: 

μ஽∗ሺݔሻ ൌ argሼmax
௫∈௑

ሻሽݔ஽ሺߤ (2.18) 

The maximising decision is obtained from the value of	ݔ with the highest membership 

grade in the decision fuzzy set	ܦ.  
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To further explain the fuzzy decision making concept discussed in this section, a simple 

example is presented on how to elicit the user QoS aspiration using linguistic variables 

and hedges. Assume that the range of values that covers the Availability of a cloud service 

is between	0%	݋ݐ	100%. These ranges can be further divided into three sub-ranges, 

which are: 

i. Low Availability:  0% ~ 40%  

ii. Medium Availability:  30% ~ 75%  

iii. High Availability:  70% ~ 100% 

The sub-ranges can be converted to linguistic terms,	݈݅ܽݒܣ௅ைௐ, ݈݅ܽݒܣொ஽ூ௎ெ and 

  .ுூீு, and can be defined by trapezoidal membership functions݈݅ܽݒܣ

Suppose the User’s Goal and constraints on Availability are as follows: 

i. Goal One (ܩ): High Availability 

ii. Constraint One (ܥ): The value of availability must be close to 99%. 

The membership function for the goal ܩ is defined as follows: 

ሻݔሺீߤ ൌ max ൬min ൬
ݔ െ ܽ
ܾ െ ܽ

, 1,
݀ െ ݔ
݀ െ ܿ

൰ , 0൰ (2.19) 

Where ܽ ൌ 70%, ܾ ൌ 75%, ܿ ൌ 85% and	݀ ൌ 100%, representing the trapezoidal fuzzy 

number of fuzzy sets	݈݅ܽݒܣுூீு. 

The membership function of the Constraint ܥ is defined as follows: 

ሻݔ஼ሺߤ ൌ
1

1 ൅ 10ሺݔ െ ߰ሻଶ
 (2.20) 

Where	߰ ൌ 99% as indicated in constraint	ܥ; the user’s aspiration is said to be in the 

decision set of the intercession of the goal and constraint: 

ሻݔ஽ሺߤ ൌ ሻݔሺீߤ	 ∩ ሻݔ஼ሺߤ ൌ min൫ μீሺݔሻ, μ஼ሺݔሻ൯ (2.21) 
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The optimal value of availability that approximates user’s aspiration corresponds to any ݔ 

in the support of	ܦ∗, which can be formulated as finding the value of ݔ maximizes the 

intersection membership function, or equivalently: 

maxߤ஽ሺݔሻ ൌ max݉݅݊൫ μீሺݔሻ, μ஼ሺݔሻ൯ (2.22) 

Using MOEA Framework, a Java library of Multi-Objective Evolutionary Algorithms, in 

NetBeans, the optimal solution that satisfies both the goal and constraint is ݔ ൌ 98.0% 

at	ߤ஽ሺݔሻ ൌ 0.1224. The concept of fuzzy decision is applicable in determining the 

approximate user QoS aspirations to evaluate cloud services and determine the best 

matches. Aspirations are then elicited without the user explicitly specifying actual values, 

but rather using natural, everyday language enabled by fuzzy set theory. Since humans 

naturally use and respond to fuzzy concepts, using fuzzy terms to express QoS 

requirements are more convenient and easier than using crisp numeric values. 

2.4.5 Fuzzy Optimisation for QoS-based Service Evaluation  

The next step after obtaining user’s QoS requirements is to evaluate each service 

alternative with respect to user’s QoS requirements. The evaluation forms the basis by 

which users can select the ‘most optimal’ service(s), and service selection depends on the 

relative importance given to each QoS attributes and QoS aspiration specified by the user 

(Rehman et al., 2011). Since cloud services are characterised by multiple QoS attributes, 

utility functions can be employed to evaluate the overall quality of a given service. The 

utility function maps the overall performance of a cloud service into a single real score 

value, clarifying the goodness or usefulness of each alternative; and alternatives are 

ranked based on these values.  

Although some MCDM approaches discussed earlier can be used to evaluate service, 

many of these approaches only take into consideration the priorities of user’s QoS 

preferences, which is captured as importance weights, and do not cater for user’s 

aspiration in the service evaluation process. For example, AHP does not consider user’s 

ideal QoS aspiration value for each criterion; SAW and TOPSIS are used to derive 

performance scores and alternatives are ranked to determine the alternative with the ‘best’ 

performance without recourse to user’s aspiration; moreover, these approaches are best 

applicable when the number of alternatives is very few. An emergent perspective is a 
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multi-function service evaluation that is capable of considering both users’ preferences 

and aspiration in the service evaluation process; and can be applied to evaluate a large set 

of alternatives, as is the case in cloud service e-marketplace. Such evaluation model can 

simultaneously rank service alternatives with respect to the ‘ideal’ alternative (based on 

the available QoS information) and the user’s specified QoS preferences and aspiration. 

To this end, an SAW-based technique (Yoon and Hwang, 1995) can be combined with a 

proximity-based function (based on a similarity metric) to evaluate each service 

alternative along with their QoS performance, with respect to user’s QoS requirements.  

Owing to the simplicity and practicality of the SAW technique, it is popularly used to 

derive a performance score as a weighted sum of all QoS attributes for each alternative. 

The performance score forms the basis to estimate the ‘goodness’ of an alternative and for 

benchmarking each alternative against the ‘ideal’ alternative. The ideal alternative is 

defined as the alternative with the best value for all QoS criteria and usually does not 

quite exist (Rehman et al., 2012). The application of SAW in evaluating service 

alternatives supposes that the alternative with the highest performance score would be 

selected; however, one would observe that the service alternative with the highest utility 

may not necessarily correspond or approximates user’s QoS aspiration.  

Another way to facilitate selection of cloud service is to rank alternatives in accordance to 

their nearness to user’s QoS requirements; users can then make a selection from the 

ranked list (Rehman et al., 2011). Similarity or distance metrics are used to determine to 

what extent two vectors are alike and can be applied to determine the nearness of all 

services available on the e-marketplace to user-defined QoS requirements (Mirmotalebi et 

al., 2012). Proximity-based service evaluation involves a comparison between the user’s 

requirement and all service alternatives, using a similarity metric to determine the service 

alternative that best matches user requirements. Based on the use of similarity 

computation, Rehman et al. (2011) identified three possible outcomes: i) Exact match 

with user requirements. ii) Generally lower values than the user requirement and iii) 

Generally higher values than the user requirement. Based on these outcomes, Rehman et 

al. (2011) noted that the use of similarity metrics would suffice for outcomes (i) and (ii), 

but would return dissimilarity for outcome three, in which case the QoS of the service 

alternative exceeds the user requirement. So, an optimal alternative would be that 

alternative which simultaneously maximises the utility function as much as possible and 
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closely approximates similarity with user’s aspiration or closest to the user’s QoS 

requirements. Therefore, the search for an optimal alternative gives rise to multiple 

objective programming problems, with fuzzy goal and constraint; and can be modelled 

and solved as a fuzzy multi-objective optimisation problem.  

A fuzzy multi-objective programming is a problem that involves two or more conflicting 

fuzzy objective functions that must be simultaneously optimised in the face of some set of 

constraints. The sources of fuzziness in the objective functions in this optimisation 

problem are the word phrases ‘as much as possible’ and ‘closest to’. Therefore, solving 

fuzzy multi-objective optimisation problems requires that both SAW and distance-based 

functions are transformed into a fuzzy goal and constraints based on the fuzzy decision 

making symmetric model proposed by Bellman and Zadeh (1970). Therefore the two 

conflicting goals and constraint represented as functions are: seeking an alternative with 

1) highest utility and 2) nearest to user’s ideal requirements. 

Traditional optimisation techniques and methods have been successfully applied for years 

to solve problems with a well-defined structure/configuration, sometimes known as hard 

systems. Such optimisation problems are usually well formulated by crisply specific 

objective functions and specific system of constraints, and solved by precise mathematics. 

Unfortunately, real world situations are often not deterministic. In the light of this, 

traditional models and solutions to optimisation problems do not reflect the real world 

actualities, as they are rigid, confining the solution space, reduces the possibility to make 

trade-offs, and sometimes cannot find an optimal solution (Oltean, 2004). In cases where 

optimisation goals and/or constraints are vaguely expressed, the optimisation problem 

cannot be effectively solved by formulating the problem using traditional optimisation 

techniques (Tang et al., 2004). A better approach is to use fuzzy sets to define 

optimisation objectives, associating the goals and/or constraints with one or two fuzzy 

sets, whose membership functions will represent the corresponding fuzzy objective 

functions. Modelling and optimisation under a fuzzy environment are called fuzzy 

modelling and fuzzy optimisation (Tang et al., 2004). 

I. Fuzzy Modelling and Fuzzy Optimisation 

Solving problems under a fuzzy environment involves two tasks: fuzzy modelling and 

fuzzy optimisation. The aim of fuzzy modelling is to construct a suitable model based on 
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the peculiarity of the problem and analysis of the fuzzy information. Fuzzy optimisation 

aims at solving the fuzzy model ‘optimally’ using optimisation techniques and/or tools in 

terms of their membership functions. Six of the 7-step methodology elaborated in (Tang 

et al., 2004), was employed to outline the application of fuzzy optimisation for the cloud 

service evaluation model proposed in this thesis.  

II. Fuzzy Optimisation Problems: Modelling  

The aspect which the fuzziness affects determines how fuzzy optimisation problems are 

classified (Tang et al., 2004). Tang et al. (2004) further stated that the fuzziness affects 

the goals, constraints and coefficients of a fuzzy optimisation problem. Fuzziness in fuzzy 

goal is goals that are usually expressed vaguely, towards a specific aspiration level, which 

gives the target value of the objective function some flexibility e.g. the target value of the 

objective function ݂ሺݔ,  ሻ should be maximised as much as possible. The phrase, ‘asݎ

much as possible’ removes the rigidity of ‘maximise’ and gives the target value some 

flexibility. Fuzziness in fuzzy constraints refers to the system of constraints that gives a 

degree of tolerances and flexibilities through the following relational operators	൑෩ , ൒෩  or	≅; 

Fuzzy coe�cients may appear in the objective function and/or the system of constraints. 

Formally the fuzzy optimisation problem can be defined as: 

Definition 2.7: (Tang et al., 2004): Let universe ܺ	 ൌ 	 ሼݔሽ be a set of alternatives, ଵܺ a 

subset or a fuzzy subset of X. The objective/utility function is a mapping	݂ ∶ 	 ଵܺ 	→

 ሺܴሻ is a subset or a class of fuzzy subsets of real value set R, the feasibleܮ ሺܴሻ, whereܮ	

domain is described by a subset or a fuzzy set	ܥ	 ⊂ 	ܺ, with a membership 

function	μ஼ሺݔሻ 	∈ 	 ሾ0,1ሿ, which denotes the degree of feasibility of	ݔ. In this case, a fuzzy 

optimization problem may be generally expressed as: 

݂ሺݔ, ሻݎ → max
௫∈஼

݆ (2.23) 

Where ݎ is either a crisp constant or a fuzzy coe�cient; the objective is to find the value 

of ݔ that maximizes	݂	ሺݔ,  ሻ, and can be solved by the approaches presented in the nextݎ

section. 
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III. Fuzzy Optimisation Problem: Solutions 

Tang et al. (2004) have classified approaches to solving fuzzy optimisation into 

symmetric and asymmetric approaches. In contrast to asymmetric approaches, symmetric 

solution approaches handle fuzzy goals and constraints involved in the problem alike 

(Zimmermann, 1975). Symmetric approaches based on the fuzzy decision (Bellman and 

Zadeh, 1970) are approaches developed originally to deal with decision-making problems 

with fuzzy goals and fuzzy constraints, based on the concept of the fuzzy decision, as 

proposed by (Bellman and Zadeh, 1970). The fuzzy decision is defined as a fuzzy set of 

alternatives resulting from the intersection of the goals and the constraints. By 

introducing the fuzzy decision	ܦ, the solution to the fuzzy optimization problem can be 

interpreted as the intersection of the fuzzy goal and the fuzzy constraints, i.e. ܦ	 ൌ 	ܩ	 ∩

 ∩ is a conjunctive operator, assuming different definitions and meanings in	where	,ܥ	

different practical application depending on the definitions of the conjunctive operator	∩. 

The membership function of the fuzzy decision is formulated as: 

μ஽ሺݔሻ 	ൌ 	 μீሺݔሻ ∩ μ஼ሺݔሻ, ݔ∀ ∈ ܺ (2.24) 

Where μீ and μ஼ are the membership functions of the fuzzy goals and the fuzzy 

constraints respectively, and preferences are involved. A maximizing decision ݔ∗ is then 

defined to be an alternative with the highest membership in the fuzzy decision D, i.e. 

μ஽ሺݔ∗ሻ ൌ 	max μ஽ሺݔሻ, 	ݔ∀ ∈ 	ܺ.  

More generally, maximising decision ݔ∗ can be determined by 

μ஽ሺݔ∗ሻ ൌ ራμ஽ሺݔሻ
௫∈௑

(2.25) 

IV. Utility Functions to enable Cloud Service Selection 

Two utility functions based on SAW method and Euclidean metrics can simultaneously 

serve as objective functions in order to evaluate the performance of cloud services with 

respect to user requirements. SAW is one of the most popular methods of solving MCDM 

problems and can be used to determine the utility of alternatives. Also, the similarity is a 

measure of proximity between two or more objects or variables (Ayeldeen et al., 2015) 

and it has been applied in domains that require distance computation. The notion of 
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similarity considered here is between vectors with the same set of QoS properties, which 

might differ in their QoS values i.e. users’ QoS requirement and service QoS description. 

The similarity between the user’s QoS requirement and QoS description vector of a cloud 

service is the sum of similarities between each of the corresponding QoS attributes of the 

vectors (see Figure 2.13). 

 

(a) Cloud service with QoS attributes (b) Notion of Similarity 
Figure 2.13: Similarity Computation based on QoS Attributes 

Source: Researcher (2016) 

Suppose ܺ is a vector representing values of the user’s QoS aspirations; and ܻ is a vector 

of values of QoS attributes of a cloud service ݏ௜belonging to service list S, such that ܺ ൌ

ሺݔଵ, ,ଶݔ … 	ܻ	௠ሻ andݔ ൌ 	 ሺݕଵ, ,ଶݕ …  ௠ corresponds to the value of theݕ ௠ andݔ ௠ሻ; whereݕ

݉௧௛ QoS attribute of the users requirement and QoS attribute of the cloud Service ݏ௜  

respectively, then Euclidean defined as follows: 

,ݔሺ	ܦܷܧ ሻݕ ൌ ඩ෍ሺݔ௜
ଶ െ ௜ݕ

ଶሻ

௠

௜ୀଵ

(2.26) 

Although there are several distance metrics in the literature, the Euclidean metrics is often 

applied to compute distance in a multidimensional space. However, the exponential 

Euclidean function is applied in other to reduce the effect of the value for each QoS 

attribute on the similarity score as the values of the QoS attributes exceeds or fall below 

the user’s QoS requirements. Therefore,  the exponential Euclidean function proposed 

and used in this study is given as follows: 
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,ݔሺܦܷܧ݁ ሻݕ ൌ ඩ෍݁ሺ௫೔
మି௬೔

మሻ

௠

௜ୀଵ

(2.27) 

An emergent perspective posits that services should be evaluated on the basis that they 

satisfy the highest utility as much as possible while closely approximating user 

requirement. The fuzziness in objectives of finding an optimal alternative lies in these 

italicise words (as much as possible and closely).  Thus, both evaluation functions, i.e. the 

SAW and eEUD functions (cf. Figure 2.14), are transformed into a fuzzy goal and 

constraints based on the fuzzy decision making Bellman et al.’s symmetric model 

(Bellman and Zadeh, 1970; Zimmermann, 2010). By representing the fuzzy goals and 

constraints using membership functions to represent the fuzzy goal and fuzzy constraints, 

the problem of finding an optimal alternative can then be translated into a linear 

programming model. A maximising decision among the fuzzy decision set can be 

achieved by solving the linear programming. 

For example, let the fuzzy Goal ܩ෨ and constraint ܥሚ be given as:  

 Goal	ܩ෨: The performance score alternative should be in the vicinity of the ideal 

solution with respect to QoS preferences. 

 Constraint	ܥሚ: The QoS values of the alternative should be very close to the user’s 

aspiration with respect to QoS preferences.  

Suppose, each alternative is evaluated by a SAW function described as  ܣ௜ ൌ  ,௜௝ݔ௝ݓ∑

where ܣ௜is the performance score of the ݅௧௛alternative, ݓ௝is the priority weight of the ݆௧௛ 

criterion as expressed by user, and ݔ௜௝ is the QoS value of the ݅௧௛ alternative with respect 

to the ݆௧௛ criterion; ߮ is defined as the vector of performance scores for all alternatives 

given as ߮௜ ൌ ሼܣଵ, ,ଶܣ … , ,௡ሽܣ ݅ ൌ 1, 2, … 	݊; n is the number of alternatives. 

The goal would be represented by a bell-shaped membership function corresponding to: 

ߤ ෨ீሺ߮௜ሻ ൌ
1

ሺ1 ൅ ሺ߮௜ െ ሻସሻߩ
(2.28) 
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Where, ߮௜ is the performance score of the ݅௧௛ alternative, and		ߩ, is the performance score 

of the ideal alternative. The ideal alternative is the alternative with the best score for each 

QoS value. 

Likewise, given that similarity function computes the similarity between the ݅௧௛ 

alternative and the user’s aspiration with respect to QoS values, based on the 

mapping	࢏ࡰࢁࡱࢋሺࢄ, :ሻ࢏࢙ ࣂ → ሾ૙, ૚ሿ, where ܺ is a user’s QoS aspiration vector, and ݏ௜ 

correspond to QoS description vector of a service	ݏ௜ ∈ ܵ; 0 indicates absolute 

dissimilarity and 1 correspond to absolute similarity; ࣂ is defined as a vector variable of 

all similarity values of user’s requirement to alternatives: ߠ௜ ൌ

ሼ݁ܦܷܧሺܺ, ,ଵሻݏ ,ሺܺܦܷܧ݁ ,ଶሻݏ … , ,ሺܺܦܷܧ݁ ,௡ሻሽݏ ݅ ൌ 1, 2, …݊;	where ݊ corresponds to the 

number of services available in service directory ܵ. 

The membership function of the constraints is also bell-shaped expressed as: 

௜ሻߠ஼ሚሺߤ ൌ ൬
1

ሺ1 ൅ ሺߠ௜ െ 1ሻଶሻ
൰
ଶ

(2.29) 

The elements of the fuzzy set describe by membership function ߤ஼ሚሺߠ௜ሻ will have a degree 

of membership corresponding in extent to which ߠ௜ is close to the real value one (1).  

Therefore, the membership function of the fuzzy decision sets ܦ෩ will then be: 

μ஽෩ሺ߮௜, ௜ሻߠ ൌ μ ෨ீሺ߮௜ሻ ∧ μ஼ሚሺߠ௜ሻ (2.30) 

Such that: 

μ஽෩ሺ߮௜, ௜ሻߠ ൌ min ሺμ ෨ீሺ߮௜ሻ, μ஼ሚሺߠ௜ሻሻ (2.31) 

The highest degree of the membership in ܦ෩ is given by: 

argmax
஦,஘

	ሺmin ሺμ ෨ீሺ߮௜ሻ, μ஼ሚሺߠ௜ሻሻ (2.32) 

 

Based on this, the equivalent in a linear programming model is: 
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Maximize ܖܑܕ 	ሺμ ෨ீሺ߮௜ሻ, μ஼ሚሺߠ௜ሻሻ 

Subject to: 

ߤ ෨ீሺ߮௜ሻ ൌ
1

ሺ1 ൅ ሺ߮௜ െ ሻସሻߩ
(2.33) 

௜ሻߠ஼ሚሺߤ ൌ ൬
1

1 ൅ ሺߠ௜ െ 1ሻଶ
൰
ଶ

 (2.34) 

Having formulated the optimisation model and solution approach, the problem can be 

solved using optimisation algorithms such as genetic algorithm (e.g. NSGAII), or swarm 

intelligence algorithms (e.g. Particle Swarm Optimisation [PSO] algorithm). The results 

obtained from the optimisation process are optimal QoS values that best approximates the 

user’s QoS requirements with respect to the spread of QoS attributes of all service 

alternatives available in the service directory. The final step of evaluating the services 

alternative is the use of a distance-based function to rank all alternatives, according to 

their similarity with the optimal QoS values obtained. The ranked results are then 

presented to the user to make service selection decision.  

 
Figure 2.14: Fuzzy Multi-function Service Evaluation Model 

Source: Researcher (2016) 

2.4.6 Interactive GUI and Information Visualization for Ranking Results 

The growing trend for personalised products and services in online shopping context 

requires that usability and user experience be given top priority if the vision of cloud 

service e-marketplace is to be realised (Riemer and Totz, 2003; Schubert and Ginsburg, 

2000; Liang and Lai, 2002). Usability is a measure of how easy to use, effective a system 

is (i.e. did the user achieve the goal?) and efficient a system is (i.e. how long it took the 

user to achieve the goal?); while user experience defines the feelings of the user in 
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utilizing the system (e.g. is the interaction satisfying, enjoyable, engaging) (De Oliveira et 

al., 2012; Travis, 2008) The goal of pursuing usability and user experience is in the 

context of this research is to optimize user satisfaction (Bevan, 2009). Noteworthy is that 

the Graphical User Interface (GUI) is the visual medium through which the user interacts 

and engages the e-marketplace, and it plays a very prominent role in determining the 

usability and user experience in the e-marketplace environment (Van Schaik and Ling, 

2008; Wong et al., 2014). 

Graphical User Interface is a subset of Human-Computer Interaction (HCI); HCI studies 

the planning and design of how humans and computers work together to effectively meet 

the needs of a human (Galitz, 2007). The GUI underscores input and output features; 

input is how a user expresses business and technical requests or requirements, whereas 

the output presents the result of those requests to the user (Galitz, 2007). The GUI 

obscures all the technical and computational processes underlying the e-marketplace 

operations while being a functional, enjoyable and satisfying means to explore the QoS 

ranking of cloud services towards making a cloud service selection. Indeed, an arbitrarily 

complex GUI design increases the cognitive difficulty in performing specific user-centric 

tasks (Galitz, 2007), consequence for which could lead to a selection of a poor or sub-

optimal option or abandonment of the process altogether. Both outcomes have 

implications on the profitability and the perpetuity of the e-marketplace (Galitz, 2007; Liu 

et al., 2012; Bonastre and Granollers, 2014).  

I. Graphical User Interface for Cloud Service e-marketplace 

In the context of cloud service e-marketplace, the large number of functionally equivalent 

cloud services sorted according to QoS ranking with respect to user requirements 

emphasises the need for an effective decision-making aid to support the exploration of 

cloud services. Similarly, in the regular e-commerce domain, the rate of shopping cart 

abandonment, dissatisfaction and frustrations experienced in many e-commerce sites due 

to the complexity involved in the search for commodities raises the need for user 

experience in online shopping (Liu et al., 2012; Liang and Lai, 2002; Bonastre and 

Granollers, 2014). Just like one of the laws of e-commerce states that if users cannot find 

it, they cannot buy it either; the GUI design questions that must be answered in a cloud 

service e-marketplace includes:  
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i. How conveniently can the user express QoS requirements?  

ii. How quickly can optimal results be generated?  

iii. Are the results presented in the best way possible for users to understand and 

draw insights from? 

Since the main medium of engagement in the e-marketplace environment is visual, 

answering these questions facilitates a GUI design that ensures the user can conveniently 

express QoS-based requests, for which optimal services match are found within the 

shortest time possible and the information is intuitively presented in a manner that is easy 

to understand and facilitates quality decision-making (Gui et al., 2014; Galitz, 2007). 

Although the user experience covers all aspects of e-marketplace operations (Kuniavsky, 

2003) – such as billing, payment, deploying of a service instance, and SLA monitoring, 

its focus in this study is how users use the GUI to request for services based on QoS 

requirements and to effectively explore a set of likely alternatives. An emergent 

perspective would be a GUI framework delineated into two, based on the support for the 

tasks users perform on the e-marketplace in their quest to select an optimal service 

alternative. These include interface design that: i) allow users to express QoS 

requirements and, ii) allows the visualisation and effective exploration of ranking cloud 

services (see Figure 2.15).  

 
Figure 2.15: Graphical User Interface Framework  

Source: Researcher (2016) 

Preferable are GUI designs that are intuitive and capture user QoS requirements in a 

manner that is natural to the human judgement or perception. This is because the user’s 

perception of the interface affects their attitude towards what comes out from it, and 

ultimately affects user satisfaction (Kuniavsky, 2003; Sundar et al., 2014). Applying 

visualisation would in a way enable low cognitive demand in exploration by giving the 
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user a graphical overview of the rankings and in order to understand the relationship of 

services to each other based on QoS attributes ranges. In addition, by interacting with this 

visualisation, users can then perform a trade-off analysis by filtering services according to 

the desired QoS factors. Such graphical depiction is more convenient and reduces 

cognitive overload compared to a mere textual listing of the ranking results (Almulla et 

al., 2012; Beets and Wesson, 2010; Pleuss et al., 2011; Spence, 2014; Mamoon et al., 

2013).  

Similarly, the main drawbacks with textual representation in the domain of web service 

discovery were highlighted as follows: ineffective search facility and poor presentation of 

the web services, as textual lists, do not effectively support the user in finding suitable 

web services (Beets and Wesson, 2011). Earlier studies on the effect of textual/tabular 

representations of data as against graphical representation in decision-making contexts 

revealed that graphical representations performed significantly better (Coll et al., 1994; 

Jarvenpaa, 1989; Jarvenpaa and Dickson, 1988): thus providing a preliminary basis to 

support the use of graphical representation to improve the user experience in cloud 

service selection. 

II. Information Visualisation: An Overview 

It has been proven that humans possess the ability to recognise the spatial arrangements 

of elements in a picture and decipher relationships among elements quickly and easily 

(Shneiderman, 1994). Such abilities enable humans to derive greater insight and 

comprehension of the content of a picture faster than mere text. This process leads to a 

more informed decision-making by capitalising on the well-developed human visual 

processing capability (Shneiderman, 1994). Similar to web service discovery, the 

application of information visualisation technique for aiding cloud service selection 

would improve cloud service exploration and insight into the rationale behind the ranking 

of cloud services with respect to user’s QoS requirements (Beets and Wesson, 2011). 

Information visualisation is concerned with the use of visualisation methods in assisting 

users to make more sense of and use large volume and complex dataset as they analyse 

and explore the data with a slight effort from users (Spence, 2014; Almulla et al., 2012; 

Khan and Khan, 2011). The overarching goal of information visualisation is to 

communicate information in an interactively graphical or spatial manner to aid user 
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understandability (Draper et al., 2009; Beets and Wesson, 2011; Almulla et al., 2012; 

Khan and Khan, 2011). Integrating information visualization as part of a cloud service 

selection framework is more beneficial compared to traditional textual listings in that 

users can understand relationships among data elements as they can learn more from the 

visualization in lesser time; users can, therefore, access to new understanding of, or 

knowledge about, the QoS ranking results generated by the service alternative evaluation 

module (Mamoon et al., 2013; Beets and Wesson, 2011; Chittaro, 2006).  

III. Information Visualisation: Reference Model 

Several frameworks and processes to enable the design of an effective IV have been 

proposed in the literature (Chittaro, 2006; Card et al., 1999; Adnan et al., 2008; Spence, 

2014; Khan and Khan, 2011); these taxonomies of information visualization processes 

consist of several steps and activities for turning dataset into visualizations, and can be 

categorized into four main modules (see Figure 2.16), which includes: Dataset, 

Representation (or Mapping), Organization (or presentation), and Interaction. 

 
Figure 2.16: Information Visualization Reference Model  

Source: Spence (2014) 

a) Dataset 

According to (Shneiderman, 1996), there are seven data types that are identified in the 

context of Information visualisation, they include:  

i. 1-Dimensional datatype-also referred to as  linear data types which are organised 

by a single feature e.g. textual documents, alphabetical listing of items;  

ii. 2-Dimensional datatype- also referred to as planer or map data e.g. floor plans, 

geographic maps etc.; 

iii. 3-Dimensional datatype- representing most real-world objects;  

iv. Temporal datatype- includes data that have timelines denoting start and finish 

time, e.g. project management timeline data;  

Dataset Representation Organization Interaction
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v. Multidimensional data- correspond to most relational and/or statistical data 

which are usually manipulated such that items with ݊-attributes become points in 

a n-dimensional plane e.g. a list of cloud services and their multiple QoS 

dimensions;  

vi. Tree data type- refers to hierarchies comprising a collection of items in which an 

item is linked to one parent, with exception of the root e.g. computer directories; 

vii. Network data type- which is a generalisation of tree data type where the items or 

objects is linked to any number of other items.  

The multi-dimensional dataset comprising a collection of cloud services in a ranked order 

can be presented in a table format (see Table 2.14), such that each column corresponds to 

service QoS attributes while each row refers to each service in the list. However, tabular 

representations are limited in expressing the relationships among the rankings; depending 

on the number of services in the ranked list and many QoS attributes to consider. To 

explore each of the services one after the other is cumbersome and does not readily 

satisfy the user’s quest to understand how each service in the ranked list differs from the 

other. 

Table 2.14: A tabular representation of cloud services with QoS properties  
 Availability (%) Response Time(ms) Reliability (%) Cost($) 
Cloud service 1 78.5 450 79 205.70 
Cloud service 2 99.9 320.23 90 350.45 
Cloud service 3 87.92 5400 83 190.44 
Cloud service 4 93.76 237.88 90 301.50 
Cloud service 5 50.5 403.66 92 211.22 

Source: Researcher (2016) 

b) Representation 

Representation (or visual mapping) refers to how to transform symbolic representation 

characteristic of the objects in a dataset and their interrelationship, into a graphical form 

using visual encoding mechanisms. This mechanism includes object’s size, shape, colour, 

orientation (or position), and dimensionality (text, 2D, or 3D) (Chittaro, 2006; Adnan et 

al., 2008; Moere and Purchase, 2011; Bertin, 1983). The representation must take into 

consideration data type, data dimensions, and the user’s perceptual and cognitive abilities 

(Spence, 2014). The dimension of the dataset refers to the number of attributes that 

characterise the dataset. The way users perceive the value of data elements is rooted in 

how those data elements are visually encoded using size, orientation, shape, texture, and 
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colour (Shneiderman, 1994; Bertin, 1983; Spence, 2014). The application of these 

encoding mechanisms (e.g. size, shape etc.), supports tasks associated with information 

visualisation with varying degree of suitability (Bertin, 1983). Some of the cognitive and 

perceptual factors to be considered include the user’s perception of values and if the 

representation exhibits object or attribute visibility (Spence, 2014). 

The concept of object and attribute visibility was first introduced by (Teoh and Ma, 

2005). Teoh and Ma (2005) noted that one challenge with multi-dimensional (multi-

attribute) visualisation is the multiplicity of objects and dimensions, and introduced the 

concept of coherence and correlation as it pertains to objects and their dimensions.  

A representation is said to exhibit object coherence (or visibility) when the object is 

encoded as a single and compact graphical entity (e.g. a point or bubble) and the user can 

see all the attributes of the objects all at once. The converse of a representation possessing 

object coherence is when the object is represented by multiple separate visual entities 

(e.g. several points). Meanwhile, dimension coherence (or attribute visibility) refers to a 

representation in which the attribute values of the objects are distributed across each 

dimension, such that users can quickly see the relationships among the values of the 

attributes for each object (Teoh and Ma, 2005).  

On the other hand, a representation satisfies object correlation when the user can 

immediately see the similarities among objects considering all the values of their 

attributes. Dimension correlation refers to a representation that allows the user to easily 

note the relationships among the dimensions of all objects in the dataset. In this study, the 

inquiry to object coherence and are concerned with a mechanism to represent cloud 

services in the ranked list as single coherent entities so as to enable the exploration of the 

relationship among alternatives. Table 2.15 contains an overview of some representations 

suitable for the data types as espoused by (Shneiderman, 1996). 

a) Organization 

Organisation (or Presentation) refers to the interface schemes that define the manner in 

which these representations are laid out on a screen to enable user’s exploration and 

interaction (Adnan et al., 2008; Spence, 2014; Burigat and Chittaro, 2013; Cockburn, 

2009; Khan and Khan, 2011). Generally, the interface schemes facilitate sense-making, as 
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it impacts on user’s interpretation and perception of the information presented (Adnan et 

al., 2008). 

Table 2.15: Datatypes and supporting data representation 
# DATATYPE REPRESENTATION TYPES 
1 1-Dimensional  Textual Lists 

2 2-Dimensional 
 Choropleth  
 Self-organizing Maps  

 Dot distribution map  
 Proportional symbol map 
 Cartogram 

3 3-Dimensional  Surface and volume rendering   3D Computer models 

4 Temporal 
 Timeline 
 Time series  
 Gantt Chart  

 Arc diagram  
 Rose diagram (or Polar Area) 

5 
Multi-
Dimensional 

 Tables  
 Pie chart 
 Histogram  
 Tag cloud  
 Unordered bubble chart  

 Bubble chart  
 Line chart  
 Heat map  
 Radar/spider chart  
 Parallel coordinates plot  
 Bar chart 

6 Tree 
 General tree visualisation  
 Dendrogram  
 Radial tree  

 Hyperbolic tree  
 Treemap  
 Sunburst 

7 Network 
 Dependency Graph/Circular hierarchy  
 Node-link diagram  

 Matrix 
 Tube map 

Source: Zoss (2015) 

The schemes adopted impacts on the effectiveness and ease of viewing and exploration of 

content in order to make more informed decisions. Information visualisation techniques, 

like those mentioned in Table 2.15, organises information on the screen with respect to 

how objects from the dataset are positioned and can be viewed on the screen per time, and 

the layout of the general overview of objects (Adnan et al., 2008). The layout of the 

information on the screen affects the type of tasks that can be performed by users, as it 

determines the interactions users can have with the information displayed (Spence, 2014). 

Based on the layout of information on the display, there are three main schemes for 

presenting/organising information, they include Zooming, Overview+Detail and 

Focus+Context (Burigat and Chittaro, 2013; Cockburn, 2009; Spence, 2014; Adnan et al., 

2008). 

i. Zooming- Zooming refers to the interface’s ability to provide a broader overview 

or more detailed view by increasing or decreasing the levels of details the user can 

view per time (Spence, 2014; Khan and Khan, 2011). Zooming can either be 

geometric zoom or semantic zoom (Herman et al., 2000; Spence, 2014). 

Geometric zoom happens when the display scales from a broader view to a 

fraction of the same view with only change in size, limiting what is viewable on 
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that area of the display (e.g. zooming in and out of a geographic map). On the 

other hand, semantic zoom does not only change the size of the information 

displayed, but also its other visual properties such as information content, colours, 

shape, and texture (Spence, 2014; Herman et al., 2000; Nestor et al., 2007). 

ii. Overview + Detail- Some studies show that user satisfaction and efficiency are 

enhanced when users can view and explore both contextual and detailed 

information at the same time ((Beard and Walker, 1990; North and Shneiderman, 

2000; Hornbæk, 2001; Hornbцk and Plaisant, 2002). The Overview+Detail (O+D) 

interface scheme allows both the context and detailed views to be displayed 

simultaneously in a separate spatial location on the screen (Adnan et al., 2008; 

Cockburn, 2009; Hornbцk and Plaisant., 2002). The physical separation of both 

views, enable the possibility of users interacting with both views separately, and 

actions in one view, trigger a response in the other (Cockburn, 2009). Although 

the O+D scheme lays a short-term memory load on users and more time is 

expended in visual search, some benefits of the O+D schemes include efficient 

navigation, with alternative views (detailed and overview) giving more control to 

the user. Also, users cannot ‘get lost’ with access to the broader view of the 

information space which provides task-relevant information (Beard and Walker, 

1990; Plaisant et al., 1994; Shneiderman, 1987; Hornbцk and Plaisant., 2002). 

iii. Focus + Context (F+C)- Zooming schemes provide on-demand focused and 

contextual information separated temporally in time, but O+D schemes present 

both views in co-existing in the same time in distinct spaces on the screen. F+C 

schemes seamlessly combines focus and context information in the same space, 

and focus is amplified by distorting the information space, while ensuring 

continuity of the focus region of interest within its surrounding context by 

maintaining relevant aspect of the context (Burigat and Chittaro, 2013; Spence, 

2014, p. 131; Cockburn, 2009; Khan and Khan, 2011). F+C overcomes the short 

term memory load demand on a user by presenting all information in single 

coherent view, and users can easily understand and manipulate the information 

displayed. However, the drawbacks of distortion-oriented views like fisheye view 

are the misinterpretation of the underlying data (Cockburn, 2009). 
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b) Interactivity 

Interactivity refers to the mechanisms available for making sense of the information space 

by navigating, exploring, organising or rearranging the information space (Adnan et al., 

2008; Khan and Khan, 2011). Effective exploration of the information space is 

determined by the method of interaction employed, the type of tasks those methods can 

support and the rate of response to the interaction (Adnan et al., 2008; Spence, 2014; 

Walker et al., 2016), also different interactions performs differently and are best suited 

for different tasks (Nestor et al., 2007). The way in which users interact with the interface 

can take different forms, such as use of menus (drop-down, pop-up), scrolling, flipping 

(replacing one discreet view with the next), and direct manipulation by mouse over, 

single click, double click directly on the visual elements in order to initiate a response 

(Adnan et al., 2008; Sundar et al., 2014; Khan and Khan, 2011). Shneiderman (1996) has 

proposed seven tasks that the interaction used in information visualisation should support. 

The seven tasks include:  

1. Overview: Gain an overview of the entire collection.  

2. Zoom: Zoom in on items of interest  

3. Filter: Filter out uninteresting items 

4. Details-on-demand: Select an item or group and get details when needed. 

5. Relate View relationships among items.  

6. History: Keep a history of actions to support undo, replay, and progressive 

refinement.  

7. Extract: Allow extraction of sub-collections and of the query parameters. 

IV. Information Visualisation for Cloud Service Selection 

The e-marketplace interface should be designed with usability and user experience 

intended, such that users can easily express QoS requirements and find optimal service(s) 

within the shortest time (Chua et al., 2007). Apart from the functionality of the e-

marketplace, the ‘look and feel’ of a graphical user interface, both for eliciting 

requirements and exploring results should use visual elements such as colours, shapes, 

layout, and typefaces, as well as support some dynamic behaviours (Chua et al., 2007). In 

addition, the result of the ranking process is usually presented in textual formats from 
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which the user is expected to make a selection. This approach usually demands more 

cognitive effort as users are expected to make sense of the results unaided. Information 

visualisation has been applied in the context of web service discovery and selection 

(Beets and Wesson, 2010; Beets and Wesson, 2011; Almulla et al., 2012), in which 

authors reported that textual list of web services can result in time-consuming and 

ineffective web service discovery. The overall aim of pursuing a visualisation approach is 

to assist users to effectively identify and explore the expected results with respect to their 

QoS requirements, at the same time providing the opportunity to discover unexpected 

items as they gain more insight into the ranking results. An effective visualisation 

mechanism would allow the user to accomplish these tasks they wish to undertake with 

the ranking results (Walker et al., 2016).  

a) User Interface to Elicit User QoS Requirements 

The goal of selecting a cloud service(s) based on QoS ranking produced by evaluating 

alternatives with respect to user’s interest in and values for specific QoS attributes begins 

with properly articulating those requirements. Fuzzy-intuitive interfaces allow users to 

express their QoS requirements in a manner that capture the subjectivity inherent in those 

requests. A cloud service selection framework should employ fuzzy set theory to model 

users’ preferences and aspirations for each QoS attributes and the appropriate GUI 

element to elicit these inputs is required. 

i- Eliciting QoS Preferences using Graphical Fuzzy-AHP 

There are three main implementation styles for eliciting users’ QoS preference using the 

pairwise comparison of attributes; they include graphical, numeric and verbal 

representations (Millet, 1997; Forman and Gass, 2001). Numeric implementations require 

that users indicate preferences as a numeric ratio between two alternatives (e.g. Security 

has ¼ times more priority than Availability), whereas graphical approaches involve the 

adjustment of bar diagrams or sliders to acquire user’s preferences one pair per time 

(Millet, 1997). Although most decision analysis systems are usually focused on the 

accuracy of the results, the user satisfaction of the comparison techniques and the process 

is also of vital consideration (Millet, 1997; Ge et al., 2010).  

Millet (1997) reveals that the accuracy and ease of use factors of these approaches differ 

with numerical and verbal approaches topping the list for accuracy, while graphical 
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approaches topped the list for ease of use and faster completion time and optimising both 

accuracy and ease of use (Millet, 1997). Similar to (Cakir and Canbolat, 2008), an 

emergent perspective is a QoS requirements elicitation technique that embeds fuzzy-AHP 

into a web UI widget to improve the user experience in expressing QoS requirements 

while maintaining high accuracy of the results. 

ii- Eliciting QoS Aspiration using Interactive Interface 

The user need not express exact values for interesting QoS attributes. Applying fuzzy 

linguistic variable and membership functions allow the user the flexibility of expressing 

values for QoS attributes in imprecise terms natural to human judgment. Rather than 

entering some of these values as text, an intuitive GUI design should allow users to 

perform this task easily. For example, an interactive interface comprises of the use of 

drop-down menus, check boxes and text boxes. Typically, a user searching for a cloud 

service could articulate these requirements using fuzzy expressions as follows, 

‘Availability should be very high’ or ‘cost around $300/month’.  

b) Information Visualisation to Display Ranking Results 

The user’s QoS request forms the input into the fuzzy-based multi-function utility 

evaluation and ranking module, which produces a top-k list of cloud services ranked 

according to their suitability to user’s requests. The QoS ranking result forms the input 

dataset into the information visualisation module, represented in a graphical form for 

users to gain insight into the ranking results to obtain more insight into the information 

space, explore the results in details and compare items on the list. Discussed next are the 

design requirements and considerations for information visualisation with respect to 

representation, presentation and the interaction supported by the IV techniques. 

i. Dataset- the QoS-based ranking result is a multi-dimensional data type that 

contains the values for all of the relevant QoS attributes (see Table 2.14).  

ii. Representation- the items in the list can be visually encoded using a combination 

of mechanisms, comprising size, colour, and position (or orientation), into single 

coherent entities that exhibits object coherence and correlation; such that by 

sighting a cloud service representation, the user can easily make sense of its 

attributes compared to other services on the list. A potential information 
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visualisation technique that suffices for the multi-dimensional data considered is 

the bubble graph. The bubble graph encodes each cloud service in the ranked list 

as a ‘bubble’ and explicitly shows the QoS relationships of the top ranked cloud 

services as well as the underlying structure of the QoS information space using 

colours, size and position (or orientation). The bubble graph can be used to 

visualise up to four QoS dimensions simultaneously, each dimension represented 

by size, colour and position (x and y coordinates), see Figure 2.17. 

iii. Presentation- The information visualisation to support cloud service exploration 

and selection must be such that it lays out both the broader and more detail views 

on the display screen. F+C presentation style is reported inappropriate for 

decision-making environments because of its distorted view, as it may lead to 

wrong interpretations (Yang et al., 2003). Other studies reported higher user 

satisfaction and faster task completion time of O+D styles over zoom-based 

presentation styles (Adnan et al., 2008; Ghosh and Shneiderman, 1999). For this, 

O+D is considered, since the volume of information displayed must be such that 

does not add to the cognitive load on users; impacting negatively on user 

satisfaction (Pirolli et al., 2003; Adnan et al., 2008).  

 
Figure 2.17: Example of Bubble Graph 

Source: Researcher (2016) 

iv. Interaction- Interactivity refers to the ability of users to engage the visualisation 

of ranked results in real time, making changes to visualisation parameters and 

viewing immediate responses in the visualisation (Khan and Khan, 2011). The 

information visualisation should support various interaction methods, including 

direct manipulation by hovering, clicking and the use of dynamic queries for 
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advanced filtering task. This research considered interaction methods that allow 

users to explore the representation incrementally and dynamically using the sliders 

(Spence, 2014). Based on Shneiderman’s Task by Data Type Taxonomy 

(Shneiderman, 1996), two interaction tasks were identified: They include: to gain 

a general overview of the ranking results (overview); view details of a particular 

selection as desired, by either a mouse click or hovering (Details-on-demand). 

2.5 CHAPTER SUMMARY 

One major challenge of operationalizing a cloud service e-marketplace is service choice 

overload; describing the complexity of decision making because of the availability of too 

many service alternatives which often times lead to unsatisfactory choice. Service choice 

overload can be minimised by using low cognitive demand decision support mechanisms 

for eliciting user requirements. This must be done in a way that the techniques: 

i. Provides an underlying organisation combination model for ecosystem services. 

ii. Combines both fuzzy QoS preference and aspiration information in the evaluation 

process. 

iii. Employs intuitive user interface to elicit fuzzy user QoS requirements. 

iv. Includes means to visualise ranking results in a way that reduces service choice 

overload. 

Although cloud service selection techniques have been proposed in the literature, a state-

of-the-art and a comparative analysis of these techniques were carried out to identify the 

gaps in existing approaches and to propose key requirements for a framework that suits 

the cloud service e-marketplace. Based on the key requirements, the emergent 

perspectives provided the basis to formulate a set of design considerations to guide the 

formulation of the cloud service selection framework. 
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CHAPTER THREE 

METHODOLOGY 

3.1 INTRODUCTION 

This chapter presents the details of the methodology adopted to achieve the aim and 

objectives of this study. The methodology describes the proposed framework as a 

decision-making framework for cloud service selection in e-marketplace context. More 

specifically, this chapter contains insights into its strategy and underlining assumptions, 

process model, conceptual architectural framework, and a description of its sub-

components. Furthermore, the modalities for demonstrating the plausibility of the 

proposed framework are presented, and this chapter concludes with a summary of its 

content and discussion. 

3.2 PROBLEM DESCRIPTION: CLOUD SERVICE RANKING AND SELECTION 

So far in this thesis, the emerging cloud service e-marketplace has been defined as a one-

stop shop for cloud services, aimed at enabling the commoditization of vertical or 

horizontal cloud service offerings as single or composite services from a variety of 

providers (Menychtas et al., 2014); combining services in special ways not previously 

thought of, enabled by the concept of a cloud ecosystem (Barros and Dumas, 2006). 

Functionally equivalent service offerings are differentiated by their QoS factors (e.g. 

availability, response time, reliability, etc.), and this information is contained in the e-

marketplace service directory or catalogue (Menychtas et al., 2014). It was also 

mentioned that services are showcased through an e-marketplace interface, on which 

users interact with the e-marketplace to find suitable services that satisfy user-specific 

QoS requirements, towards fulfilling their business objectives.  

Decision making involves the selection from a collection of items based on specific 

interest in, and value for, the multiple attributes characterising those items. Selection is 

further complicated by the unavailability of properly articulated ideal points and order of 

preferences with respect to the underlying attributes, which must be considered in 

evaluating each alternative. Besides, the presentation of the result of the evaluation is 
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another point where user satisfaction is necessary. The underlying assumptions in 

selection problems can be summarised as follows:  

i. There exist collections of items, and the items have multiple attributes and can 

be represented using a data model. 

ii. Users (as decision makers or information seekers) possess preferences (i.e. the 

order of importance of all QoS attributes) and aspiration (i.e. actual values for 

each QoS attribute) for the desired alternative. 

iii. The selection task is to find all items that best approximates (and to what 

degree) the users’ requirements. 

Typically, cloud service selection is concerned with the performance evaluation of the set 

of m offerings based on user’s priorities for each QoS attributes and desired QoS attribute 

values for the set of n QoS criteria, so that users can then choose the service(s) with the 

most optimal performance. On the basis of this, this study postulates improved quality of 

user experience during user interaction with the e-marketplace front-end by reducing the 

complexities of decision making through handling the subjectivity and vagueness often 

associated with expressing QoS preferences and aspirations. Due to the multiplicity of 

QoS dimensions and a large number of alternatives, cloud service selection is considered 

as an NP-hard problem (Jula et al., 2014). Next, formal definitions describing the cloud 

service selection problem are presented. 

3.2.1 A Set of Atomic Cloud Services 

Definition 3.1 (Set of atomic services): Let ܵ	 ൌ 	 ሼ ଵܵ, ܵଶ, ܵଷ 	…	ܵ௠ሽ	be a set of ݉ atomic 

services that are part of the cloud ecosystem. A combination of these atomic services 

creates a composite service that can satisfy complex user requirements. 

3.2.2 Quality of Service (QoS) Attributes 

Definition 3.2 (Set of QoS attributes): Let ܳ be a vector (1	 ൈ 	݊ matrix) that represents 

a set of QoS attributes denoted by ܳ ൌ ሺݍଵ, ,ଶݍ ଷݍ  ௡ሻ, as of ݊ components describingݍ…

the QoS attributes of a service	ݏ௜	߳	ܵ. 
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3.2.3 The e-marketplace Cloud Services Directory 

Definition 3.3 (Cloud Ecosystem Feature Model): A cloud ecosystem feature model is 

a sextuplet ܯܨܧܥ	 ൌ 	 ሺܨ, ,ைܨ ,ெܨ ,ூைோܨ ,௑ைோܨ  and feature ܨ ௖ሻ consisting of featuresܨ

relationships in terms of parent-child and integrity constraints. ܨை represents a set of 

parent and optional child feature pairs; ܨெ	is a set of parent and mandatory child feature 

pairs; ܨூைோ		and	ܨ௑ைோ	 are sets of pairs of child feature and their common parent feature 

grouped respectively into ‘or’ and ‘alternative’ groups; ܨ௖	 is a set of constraints-required 

and excludes. A valid composition includes a set of features ܨ combined, according to 

features relationships and integrity constraints	ܨ௖. 

Definition 3.4 (QoS Aggregation): Let a service ݏ	 ∈ ܵ be a valid combination 

composed of ܽ	ݐ	ݎܾ݁݉ݑ݊ of distinct services ܼሺଵ	௧௢	௧ሻ with ݊ QoS attributes and acts 

sequentially. Let ݍ௜ሺܼ௞ሻ be the value of the ݅௧௛ QoS attribute for the ݇௧௛ distinct service. 

Such that the aggregated value ݅௧௛ QoS attributes for all distinct services composed in ݏ is 

given as: 

ሻݏ௜ሺݍ ൌ ሺݍ௜ሺܼଵሻ ⋈ ௜ሺܼଶሻݍ ⋈ ⋯ ⋈ ௜ሺܼ௧ሻሻݍ (3.1) 

Where ⋈ represents the aggregation operator based on the aggregation function employed 

with respect to the QoS type and	ݐ ൐ 1. Meanwhile, the vector ܳ of QoS values for a 

valid combination	ݏ is given as: 

ܳሺݏሻ ൌ ሺݍଵሺݏሻ, …ሻݏଶሺݍ ሻሻݏ௡ሺݍ (3.2) 

Definition 3.5 (Services Directory): Let ܣ be ݉	 ൈ 	݊ Matrix that contain the QoS 

information of all valid composite services	ݏଵ …ܵ௠	߳	ܵ generated based on definitions 3.3 

and 3.4, where each element ܽ௜,௝ represents the ݆௧௛ QoS value of the ݅௧௛ service, 

while	݅, ݆	 ൐ 	2. 

ܣ ൌ

ۉ

ۈ
ۇ

ܽଵଵ ܽଵଶ ⋯ ܽଵ௡

ܽଶଵ ܽଶଶ ⋯ ܽଶ௡

⋮
ܽ௠ଵ

⋮
ܽ௡ଶ

⋱
⋯

⋮
ܽ௠௡ی

ۋ
ۊ
	 (3.3) 
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From	ܣ, a row vector would describe a service ݏ௜ ∈ ܵ with QoS attributes where each 

element represents the QoS attribute of composite service	ݏ௜. 

3.2.4 User QoS requirements 

The values of a user’s QoS requirements (aspiration) are captured in a vector that 

corresponds to the number of QoS attributes that describes available e-marketplace 

services. Users QoS preferences reflect the relative importance of each QoS attribute to 

others and are denoted using priority weights derived from the pairwise comparison. 

Similar to Rehman et al. (2011), user requirements are defined as:  

Definition 3.6 (Fuzzy Pairwise Comparison Judgment): Suppose there are ݊ QoS 

attributes, and that the user can provide a set ܮ ൌ ሼ ෤ܽ௜௝ሽ of ݉ ൑ ݊ሺ݊ െ 1ሻ/2 fuzzy 

pairwise comparison judgments, where	݅ ൌ 1,2… , ݊ െ 1; ݆ ൌ 2, 3, … ݊; ݆ ൐ ݅, represented 

as triangular fuzzy numbers ෤ܽ௜௝ ൌ ሺ݈௜௝,݉௜௝, ܹ ௜௝ሻ, a crisp priority vectorݑ ൌ

ሺݓଵ,ݓଶ, …  ௝are approximately withinݓ/௜ݓ ௡ሻ் is derived such that the priority ratiosݓ,

the scopes of the initial fuzzy judgments, or ݈௜௝ ൑෩
௪೔

௪ೕ
൑෩ ௜௝; where ൑෩ݑ	  means ‘fuzzy less or 

equal to’. 

Definition 3.7 (Fuzzy QoS Aspiration): Suppose there are ݊ QoS attributes and there are 

݊ Goals,		ܩ ൌ ሺܩଵ ܥ ,௡ሻ and Constraintsܩ… ൌ ሺܥଵ, … ,  ௡ሻ for the QoS attributes. Thenܥ

the resultant decision	ܦ௜ is the intersection of each Goal and Constraint, denoted as: 

௜ܦ ൌ ௜ܩ ∩ ௜ܥ (3.4) 

Corresponding to: 

௜ሻݒ஽೔ሺߤ ൌ 	min ቀ μீ೔ሺݒ௜ሻ, μ஼೔ሺݒ௜ሻቁ (3.5) 

Where μ஽೔, μீ೔, and	μ஼೔ are the membership functions for decision, goal and constraint. 

However, the A maximizing decision is the point in the set of values at which the 

membership function of a fuzzy decision attains its maximum. The optimal alternative is 

found using a maximizing decision	ܦ∗, and its membership function corresponding to: 

μ஽೔∗ሺݒ௜ሻ ൌ argሼmax ௜ሻሽݒ஽೔ሺߤ (3.6) 
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Therefore, the QoS aspiration vector ܸ ൌ ሺݒଵ, ,ଶݒ … ,  ௜ݒ	௡ሻ் is obtained as the values ofݒ

that has the highest membership grade in the decision fuzzy set	ܦ௜.  

Definition 3.8 (User QoS Requirement): The user’s QoS requirement is a tuple	ܴ	 ൌ

	ሺܹ, ܸሻ. Where ܹ ൌ ሺݓଵ,ݓଶ, … ,  ௜ is the importance weight for ݅௧௛ QoSݓ ௡ሻ, and eachݓ

attributes derived from fuzzy pairwise comparison judgment performed by the user; ܸ	 ൌ

ሺݒଵ, ,ଶݒ … ,  QoS attribute	݅௧௛	 corresponds to user’s desired value for the	௜ݒ ௡ሻ, andݒ

obtained by fuzzy decision making process. 

3.2.5 QoS Evaluation and Ranking 

Users are expected to select the service(s) that most approximates their QoS requirements 

from the available list of alternatives based on the performance evaluation obtained from 

an evaluation function. First, optimal QoS values are synthesised from user’s 

requirements (preferences and aspiration), and this information becomes the query to 

retrieve the most optimal set of services relevant to the user’s requirements from the 

service directory. This was achieved by formulating a fuzzy goal and constraint of finding 

those QoS values that are in the vicinity of the ideal service (ܩ෨), and very close to the user 

requirements (ܥሚ). Formally, the optimal values are defined as follows. 

Definition 3.9 (Optimal QoS Values): Let ܸ∗	be the optimal QoS values synthesised 

from user’s requirements with respect to the QoS information of all services	ݏ௜ ∈ ܵ. The 

goal of the optimal QoS values is to find the optimal set of QoS values such that: 

ܸ∗ ൌ argmaxΨ ሺܩ෨, ,ሚሻܥ ∀ ௜ݏ ∈ ܵ (3.7) 

Where Ψ is the fuzzy multi-objective optimisation modelled as fuzzy decision making, 

that finds the QoS values in the vicinity of the service with the best QoS performance, and 

also very close to the user’s requirements	ܴ. 

Definition 3.10 (Optimal Cloud Service Selection): For a given user’s requirements	ܴ, 

an optimal cloud service selection is selecting cloud service ݏ௜ ∈ ܵ from ranking all ݏ௜ ∈ ܵ 

such that: 

௜ݏ ൌ max
௦೔∈ ௌ

ሼ݁ܦܷܧ ሺ0 , ௜ሻሽݏ (3.8) 
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Where ݁ܦܷܧ is a nearest neighbour ranking function that ranks all services, ݏ௜ ∈ ܵ 

according to the optimal QoS values	ܸ∗. 

3.3 REQUIREMENTS FOR A CLOUD SERVICE SELECTION FRAMEWORK 

Addressing some of the open issues in cloud service selection is the first step to 

uncovering the requirements of an effective cloud service selection technique that is 

suitable for an e-marketplace context. This section highlights some requirements for a 

service selection technique suited for an e-marketplace context based on the analysis 

presented in Chapter two (Section 2.4.1). The six requirements can be summarised as 

follows: 

i. Requirement 1: Ability to organise and compose cloud ecosystem atomic 

services - A cloud e-marketplace is an ecosystem of heterogeneous services from 

multiple providers. There is a need to explicitly capture the cloud service attributes 

(functional and non-functional), and the cross-service relationships and constraints 

that guide the cloud service compositions in a logical and structured manner 

(Wittern et al., 2012).  

ii. Requirement 2: Ability to elicit both QoS preferences and aspirations - Most 

cloud service selection approaches unrealistically assume the user would provide 

perfectly crisp, precise and exact preference and aspiration information, which is not 

congruent with human expressions (Esposito et al., 2016; Sun et al., 2014; Qu and 

Buyya, 2014). Requirement 2 is further broken into the ability to capture vagueness 

when users express QoS preferences and aspiration; the ability to evaluate the 

interdependence of the user preferences in line with the multiple QoS criteria; and 

the ability to evaluate services based on both the user’s QoS preferences and 

aspirations. 

iii. Requirement 3: Ability to perform QoS-based evaluation and ranking from a 

large assortment of service alternatives: The e-marketplace context requires 

approaches that can deal efficiently with a large number of alternatives, and 

considers mixed QoS data, without accruing high computational overhead (Dastjerdi 

et al., 2015). In addition, such approaches should allow for the optimisation of 

specific QoS goals and should be scalable in handling multiple users simultaneously.  
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iv. Requirement 4: Capture fuzziness with interactive GUI: Users’ engagement with 

the e-marketplace to select cloud service should be facilitated by intuitive and 

interactive user interfaces with which users can conveniently express requirements. 

v. Requirement 5: Visualise cloud service ranking results: Most cloud service 

selection approaches presents service rankings in textual format, either in a list or 

tables (Beets and Wesson, 2011). This does not fully describe the implicit trade-off 

factors inherent in the available options, nor provide transparency into the reasoning 

behind the rankings, and can increase cognitive load on users (Lurie and Mason, 

2007). Search or evaluation result should be innovatively presented in a way that 

eases understanding and reduces cognitive load (Zhang et al., 2012).  

vi. Requirement 6: Take into cognizance usability and user experience factors: The 

evaluations of cloud service selection approaches reported in literature focuses on 

the performance and accuracy of the approach in ranking services that align with 

user requirements. Similar to the evaluation of recommender systems, a more 

holistic evaluation of cloud service selection approaches should include usability 

and user experience dimensions. 

Following the set of requirements listed above, the design agenda of the FOCUSS 

framework is summarised as follows: 

i. Organise and compose cloud ecosystem atomic services and populate the service 

e-marketplace directory 

ii. Elicit user fuzzy QoS preferences and aspiration; 

iii. Perform QoS-based ranking and evaluation of cloud service alternatives with 

respect to user QoS requirements;  

iv. Wrap all the underlying functionalities in a tidy graphical user interface. 

3.4 OVERVIEW OF THE PROPOSED FRAMEWORK 

The Fuzzy-Oriented Cloud Service Selection (FOCUSS) framework is proposed as an 

efficient integrated visual-rich fuzzy-based decision support that incorporates feature 

modelling, fuzzy set theory, fuzzy optimisation methodology, widgets and visualisation in 
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its design for cloud service selection in cloud service e-marketplace context. The input 

into the FOCUSS framework is a set of cloud service alternatives derived using 

automated reasoning on an ecosystem model, and users QoS preferences and aspiration 

captured through an interactive fuzzy-based user interface. The output is a QoS ranking of 

services with respect to users’ requirements presented using interactive bubble charts. The 

FOCUSS framework is proposed as a scalable approach that suffices for a large 

assortment of services and improves the quality of user experience in a cloud e-

marketplace context. Subsequently, the process model and the conceptual architecture are 

presented in details, as well as, a justification showing how each component of the 

proposed framework satisfies the set of requirements listed in Section 3.3. 

3.4.1 FOCUSS: The Process Model 

The process model of the FOCUSS framework is summarised in Figure 3.1.  

 
Figure 3.1: High-level Flow chart of FOCUSS Framework  

A step-wise description of the workflow of the FOCUSS framework is presented as 

follows:  

i. Step 1: Service providers list and register their atomic services in the ecosystem. 

Based on the ecosystem model, these services are organised, and formally 

composed in a manner that increases the value proposition of individual atomic 

services, and these valid combinations are stored in the service directory. 

ii. Step 2: Users interested in using the services can specify their fuzzy QoS 

requirements (preferences and aspiration), using a fuzzy-based GUI. 

iii. Step 3: Based on the specified requirements, the system first resolves the user 

requirements to obtain an optimal set of QoS values. The optimal QoS values are 

used to generate an ordered ranking of appropriate services that approximates the 
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user’s requirement, based on the QoS ranking mechanism of the proposed 

framework. This ranking result is visualised in a bubble chart. 

iv. Step 4: The user can then select appropriate service(s) through exploration of the 

results with the capabilities provided in the visualisation and exploration GUI. 

3.4.2 FOCUSS: The Conceptual Architecture 

The FOCUSS framework (see Figure 3.2) consists of four modules, namely: Graphical 

user interface (GUI), QoS requirements processing, QoS evaluation and ranking, and 

Cloud ecosystem model and analysis modules. In accordance with the process model, the 

conceptual architecture (point 0) shows how the atomic services are combined to realise 

the set of composite services offered in the e-marketplace. Subjective QoS requirements 

are then provided by the Fuzzy-based widgets at point 1, processed by the QoS 

Preference Prioritizer and the QoS Aspiration Analyzer at point 2, optimised by the QoS 

Requirements Optimizer at point 3, while the QoS Ranking Engine ranks services in the 

directory at point 4. The ranked results are shown to the users via bubble graph 

visualisation at point 5. Each module is discussed in details subsequently. 

 

Figure 3.2: Architecture of the FOCUSS Framework 
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I. Graphical User Interface 

The GUI is the visual medium through which the user interacts and engages the e-

marketplace, and it plays a very prominent role in usability and user experience in the e-

marketplace environment (Van Schaik and Ling, 2008). The GUI module comprises 

Fuzzy-based Interactive GUI and Bubble graph visualisation components, which are 

discussed next. 

a) Fuzzy-based Interactive Graphical User Interface 

The fuzzy-based interactive graphical user interface consists of drop-down menus, text 

boxes and slider bars for eliciting users’ vague preferences and aspirations under one 

integrated visual interface using slider bars can also enhance user experience. Users can 

indicate the level of preference by pairwise comparison for each QoS attribute by 

adjusting the slider handle left or right. The slider bar has two colour codes that 

correspond to the QoS attributes, and indicates the amount of preference for a QoS 

attribute; the lengthier colour means user prefers a QoS attributes more than the other to 

an extent. The positions of the slider handle are underlined by fuzzy numbers, from the 

fuzzified Saaty scale, and correspond to the degree of preference indicated during the 

pairwise comparison by the user. The QoS aspiration level is specified by selecting an 

option from the drop-down menu indicating linguistic values and a threshold that 

approximates user’s QoS aspirations for a specific QoS attribute. A typical illustration of 

the fuzzy-enabled GUI for eliciting user’s QoS preference and aspirations is shown in 

Figure 3.3.  

 

(a) 
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(b) 

Figure 3.3: Sketch of UI Design showing Availability QoS Requirements for two Users  
(a) User-I expect that Availability value should be high and substantially greater than 80% 
(b) User-II specifies that Availability value should be Medium and should be about 60%. 

b) Bubble Chart IV Module with dynamic exploration capabilities 

The FOCUSS framework incorporates the bubble graph information visualisation 

technique to intuitively present ranking results in a manner that is easy to understand and 

facilitates quality decision-making. Each ranked cloud service is represented as a bubble 

(shape), using a variety of colours, sizes and x-y coordinates to show services in the 

QoS information space (cf. Figure 2.17). These dimensions (colours, size and x-

coordinates and y-coordinates) represents up to four QoS dimensions simultaneously. 

Based on the SMI QoS model for cloud services (CSMIC, 2014), four QoS attributes 

have been considered in this study, they include, Cost, Reliability, Response time and 

Availability, which also have been the basis for QoS consideration in similar approaches, 

for example  (He et al., 2012; Karim, 2013; Zeng et al., 2009; Ludwig, 2012). Dynamic 

exploration enabled by clicking to access details of each option is the form of direct 

interaction that allows the users to view the details of each option almost immediately 

(Shneiderman, 1994; Nestor et al., 2007). 

II. QoS Requirements Processing Module  

The user’s QoS requirements elicited via the GUI are processed in the QoS Requirements 

Processing (QRP) module, in order to identify suitable cloud services that match those 

requirements. The QRP module comprises of the QoS Preference Prioritizer (QPP) and 

the QoS Aspiration Analyzer (QAA). An accurate elicitation of users’ QoS requirements 

involves the interpretation of fuzzy expressions associated with evaluating service 

alternatives (Qu and Buyya, 2014; Esposito et al., 2016; Sun et al., 2014). The ability to 
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express vague preferences or aspiration using natural linguistic terminologies enables 

easier and quicker expression of users’ QoS requirements (Esposito et al., 2016; Qu and 

Buyya, 2014; Gatzioura et al., 2012). To the user, this means that requirements need not 

be stated in exact or precise terms of the service attributes (Akolkar et al., 2012), and are 

therefore allowed some flexibility. The QPP and QAA modules are described in more 

details next. 

a) QoS Preference Prioritizer 

To prioritise user’s QoS preferences, the FOCUSS framework employs Fuzzy AHP-based 

approach. The evaluation dimension was achieved by using fuzzy numbers and linguistic 

variables and employed nine fuzzy linguistic variables to define the scale for the 

comparison judgements values. These values are triangular fuzzy numbers (TFN) with 

their underlying triangular membership functions. Next, the user performs the pairwise 

comparison for all criteria to fill the Fuzzy comparison matrix. For example, a user’s 

degree of importance of the cost criterion over availability can be expressed by the fuzzy 

number “about strongly important”, i.e. ෤ܽ௖௢௦௧,௔௩௔௜௟ 	ൌ 	 ሺ6, 7, 8ሻ. The corresponding 

reciprocal from on the fuzzy comparison matrix becomes	 ෤ܽ௔௩௔௜௟,௖௢௦௧ 	ൌ 	 ሺ
ଵ

଼
, ଵ
଻
, ଵ
଺
ሻ. The QoS 

Preference Prioritizer ensures consistency in the pairwise judgment based on a method 

proposed by (Csutora and Buckley, 2001), and finally derives priority weights that reflect 

the relative importance of each criterion to the user using the geometric mean method 

(Buckley, 1985). Algorithm 1 outlines the process for deriving the priority weights. 

b) QoS Aspiration Analyser 

The QoS Aspiration Analyser models user-desired QoS values specified using fuzzy 

linguistics terms and hedge membership functions (cf. Algorithm 2). For example, the use 

the following linguistic terminologies can be employed when expressing QoS aspiration: 

“the threshold of reliability metric should low and be in the vicinity of x”, or “cost should 

be cheap and in the range of a and b” or “Availability should be high and close to the 

value z” etc., where x, a, b, and z are specific and desired QoS values for reliability, cost, 

and availability respectively. The fuzzy linguistic variables, ‘low’, ‘in the vicinity of’, 

‘cheap’, ‘in the range of’, ‘high’ and ‘close to’ are represented using membership 

functions. Moreover, each QoS attributes consist of a number of membership functions, 

from which the user can select the ones that most approximates their intention (e.g. see 
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Table 3.1). Thus, the QoS Aspiration Analyser module synthesises user’s QoS values 

based on fuzzy decision-making system, comprising of the membership functions framed 

as fuzzy goal and constraints. Since the linguistic terminologies describing the QoS 

aspiration reflect the semantic approximations of user’s intent, resolving the fuzzy 

decision results in an optimal set of QoS values and the output of this module is a set of 

values that approximate user’s QoS intent. 

 

 

Table 3.1: Linguistic Terms for fuzzy QoS goals and constraints for Availability 
Attribute Linguistic terms of QoS Goals Linguistic terms for QoS Constraints 

Availability 
High 
Medium 
Low 

Substantially greater than x 
In the vicinity of x 
About x 
Very Close to x 

Algorithm 1: to Derive Priority Weights from Fuzzy Comparison Matrix 

Input: Fuzzy Comparison Matrix M= ሾ ෤݆ܽ݅ ሿ of n QoS attributes, and ෤ܽ is a Triangular fuzzy
number TFN 
Output: Vector W of priority weights 
Begin 

for each k=1 to 3  
for each i=1 to n 

   for each j=1 to n 
    r[i] ×= a[i][j] 
   end for 
   r[i]= pow (r[i], n-1) 
   TFN[i][k]=r[i] 
   tot[k]= TFN[i][k]  

tot[k]=inverse(tot[k]) 
  end for  
 end for 
 tot=sortIncreasingOrder(tot) 
 for each i=1 to n 
  for each k=1 to 3 
   w[i][k]=TFN[i][k]*tot[k] 
  end for 
 end for 

W=normalize(w) 
Return W 
End 

Algorithm 2: Derive QoS values from Fuzzy Aspirations 
Input: Fuzzy Goals G=[gi] and Fuzzy Constraints C=[ci] for n QoS attributes; Let MF be
membership functions 
Output: Vector V of QoS Aspiration values  
Begin 

For all i=1 to n 
V[i]= max min (MFgoal(G[i]), MFconstraint (C[i])) 

End for 
Return V 

End 
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III. Service Evaluation and QoS Ranking Module 

Cloud services are characterised by multiple QoS attributes, and there is need to evaluate 

the overall performance of a given service by some utility functions with respect to users’ 

QoS requirements. Each service alternative is evaluated and ranked in accordance with 

the user’s QoS requirements in the service evaluation and QoS ranking module and this 

module comprise of the QoS requirements optimizer and the QoS ranking Engine. 

a) QoS Requirements Optimizer 

The QoS optimizer component computes the optimal QoS values that describe user’s 

requirements based on the available QoS information on all the services contained in the 

service directory. The inputs into this component are the priority weights for each QoS 

attributes from the QoS Preference Prioritizer module and the values of the QoS 

attributes synthesised from the QoS Aspiration Analyser. Based on the collective QoS 

information about services in the directory, the FOCUSS framework employs two utility 

functions: an SAW-based function and a distance metric, exponential Euclidean distance 

metric- eEUD (2.27), to evaluate the performance of each service alternative. These 

functions have been discussed in Section 2.4.5. The SAW function is used to evaluate 

performance utility of each alternative in order to determine the QoS properties of the 

services alternative with the highest utility, with respect to a user’s preferences, while 

eEUD (see Section 2.4.5) is used to identify those QoS properties of the alternative that is 

closest to users’ requirements, with respect to both preferences and aspiration. The returns 

from the two functions are used to construct the optimal QoS properties drawn from 

user’s requirement; this is based on the assumption that users always seek to maximise 

utility subject to their personalised QoS requirements. Hence, the optimal QoS properties 

are those which simultaneously maximise the utility function as much as possible and 

closely approximate similarity with user’s aspiration. The conflicting nature of functions 

gives rise to a multiple objective decision-making problems, which the QoS Requirement 

Optimizer models and solves as a fuzzy multi- objective optimisation problem. The 

objective functions are transformed into a fuzzy goal and constraint and also solved by 

fuzzy decision making (Bellman and Zadeh, 1970). The resultant output (optimal QoS 

properties) forms the input into the QoS Ranking Engine. 
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b) QoS Ranking Engine 

The output from the QoS Requirement Optimizer forms the basis for ranking the 

alternatives in the service directory. The main technique used in this module is the nearest 

neighbour ranking algorithm, based on the eEUD metrics (2.27), that identifies the 

nearest neighbours to the optimise QoS requirements. The output is the QoS ranking of 

the alternatives, and top-k items become the dataset fed into the bubble chart 

visualisation. Algorithm 3 outlines the process of the QoS Ranking Engine. 

 

IV. Cloud Ecosystem and Service Directory Module 

As part of the FOCUSS framework, a directory of available services is created based on 

the combinations of atomic services in a systematic manner. The directory of services 

serves as the baseline for the selection process proper. The cloud ecosystem and service 

directory module consist of the cloud ecosystem feature model, the reasoning engine and 

the service directory. 

a) Cloud Ecosystem Feature Model 

Information about the participating atomic services in the ecosystem, which includes QoS 

properties, is collected and modelled using Variability Modelling techniques. Noting that 

the cloud ecosystem structure is analogous to the fundamental principles of software 

product line engineering (SPLE) (Berger et al., 2014), one of the variability modelling 

Algorithm 3: Rank Services in Directory based on Optimized QoS Requirements 
Input: Vectors V and W representing the QoS aspiration values and priority weights; the
service directory A; Let MF be membership functions 
Output: Top-k List of services R 
Begin 

For each item ai in A do 
perfScore[i]  Saw (ai, W,V) 
simScore[i]   eEUD(ai ,W, V) 

 For all i=0 to sizeOf(A) 
  MFd  arg max min (MFsaw(perfScore[i]),MFeEUD(simScore[i])) 
 OP  Evaluate MFd to return the optimal QoS values that approximate user

requirements W and V 
 For all items ai in A 

 L[i]=eEUD(O, a) 
R  Rank all items in L according to most similar to O and return top-k 
Return R 

End 
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techniques used in the SPLE is used to effectively structure the hierarchical 

interrelationships among ecosystem atomic services.  

The cloud ecosystem feature model, based on extended feature model (Benavides et al., 

2006), is employed in the FOCUSS framework to organise the services participating in 

the ecosystem; then the model is transformed into a constraint satisfaction problem based 

on some mapping rules, and this forms the formal basis to enable automated reasoning on 

the ecosystem feature model. An automated reasoning process called generate all 

products, is used to populate the e-marketplace service directory. At least more than one 

atomic services are composed to form valid combinations, therefore, the QoS properties 

of the constituent services are aggregated to determine the overall QoS values for the 

valid combination. 

i- Mapping Cloud Ecosystem Feature Model to Constraint Programming 

Table 3.2 contains the rules for mapping the Cloud Ecosystem Feature Model (CEFM) 

into a constraint satisfaction problem using constraint programming. 

ii- QoS aggregation functions 

Usually, the overall QoS properties of the composite services, conceptualised into a 

business process, are determined by the QoS attributes of constituent services and their 

composition relationships. There are four basic composition patterns that inform the 

arrangement of constituent services in a business process (Mohabbati et al., 2011; 

Bouanaka and Zarour, 2013; He et al., 2012; Yu and Lin, 2005). They include:  

i. Sequential: A sequential pattern describes an activity (or services) in the business 

process that executes after another activity has concluded execution. In other words, 

the services are executed one after the other. 

ii. Parallel- In a parallel pattern, all the branches are executed at the same time.  

iii. Conditional (or branch): Only one branch, with a set of activities, is selected for 

execution in the branch pattern. 

iv. Loop: In a loop pattern, an activity in the business process is executed for ሺ݊ ൐ 0ሻ 
times. 
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Table 3.2: Rules for Mapping Cloud Ecosystem Feature Model into CSP  

RELATIONSHIPS IN CEFM CSP MAPPING 

  
Mandatory 

ܣ ൌ  ܤ

  
Optional 

݂݅ሺܣ ൌ 0ሻ	 
ܤ						 ൌ 0	

  
OR 

݂݅ሺܣ ൐ 0ሻ 
,ଵܤሺ	݉ݑܵ					 ଶܤ   ሺ1…݊ሻ	௡ሻ݅݊ܤ…
 ݁ݏ݈݁

1ܤ ൌ 0, 2ܤ ൌ 0. . . ௡ܤ ൌ 0 

 
Alternative 

݂݅ሺܣ ൐ 0ሻ 
,ଵܤሺ	݉ݑܵ					 ଶܤ   ሺ1…1ሻ	௡ሻ݅݊ܤ…
 ݁ݏ݈݁

1ܤ ൌ 0, 2ܤ ൌ 0. . . ௡ܤ ൌ 0 

 Requires 

݂݅ሺܣ ൐ 0ሻ 
ܤ ൐ 0

 Excludes 

݂݅ሺܣ ൐ 0ሻ 
ܤ ൌ 0

 

However, the sequential composition pattern was used in this research. The sequential 

pattern is the fundamental pattern, as the other patterns (i.e. parallel, conditional and 

loop), can be reduced or converted to the sequential pattern (Yu and Lin, 2005; Alrifai et 

al., 2010). Based on the nature of QoS attribute, different aggregation functions can be 

applied (Yu and Lin, 2005). However, for the purpose of this study, the FOCUSS 

framework considers only the summation and multiplication aggregation functions (see 

Table 3.3): 

i. Summation: In summation aggregation function, the values of a QoS attributes are 

summed up (e.g. cost and response time). The overall cost for a valid combination 

service should be a summative total of the cost of all constituent services. 

ii. Multiplication: Multiplication function implies that the aggregate is a product of all 

the values of a QoS attribute of all the constituent services (e.g. availability). 
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The QoS aggregation rules for the four QoS properties considered in the FOCUSS 

framework (i.e. cost, response time, availability and reliability) are given in Table 3.3. 

Table 3.3: Aggregation Functions Used in the FOCUSS Framework 

AGGREGATION TYPE QOS ATTRIBUTE AGGREGATION FUNCTION 

Summation 
Cost 

ሻݏ௜ሺݍ ൌ෍ݍ௜ሺ ௝ܼሻ

௧

௝ୀଵ

 
Response Time 

Multiplication 
Availability 

ሻݏ௜ሺݍ ൌෑݍ௜൫ ௝ܼ൯

௧

௝ୀଵ

 
Reliability 

Source: Yu and Lin (2005) 

The multiplication aggregation functions are non-linear functions. In order to make all 

aggregate functions to be linear ones, these functions were transformed 

using	log 	ሺݍ௜ሺݏሻሻ ൌ log൫∏ ௜൫ݍ ௝ܼ൯
௧
௝ୀଵ ൯ ൌ ∑ logሺݍ௜ሺݏሻሻ

௧
௝ୀଵ , a logarithmic function	used for 

such purposes (Li et al., 2014). 

b) Reasoning Engine 

The FOCUSS framework employs Choco (Jussien, 2008), a general purpose constraint 

solver, for reasoning on the cloud ecosystem feature model in order to derive useful 

information from the model, case in point, all valid combinations of constituent services. 

Choco solver employs, by default, a backtracking approach to find solutions. The search 

is ordered as an enumeration tree and traversed using a Depth-First Search (DFS) 

algorithm augmented with variable and value selection heuristics. The solver determines 

the satisfiability of the CSP, and if a CSP is satisfiable, then solutions can be obtained. 

The solver searches for a solution in a CSP, using its search strategy to generate all the 

possible combinations of values for each variable in the CSP and certifies that they 

correspond to a solution of the CSP. Table 3.2 shows the rule for mapping constructs in 

the cloud ecosystem feature model into CSP. The corresponding CSP representation of 

the model is read by the reasoning engine and performs automated analysis of the CSP 

representation to generate all valid service combinations with aggregated QoS 

information based on the aggregation functions listed in Table 3.3. 

c) Service Directory 

The service directory indexes all the QoS information about the collection of valid 

combination services generated by all products operations on the cloud ecosystem feature 

model. Based on Definition 3.3 and Algorithm 4, the service directory is modelled as case 
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base and stored in a relational database with columns and rows representing the QoS 

attributes and the QoS values for each valid combination service. 

 

3.4.3 Justification for the FOCUSS Framework 

To satisfy Requirement 1, the FOCUSS framework uses a cloud ecosystem feature model 

(CEFM) that is based on extended feature model (Benavides et al., 2006) to organise the 

atomic services that are participating in the ecosystem. The CEFM is transformed into a 

formal representation as a constraint satisfaction problem and one of the automated 

reasoning operations performed on the formal representation of the CEFM generate all 

valid combinations is used to populate the e-marketplace service directory.  

The FOCUSS framework fulfils Requirement 2 by employing fuzzy set theory to elicit 

QoS preferences and aspirations while taking into consideration both users’ preferences 

and aspiration. To determine the user’s preferences on QoS attributes, the advantage of 

pairwise comparisons to derive priority weights of each QoS attribute from comparison 

matrices far outweighs direct and arbitrary assignment of weights (Javanbarg et al., 

2012). The result of each pairwise comparison is a numerical value denoting the 

estimated ratio between the weights of any two criteria; and the weights are crisp values 

obtained from Saaty’s scale (Saaty, 1980). The AHP method proposed by (Saaty, 1980) 

provides some measure of flexibility in judgment by ensuring intermediate values in the 

Saaty’s discreet scale (Cakir and Canbolat, 2008).  

Algorithm 4: Populate Cloud service directory with Composite Services 
Input: Cloud Ecosystem Feature Model (CEFM) of atomic services with n number of QoS
attributes 
Output: Service Directory A 
Begin 

S  reasoningEngine(CEFM) generate sets of valid composite services based on
constraints 

for each composite_service C in S 
for each i=1 to n 

for each atomic_service a in C 
   As[i] = aggregate (QoS(a[i])) 

end for 
end for 

end for 
Return A 

End 
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On the other hand, human judgment is shrouded with impression and vagueness. In most 

practical cases, and users might be reluctant or unable to assign exact numerical values in 

comparison judgements (Mikhailov and Tsvetino, 2004). Comparison judgement using 

crisp numerical values lacks the flexibility and robustness required to effectively capture 

the vague perception inherent in human judgement, and sometimes, lead to unsatisfactory 

decisions (Cakir and Canbolat, 2008; Javanbarg et al., 2012; Mikhailov and Tsvetino, 

2004). User’s claim about the relative importance of the QoS criteria can to delineated 

comparison ratios as fuzzy numbers (Cakir and Canbolat, 2008; Tajvidi et al., 2014; 

Mikhailov and Tsvetino, 2004).  

Similarly, expressing QoS aspiration also benefits from the flexibility provided by 

employing fuzzy set theory, where rather than expressing the value of QoS attributes 

using exact crisp values, linguistic variables defined by membership functions can be 

used together with hedges.  

Cloud services e-marketplaces are characterised by a large set of services, which are most 

times functionally equivalent. The FOCUSS framework fulfils Requirements 3, by 

employing a fuzzy multi-objective optimisation mechanism that accurately evaluates and 

rank a large set of services in accordance with user’s QoS requirements.  

Requirement 4 is satisfied by the FOCUSS framework as it integrates fuzzy-based web 

widgets for eliciting vague preferences and aspirations in an integrated visual interface. 

GUI designs that can intuitively capture these requests are naturally desirable. Indeed, the 

user’s perception of the interface affects attitude to what comes out of it, and ultimately 

affects user satisfaction (Kuniavsky, 2003; Sundar et al., 2014). Estimating relative 

pairwise comparison can be made numerically, graphically, or linguistically (Forman and 

Gass, 2001). However, a graphical and linguistic approach further reduces cognitive load 

on the user and is easier than expecting the user to enter crisp numeric ratios. The choice 

of slider bars is motivated by the study performed by (Millet, 1997), which shows that 

interaction or engagement is better off using slider by giving the user the opportunity to 

adjust and interact directly with the elements on the screen. 

The FOCUSS framework fulfils Requirement 5 by including the bubble graph as a 

visualisation mechanism for improving the understanding of the rationale for the rankings 

of cloud services based on the user’s requirements. Most cloud service ranking and 
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selection systems are black boxes, providing a list of ranked cloud services with no 

transparency into the reasoning behind the ranking results (Chen et al., 2013). Arguably, 

confidence in the ranking results would be enhanced if users are privy to the knowledge 

of the underlying rationale. The graph explicitly would show the relationships of the top 

ranked cloud services as well as the underlying structure of the QoS space by using 

bubbles, colours, and size in a spatial arrangement. This exploratory mechanism provides 

valuable insight into the QoS information space and enables an improved understanding 

of how each service in the ranking relates to others in the QoS information space overall 

performance evaluations of cloud services (Chen et al., 2013). 

To validate the FOCUSS framework, an illustrative case study is undertaken to 

demonstrate the practicality of the FOCUSS framework, while controlled experiments are 

performed to assess the ranking accuracy and scalability of the FOCUSS framework. 

Apart from the performance and accuracy evaluations which are predominant in 

literature, user studies were carried out to ascertain the suitability of the FOCUSS 

framework in the e-marketplace context; thus ensuring that the FOCUSS framework 

fulfils Requirement 6. 

3.5 ASSUMPTIONS  

The underlying assumptions underpinning the proposed FOCUSS framework are 

highlighted as follows: 

1. It is assumed that there would be no failure on the part of any of the services and 

that all services are available in every given instance. 

2. The QoS information given is accurate and reflects the true performance of the 

services. 

3. All valid combinations would be deployed on host e-marketplace infrastructure. 

4. There are service composition realisation or actuator mechanisms that concretise 

valid combinations for onward cloud deployment for the user. 

5. Every other aspect of the e-marketplace is functional, as this study is only 

concerned with the aspect selecting cloud services from a large pool in an e-

marketplace context. 
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6. The number of QoS dimensions considered is limited to four, given the 

multivariate constraints imposed by the bubble graph visualisation. 

7. Noting the dynamic nature of the cloud computing domain, correctly evaluating 

the performance of cloud service should be an on-going concern, a major 

assumption is that the QoS properties of the atomic services remain unchanged 

during the decision process, that is, all ݖ௜ 	 ∈ 	ܼ are constant. This assumption 

reduces cloud into a decision problem without uncertainty (Rehman et al., 2011).  

8. It is assumed that providers have correctly specified their QoS requirements; 

however, a consistent update of the QoS information about the services, based on 

monitoring benchmark values from third party services is required (Ruiz-Alvarez 

and Humphrey, 2011). 

3.6 CHAPTER SUMMARY 

In this chapter, several models describing the Fuzzy-Oriented Cloud Service Selection 

Framework (FOCUSS) were presented. The FOCUSS framework is presented as an 

integrated, feature-based and visual-rich fuzzy-based decision making framework for 

cloud service selection in cloud service e-marketplace context and attempts to answer the 

research questions posed in this study. The automated analysis of cloud ecosystem feature 

models populates the service directory, while the fuzzy theories are employed to elicit 

user QoS requirements via interactive GUI, through which ranking of service alternatives 

can also be explored. The practical demonstration and validation of the FOCUSS 

framework will be discussed in the subsequent chapters. 
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CHAPTER FOUR 

IMPLEMENTATION 

4.1 INTRODUCTION 

The previous chapter contained the description of the FOCUSS framework proposed in 

this study for service selection in cloud service e-marketplace. In this chapter, the details 

of the implementation of the FOCUSS framework are presented first, using some 

software tools, technologies and middleware frameworks. Next, this chapter contains 

details of an illustrative case study of a Cloud-based Customer Relationship Management 

Software-christened Customer Relationship Management as a Service (CRMaaS). Based 

on a GUISET use case, the CRMaaS provides a scenario through which the practical 

application of the FOCUSS framework was demonstrated.  

4.2 IMPLEMENTATION DETAILS 

In order to realise the FOCUSS framework and demonstrate its applicability, a set of 

technological tool has been identified. These tools were categorised into different 

functional areas- Integrated Development Environment (IDE), Front-end Components, 

and Back-end components- Java was the primary programming language used to 

implement components of the FOCUSS framework. The tools used to implement the 

components of the FOCUSS framework are presented as follows: 

4.2.1 Integrate Development Environment: NetBeans 8.1 

NetBeans 8.1 is a free open-source cross-platform integrated software development 

platform written in Java and allows applications to be developed from a set of modular 

software components called modules, which can be extended by third parties. Apart from 

supporting developments in Java, the NetBeans IDE also supports other languages, such 

as PHP, C/C++, XML and HTML5. The NetBeans IDE is cross-platform and runs on 

platforms supporting a compatible JVM, including Microsoft Windows. The NetBeans 

complete bundle provides complete tools for Java EE, SE and ME standards, including 

Web profile, Enterprise Java Beans (EJB), Servlets technologies, Java Persistence API, 

web services, and annotations. NetBeans also supports the JavaServer Pages (JSP) and 
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includes GlassFish and Apache Tomcat servers. With NetBeans IDE, desktop, mobile and 

web applications can quickly be developed in Java, as well as HTML5 applications with 

HTML, JavaScript, and CSS. Furthermore, the NetBeans IDE provides drivers for the 

Java DB, MySQL, Oracle, and PostgreSQL database servers, as well as other JDBC 

drivers. NetBeans 8.1 IDE served as the umbrella environment for the implementation of 

the components of the FOCUSS framework. 

4.2.2 Front-end Web-based UI 

To achieve improved user experience in the FOCUSS framework, the graphical user 

interface components were realised using a combination of front-end technologies, 

languages and framework, which are presented subsequently.  

a) JavaServer Pages (JSP) 

JavaServer Pages (JSP) is a technology that is used to create dynamically generated web 

pages based on HTML, XML or other document types using Java. JSP files are deployed 

and run on a compatible web server that possesses a Servlet container (e.g. Apache 

Tomcat or Jetty). JSP is considered high-level abstractions of Java Servlets and are 

translated into Servlets at runtime. With JSP, Java codes and predefined actions are 

commingled with markup languages (e.g. HTML) and are executed by a Java Virtual 

Machine (JVM) that interacts with the server's host operating system to provide an 

abstract, platform-neutral environment. 

b) Hyper Text Markup Language 

HyperText Markup Language (HTML) is the standard markup language for creating and 

presenting web pages. Published in October 2014, HTML5 is the fifth and current version 

of the HTML standard, and improves on previous HTML standards with support for the 

multimedia, and provides API for complex web applications. 

c) Cascading Style Sheets 

Cascading Style Sheets (CSS) is a stylesheet language used for determining how a 

document written in a markup language is presented in a web browser. Together with 

HTML and JavaScript, CSS is employed to create visually engaging and appealing web 

pages and user interfaces for web applications and mobile applications. The main concept 
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of employing CSS is to separate the content of a document from its presentation, and as 

such improve content accessibility, enable multiple HTML pages to share formatting by 

specifying the relevant CSS in a separate .css file, and reduce complexity and repetition in 

the structural content. Apart from being used to create the visual appearance of web 

pages.  

d) JavaScript 

JavaScript (JS) is a high-level, dynamic, untyped, and interpreted programming language 

used together with HTML, and CSS to create web based contents. JavaScript is 

prototype-based with first-class functions, making it a multi-paradigm language that 

supports a variety of programming paradigms such as object-orientation, imperative, and 

functional programming. It possesses API for manipulating text, arrays, dates and regular 

expressions. JS is a client-side programming language used to dynamically alter the 

content of an HTML document. JavaScript was heavily employed in the implementation 

of the front-end components of the FOCUSS framework. 

e) BootStrap Framework 

The FOCUSS framework employs BootStrap 3.3.6 (bootstrap.com), a free and open-

source HTML, CSS and JS framework for creating and styling the web user interface. 

BootStrap supports responsive web UI design, in that it adapts dynamically to the 

characteristics of the device in use. It comprises design templates for layout, forms, 

buttons, navigation and other UI components and provides a consistent appearance for 

formatting text, tables and HTML form elements. BootStrap allows the use of modal 

windows to reduce on-screen clutter, coloured buttons to dictate functionality, and tabbed 

panes, to help split the system into smaller segments.  

BootStrap is compatible with many modern browsers such as Google Chrome, Mozilla 

Firefox, Apple Safari, Microsoft Edge, and Opera. The Jquery JavaScript library was used 

to manipulate the HTML. Jquery is fast, light, and is a collection of feature-rich 

JavaScript library, that greatly simplifies document traversal and manipulation, and event 

handling. 
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f) Google Chart Visualization 

Google Charts provide customizable JavaScript classes for visualising data on web pages. 

The Google Chart JavaScript libraries expose a variety of chart types including line 

charts, treemaps, scatter plot, bubble graph, etc. The Charts are rendered in an 

HTML5/SVG technology that works across browser types. The Charts are populated from 

data sources such as a database or directly from a web page. The FOCUSS framework 

employs the Bubble Chart from the Google Chart types to visualise the QoS ranking of 

Cloud service alternatives with respect to users’ QoS requirements. 

4.2.3 Back-end Components 

a) Glassfish Web Server 

This is a fully compliant implementation of the Java EE 5 platform. It provides the 

necessary middleware infrastructure support for all the Java APIs. The Application Server 

includes a number of Java EE tools that are not part of the Java EE 5 platform but are 

provided as an additional support to the developer. 

b) Java Servlet Technology and Java Classes 

A Java Servlet is a Java objects deployed in a web container and used to extend the 

functionalities of a server. Servlets support hosted applications that comply with the 

request-response communication model, and are the Java equivalent of dynamic web 

technologies like PHP and ASP.NET. The web container in which the Servlets are hosted 

handles the Servlet lifecycle and maps an URL to specific servlets while ensuring that the 

URL requester possesses the correct access rights. Servlets and Java classes were used to 

encapsulate the business logic of the FOCUSS framework. The business logic is the code 

that fulfils the purpose of the application; For example, a method in a Java class 

implements the business logic derivePriorityWeights. When derivePriorityWeights is 

invoked, the QoS preferences of the users based on the Fuzzy comparison matrix would 

be performed and the vector of the priority weights is returned for further processing. 

Other components responsible for the core business logic of the FOCUSS framework 

include the QoS Prioritizer, QoS Analyzer, QoS Requirement Optimizer, The QoS 

Ranking Engine, and the Reasoning Engine. 
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c) Choco Constraint Library and Solver 

Choco (Jussien et al., 2008) is a Free and Open-Source Software dedicated to Constraint 

Programming. It is a Java library used to describe hard combinatorial problems as 

Constraint Satisfaction Problems (CSP) and solved using constraint programming 

techniques. Problems are modelled in a declarative way by stating the set of constraints 

that need to be satisfied in every solution, and Choco solver solves the problem by 

alternating constraint filtering algorithms with a search mechanism. Choco supports four 

types of variables (Integer, Boolean, Set and Real), many global constraints, solution 

search strategies, explanation-based engine, that enables conflict-based back jumping, 

dynamic backtracking and path repair. The FOCUSS framework employed Choco 2.1.5 

to describe the cloud ecosystem feature model that organises the participating services in 

the cloud ecosystem and describes their relationship with each other. Choco solver uses, 

by default, a backtracking approach to finding solutions. The search is ordered as an 

enumeration tree and traversed using a Depth-First Search (DFS) algorithm augmented 

with variable and value selection heuristics. The model provides a template for valid 

combinations of services based on some imposed constraints. 

d) The MOEA Framework 

The MOEA Framework (moeaframework.org) is a free and open source Java library of 

Multi-Objective Evolutionary Algorithms (MOEAs) and other general-purpose 

multiobjective optimisation algorithms. The framework supports genetic algorithms, 

differential evolution, particle swarm optimisation, genetic programming, and 

grammatical evolution to formulate and solve multiobjective optimisation problems. New 

problems are formulated in the MOEA Framework using decision variable(s) encoded as 

any of binary, strings, real-valued numbers, and permutations. After the definition, 

problems can then be optimised using the MOEA algorithms available in the framework. 

Specifically, the MOEA Framework comprises the following algorithms NSGA-II, 

NSGA-III, ε-MOEA, GDE3, PAES, PESA2, SPEA2, IBEA, SMS-EMOA, SMPSO, 

OMOPSO, CMA-ES, and MOEA/D. 

e) MySQL Database 

MySQL is the most popular open-source relational database management system 

(RDBMS) for web-based application and is a central component of the widely used 
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LAMP open source web application software stack (and other "AMP" stacks). The latest 

MySQL version 5.7.11 was employed in implementing the service directory of the 

FOCUSS framework. The MySQL database server was integrated into the NetBeans 8.1 

IDE via the MySQL Connector/J Java Database Connectivity API. The API allows SQL 

commands to be invoked from Java programming language methods. The connector is 

used in an enterprise bean when there is a need for a session bean to access the database. 

The connector can also be used from a Servlet or a JSP page to access the database 

directly, bypassing the enterprise bean. The summary of the technologies employed to 

implement the FOCUSS framework is presented in Table 4.1. 

Table 4.1: Summary of Tool Support to Realise the FOCUSS Framework 

# MODULE LANGUAGE TECHNOLOGY/LIBRARY/ FRAMEWORK 

1 GUI: Front-end 

Java JSP 
HTML 
CSS 
JavaScript 

BootStrap 3.3.6 

2 GUI: Visualization JavaScript Google Chart API 
3 QoS Aspiration Analyzer Java MOEA Framework 2.9 
4 QoS Preference Prioritizer Java Servlet and Java Class 

6 QoS Requirements Optimizer Java 
MOEA Framework 2.9,  
Servlet 

7 QoS Ranking Engine Java Servlet and Java Class 
8 CEFM Java Choco 2.1.5 

Servlet and Java Class 9 Reasoning Engine Java 
10 Service Directory SQL MySQL 5.1.17, Java Servlet 

Integrated Development Environment NetBeans 8.1 
Web Application Server Glassfish Web Server 

4.3 ILLUSTRATIVE CASE STUDY 

In this section, a cloud ecosystem and e-marketplace scenario is presented to demonstrate 

the practical application of the FOCUSS framework. As an illustrative case study, the 

GUISET project was considered. GUISET is envisioned as both an enabling 

infrastructure and a suite of on-demand services. The primary motivation for the GUISET 

project is economic advantages of enterprise clusters over the stand-alone organisation. 

These advantages include resource sharing, cost reduction, and the ability to compete 

with larger firms (Braun, 2005). As a cloud computing model, GUISET is aimed at 

offering affordable e-enabling and “appliance-like” technology services through the 

Internet to lower the total cost of ownership. The GUISET infrastructure would provide 

small businesses with business-relevant services on a pay-as-you-go basis. These services 

are aimed at e-enabling the activities of under-resourced local Very Small Software 
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Enterprises (VSSE) and provide the platform for these VSSE to participate in the global 

market of e-services in an ecosystem environment. VSSE can leverage the capabilities of 

the GUISET infrastructure and e-marketplace platform to trade value-added services 

relevant to other enterprises that are also part of the GUISET ecosystem. The relevance of 

pursuing an e-marketplace for CRMaaS initiative is to provide a viable platform where 

local VSSE can readily participate in provisioning services on the global scale. The 

application of the FOCUSS framework will facilitate easy discovery of services offered 

by local VSSE. Ultimately, this will promote the profitability of the VSSEs and multiply 

their economic returns and impact. Even though many local VSSE are characterised by 

meagre budgets, they still contribute directly and indirectly to the national GDP, through 

employment generation and wealth creation (Venesaar and Loomets, 2006; Hamwele, 

2005). This contribution can be sustained and possibly increased by participation in an 

ecosystem exposed via a cloud e-marketplace. Based on a GUISET use case, a cloud-

based Customer relation management software, called Customer Relationship 

Management as a Service (CRMaaS), serves as an illustration of cloud ecosystem and e-

marketplace scenario in order to validate the framework proposed in this research. 

4.3.1 Customer Relationship Management 

Customer Relationship Management (CRM) refers to ways by which companies 

coordinate and analyse user interactions and data all through the lifecycle of a customer. 

These ways may include technology, people and organisational strategies deployed to 

collect user information about personal data, purchase history, preferences, and concerns 

across different channels, through which the organisation engages with the user. These 

channels may include phone conversations, emails, social media, etc. Customers 

information are consolidated into the CRM database and the organisation utilises this data 

to improve business relationships so as to achieve user retention and increased sales. 

Traditional on-premise CRM software puts the burden of administration and maintenance 

on the organisation, however, employing cloud-based solutions outsources these services 

to a third party, leaving the organisation to focus on its core business, particularly when 

technological expertise and budget is limited. 
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4.3.2 Customer Relationship Management as a Service (CRMaaS) 

Customer Relationship Management as a Service (CRMaaS) is a cloud ecosystem of 

CRM solutions for Small and Medium Enterprises (SME) delivered through the GUISET 

cloud e-marketplace. The components that make up the CRMaaS ecosystem includes: 

Contact Management, Database, Marketing and Social media analysis (see Figure 4.1). 

The CRMaaS solution is realised by the participation of various service providers in the 

ecosystem. One or many providers can contribute one or more of the following range of 

services to the ecosystem with differentiated QoS factors. The description of each module 

is as follows: 

i. Contact Management Service: Tool to manage user contacts and communication; 

including appointment management, task management and scheduling, 

communication (SMS, email),  

ii. Cloud Database: Cloud-based Relational Database Management System (RDBMS) 

to store user information, including user personal data, purchase history, preferences 

etc. 

iii. Marketing Service: Tools for communicating with users; including email marketing, 

text message marketing, social media marketing etc. 

iv. Social Media Analytics: Tool that monitors conversations on social media and 

analyses feedbacks, capturing user sentiments. 

v. Cloud Platform: The valid combinations derived would require a cloud platform on 

which to run.  

 
Figure 4.1: High-level Structure of the components of a CRMaaS 

CRMaaSContact 
Management

Cloud 
Database

Marketing 
Services

Social Media 
Analytics

Cloud 
Platform
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An instance of the CRMaaS offering is a combination of any/all of these services to 

create a complete CRM solution. In the GUISET e-marketplace, multiple variants of 

CRMaaS solutions exist and are differentiated by QoS factors that are relevant to any 

SME. The SME can then search for and consume CRM solution that aligns with their 

specific aspiration and preferences. Furthermore, the multi-tenant nature of the CRMaaS 

allows for multiple SMEs (tenants) to be hosted per time, each having a variant view of 

the CRMaaS that suits specific requirements. Therefore, the e-marketplace service 

directory contains a set of m CRM solutions that can be evaluated along n decision 

criteria with respect to an SME’s preferences and aspirations. The cloud service selection 

in this context is concerned with the evaluation of the set of m offerings based on the 

preferences and aspirations on the set of n criteria (Sahri et al., 2014). Having expressed 

requirements, which are converted to a search query, the e-marketplace platform 

generates search results in form ranking of complete CRM solutions that approximate the 

requirements expressed. An SME that requires a complete cloud-based CRM solution for 

managing its customer relationship processes in a bid to improve the business relationship 

and increase the bottom-line can find the most appropriate solution via the GUISET e-

marketplace. Two examples of such SME are as follows: A micro-finance bank and a 

newly opened on-line drug store, and these examples are used throughout the use case. 

In the following paragraph, high-level scenario descriptions of their requirements are 

presented. 

i. Case One: Microfinance Bank- A microfinance bank (MFB) provides 

microfinance services such as savings, loans, domestic funds transfer, and other 

financial services to under-resourced, micro, small and medium enterprises to enable 

them to conduct or expand their businesses. The operations of an MFB are time-

critical and data sensitive; thus they require a solution that is stable with little or no 

unpredictable issue. MFB may also require that the solution should be of excellent 

performance that must be available and highly reputable, as their operations involve 

sensitive user information. The micro-finance bank requires a reliable solution that 

meets all its requirements and has made adequate budgetary provisions to offset the 

cost.  

ii. Case Two: Online Drug Store- On the other hand, a new online drug store set up to 

expand an existing brick-and-mortar drugstore. The online drugstore allows existing 
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and prospective users to purchase and pays for over-the-counter medication online. 

The owner of the drug store prefers a low-priced reliable CRM solution that can 

handle basic customer relationship management processes. Also, being a small start-

up, the owner is less keen on reliability, and based on current cash flow realities, is 

constrained by the amount of funds that can be spent on the CRM solution. 

4.4 PRACTICAL DEMONSTRATION OF THE FOCUSS FRAMEWORK 

This section presents how the FOCUSS framework is used both to set up a cloud 

ecosystem for realising the CRM software and create the e-marketplace platform that 

enables the designated information technology officers of the MFB and the drug store to 

search for and select the appropriate CRM solution that is based on their specific 

requirements. 

4.4.1 CRMaaS Ecosystem Model and Reasoning Engine 

Based on the components of the CRMaaS presented in Figure 4.1, more than one 

candidate cloud service, among others, would suffice in fulfilling each of contact 

management, database, marketing, social media analysis and cloud platform on which the 

CRMaaS runs. Table 4.2 contains the list of all the constituent services that can fulfil each 

component, together with the values of the QoS attributes, and are part of the CRMaaS 

ecosystem. The QoS attributes considered in this example includes availability and 

reliability, measured in percentages (%); response time measured in milliseconds (ms), 

while the cost is measured in Dollars/month ($/Month).  

Table 4.2: Candidate Cloud Services to realize CRMaaS Components 

CRMaaS 
Components 

Candidate 
Services 

QoS Values 
Availability (%) Response Time (ms) Reliability (%) Cost ($/Mon) 

Contact 
Management 

CM1 90 -- 90 30.50 
CM2 95 -- 67 29.99 
CM3 70 -- 40 25.50 

CM4 99 -- 79 34.99 

Cloud 
Database 

CD1 89 100.22 60 13.50 
CD2 79 50.54 75 20.50 
CD3 97 120.34 80 50.00 

Marketing 
M1 99 -- -- 55.50 
M2 91 -- -- 59.99 

Social Media 
Analysis 

SMA1 90 200.45 88 49.99 
SMA2 95 138.56 90 50.00 
SMA3 85 125.45 79 45.67 

Platform 
P1 99 300.45 70 199.99 
P2 99 423.10 75 149.99 
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The candidates services for each CRMaaS component is given as follows (Table 4.2): 

Contact management (CM1, CM2, CM3, CM4); Cloud Database (CD1, CD2, CD3); 

Marketing (M1, M2); Social Media Analysis (SMA1, SMA2, SMA3); Platform (P1, P2). 

The values of the QoS properties were populated by randomly generated numbers.  

Figure 4.2 shows the feature model of the CRMaaS cloud ecosystem without the QoS 

attributes annotated in the diagram. The model logically structures and describes the 

relationship among the atomic services. The rules guiding the combination of these 

candidate services are contained in Table 4.3, while the CEFM that models the 

relationships and constraints is presented in Figure 4.2. All CRMaaS components are 

mandatory; however, each candidate service is an alternative to other candidate services 

within the same component group. 

 

 
Figure 4.2: High-Level Feature Model of CRMaaS Cloud Ecosystem  

(Without QoS Attributes) 

 

Table 4.3: Require and Exclude Constraints 

CM1 REQUIRES P1 
CM1 REQUIRES CD1 
CM2 EXCLUDES M1 
SMA1 REQUIRES CD2 
CD2  EXCLUDES P2 
SMA2 REQUIRES M1 
SMA3 EXCLUDES CD2 

From the model, it is obvious that cloud database CD2 cannot run on cloud platform P2, 

therefore no valid combination would contain both cloud database CD2 and platform P2. 

The feature model is transformed into constraint programming based on the rules for the 
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mapping of feature model to CSP. The Java code for the constraint programme for the 

model in Figure 4.2 is contained in Appendix D. A total of 38 valid combinations that 

form actual CRMaaS instances that can be offered to users were obtained from the 

automated reasoning on the CSP model that defines the Cloud Ecosystem Feature Model 

(see Table 4.4). The QoS properties of the valid combination were computed based on the 

aggregation functions described in Section 3.2. 

Table 4.4: List of Valid combinations based on CRMaaS Cloud Ecosystem Model 

Service_ID Constituents Services 
Aggregate QoS Values* 

Availability 
(%) 

Response 
Time (ms) 

Reliability 
(%) 

Cost 
($/Mon) 

S1 CM4   CD3   SMA3   M2   P2 98.68 668.89 75.73 340.64 
S2 CM3   CD3   SMA3   M2   P2 97.16 668.89 72.78 331.15 
S3 CM4   CD3   SMA3   M2   P1 98.67 546.24 75.43 390.64 
S4 CM3   CD3   SMA3   M2   P1 97.16 546.24 72.48 381.15 
S5 CM4   CD1   SMA3   M2   P2 98.29 648.77 74.48 304.14 
S6 CM3   CD1   SMA3   M2   P2 96.79 648.77 71.53 294.65 
S7 CM4   CD1   SMA3   M2   P1 98.29 526.12 74.19 354.14 
S8 CM3   CD1   SMA3   M2   P1 96.79 526.12 71.23 344.65 
S9 CM2   CD3   SMA3   M2   P2 98.49 668.89 75.02 335.64 
S10 CM2   CD3   SMA3   M2   P1 98.49 546.24 74.72 385.64 
S11 CM2   CD1   SMA3   M2   P2 98.11 648.77 73.77 299.14 
S12 CM2   CD1   SMA3   M2   P1 98.11 526.12 73.47 349.14 
S13 CM4   CD3   SMA3   M1   P2 99.03 668.89 75.73 336.15 
S14 CM3   CD3   SMA3   M1   P2 97.53 668.89 72.78 326.66 
S15 CM4   CD3   SMA2   M1   P2 99.51 682 76.3 340.48 
S16 CM3   CD3   SMA2   M1   P2 98.01 682 73.34 330.99 
S17 CM4   CD3   SMA3   M1   P1 99.03 546.24 75.43 386.15 
S18 CM3   CD3   SMA3   M1   P1 97.53 546.24 72.48 376.66 
S19 CM4   CD3   SMA2   M1   P1 99.51 559.35 76 390.48 
S20 CM3   CD3   SMA2   M1   P1 98.01 559.35 73.04 380.99 
S21 CM4   CD1   SMA3   M1   P2 98.66 648.77 74.48 299.65 
S22 CM3   CD1   SMA3   M1   P2 97.15 648.77 71.53 290.16 
S23 CM4   CD1   SMA2   M1   P2 99.14 661.88 75.05 303.98 
S24 CM3   CD1   SMA2   M1   P2 97.63 661.88 72.1 294.49 
S25 CM4   CD1   SMA3   M1   P1 98.66 526.12 74.19 349.65 
S26 CM3   CD1   SMA3   M1   P1 97.15 526.12 71.23 340.16 
S27 CM4   CD1   SMA2   M1   P1 99.14 539.23 74.75 353.98 
S28 CM3   CD1   SMA2   M1   P1 97.63 539.23 71.8 344.49 
S29 CM1   CD1   SMA3   M2   P1 97.88 526.12 74.75 349.65 
S30 CM1   CD1   SMA3   M1   P1 98.24 526.12 74.75 345.16 
S31 CM1   CD1   SMA2   M1   P1 98.73 539.23 75.32 349.49 
S32 CM4   CD2   SMA1   M2   P1 98.02 551.35 75.62 360.46 
S33 CM3   CD2   SMA1   M2   P1 96.52 551.35 72.67 350.97 
S34 CM2   CD2   SMA1   M2   P1 97.84 551.35 74.91 355.46 
S35 CM4   CD2   SMA2   M1   P1 98.62 489.46 75.72 360.98 
S36 CM3   CD2   SMA2   M1   P1 97.12 489.46 72.76 351.49 
S37 CM4   CD2   SMA1   M1   P1 98.39 551.35 75.62 355.97 
S38 CM3   CD2   SMA1   M1   P1 96.88 551.35 72.67 346.48 

*The QoS aggregation is performed using the functions listed in Table 3.3 
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4.4.2 Fuzzification of QoS Information of Services in Service Directory 

The QoS information about the services offered through the e-marketplace was fuzzified 

by representing three ranges of QoS values with linguistic variable and underlying 

membership functions. The range of QoS values for Availability QoS is broken into four, 

namely: Very High, high, medium and Low. The range of Reliability is Very high, high, 

Average and Low, while that of Response time is Low, Acceptable and below Average. 

The linguistic values for Cost QoS are Premium, Standard, Moderate and Cheap. Table 

4.5 shows the QoS attributes, the linguistic variables and the membership function used to 

represent each QoS attribute. 

Table 4.5: QoS Attributes, fuzzy sets and underlying membership function 

QOS ATTRIBUTE FUZZY SETS MEMBERSHIP FUNCTION 
Availability Very High, High, Medium, Low 

Trapezoidal Membership Function 
Response Time Low, Acceptable, Below Average 
Reliability  Very High, High, Average, Low 
Cost Premium, Standard, Moderate, Cheap 

Based on the available QoS information of all services in the service directory (see Table 

4.4), Figure 4.3 shows the range of values under each linguistic variable for each QoS 

attribute and the membership function diagram used in this case study. 

 
Linguistic Variable: Availability 

 
Linguistic Variable: Response Time 

 

Linguistic Term QoS Value Range 
Very High 90% -- 100% 
High 70% -- 95% 
Average 60% -- 85% 
Low 50% -- 75% 

Linguistic Term QoS Value Range 
Low 200ms – 560ms 
Acceptable 500ms – 790ms 
Below Average 700ms – 1000ms 

  
Linguistic Variable: Reliability Linguistic Variable: Cost 

 

Linguistic Term QoS Value Range 
Very High 90% -- 100% 
High 70% -- 95% 
Average 60% -- 85% 
Low 50% -- 75% 

Linguistic Term QoS Value Range 
Premium 370$ -- 500$ 
Standard 280$ -- 400$ 
Moderate 190$ -- 300$ 
Cheap 100$ -- 200$ 

 
 

Figure 4.3: Linguistic Variables for QoS attributes 

Apart from the QoS range, users are also allowed to express some form of constraints to 

qualify whatever linguistic term they select.  
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Table 4.6 shows the various linguistic hedges and their associated membership functions. 

These constraints include: In the Vicinity of x, and very close to x, where x is a QoS value 

specified by the user. 

Table 4.6: Linguistic Hedges and Membership Functions for each QoS Attributes 

LINGUISTIC HEDGES FOR QOS VALUE MEMBERSHIP FUNCTION 

x is In the vicinity of a 
 

x Very close to a 

x Substantially Higher than a 
 

x Substantially Lower than a 
 

x Approximately between a and b 
 

a and b are actual QoS values specified by the user 

4.4.3 Eliciting User Requirements 

Based on the two instances of the MFB and an online drug store discussed earlier, the 

user performs a pairwise comparison of all QoS attributes to enable the system to 

determine the relative importance of each QoS attributes to the user. In addition, the user 

specifies QoS aspirations using the linguistics terms and hedges for QoS values described 

in the previous section. Table 4.7 and Table 4.8 show the QoS priorities and aspirations 

for MFB respectively; while Table 4.9  and Table 4.10 contain the QoS priorities and 

aspirations for the ODS respectively. An example of how Availability QoS requirements 

are expressed using the FOCUSS GUI for MFB and ODS are shown in Figure 4.4 and 

Figure 4.5. 

Table 4.7: QoS Pairwise comparison for MFB 
QoS Attribute Fuzzy Judgement QoS Attribute 
Availability Extremely more important than Response Time 
Availability Extremely less important than Reliability 
Availability Somewhat Less important than Cost 
Response Time About equal Reliability 
Response Time About equal  Cost 
Reliability Somewhat more important than Cost 

 

Table 4.8: QoS Aspiration for MFB 

QoS Attribute Goal Hedges/Constraints 
Availability Very High In the Vicinity of 98% 
Response Time Low Very close to 400ms 
Reliability Very High In the Vicinity of 75% 
Cost Premium In the Vicinity of 400$ 
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Table 4.9: QoS Pairwise comparison and Aspiration for Online Drug Store 

QoS Attribute Judgement QoS Attribute 
Availability About Equal Response Time 
Availability About Equal Reliability 
Availability Extremely Less important than Cost 
Response Time About Equal Reliability 
Response Time Extremely less Important than  Cost 
Reliability Extremely less Important than Cost 

 

Table 4.10: QoS Aspiration for Online Drug Store 
QoS Attribute Goal Constraints 

Availability High In the Vicinity of 90% 
Response Time Acceptable In the Vicinity of 600ms 
Reliability High Very close to 70% 
Cost Cheap In the vicinity of 250$ 

 

 

Figure 4.4: Availability QoS 
Requirements for Microfinance 

Bank in FOCUSS GUI  

Figure 4.5: Availability QoS 
Requirements for Online Drug Store 

in FOCUSS GUI  

The GUI employs a dual colour coded slider bars that correspond to the colour code for 

the two QoS attributes being compared. When the slider bar is in the middle (i.e. the 

length of either colour in the slider bar are equal), then the underlying fuzzy comparison 

scale is ‘about equal’. Furthermore, there are eight steps on either side of the midpoint of 

the slider bar corresponding to the other scales in the fuzzy Saaty pairwise comparison 

scale. 
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4.4.4 QoS Requirements Processing 

I. QoS Prioritization 

The fuzzy prioritisation method, based on Geometric Mean Method (Buckley, 1985) was 

applied to derive crisp weights representing the relative importance of each QoS attributes 

from the fuzzy pairwise comparison matrix. Based on the Geometric Mean Method 

(Buckley, 1985), the crisp weights from the fuzzy pairwise comparison for MFB and 

ODS are shown in Table 4.11 and Table 4.12 respectively. These tables show that the 

order of relative importance of the QoS attributes for MFB is as follows 

Reliability>Cost>Availability>Response Time; while the most important QoS attribute to 

ODS is cost and the other QoS attributes have equal weights. 

Table 4.11: Priority Weights and Order of Relative Importance for QoS attributes (MFB) 
QOS ATTRIBUTES PRIORITY WEIGHT IMPORTANCE 
Availability 0.12993 3 
Response Time 0.12967 4 
Reliability 0.53100 1 
Cost 0.20939 2 

 

Table 4.12: Priority Weights and Order of Relative Importance for QoS attributes (ODS) 

QOS ATTRIBUTES PRIORITY WEIGHT  IMPORTANCE 
Availability 0.0950 2 
Response Time 0.0950 2 
Reliability 0.0950 2 
Cost 0.7152 1 

II. QoS Analyser 

Applying the concept of fuzzy decision making discussed in Section 2.4, QoS values 

were synthesised from users’ fuzzy estimations by finding the element with the highest 

membership function from the intersection set of the fuzzy sets selected by users to 

denote their desired QoS aspirations. Table 4.13 and Table 4.14 show how QoS 

aspirations were synthesised from representing the fuzzy sets for MFB and ODS 

respectively. 

Table 4.13: Synthesised QoS Aspiration for Microfinance Bank 

QOS ATTRIBUTE LINGUISTIC TERM LINGUISTIC HEDGES SYNTHESISED QOS VALUES 
Availability Very High In the Vicinity of 98% 98.49% 
Response Time Low Very close to 400ms 489.46ms  
Reliability Very High In the Vicinity of 75% 75.43% 
Cost Premium In the Vicinity of 400$ 390.64$/Month 
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Table 4.14: Synthesised QoS Aspiration for Online Drug Store 

QOS ATTRIBUTE LINGUISTIC TERM LINGUISTIC HEDGES SYNTHESISED QOS VALUES 
Availability High In the Vicinity of 90% 97.12% 
Response Time Acceptable In the Vicinity of 600ms 559.35ms 
Reliability High Very close to 70% 72.1% 
Cost Cheap In the vicinity of 250$ 290.16$/Month 

 

Table 4.15: Completely elicited QoS requirements of MFB and ODS 

 

 

4.4.5 QoS-based Ranking of Service Alternatives 

I. QoS Requirements Optimizer 

Table 4.15 shows a summary of priority weights and QoS values obtained from the users. 

These inputs are fine-tuned according to the values of the QoS attributes of available 

services in the service directory. Optimized QoS requirement is obtained by finding those 

QoS values that are the most ideal, and closest to user’s requirements. The FOCUSS 

framework utilises an SAW-based and exponential Euclidean distance function (eEUD) 

described in Section 2.4 for this purpose, by optimising the fuzzy goals very close to both 

the most ideal QoS values, and user’s requirements. For this case study, each service 

alternative is evaluated with respect to user’s weight of importance using SAW function, 

and the similarity of each service QoS attributes to a combination of user’s preference 

weights and aspiration values are performed with the eEUD function. Using MOEA 

framework, the optimal QoS values that satisfy both the fuzzy goal and constraint are 

obtained as being very close to the service alternatives with the best performance and 

closest to user requirements. Table 4.16 shows a comparison of the initial QoS 

requirements and the final QoS requirements with respect to user’s priority weights and 

QoS aspiration. 

Table 4.16: Comparison of Initial QoS Requirements and Optimised QoS values 

QOS 

ATTRIBUTES 

MICROFINANCE BANK ONLINE DRUG STORE 

Initial Requirements Optimized  
Requirements 

Initial Requirements Optimized 
Requirements Weight Values Weight Values 

Availability 0.1242 98.49 98.5 0.0950 97.12 97 
Response Time 0.1237 489.46 489.5 0.0950 559.35 559 
Reliability 0.5798 75.43 75.4 0.0950 72.1 72 
Cost 0.1724 390.64 390.6 0.7152 290.16 290.2 

QOS 

ATTRIBUTES 
MICROFINANCE BANK ONLINE DRUG STORE 

QoS Weight QoS Values QoS Weight QoS Values 

Availability 0.1242 98.49 0.0950 97.12 

Response Time 0.1237 489.46  0.0950 559.35 
Reliability 0.5798 75.43 0.0950 72.1 
Cost 0.1724 390.64 0.7152 290.16 
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II. Service QoS Ranking 

Having obtained the optimised QoS requirements, the final stage is to rank the services in 

the service directory using these requirements. This is performed using flat memory 

technique in case retrieval to find the k-nearest neighbours using the eEUD function to 

the optimised requirements as shown in Table 4.16. Table 4.17 and Table 4.18 show the 

10 most suitable CRM services with QoS values that match the optimised requirements 

MFB and ODS respectively. 

Table 4.17: Top ten Services that match optimal requirements for MFB 

SERVICE RANK SERVICE_ID 
AVAILABILITY 

(%) 
RESPONSE 

TIME(MS) 
RELIABILITY 

(%) 
COST 

($/MONTH)
1 S3 98.67 546.24 75.43 390.64 
2 S17 99.03 546.24 75.43 386.15 
3 S10 98.49 546.24 74.72 385.64 
4 S35 98.62 489.46 75.72 360.98 
5 S19 99.51 559.35 76 390.48 
6 S4 97.16 546.24 72.48 381.15 
7 S18 97.53 546.24 72.48 376.66 
8 S20 98.01 559.35 73.04 380.99 
9 S7 98.29 526.12 74.19 354.14 
10 S32 98.02 551.35 75.62 360.46 

 

 

Table 4.18: Top ten Service Alternatives to Optimal Requirements for ODS 

SERVICE RANK SERVICE_ID 
AVAILABILITY 

(%) 
RESPONSE 

TIME(MS) 
RELIABILITY 

(%) 
COST 

($/MONTH) 
1 S22 97.15 648.77 71.53 290.16 
2 S6 96.79 648.77 71.53 294.65 
3 S11 98.11 648.77 73.77 299.14 
4 S21 98.66 648.77 74.48 299.65 
5 S24 97.63 661.88 72.1 294.49 
6 S5 98.29 648.77 74.48 304.14 
7 S23 99.14 661.88 75.05 303.98 
8 S14 97.53 668.89 72.78 326.66 
9 S2 97.16 668.89 72.78 331.15 
10 S16 98.01 682 73.34 330.99 

III. Visualising the Ranking  

To enable further analysis, the results shown in Table 4.17 and Table 4.18 are then 

visualised using a bubble chart, from which the user can explore the relationships among 

the ranked alternatives. The MFB or ODS can then select the most satisfactory service 

that best satisfies their respective requirements. Figure 4.6 and Figure 4.7 shows the 

bubble graph for data contained in Table 4.17 and Table 4.18 respectively. Figure 4.8 and 

Figure 4.9 shows the complete GUI for QoS requirements elicitation and the tabular and 

bubble graph visualisation. 
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Figure 4.6: Bubble Graph for Ranked Services for MFB Requirements 

On mouse over, the details for Service_ID 35 is shown. 

 

 
Figure 4.7: Bubble Graph for Ranked Services for ODS Requirements 

One mouse hover, the details of the Service_ID 23 is shown 
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Figure 4.8: Complete GUI Showing Requirements, Table and Bubble Graph (MFB) 

 

 
Figure 4.9: Complete GUI Showing QoS Requirements, Table and Bubble Graph (ODS) 
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4.5 CHAPTER SUMMARY 

This chapter contains a demonstration of the utility of the proposed FOCUSS framework, 

by identifying the tool support base to realise the framework. The framework was further 

validated via an illustrative case study of a Customer Relationship Management as a 

Service (CRMaaS) e-marketplace that comprises the coming together of various atomic 

services to realise a cloud ecosystem of CRM services. The demonstration of how these 

services are combined was carried out following a structured organisation with respect to 

constraints guiding their combination. Also demonstrated is how the users’ (a 

microfinance bank and an online drug store) requirements would be elicited and how the 

framework would rank available alternative which is then presented to the users through a 

bubble graph visualisation. The validation performed shows that the FOCUSS framework 

is a viable approach for cloud service ranking and selection in cloud service e-

marketplace. In the next chapter, the empirical evaluation of the FOCUSS framework is 

presented.  
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CHAPTER FIVE 

EVALUATION 

5.1 INTRODUCTION 

The previous chapter contains details of the prototype implementation as a proof of 

concept to validate the proposed FOCUSS framework with an illustrative case study. This 

chapter contains a quantitative and qualitative evaluation of the FOCUSS framework. In 

the following sections, the methodology employed for evaluating the FOCUSS 

framework is discussed, which include the experimental designs for FOCUSS evaluation 

broken down into design parameters and test cases, as well as the analysis and discussion 

of results. Specifically, this chapter presents the evaluation procedures employed to 

validate the scalability, accuracy, and user experience of the FOCUSS framework using 

descriptive and inferential statistics on data obtained from three experiments. The results 

of the evaluation reported in this chapter serve as a justification of the performance of the 

FOCUSS framework in line with the aim and objectives set forth in this thesis. This 

chapter concludes with the summary of major themes discussed therein. 

5.2 PERFORMANCE AND USABILITY EVALUATION  

Having validated that the FOCUSS framework can be used to bring a variety of atomic 

services together to form an ecosystem, from which valid combinations are determined, 

the FOCUSS framework is evaluated with respect to its QoS-ranking performance and 

efficiency, as well as user experience. A major aim of an evaluation is to show via 

experimentations the performance differences when approaches or systems are compared 

to each other with respect to some given factors. Moreover, it is also needful to 

understand the factors that contribute to the differences in performance. In order to 

determine the differences in performance, the trends of two or more test collections of 

reasonable size are observed for consistency across the different data; after which 

statistical significance test is performed to validate the fact that any observable difference 

is not due to chance.  

There are three empirical evaluation methods in software engineering; they include case 

studies, surveys, and experiments (Wohlin et al., 2012). Experiments are more beneficial 
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in that they can be employed to answer specific questions by setting up a direct 

comparison between the treatments of interest. In experiments, the biases and errors in 

comparison are minimised, and the ability to control the factors enables stronger 

inferences to be made about the difference in the results, providing a better basis to make 

stronger inferences about causation (Oehlert, 2010). A design of the experiment or 

experimental design is defined as a series of trials in which a number of individual 

experimental units and responses are measured, which can be analysed to quantify and 

compare the effects of the treatments, with which a cause-effect inference can be 

established (Oehlert, 2010). 

The evaluation of the FOCUSS framework is carried out via three experiments; 

comprising two simulation-based evaluations and a user study (see Figure 5.1). Using 

simulation experiments, the FOCUSS framework was evaluated for computational 

efficiency (scalability), as well as QoS-based ranking accuracy, whereas user studies were 

carried out to access the user experience dimension of the FOCUSS framework. 

Efficiency measures scalability of the FOCUSS QoS-ranking mechanism by considering 

how the number of available functionally equivalent service alternatives in the service 

directory affects execution time for producing top-k ranked results. Accuracy measures 

the degree to which the FOCUSS framework ranks available service alternatives 

according to the QoS requirements of a user, as measured against a well-known 

benchmark. The user studies were carried out to estimate the ease of use and degree of the 

user experience of the FOCUSS framework. After the data generated from the 

experiments were collected, inferential statistical tests were performed to analyse the 

results of the experiments for statistical significance. The performance evaluation 

experiments are presented in subsequent sections. 

 
Figure 5.1: Evaluation Process for the FOCUSS framework 

Evaluation 
Process

Scalability 
Evaluation

Accuracy 
Evaluation

User Experience 
Evaluation
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5.3 EXPERIMENT-1: SCALABILITY EVALUATION 

5.3.1 Experiment Goal and Hypothesis 

The main goal of experiment-1 is to determine the computational efficiency of the 

FOCUSS QoS-based ranking module. In order to achieve this, a simulation was 

undertaken to determine the scalability of the FOCUSS QoS-based ranking module by 

varying the number of services alternatives and measuring the execution time to produce 

a top-k rank of services. Hence, the null hypothesis is stated as follows:  

H0:  The performance in terms of the execution time of the FOCUSS framework in 

producing a rank of top-k services scales linearly with increase in service 

alternatives. 

5.3.2 Experiment Dataset 

Since there are no publicly available cloud services dataset, the QoS values of web 

services from a publicly available real-world datasets, the QWS dataset (Al-Masri and 

Mahmoud, 2007), was adopted instead; web services shares many similarities with cloud 

services (Sun et al., 2014) and the QWS dataset has been used in similar studies involving 

cloud services, For example, (He et al., 2012; Jahani et al., 2014). The QWS dataset 

comprises QoS information for 2,507 web services resulting from the evaluation of one 

user with the measurements of nine QoS attributes. The nine QoS attributes of the QWS 

dataset include response time, availability, and throughput, the likelihood of success, 

reliability, compliance, best practices, latency, and documentation. For the purpose of this 

experiment, the information of three QoS attributes (availability, response time and 

reliability) was selected from the QWS dataset, and since the QWS dataset did not 

contain values for cost, uniformly distributed values for cost was randomly generated in 

the interval 10 to 500; the randomly generated values correspond to values between $10 - 

$500 per/month as cost of the services. To simplify the scope of experiment-1, 4 QoS 

attributes (Availability, Response time, Reliability and Cost) were considered, as the case 

in similar studies, for example (Zhao et al., 2014; Ye et al., 2011; Ludwig, 2012). 
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5.3.3 Simulation Parameters and Protocol 

The scalability of the QoS-based ranking mechanism of the FOCUSS framework is 

measured by the execution time in milliseconds. The execution time is the time it takes to 

produce top-k services as the number of service alternatives increases. The number of 

services alternatives (n) was increased from 50 to 1000 based on the QoS dataset outlined 

in the previous section.  

To achieve variation in the QoS data and the number of cloud services used in this 

experiments, the first 50 services was selected as the first case, then the next 100, then the 

next 350, and then next 750, then the next 1000. In all, a total of 2150 services 

(50+100+350+750+1000), together with their QoS information (including cost), were 

taken from the 2507 services contained the QWS dataset. The descriptive statistics 

(minimum value, maximum value, mean and standard deviation) of QoS information for 

4 QoS attributes of the test datasets (n=50, 100, 350, 750 and 1000 services) are shown in 

Table 5.1, Table 5.2, Table 5.3, Table 5.4, and Table 5.5.  

Table 5.1: Descriptive Statistics for Dataset, n=50 

QoS Attribute Min Max Mean Std. Deviation 

Availability (%) 18.00 100.00 79.18 18.71 

Response time (ms) 49.43 3321.40 328.39 519.55 

Reliability (%) 53.00 83.00 68.92 8.10 

Cost ($/month) 111.63 496.01 289.90 126.03 

 

Table 5.2: Descriptive Statistics for Dataset, n=100 

QoS Attribute Min Max Mean Std. Deviation 

Availability (%) 23.00 100.00 78.59 19.12 

Response time (ms) 42.50 4207.50 436.02 651.13 

Reliability (%) 42.00 83.00 69.71 8.32 

Cost ($/month) 100.28 498.21 323.74 112.53 

 

Table 5.3: Descriptive Statistics for Dataset, n=350 

QoS Attribute Min Max Mean Std. Deviation 

Availability (%) 9.00 100.00 82.05 17.567 

Response time (ms) 42.50 4637.61 419.42 624.70 

Reliability (%) 42.00 89.00 69.93 8.32 

Cost ($/month) 100.79 497.86 301.64 115.82 
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Table 5.4: Descriptive Statistics for Dataset, n=750 

QoS Attribute Min Max Mean Std. Deviation 

Availability (%) 8.00 100.00 80.55 18.98 

Response time (ms) 40.00 4758.00 390.03 596.04 

Reliability (%) 33.00 89.00 70.14 8.70 

Cost ($/month) 103.20 499.54 293.91 115.58 

 

Table 5.5: Descriptive Statistics for Dataset, n=1000 

QoS Attribute Min Max Mean Std. Deviation 

Availability (%) 7.00 100.00 81.70 18.57 

Response time (ms) 37.00 4989.67 370.94 531.43 

Reliability (%) 33.00 89.00 69.32 8.80 

Cost ($/month) 101.50 499.90 299.39 119.50 

To manage the scope of the experiment, the value of k was fixed at 20, and equal 

distribution for priority weights are assumed, such that the weight for each QoS attribute 

is equal to 1/ݍ	(where ݍ is the number of QoS criteria been evaluated); the value of ݍ is 

equal to 4 (Availability, Response time, Reliability and Cost).  

The simulation experiment was conducted by running the FOCUSS QoS-based ranking 

algorithm 30 times against a set of QoS requirements, and computing the average 

execution time (in milliseconds) it took to produce a ranking of top-20 (݇ ൌ 20) services 

in the dataset with respect to the QoS requirements. The QoS-based ranking algorithm of 

the FOCUSS framework was implemented with Java programming language in NetBeans 

8.1 IDE. The simulation experiments was conducted on Lenovo PC running Windows 10 

Home single language edition with the following specifications: Intel Pentium CPU 

N3540 at 2.16GHz 2.16GHz processor and 4.00GB RAM on 64-bit Operating System, 

x64-based processor. 

The summary of the parameters for simulation experiments is presented in Table 5.6. 

Table 5.6: Summary of Parameters for Simulation Experiment-1 

Metric Execution Time (in milliseconds) 

Top–k (k) 20 

Number of QoS attributes (q) 4 

Number of Alternatives (n) 50, 100, 350, 750, and 1000 

Priority Weight (w) 1/q (corresponding to [0.25, 0.25,0.25,0.25]) 

Number of trial runs (t) 30 
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5.3.4 Results and Analysis 

The results for simulation experiment are summarised in the descriptive statistics 

contained in Table 5.7 and depicted by the line graph in Figure 5.2. A simple linear 

regression was performed to determine the relationship between the numbers of service 

alternatives (n) and mean execution time, and also to test for the statistical significance of 

the scalability of the FOCUSS QoS-based ranking module as the number of service 

alternative increases. The simple linear regression was used to test the null hypothesis 

defined in Section 5.3. 

Table 5.7: Execution Time for Ranking Top-20 Services vs. Number of Services  

#Alternatives Range(ms) Min(ms) Max(ms) Mean(ms) Std. Deviation(ms) 

50 79.00 312.00 391.00 336.87 19.80 

100 87.00 312.00 399.00 340.47 23.98 

350 126.00 312.00 438.00 342.80 27.86 

750 94.00 312.00 406.00 344.63 22.83 

1000 78.00 328.00 406.00 349.43 19.40 

As shown in line graph in Figure 5.2, the trendline shows a linear relationship between 

the number of alternatives and the mean execution time. The regression equation and 

statistics are given as follows: ݕ ൌ ݔ2.928 ൅ 334.06, ܴଶ ൌ .967, ሺ1,3ሻܨ ൌ 119.085,

݌ ൏ .05; (where y = mean execution time, and x = number of service alternatives).  

 
Figure 5.2: Average Execution Time to Rank Services vs. Number of Services 

y = 2.928x + 334.06
R² = 0.9754
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5.3.5 Discussion 

The adjusted R2 value from the regression analysis is	ܴଶ ൌ 0.967; and connotes that 

96.7% of the variation in the time required to produce the top-20 rank is significantly 

explained by the number of service alternatives available. Consequently, since the p-value 

݌) ൌ .002) is less than the alpha value (݌ ൏ .05), the indication is that the QoS-based 

ranking mechanism of the FOCUSS framework is timely efficient and linearly scalable as 

can also be observed from Figure 5.2. On the basis of this, the null hypothesis (H0) is 

accepted that the performance in terms of execution time of the FOCUSS framework in 

producing a rank of top-k services scales linearly with increase in service alternatives. 

5.4 EXPERIMENT-2: RANKING ACCURACY EVALUATION  

The main approach employed for the design of Experiment-2 is comparative. It is 

important that such experiment is planned so that data is collected to enable comparison 

between the FOCUSS framework and other methods. This was achieved by first 

establishing the metrics, on the basis of which these methods are compared. The data 

generated from applying these metrics were then used to determine which method(s) 

performs better or comparable. The design and execution of experiment 2 is carried out in 

the following stages: 1) statement of the goal of the experiment; 2) Statistical design; 3) 

Data collection; 4) Data validation; 5) Data analysis; 6) Experiment execution, and 7) 

Interpretation of results. In the next sections, the application of each stage to the design, 

execution and analysis of experimental results conducted in this study are presented. 

5.4.1 Experiment Goal and Hypothesis 

The main goal of the experiments was to find out the effect of fuzzy-based QoS 

requirements, as implemented in the FOCUSS framework, on both the QoS-based 

ranking accuracy compared to other methods that accept numeric QoS requirements. In 

other words, the experiments aim to find out whether a QoS-based ranking method ܯଵሺݍሻ 

that accepts fuzzy QoS requirements, i.e.  q = linguistic query as inputs, performs 

considerably well as compared to a QoS-based ranking method ܯଶሺݍሻ that accepts exact 

numeric QoS requirements, i.e. q=numeric query as inputs, on cloud service datasets of 

varying sizes. The design of the experiments involves the following important outcomes: 
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i. Determining the impact of QoS requirement input type (linguistic or numeric) on the 

accuracy of QoS-based ranking results, thus justifying the proposal of applying 

linguistic descriptors to approximate numerical QoS requirements. 

ii. Determining the impact of the number of top-k ranked services in the set 

ሾ3, 5, 10, 15, 20ሿ on the ranking accuracy and performance ranking performance. 

Ranking order is important as most users would usually consider the top k results 

(Mirmotalebi et al., 2012). 

iii. Determining the effect of the number of service alternatives in the set 

ሾ50, 100, 350, 750, 1000ሿ on the ranking accuracy. 

iv. Deciding, whether method ܯଶሺ݊ܿ݅ݎ݁݉ݑሻ is better than method ܯଵሺ݈݅݊݃ܿ݅ݐݏ݅ݑሻ for 

QoS-based ranking of cloud services in cloud service e-marketplace context. 

The goal of this experiment is to compare the ranking accuracy of the FOCUSS 

framework against other QoS-based ranking techniques using TOPSIS as the benchmark; 

based on the null hypothesis: 

H0:  There will be no significant difference between the ranking performances of a 

method that accepts exact numeric values as QoS requirement and those that 

use linguistic descriptors to approximate values for QoS requirements. 

5.4.2 Experiment Dataset 

The same adapted QoS dataset described in Experiemnt-1 that contains QoS information 

on Availability, Response time, Reliability and Cost for 2150 services and the 5 grouping 

of the 2150 services into sets of 50, 100, 350, 750 and 1000 services were also used in 

Experiment-2. Test cases for user’s QoS requirements were generated following the 

conceptualization of QoS requirements as a collection of QoS preference and aspiration. 

The user’s QoS aspiration was randomly generated following uniform distributions from 

intervals with lower and upper bounds corresponding to the worst and best QoS values 

respectively, of each of the 5 datasets of services collected derived from the QWS dataset.  

For example, since the first set contained 50 services, the maximum and minimum values 

for each QoS attributes were identified and these values formed the basis for generating 5 

random QoS requirements (Queries) for hypothetical users. While details of the datasets 

and corresponding user queries are contained in Appendix B, Table 5.8 shows the 
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descriptive summary of the dataset, n=50 and the five (5) QoS requirements randomly 

generated for it (i.e. dataset, n=50), denoted as Query1 to Query5. 

Table 5.8: Minimum Values, Maximum Values and Five Test Queries for Dataset (n=50) 

Availability Response Time Reliability Cost 

Min 18 49.43 53 111.63 

Max 100 3321.4 83 496.01 
 

Query1 24.66 492.69 62.1 197.92 

Query2 90.79 1608.38 59.64 341.7 

Query3 46.99 377.46 61.34 160.98 

Query4 96.74 1279.35 71.9 466.13 

Query5 60.17 346.89 74.89 152.97 

5.4.3 QoS-based Ranking Methods Evaluated  

The experimental units of this experiment are the methods whose ranking accuracies are 

compared. The units to which the treatments are applied include TOPSIS, weighted 

distance (WD) (Rehman et al., 2011), Exponential Weighted Distance (eWD) (Rehman et 

al., 2011). The justification for selecting these methods is that they are closest to the 

ranking principle underlying FOCUSS, in that they all considered both user’s aspiration 

and priority of QoS attributes in the ranking of cloud services and can be applied to a 

large collection of service alternatives. Of these methods, the TOPSIS method was 

selected as a baseline for comparison. Apart from the fact that it was used in similar 

studies such as Sun et al. (2014) and Chamodrakas et al. (2011), the rationale for 

selecting TOPSIS as the benchmark is premised on the similarity of its fundamental 

principle to that of the FOCUSS framework. In TOPSIS, the best alternative has the 

shortest Euclidean distance from the ideal solution, at the same time farthest from the 

worst solution; this is very similar to the underlying principle behind the FOCUSS 

framework and the methods with which it is compared. 

The FOCUSS framework utilises an exponential Euclidean distance metrics that estimate 

the proximity of all alternatives to the optimised QoS requirements derived from user’s 

QoS requirements. The optimised QoS requirements are determined by those QoS values 

closest to the most optimal solution in the collection while maintaining closeness to initial 

user’s requirements. In order to make the comparison suitable, the original TOPSIS 

fundamental notion of what constitutes the ideal solution was modified and set to the 
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user’s requirements. This is reasonable as an ideal solution to a user’s requirement would 

be those alternatives with values closest to the user’s requirements, and farthest from the 

worst solution.  

The eWD and WD methods (Rehman et al., 2011) both compute the similarity between 

two vectors representing user requirements criteria and each service’s QoS properties, and 

the best service is one whose QoS properties best match user requirements. The WD 

approach is a sum of the weighted difference between the QoS values specified by user 

and service’s QoS properties. The similarity for each service alternative compared with 

user’s requirements is computed using: 

ܵ݅݉௪ௗሺܷݍܴ݁ݎ݁ݏ, ሻݎ݁ܵ ൌ෍ݓ௜ ∗ ሺܷݐܸܿ݁ݍܴ݁ݎ݁ݏ௜ െ ௜ሻݐܸܿ݁ݏ݁ܦ݁ܿ݅ݒݎ݁ܵ
௡

௜ୀଵ

 (5.1) 

Where n is the number QoS attributes. The similarity values of all the service alternatives 

are then sorted and the lower the better. 

The similarity values used to rank services using the eWD is computed using the 

exponential weighted difference between QoS vectors of user requirements and service 

alternatives, the formula is as follows: 

ܵ݅݉௘௪ௗሺܷݍܴ݁ݎ݁ݏ, ሻݎ݁ܵ ൌ෍݁ି௪೔∗ሺ௎௦௘௥ோ௘௤௏௘௖௧೔ ି ௌ௘௥௩௜௖௘஽௘௦௏௘௖௧೔ሻ

௡

௜ୀଵ

 (5.2) 

Two versions of FOCUSS ranking algorithms were implemented (FOCUSS_lin and 

FOCUSS_num). FOCUSS_lin is the original FOCUSS method that uses fuzzy linguistic 

descriptor to represent QoS requirements from users, while FOCUSS_num, following the 

same ranking principle of the original FOCUSS method, utilises numeric QoS values. 

Similarly, versions of eWD and WD to process queries expressed using fuzzy linguistic 

descriptors were also considered. Consequently, the six methods involved in the 

simulation experiments are listed in Table 5.9. 

Table 5.9: Methods Evaluated in Experiment-2 

QoS Version Method Method ID 

Linguistic 
Exponential Weighted Difference Metric eWD_lin 
FOCUSS FOCUSS_lin 
Weighted Difference Metric WD_lin 

Numeric 
 

Exponential Weighted Difference Metric eWD_num 
FOCUSS FOCUSS_num 
Weighted Difference Metric WD_num 
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5.4.4 Evaluation Metrics 

A number of measures from the domain of information retrieval for measuring the 

ranking performance of ranking algorithms were identified and used to evaluate the 

performance of the FOCUSS framework compared to other QoS-based ranking methods 

discussed earlier, using TOPSIS as the benchmark. These metrics have been used for 

evaluation QoS-based ranking in similar studies, for example, (Qu and Buyya, 2014; Sun 

et al., 2014; Qu et al., 2014; Mirmotalebi et al., 2012). Precision and recall are popular 

retrieval evaluation metrics in Information Retrieval, but cannot be applied in this 

evaluation because they are single-value metrics based on the whole list of service 

alternatives relevant to a QoS requirement (query) and do not consider the order or 

ranking of those services in the retrieved list. However, metrics such as Normalized 

Discounted Cumulative Gain (NDCG), Mean Average Precision (MAP), Spearman Rank 

Coefficient (SRC) and Kendall Tau Rank Coefficient (KRC) are applicable to measure 

the ranking performance of QoS-based ranking algorithms. Unlike in Zanakis et al. 

(1998), only the rank-order produced by the methods are being evaluated by the metrics 

not the values or rating underscoring the rankings.  

I. Normalized Discount Cumulative Gain (NDCG) 

Since the value of top-k ranked service varies in this experiment, the ranking performance 

of the QoS-based techniques compared is measured by normalising the cumulative gain at 

each top-k position for each query (or user QoS requirement). This is achieved by sorting 

list of services by relevance, producing the maximum possible Discount Cumulative Gain 

(DCG) till position	݇, also referred to as the Ideal DCG (IDCG) till that position. 

Normalized Discount Cumulative Gain (NDCG) at positions corresponding to value of 

top-k is applied to measure whether the FOCUSS framework can still rank most 

satisfactory services at the top. The relevance scores ሺ݈݁ݎ௜ሻ used in computing the NDCG 

are performance values obtained by the TOPSIS method in response to a query. For a 

query, the normalized discounted cumulative gain, or NDCG, is computed 

mathematically as: 

(5.3) 

 

݇ܩܥܦܰ ൌ
݇ܩܥܦ
݇ܩܥܦܫ
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And 

(5.4) 

While ܩܥܦܫ௞ corresponds to the ideal DCG at position	݇. 

II. Mean Average Precision (MAP) 

As earlier stated the precision and recall metric is best applicable considering the whole 

list of relevant services to a query. In order to measure ranking performance for a ranked 

sequence of services, the precision and recall at every position in the ranked sequence of 

services are computed to plot a precision-recall curve. The precision-recall curve is 

created by plotting precision ݌ሺݎሻ as a function of recall	ݎ. The Average Precision (AveP) 

is computed as the average value of ݌ሺݎሻ over the interval from ݎ	 ൌ 	0	to	ݎ	 ൌ 	1, such 

that: 

ࡼࢋ࢜࡭ ൌ
∑ ሺࡼሺ࢏ሻ ൈ ሻሻ࢑࢏ሺ࢒ࢋ࢘
ୀ૚࢏

࢑
 (5.5) 

Where ݅	is the rank in the sequence of the return services,	݇ is the number of top-k 

services returned; ܲሺ݅ሻ is the precision at the rank ݅ in the list, given as: 

ܲሺ݅ሻ ൌ
ݐ݊ܽݒ݈݁݁ݎ# ݁ܿ݅ݒݎ݁ݏ ݀݁ݒ݁݅ݎݐ݁ݎ @ ݅

ݐ݊ܽݒ݈݁݁ݎ	# ݏ݁ܿ݅ݒݎ݁ݏ @ ݅
 (5.6) 

And ݈݁ݎሺ݅ሻ is an indicator function, such that compared to ranking produced by the 

TOPSIS method, ݈݁ݎሺ݅ሻ ൌ 1 if the service at rank ݅ is a relevant service, and ݈݁ݎሺ݅ሻ ൌ 0 

otherwise. 

The MAP is the average of precision values at the ranks where there are relevant services 

to the user QoS query. The mean is obtained by averaging over several queries. The total 

number of queries used in this experiment is 5. Therefore, Mean Average Precision is 

defined by: 

ܲܣܯ ൌ
∑ ሻொݍሺܲ݁ݒܣ
௤ୀଵ

ܳ
 (5.7) 

Where	ܳ is the number of queries; for this experiment, the value of ܳ is 5 according to 

the experiment design (cf. Section 5.4). 

݇ܩܥܦ ൌ 1݈݁ݎ ൅෍
݈݅݁ݎ

log2ሺ݅ሻ

݇

݅ൌ2
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III. Spearman Rank Correlation Coefficient 

Spearman's Rank Correlation (SRC) coefficient, also known as, Spearman's rho is used to 

measure the rank correlation between two variables, by using a monotonic function to 

describe the relationship between those variables. A perfect correlation QoS-based 

ranking of service alternatives produced by two methods has a Spearman correlation of 

+1, while the Spearman correlation of -1 when the ranking is extremely dissimilar.  

Given a list of top-k service alternatives, produced by method M_1, and M_2, the list of 

top-k are converted to ranks  ݃ݎ	ܯଵ, and ݃ݎ	ܯଶ; therefore, Spearman rho, ߩ, is computed 

as: 

ߩ ൌ 1 െ
6∑݀௜

ଶ

݇ሺ݇ଶ െ 1ሻ
 (5.8) 

Where ݀௜is the difference between the ranks computed as ݀௜ ൌ ଵሻܯሺ݃ݎ െ  .ଶሻܯሺ݃ݎ

IV. Kendall Tau Coefficient 

Kendall Rank Correlation (KRC) coefficient is also known as Kendall's tau coefficient 

and is denoted as ࣎	is used to measure the ordinal association between two variables. The 

Kendall correlation between two variables will be high when the top-k list produced by 

two methods has a correlation value of 1, and low with a correction value of -1. Any pair 

of observation between the top-k items produced by two methods, ܯଵ and ܯଶ are 

concordant, if the position of an item produced by ܯଵis in the same position of that item 

in the list produced method ܯଶ, and discordant otherwise. The Kendall tau coefficient is 

computed as follows: 

߬ ൌ
ሺܥ െ ሻܦ
ೖሺೖషభሻ

మ

 (5.9) 

Where C = Concordant pairs; D = Discordant pairs; k is the number of top-k items 

produced by the methods. 

The metrics were implemented as Java methods in NetBeans, while the indicators for 

metrics used to evaluate the methods are as follows: a perfect agreement between a QoS-

based method and TOPSIS, in terms of top-k items produced, would be signalled by the 

following: NDCG=1, MAP=1, SRC=1, and KRC=1. 
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5.4.5 Experiment Design 

The evaluation methodology employed in the study is based on a simulation modelling 

technique similar to Chamodrakas et al. (2011). Simulation is a widely-used research 

method to study and analyse complex scenarios and to gain insights into performance and 

scalability for large-size problem instances. Moreover, it helps to evaluate the 

generalizability of the results. Experimental designs indicate how to vary the settings of 

the factors or independent variables to see if and how they impact on the response 

variable or dependent variable (Sanchez, 2005). For the experiments conducted in this 

study, a factorial design was selected as a suitable design for the simulation experiments 

(Sanchez, 2005).  

Factorial designs are represented more concisely as ܽ௞ where	݇ is the number of factors 

under investigation at ܽ levels with a total of ܽ௞ design points. Also, factorial designs can 

be written such that different set of factors are investigated at different number of levels. 

As a case in point, a design with two factors, with 2 and 3 levels for each factor will be 

written as 2 ൈ 3 design (also called crossed design). Every column in the design matrix 

corresponds to a factor, and the entries within the column correspond to settings or 

treatment for this factor. However, each row also represents a particular combination of 

factor levels, and which is referred to as a design point. Repeating the whole design 

matrix is called the replication of the design, and given ݊ design points and ܾ replications, 

the total number of tests becomes	 ௧ܰ௘௦௧ ൌ ݊ ∗ ܾ.  

Some benefits of a factorial design include 1) Ability to examine all possible 

combinations of factors levels for each of the factors, which is useful in identifying 

important interaction effect. 2) They are also orthogonal designs, such that the pairwise 

correlation between any two factors is equal to zero. Experiment-2 follows a 3-way 

factorial design and was inspired by the works of Chamodrakas et al. (2011) and Zanakis 

et al. (1998).  

5.4.6 Simulation Parameters and Protocol 

The response variable for Experiment-2 is the ranking performance in terms of accuracy, 

measured by four accuracy metrics (NDCG, MAP, SRC and KRC). The factors 

considered are- the number of top-k ranked services (top-k), the number of service 
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alternatives (alternatives) and the QoS requirements input type (query). There are six 

factor levels for the top-k results corresponding to k= 3, 5, 7, 10, 15, and 20; while there 

are also five factor levels for alternatives- [50, 100, 350, 750, 1000]. The input types are 

either numeric or linguistic, corresponding to two factors. Equal distribution for priority 

weights are assumed, such that the weight for each QoS attribute is equal to 1/ݍ	(where ݍ 

is the number of QoS criteria been evaluated); the value of ݍ is equal to 4 (Availability, 

Response time, Reliability and Cost). For each combination, the trials were performed 

five times using the five QoS requirements shown in the Appendix B, after which the 

average for each combination case was taken. In all, the total number of solutions 

generated is equivalent to: 5 QoS queries × each combination, which comprise 5 levels 

for alternative × 6 levels for top-k × 6 levels for methods × 4 evaluation metrics = 3600 

solutions. The average of the 3600 solutions produced 720 data points which are then 

analysed using the Kruskal-Wallis test, the non-parametric equivalent of the Analysis of 

variance (ANOVA) method. Table 5.10 shows the summary of the responses, factors and 

factor levels for Experiment-2. 

Table 5.10: Summary of Experiment Variables, levels, methods, and metrics 

#Service 
Alternatives 

(n) 

Top-k 
(k) 

QoS Preference 
weight (w) 

Methods to be  
compared* (m) 

Evaluation  
Metrics (e) 

#QoS 
Attributes 

(q) 

#Queries 
per Trial 
runs (t) 

50 
100 
350 
750 

1000 

3 
5 
7 
10 
15 
20 

Uniform 
Distribution 

(1/q) 

FOCUSS_lin 
FOCUSS_num 

eWD_lin 
eWD_num 

WD_lin 
WD_num 

NDCG 
MAP 

Kendall Tau 
Spearman rho 

4 5 

*TOPSIS is the Benchmark method used for comparison 
Total solutions = n × k × m × e × t = 5 × 6 × 6 × 4 × 5 = 3600 solutions 

The protocol followed in Experiment-2 is outlined below: 

i. The methods were implemented with Java programming language in NetBeans 

8.1 IDE. The simulation experiments were conducted on the same PC 

specification in section 5.3.3. 

ii. The first step in each approach was to normalise the decision matrixes 

(comprising datasets, n = 50, 100, 350, 750, 1000) using vector normalisation 

so as to keep the values within [0, 1]. 

iii. Five QoS requirements were generated for which each method generated a 

ranking of cloud services from the decision matrix. The queries were also 

normalised using vector normalisation method. 
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iv. Each design point was repeated 5 times with each QoS query generated in point 

(ii) above. 

v. Each evaluation metric (m) was applied to measure the accuracy performance of 

each method on the basis of each trial run. 

vi. The value from the evaluation metrics was recorded in an Excel worksheet (See 

Appendix B) 

vii. A total of 3600 data points were collected (720 data items per QoS query). 

viii. The average values from all metrics for all methods, resulting in 720 data point, 

were analysed for significance and meaningfulness using Kruskal-Wallis test in 

SPSS software package. 

5.4.7 Results and Analysis 

The descriptive analyses of the results are presented in the next section, while the results 

are tested for statistical significance using the non-parametric equivalent of ANOVA 

(Kruskal-Wallis test), along with the relevant post hoc analysis tests. 

I. Descriptive Statistical Analysis 

The mean and median ranking accuracy produced by the four metrics employed in this 

simulation experiments for all six methods are contained in Table 5.11. 

Table 5.11: Median and Mean Ranking Accuracy for Methods by Metrics 

Methods 
Median Accuracy Mean Accuracy 

NDCG MAP SRC KRC NDCG MAP SRC KRC 

eWD_num 0.941406 0.837057 0.362688 0.324128 0.935858 0.812477 0.362688 0.324128 

eWD_lin 0.939955 0.806438 0.398779 0.356178 0.930129 0.772053 0.398779 0.356178 

FOCUSS_num 0.982181 0.866667 0.67503 0.64148 0.96989 0.854511 0.67503 0.64148 

FOCUSS_lin 0.981735 0.866667 0.691848 0.659023 0.966899 0.863404 0.691848 0.659023 

WD_num 0.544211 0.623264 -0.11192 -0.09716 0.561568 0.657504 -0.11192 -0.09716 

WD_lin 0.553056 0.554167 -0.10259 -0.09436 0.566099 0.634281 -0.10259 -0.09436 

Meanwhile, Figure 5.3 and Figure 5.4 show that the FOCUSS_lin is closer to TOPSIS 

than the other five methods. The only exception is the NDCG result for FOCUSS_num. 

The next closer method to TOPSIS for all other metrics is FOCUSS_num. The vital 

discovery from the results of the experiment is that both versions of the FOCUSS ranking 

algorithms (FOCUSS_num and FOCUSS_lin) produced better ranking results than other 
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approaches compared, and clearly outperforms other methods, particularly for the SRC 

and KRC metrics. The next best set of methods is eWD, and outperforms WD methods; 

eWD_lin produced results closer to TOPSIS than eWD_num only in SRC and KRC, 

while eWD_num is better with NDCG and MAP. However, it can also be observed that 

the two versions of eWD produced better results than versions of WD; WD_num 

produced worse results in all metrics than WD_lin, except for MAP where the results for 

WD_num is than WD_lin.  

 
Figure 5.3: Median Ranking Accuracy for all Six Methods by each Metric 

 

 
Figure 5.4: Mean Ranking Accuracy for all Six Methods by each Metric 
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The QoS input type did not considerably affect the ranking accuracy, with only 

marginally differences (less than 0.02) in the median accuracy scores across the 

evaluation metrics as shown in Table 5.12 and depicted in Figure 5.5.  

Table 5.12: Median Accuracy based on QoS Input Type (Linguistic and Numeric) 

Input-Type NCDG MAP SRC KRC 

Numeric 0.935964 0.828724 0.340000 0.303810 

Linguistic 0.927880 0.798562 0.316429 0.261203 

Apart from the analysis of the descriptive statistics, there is still the need to further 

determine the significance of the results using inferential statistics which is presented in 

the next section. 

 

Figure 5.5: Median Accuracy for Numeric and Linguistic QoS Requirements 

II. Inferential Statistical Analysis 

The initial consideration was to use parametric ANOVA for analysis of results, and 

preliminary tests were conducted to ensure that the underlying assumption for ANOVA 

was not violated. The test included checks for normality, linearity, univariate, 

homogeneity of variance-covariance matrices, and it was observed that these assumptions 

were violated. The violations were due to the inherent random structure of the simulation 

experiments. Therefore, the non-parametric alternative, the Kruskal-Wallis test, was used 

instead as the statistical procedure to investigate the ranking accuracy of the various 
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The four dependent variables (the accuracy metrics) are NDCG, MAP, SRC, and KRC, 

while the five independent variables are: methods (method), the number of alternatives 

(size), the number of top-k results (top-k) and QoS input type (input_type). The statistical 

computations were performed using the SPSS statistical application package. The 

Kruskal-Wallis test allows for the comparison of the scores on some continuous variable 

for three or more groups; after the scores have been converted to ranks, the mean rank for 

each group is then compared. The significance level chosen in the analysis is 95% (α = 

0.05) as a standard benchmark; therefore, p-value < α is considered statistically 

significant. Mann-Whitney U tests on pairwise statistical comparisons were performed as 

a post hoc follow-up tests to identify the method(s) that are statistically significantly 

different from the others.  

a) Kruskal-Wallis Test 

According to the non-parametric Kruskal-Wallis test, only the grouping variable, method, 

showed significant difference across all accuracy metrics used. The results of other 

grouping variables (the number of alternatives, the top-k results obtained and the QoS 

input type) did not show a significant difference in all accuracy metrics, except for MAP 

(see Table 5.13). From Table 5.13, it is obvious that there is no significant difference in 

the ranking performance produced by the metrics for all methods with numeric QoS 

inputs and those with linguistic inputs; for the metrics, ݌ ൐ 	0.05. In addition, the number 

of alternatives (size) did not affect significantly the ranking accuracy obtained from the 

metrics, neither did the number of top-k ranked services; as the p-values for size (NDCG, 

p=.06; SRC, p=.056; KRC, p=.084) and top-k (NDCG, p=.142; SRC, p=.991; KRC, 

p=.987) are greater than 0.05; except for MAP in both cases, where the p-values	൏ 0.05 

for both variables size and top-k.  

Table 5.13: Summary of Kruskal-Wallis Test on Ranking Accuracy 
 NDCG MAP SRC KRC 

χ2 df Sig. χ2 df Sig. χ2 df Sig. χ2 df Sig. 

Method 128.89 5 .000 30.784 5 .000 127.114 5 .000 129.818 5 .000 

Size 9.051 4 .060 49.036 4 .000 9.228 4 .056 8.207 4 .084 

Top-k 8.269 5 .142 46.807 5 .000 .520 5 .991 .624 5 .987 

Input_Type .003 1 .958 .571 1 .450 .273 1 .602 .178 1 .673 

The grouping variable, method, confirms that there is a statistically significant difference 

in the accuracy performance of the six methods when compared, NDCG [χ2 (5, N=180) = 
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128.89, p < 0.05]; MAP [χ2 (5, N=180) = 30.78, p < 0.05]; SRC [χ2 (5, N=180) = 127.11, 

p < 0.05]; SRC [χ2 (5, N=180) = 129.82, p < 0.05]. An examination of the mean ranks 

was done as an indication of the ranking accuracy of the methods compared. Higher mean 

rank suggests better accuracy and vice versa. FOCUSS_num method recorded a higher 

mean rank (M=137.02) on NDCG than the other five methods, closely followed by 

FOCUSS_lin (M=136.85). The method with the lowest mean rank is WD_num 

(M=30.75). The mean ranks for other methods includes: eWD_lin (M=103.52), 

eWD_num (M=103.12), and WD_lin (M=31.75).  

Similarly, an inspection of the mean ranks for MAP, SRC and KRC reveals that 

FOCUSS_lin had the highest mean (M=114.88; M=140.27; M=141.08 respectively), and 

closely followed by FOCUSS_num (M=112.45; M=136.90; M=138.45 

respectively).Table 5.14 summarises the mean ranks of the six methods along four 

metrics. Overall, FOCUSS_lin outperformed other methods on all metrics, except for 

FOCUSS_num, that performed better than FOCUSS_lin on the NDCG metric. 

Table 5.14: Mean Ranks for each Accuracy Metrics for all methods 

METHODS 
MEAN RANKS 

NDCG MAP SRC KRC 

eWD_num 103.12 101.47 97.73 96.95 

eWD_lin 103.52 88.8 102.57 101.47 

FOCUSS_num 137.02 112.45 136.9 138.45 

FOCUSS_lin 136.85 114.88 140.27 141.08 

WD_num 30.75 66.37 30.78 31.18 

WD_lin 31.75 59.03 34.75 33.87 

b) Mann-Whitney U Tests 

Although, the Table 5.14 tells us that the methods differed according to the accuracy 

metrics used, but does not reveal how the methods differed. Pairwise comparisons of the 

methods were carried out using the Mann-Whitney test. Meanwhile, both versions of WD 

evidently performed worse than versions of eWD and FOCUSS, and there is no 

significant difference in the QoS input types, therefore, the pairwise comparisons were 

limited to versions of eWD and FOCUSS. More specifically, the following five pairs 

were considered for a follow-up test, and they include FOCUSS_lin Vs. eWD_lin; 

FOCUSS_lin Vs. eWD_num; FOCUSS_num Vs. eWD_lin; FOCUSS_num Vs. 

eWD_num; FOCUSS_lin Vs. FOCUSS_num. The summary of the Mann-Whitney U 
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follow-up tests are presented in Table 5.15, Table 5.16, Table 5.17, Table 5.18, and Table 

5.19. 

i- FOCUSS_lin Vs. eWD_lin 

According to the Mann-Whitney U test for pairwise comparison between FOCUSS_lin 

and eWD_lin, the U-statistics (cf. Table 5.15) revealed that there is statistically 

significant difference between ranking accuracy on all metrics for the FOCUSS_lin 

method and the eWD_lin method based on the following U-statistics (ܷ ൌ 	212.00	ሾܼ ൌ

	െ3.521ሿ, 	݌ ൏ 	0.01), produced by the NDCG metrics. Statistical significance in 

difference was also recorded for SRC (ܷ ൌ 195.000	ሾܼ ൌ െ3.765ሿ, 	݌ ൏ 	0.01); and 

KRC (ܷ ൌ 182.000	ሾܼ ൌ െ3.965ሿ, 	݌ ൏ 	0.01), but the MAP metrics did not produce 

statistical significance (ܷ ൌ 301.500	ሺܼ ൌ െ2.201ሻ, 	݌ ൐ 	0.01).  

The descriptive statistics showed that FOCUSS_lin (NDCG mean rank = 38.43; MAP 

mean rank=35.45; SRC mean rank = 38.98; KRC mean rank = 39.43) scored higher on 

NDCG, MAP, SRC and KRC respectively than eWD_lin (NDCG mean rank = 22.57; 

MAP mean rank=25.55; SRC mean rank = 22.02; KRC mean rank = 21.57); with a 

difference of between 9 to 17 points.  Furthermore, the difference between accuracy of 

FOCUSS_lin and eWD_lin method was somewhat large on all accuracy metrics used: 

NDCG (r = -0.45); SRC (r = -0.49); KRC (r = -0.51), except for MAP, with medium 

effect in the difference (r = -0.28). 

Table 5.15: Mann-Whitney Test Results (FOCUSS_lin Vs eWD_lin) 

Metric Method N Mean Rank U Z p-value Sig (0.01) 

NDCG 

eWD_lin 30 22.57 

212.000 -3.521 0.000 Significant FOCUSS_lin 30 38.43 

Total 60  

MAP 

eWD_lin 30 25.55 

301.500 -2.201 0.028 Significant FOCUSS_lin 30 35.45 

Total 60  

SRC 

eWD_lin 30 22.02 

195.500 -3.765 0.000 Significant FOCUSS_lin 30 38.98 

Total 60  

KRC 
eWD_lin 30 21.57 

182.000 -3.965 0.000 Significant FOCUSS_lin 30 39.43 
Total 60  
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ii- FOCUSS_lin Vs. eWD_num 

The pairwise comparison between FOCUSS_lin and eWD_num methods (cf. Table 5.16) 

revealed statistical significant difference between both methods on NDCG (ܷ ൌ

202.000	ሾܼ ൌ െ3.669ሿ, 	݌ ൏ 	 .05), SRC (ܷ ൌ 153.500	ሾܼ ൌ െ4.386ሿ, 	݌ ൏ 	 .05) and 

KRC (ܷ ൌ 141.000	ሾܼ ൌ െ4.571ሿ, 	݌ ൏ 	 .05) and MAP (ܷ ൌ 364.000	ሾܼ ൌ 	െ1.277ሿ,

݌ ൏ 	 .05). However, the mean rank results showed that the accuracy of FOCUSS_lin is 

higher than of eWD_num for all metrics: NDCG (Mean rank =38.77 Vs. 22.23), MAP 

(Mean rank = 33.37 Vs. 27.63), SRC (Mean rank = 40.38 Vs. 20.62) and KRC (Mean 

rank = 40.80 Vs. 20.20). 

Table 5.16: Mann-Whitney Test Results (FOCUSS_lin Vs eWD_num) 

Metric Method N Mean Rank U Z p-value Sig (0.01) 

NDCG 

eWD_num 30 22.23 

202.000 -3.669 0.000 Significant FOCUSS_lin 30 38.77 

Total 60  

MAP 

eWD_lin 30 27.63 

364.000 -1.277 0.202 Insignificant FOCUSS_num 30 33.37 

Total 60  

SRC 

eWD_lin 30 20.62 

153.500 -4.386 0.000 Significant FOCUSS_num 30 40.38 

Total 60  

KRC 
eWD_lin 30 20.20 

141.000 -4.571 0.000 Significant FOCUSS_num 30 40.80 
Total 60  

 

iii- FOCUSS_num Vs. eWD_lin 

The pairwise comparison between FOCUSS_num and eWD_lin methods (see Table 5.17) 

showed statistical significant difference between FOCUSS_num and eWD_lin methods 

on NDCG (ܷ ൌ 204.000	ሾܼ ൌ െ3.637ሿ, 	݌ ൏ 	0.01), SRC (ܷ ൌ 212.000	ሾܼ ൌ

െ3.519ሿ, 	݌ ൏ 	0.01) and KRC (U=184.000 [Z=-3.927], p < 0.01), except for MAP (ܷ ൌ

308.500	ሾܼ ൌ 	െ2.095ሿ, 	݌ ൌ 0.036). Besides, the mean rank descriptive statistics 

showed that the accuracy of FOCUSS_num is higher than of eWD_lin for all four 

metrics: NDCG (Mean rank = 38.70 Vs. 22.30), MAP (Mean rank = 35.22 Vs. 25.78), 

SRC (Mean rank = 38.43 Vs. 22.65) and KRC (Mean rank = 39.35 Vs. 21.65). The effect 

size is as follows is large for NDCG (r= -0.47), SRC (r = -0.45), KRC (r= -0.51), and 

medium effect for MAP (r = -0.27). 
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Table 5.17: Mann-Whitney Test Results (FOCUSS_num Vs eWD_lin) 

Metric Method N Mean Rank U Z p-value Sig (0.01) 

NDCG 

eWD_lin 30 22.30 

204.000 -3.637 0.000 Significant FOCUSS_num 30 38.70 

Total 60  

MAP 

eWD_lin 30 25.78 

308.500 -2.095 0.036 Significant FOCUSS_num 30 35.22 

Total 60  

SRC 

eWD_lin 30 22.57 

212.000 -3.519 0.000 Significant FOCUSS_num 30 38.43 

Total 60  

KRC 
eWD_lin 30 21.65 

184.000 -3.927 0.000 Significant FOCUSS_num 30 39.35 
Total 60  

 

iv- FOCUSS_num Vs. eWD_num 

The pairwise comparison between FOCUSS_num and eWD_num methods (see Table 

5.18) suggested that there is statistical significant difference between the accuracy of both 

methods judging from all metrics. The U statistics includes: NDCG (U=188.000 [Z=-

3.874], p < 0.01), MAP (U=387.000 [Z= -0.934], p =.350), SRC (U=152.000 [Z=-4.406], 

p < 0.01) and KRC (U=134.000 [Z=-4.666], p < 0.01). Furthermore, the mean ranks for 

both methods showed that the accuracy of FOCUSS_num is higher than of eWD_num for 

all four metrics: NDCG (Mean rank = 39.23 Vs. 21.77), MAP (Mean rank = 32.60 Vs. 

28.40), SRC (Mean rank = 40.43 Vs. 20.57) and KRC (Mean rank = 41.02 Vs. 19.98), to 

a large effect (r = -0.5; r = -0.57; r = -0.6,) for NDCG, SRC and KRC respectively, and 

small effect for MAP (r = -0.12). 

Table 5.18: Mann-Whitney Test Results (FOCUSS_num Vs eWD_num) 

Metric Method N Mean Rank U Z p-value Sig (0.01) 

NDCG 

eWD_num 30 21.77 

188.000 -3.874 0.000 Significant FOCUSS_lin 30 39.23 

Total 60  

MAP 

eWD_lin 30 28.40 

387.000 -0.934 0.350 Insignificant FOCUSS_num 30 32.60 

Total 60  

SRC 

eWD_lin 30 20.57 

152.500 -4.406 0.000 Significant FOCUSS_num 30 40.43 

Total 60  

KRC 
eWD_lin 30 19.98 

134.500 -4.666 0.000 Significant FOCUSS_num 30 41.02 
Total 60  
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v- FOCUSS_lin Vs. FOCUSS_num 

The pairwise comparison between FOCUSS_lin and FOCUSS_num methods (see Table 

5.19) suggested that there is no statistical significant difference between the accuracy of 

both methods. The U statistics includes: NDCG (U=188.000 [Z=-3.874], p > 0.01), MAP 

(U=387.000 [Z= -0.934], p > 0.01), SRC (U=152.000 [Z=-4.406], p > 0.01) and KRC 

(U=134.000 [Z=-4.666], p > 0.01). 

Table 5.19: Mann-Whitney Test Results (FOCUSS_lin Vs FOCUSS_num) 

Metric Method N Mean Rank U Z p-value Sig (0.01) 

NDCG 

FOCUSS_num 30 30.08 

437.500 -0.185 0.853 Insignificant FOCUSS_lin 30 30.92 

Total 60  

MAP 

FOCUSS_num 30 29.97 

434.000 -0.238 0.812 Insignificant FOCUSS_lin 30 31.03 

Total 60  

SRC 

FOCUSS_num 30 29.03 

406.000 -0.652 0.515 Insignificant FOCUSS_lin 30 31.97 

Total 60  

KRC 
FOCUSS_num 30 29.08 

407.500 -0.630 0.529 Insignificant FOCUSS_lin 30 31.92 
Total 60  

In addition, the mean ranks of the accuracy of both versions of FOCUSS methods showed 

just marginal difference, as FOCUSS_lin was slightly higher than FOCUSS_num by a 

maximum of one point across all metrics: NDCG (Mean rank = 30.92 Vs. 30.08), MAP 

(Mean rank = 31.03 Vs. 29.97), SRC (Mean rank = 31.97 Vs. 29.03) and KRC (Mean 

rank = 29.08 Vs. 29.08). The effect size is very low with r = -0.02, r = -0.03, r = -0.08, r=-

0.08 for NDCG, MAP, SRC and KRC respectively. 

5.4.8 Discussion 

The Kruskal-Wallis test revealed that the number of alternatives, size and QoS input type 

did not affect the accuracy metrics considered, but the methods produced distinguishable 

accuracy results. Judging by the results from both the descriptive and inferential statistical 

analysis, the two versions of the FOCUSS methods (FOCUSS_num and FOCUSS_lin) 

produce better accuracy results on all four metrics considered and were in all cases closer 

to the benchmark metric (TOPSIS) than the other four methods compared in this 

experiments.  
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Furthermore, the significantly higher mean rank of the FOCUSS_lin methods indicates 

that FOCUSS_lin produces more accurate rankings than other methods. In addition, an 

important discovery from the experiments is that expressing QoS requirements using 

linguistic terms did not compromise the accuracy of the ranking method. This discovery 

is aligned with the results of Sun et al. (2014), proving that there is no significant 

difference in the rankings produced by methods that accept linguistic QoS requirements 

as input and those that accept numeric QoS requirements (see Figure 5.5).  

Although, the versions of FOCUSS had higher accuracy compared to other methods 

evaluated, there exist only a marginal but insignificant difference between the ranking 

produced by FOCUSS_lin and FOCUSS_num (see Table 5.19). On the basis of the 

results obtained from experiment-2, the null hypothesis (H0) in section 5.4 is hereby 

accepted. The hypothesis H0 states that there will be no significant difference between the 

ranking performances of a method that accepts exact numeric values as QoS requirement 

and those that use linguistic descriptors to approximate values for QoS requirements. 

5.5 EXPERIMENT-3: USER EXPERIENCE EVALUATION 

Experiment-3 is a controlled user study designed to evaluate the user experience of the 

bubble graph visualisation integrated as part of the FOCUSS framework compared to 

traditional tabular format. The use of visualisation techniques is expected to reduce the 

cognitive load of the user by aiding the completion of user tasks accurately and time 

efficiently (Sebrechts et al., 1999). The use of a controlled experiment is well suited for 

the answering how one visualisation format technique compares to another (Lam et al., 

2012). In this experiment, a “head-to-head” comparison was carried out on both 

visualisation formats (Lam et al., 2012). The effectiveness of the visualisations was 

measured quantitatively using time and accuracy metrics, while subjective assessment of 

the visualisations was carried out by soliciting participants’ feedback via the use of a 

usability questionnaire. 

5.5.1 Experiment Goal and Hypothesis 

The objective of Experiment-3 is to determine the differences in quality of user 

experience for users exploring the list of top-k alternatives produced by QoS-based 

service ranking methods. It has been argued in this study that information visualisation is 
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a viable means to explore top-k alternatives as this gives the user the flexibility of 

performing trade-off analysis much more easily compared to a traditional top-k list 

presented with text in a tabular format. The objects studied in this controlled experiment 

are bubble graph visualisation and textual-tabular visualisation of a list of top-k services. 

The purpose of the experiment is to evaluate the two visualisation formats in representing 

a list of ranked top-k services in the context of a cloud service e-marketplace, with respect 

to the quality of user experience of both formats from a researcher’s viewpoint. The user 

experience is measured in terms of how quickly and accurately users identify their 

preferred alternatives. 

To this end, the formulated null hypothesis to be rejected is as follows: 

1. H0: There is no significant difference in task completion time of bubble graph 

visualisation and tabular visualisation of the list of top-k service alternatives. 

2. H0: There is no significant difference in perceived effectiveness, perceived efficiency, 

and perceived correctness of bubble graph visualisation and tabular visualisation of 

the list of top-k service alternatives. 

5.5.2 Experiment Instrumentation 

Wohlin et al. (2012) identified mainly three types of instruments used for an experiment: 

objects, guidelines and measurement instruments; and these three instruments were 

utilised in Experiment-3. Next, each instrument is described in more details. 

I. Object 

The object instrument is the prototype implementations of two hypothetical CRMaaS e-

marketplace with the result page implementing either bubble graph visualisation or 

Tabular visualisation. The hypothetical CRMaaS e-marketplace was accomplished in Java 

programming language, as a WAR file deployed on glassfish server and container 

running on the same PC configuration presented in Section 5.3.3.  

The QoS requirements for four QoS attributes (Availability, Response Time, Reliability 

and Cost) presented in Table 5.20 produced the list of top-20 services that served as input 

data for both visualisation formats. These predefined QoS requirements were inputted via 

the UI component of the hypothetical CRMaaS e-marketplace prior to the commencement 
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of the tasks by participants. Participants accessed the visualisation formats via two 

different tabs on a web browser. Figure 5.6 and Figure 5.7 show the bubble graph 

visualisation and the tabular listing of the top-10 alternatives respectively, based on the 

QoS requirements presented in Table 5.20. 

Table 5.20: QoS requirements used in Experiment-3 
QoS 

Attributes 
Preference 

Aspiration 
Goal Constraints 

Availability  
 Somewhat less important than response time 
 Somewhat More important than reliability 
 Extremely more important than cost 

Very 
High 

In the vicinity of 99% 

Response 
Time 

 Somewhat less important than reliability 
 Very more important than cost 

Low Very Close to 400 

Reliability Very less important than cost High In the vicinity of 70% 
Cost - Premium In the vicinity of 500$/Month 

 

 
Figure 5.6: Tabular listing of top-k services from Table 5.20 requirements 

`  
Figure 5.7: Bubble Graph Visualisation of Top-10 Services 
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II. Guidelines  

Guidelines are used to provide guidance to each participant for the experiments, and it 

contains the descriptions and outline of specific tasks each participant is expected to 

complete. The tasks were based on the taxonomy of user’s tasks proposed by Valiati 

(2005) and elaborated in Pillat et al. (2005).  

Although, the taxonomy describes seven user tasks (locate, compare, configure, infer, 

determine, identify, and visualise), locate tasks were defined for this experiment, as they 

represent the decision-making scenarios in a cloud service e-marketplace. Locate tasks 

refers to finding specific information in the visualisation relating to data items, 

dimensions, properties, values etc. (Pillat et al., 2005). The starting point of a Locate task 

is the participant exploring the visualisation and ends with the participants identifying the 

desired information (Pillat et al., 2005). A total of sixteen (16) tasks were defined and 

documented in the guideline for this experiment (see Figure 5.8). 

 
Figure 5.8: List of 16 ‘Locate’ User Tasks used in Experiment-3 

III. Measurement 

The measurement instrument is used to collect data from participants. Two measurement 

instruments were used in this experiment; they include the task performance survey 

(sample is in Figure 5.9) and a post-experiment questionnaire. The task performance 
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survey instrument was employed to capture time to complete it, while the post-

experiment questionnaire, a customization of the Post-Study-Satisfaction-User 

Questionnaire (PSSUQ), was used to elicit user experience.  

PSSUQ (Lewis, 1992) is a popularly used instrument used in conducting usability studies 

in the literature, and it consists of 19 items, from which only 15 relevant questions were 

selected for this study. These 15 items were specifically adapted for evaluating 

participant’s impression of the visualisation formats used in this context of this research. 

Participants were required to rate each item in the post-experiment questionnaire on a 7-

point Likert scale according to the following scale (7-Excellent and 1-Poor). The sample 

questions of the modified PSSUQ for both Table and Bubble graph visualisation formats 

are presented in Figure 5.10, the complete instrument is contained in Appendix C. 

 
Figure 5.9: Task performance Survey Instrument 

 



 

180 

 

 
Figure 5.10: Sample of Modified Post-Study-Satisfaction-User-Questionnaire 

5.5.3 Experiment Design and Protocol 

The independent variable of the study is the visualisation format and it has two levels: 

Bubble Graph Visualisation and Tabular Visualization. The dependent variables are the 

speed of task completion and user satisfaction in performing defined tasks with the two 

visualisation formats. Task completion time was achieved by tracking the overall 

completion time in seconds, and the aggregated user satisfaction scores from participants’ 

feedback using the modified PSSUQ instrument. The objects evaluated are the bubble 

graph and tabular visualisations of a list containing top 10 services based on the 

requirements shown in Table 5.20. Although all QoS dimensions are important, we 

considered four QoS dimensions, for the purpose of this study, to represent the attributes 

of the services: Availability, Response Time, Reliability and Cost. Figure 5.6 shows the 

tabular listing of 10 cloud services, their QoS attributes and corresponding bubble graph 

visualisation is shown in Figure 5.7. 

The legend of the bubble graph is as follows: x-axis represents availability measured in 

percentage, y-axis the response time of the services in milliseconds, the colours of the 

bubble represent the reliability, and the darker colour signifies higher reliability. The cost 

is represented by the size of the bubble, as bigger bubbles signify higher cost.  



 

181 

 

The task guidelines contain the tasks that participants are expected to complete. The 

starting point of a locate task is the participant exploring the visualisation and ends with 

the participants identifying the desired information. Figure 5.8 shows the list of 16 tasks 

grouped into two categories (eight tasks in each category) to represent the subset of 

activities users undertake in a cloud service e-marketplace.  

A completely randomised design was selected for experiment-3. The participants were 

randomly divided into two groups; the first group is assigned to use the bubble graph 

visualisation and then the tabular visualisation in that order, while the second group used 

the tabular visualisation and then the bubble graph visualisation in a reverse order to the 

first group. Experiment-3 can be described as one factor with two treatment type of 

experiment, to which a paired comparison design (or cross-over design) is applied; the 

same number of participants started with both visualisations formats to have a balanced 

design (Wohlin et al., 2012; Oehlert, 2010). The experiment was run offline (i.e. not in a 

real cloud service e-marketplace context). Because the experiments involve multiple 

subjects (participants) and objects (bubble graph and tabular visualisation formats), it was 

designed as a blocked subject-object study (Wohlin et al., 2012; Oehlert, 2010). 

A total of 10 persons participated in the experiment, comprising 7 males and 3 females, 

ranging in age from 20 to 25. The participants were undergraduate students studying 

computer, engineering and mathematics-related courses. Participants were taken through 

a ten minutes tutorial session where the purpose and the process of the experiments were 

made known. Participants were given a tutorial on the use of both visualisation formats to 

complete sample tasks and allowed to complete some preliminary tasks to ascertain their 

ability to perform the main tasks defined for the experiments. As soon as participants 

were comfortable with the process, they were presented with copies of guideline 

containing tasks to be completed. The tasks involved using the bubble graph and tabular 

visualisations, and the task performance survey instrument. The tasks guideline outlined 

16 tasks (see Figure 5.8) grouped into two categories (eight tasks in each category) to 

represent the subset of activities users undertake in a cloud service e-marketplace. The 

tasks were grouped according to levels of complexity ranging from locating services by 

both one to two QoS criteria. The experiment administrator recorded the time it took each 

participant to complete each task with the aid of a stopwatch. Upon completion of the 
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tasks, a post-experiment survey was conducted in order to capture participants’ 

impressions of both visualisation formats. 

5.5.4 Results and Analysis  

Quantitative and subjective data were generated and analysed. While the quantitative data 

collected via the task performance questionnaire were used to measure the speed of task 

completed, the qualitative data was collected via the post-experiment questionnaire 

completed by the participants and analysed. The next section describes the results of 

Experiment-3 in more details. 

I. Task Completion Time (Speed) 

Overall, the use of bubble graph had faster completion time with a median completion 

time of 10 seconds compared to 15 seconds for tabular visualisation. The magnitude of 

the difference in completion time is demonstrated by U-statistics from Mann-Whitney 

test, with U=8619.500, z=-4.983, p =.000. Furthermore, there was also a significant 

difference in the speed between the tasks in both task types (U=6139.500, z=-7.996, 

p=.000) with a median completion time of 9 seconds for tasks in category A, while the 

tasks in category B took a median time of 19 seconds. Figure 5.11 shows the median 

completion time for tasks in category A and category B using the bubble graph and 

tabular visualisation types. For the bubble graph visualisation, it took 7.5 seconds to 

complete category A tasks, and 13.5 seconds to complete category B tasks; whereas the 

same tasks were completed in 10 seconds and 26 seconds for category A and B tasks 

respectively using the tabular visualisation. 

 
Figure 5.11: Median Time to Locate Services by Task Type 
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II. User Experience 

Figure 5.12 presents the results from the post-study questionnaire. The goal of the post-

experiment questionnaire was to capture user’s impression and examine perceived quality 

of user experience of the visualisation formats. For the bubble graph visualisation, most 

of the questions received median scores from 6 on a 1-7 Likert scale. The highest score of 

6 was received for the more general questions like “The bubble graph visualisation was 

easy to use” and “Overall, I was satisfied with the bubble visualisation format”. In 

contrast, the tabular visualisation had slightly lower median scores of not more than 5. 

A Wilcoxon Signed Rank Test revealed a statistically significant difference in the user 

experience of bubble graph (md=6.00) and tabular visualization (md=5.00), with z = –

5.237, p=0.018 (p < .05), with a medium effect size (r = .30). Furthermore, feedbacks 

were sought from the participants to ascertain perceived ease, speed and accuracy using 

both visualisation formats for both categories of tasks involving one and two QoS 

attributes.  

Participants were asked to indicate which visualisation types were easier, faster and 

produced the most accurate result for both task categories. For exploration based on 

single QoS attributes, 70% of the participants confirmed that the bubble graph was easier 

to use compare to 30% who said the table was easier; 80% of participants said they 

performed the task faster than using table (20%), while 10% reported that the use of 

bubble graph was less accurate than tabular (90%) as shown in Figure 5.13. Also, while 

performing exploration using two QoS attributes, 80% and 90 % of the participants 

reported that the bubble graph was easier and faster respectively; while 70% said the use 

of bubble graph was more accurate than the tabular visualisation (30%) as depicted in 

Figure 5.14. 
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Figure 5.12: Median score for Post-Study Questionnaire 
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 Figure 5.13: Perceived User satisfaction (Single QoS Attribute)  

 

 
 Figure 5.14: Perceived User satisfaction (Double QoS Attributes) 
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were selected at random, they all had the required knowledge background to act 

competently while participating in the experiment (Wohlin et al., 2012). 

Threats to the conclusion validity affect the ability to arrive at the correct conclusion 

about relations between the treatment and the outcome of an experiment (Wohlin et al., 

2012). The concern is the extent to which, we can generalise based on the experiment, 

particularly considering the number of participants (10) and their level of experience. It is 

possible to have obtained a different result with a bigger group and more experienced 

subjects. However, from the experiment, the subjects who were students have similar 

computing background as technology officers, who would normally make such decisions 

for many organisations. They also showed that they had potential to make rational 

decisions as regards the tasks assignment, although they are not adept as real technology 

experts, but good enough to form a valid opinion on the suitability of bubble graph and 

tabular visualisations. Also, for a first-rate evaluation experiment, 10 is an acceptable 

sample size in order to obtain a valid first impression (Turner et al., 2006).  

To ensure construct validity all participants performed exactly the same tasks based on 

the same set of instructions thus minimising any mono-method bias (Lam et al., 2012). 

Therefore, there are no serious threats to validity for our conclusions from the 

experimental evaluation. 

5.5.6 Discussion 

Realising the vision of a true cloud service e-marketplace in the face of the growing trend 

for personalised products and services requires that user satisfaction and user experience 

be given top priority. The overall goal of this study is to simplify cloud service selection 

while optimising user experience and satisfaction in the decision-making process. Just 

like one of the laws of e-commerce states that if users cannot find it, they cannot buy it 

either; integrating information visualization in the User Interface (UI) design of e-

marketplace provides the mechanisms for user to, in the shortest possible time and 

through the easiest means, find a cloud service that meets their requirements.  

Humans possess the ability to recognise the spatial arrangements of elements in a picture 

and decipher relationships among elements quickly and easily. Such abilities enable 

humans to derive greater insight and comprehension from the content of a picture faster 

than mere text. This process leads to a more informed decision-making by capitalising on 
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the well-developed human visual processing capability. This study posits that applying 

information visualisation technique for aiding cloud service selection would improve 

cloud service exploration, and proposed a visualisation framework to allow users compare 

cloud services with respect to their requirements.  

The factors observed and measured in the experiments carried out were the speed at 

which the tasks were completed and the ease at which it was done. Generally, a faster 

completion time and greater ease in carrying out the assigned tasks meant the higher 

quality of user experience for a particular visualisation format. Although the use of table 

can be enhanced to include the ability to sort, the extra activity of sorting introduces 

additional complexity for the user when making a comparison. However, the bubble 

visualisation requires users just gazing at the visualisation (display) and with minimal 

interaction with the display (e.g. hovering), can gather more insight about the various 

alternatives. The task completion results show that bubble graph will drastically reduce 

the time it takes to find the most suitable service. 

Consequent to the feedback provided by the participants, the results clearly indicates that 

using the tabular visualization to complete the tasks took longer time, and hence was 

more difficult, which, based on the feedback provided by the participants, was a result of  

the tabular formats could not adequately support participants in performing the required 

tasks. The bubble graph was the faster of the two formats evaluated (with a median time 

of 10 Seconds) particularly for more complex tasks involving two or more QoS attributes. 

Based on the results obtained from this experiment, the two hypothesis set was rejected. 

Specifically, H0 which states that there is no significant difference in task completion time 

of bubble graph visualization over the tabular visualization was rejected as the results 

showed significant difference in completion time (see Figure 5.11); in the same vein, H0 

was also rejected because there was a significant difference in user experience of bubble 

graph visualization compared to tabular visualization based on participants’ feedback. 

5.6 CHAPTER SUMMARY 

In this chapter, the quantitative and qualitative experiments carried out to evaluate the 

FOCUSS framework were reported. This chapter described the experimental protocols 

followed to validate the scalability, ranking accuracy, user experience of the FOCUSS 
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framework using descriptive and inferential statistics on data obtained from three 

experiments. The results obtained showed that the FOCUSS framework is viable for 

cloud service ranking and selection in cloud service e-marketplace contexts. The next 

chapter contains the summary, a highlight of the contribution to knowledge and the 

conclusion of this thesis. 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATIONS 

6.1 INTRODUCTION 

This chapter highlights the summary and contribution of this thesis; and also contains 

recommendations for future work directions. 

6.2 SUMMARY  

Service providers leverage cloud ecosystems and cloud e-marketplaces to increase the 

business value of their services to reach a wider range of service users. A cloud services 

ecosystem is an environment that host heterogeneous cloud service offerings from 

different providers and affords the opportunity for collaborations. The cloud e-

marketplace extends the concept of an e-marketplace and is an online platform that 

manages the distribution and trading of cloud services. On this platform, service providers 

enlist services with the purpose of integration with other services to form composite 

services for users to purchase. However, the growing popularity of cloud services requires 

cloud e-marketplaces that optimise user experience by enabling the composition of 

atomic services that satisfy complex user requirements beyond what atomic services can 

provide, while considering that the user’s QoS requirements are elicited in ways akin to 

subjective human expressions. In addition, the user experience on such platforms can also 

be enhanced by showcasing a ranked result of services that match the user’s QoS 

requirements via intuitive means that reduces the cognitive load of the users.  

This study addresses the problem of service choice overload in cloud service e-

marketplaces, which impacts negatively on user experience. So far the following has been 

accomplished in this study in line with the research questions and objectives of this study: 

OBJECTIVE ONE: To formulate an integrated service selection framework that will 

improve the quality of user experience in a cloud service e-marketplace. 

A review of the literature reveals that existing cloud selection approaches do not currently 

provide the sophistication to optimise user experience in the e-marketplace. Through the 

analysis of the state-of-the-art studies, a set of requirements was identified for a cloud 
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service selection framework that would suffice in an e-marketplace context. Therefore, 

the study filled the existing gap in literature by proposing the FOCUSS framework as an 

integrated cloud service selection framework that incorporates mechanisms to address the 

existing gaps in cloud service selection literature, which are: 1) the need to compose 

atomic services on the fly to satisfy complex users’ requirements; 2) the need to allow 

users the flexibility of expressing QoS requirements; both preferences and aspirations, 

and to be able to do so with subjective descriptors that are more akin to human judgment; 

and 3) the need to reduce choice overload by showing only the top best services in a 

manner that facilitates easy comparison for effective decision-making. These identified 

gaps formed the basis for the design of the FOCUSS framework, which comprises of four 

main components, namely; Cloud ecosystem and service directory, GUI and 

Visualisation, QoS requirement processing, and Service Evaluation and QoS ranking. 

OBJECTIVE TWO: To design models and algorithms that will enable the components of 

the service selection framework. 

An assortment of models and algorithm were employed in the realisation of the 

components of the FOCUSS framework. Each component is described thus: 

i. Cloud Ecosystem and Service Directory: The framework uses the extended 

feature model notations, to model the Cloud Ecosystem Feature Model (CEFM) that 

organises and formally compose atomic services to populate the service directory. 

The composite services are able to satisfy user complex requirements beyond what 

atomic services can handle. The CEFM is mapped as a constraint satisfaction 

problem and the Choco-based reasoning engine reasons with a Depth-First search 

algorithm to derive all valid mappings. Possible combinations of atomic services 

that can be generated from the pool of atomic services are made available in the e-

marketplace based on former composition approaches.  

ii. GUI and Visualization: The framework integrates fuzzy-based web interface 

widgets comprising sliders, drop-down menus and text boxes for eliciting vague 

QoS preferences and aspirations, while bubble graph visualisation is employed to 

improve understanding of the relationship among the ranked services. Users can 

indicate preferences by pairwise comparison for each QoS attribute by adjusting the 

slider handle. The slider bar has two colour codes that correspond to the QoS 
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attributes and indicates the level of preference for a QoS attribute. Besides, humans 

derive better insight from a picture faster than mere text; therefore user experience is 

improved by the use of information visualisation. More specifically, the FOCUSS 

framework proposed the use of bubble graph visualisation to simplify decision 

making by showing how each service in the ranked results relates to others. 

iii. QoS Requirements Processing: The QoS Requirements Processing module 

comprises the QoS Preference Prioritizer (QPP) and the QoS Aspiration Analyser 

(QAA) sub-modules. The QPP module ensures consistency in the pairwise judgment 

and uses the geometric mean method to derive priority weights. To prioritise user’s 

QoS preferences, the QPP employs a Fuzzy AHP-based approach. The QAA module 

synthesises user’s QoS values based on fuzzy decision making, comprising 

membership functions framed as fuzzy goal and constraints. Since the linguistic 

terminologies describing the QoS aspiration reflect the semantic approximations of 

user’s intent, resolving the fuzzy decision results in an optimal set of QoS values 

that approximate user’s QoS intent.  

iv. Service Evaluation and QoS Ranking: The Service Evaluation and QoS Ranking 

modules consist of two sub-modules: the QoS Requirement Optimizer (QRP) and 

the QoS Ranking Engine (QRE). The QRP component computes the optimal QoS 

values that describe user’s requirements based on the QoS information on all the 

services in the service directory. The inputs into this component are the priority 

weights and the value of QoS attributes. The framework defines two utility functions 

to evaluate the performance of each service alternative with respect to user’s 

requirement. The output from the QRP forms the basis for ranking the services in 

the directory. The main technique used in this module is the nearest neighbour 

algorithm and the ranked output is fed into the bubble graph visualisation. 

OBJECTIVE THREE: To implement a prototype of the service selection framework and 

demonstrate its plausibility 

The study used an illustrative case study of a Customer Relationship Management as a 

Service (CRMaaS) e-marketplace to demonstrate the plausibility of the FOCUSS 

framework. The envisioned CRMaaS ecosystem involves multiple atomic service 

providers who collaborate to provide CRM solutions, while prospective small businesses 
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can purchase CRM solutions in the e-marketplace. The components that make up the 

CRMaaS ecosystem includes: Contact Management, Database, Marketing and Social 

media analysis.  

The use cases featured a scenario of how two organisations, a Microfinance bank and 

online drug store, select appropriate services matching their respective QoS requirements 

from the CRMaaS e-marketplace. The illustrative case study described the whole process 

from ecosystem feature modelling, constraint-based reasoning, QoS aspiration and 

requirement specification, and visualisation of ranking results. 

OBJECTIVE FOUR: To evaluate the framework in terms of its performance and usability 

attributes. 

An evaluation, comprising simulation experiments and user studies was performed to 

ascertain the performance and usability of the FOCUSS framework. First, the result of the 

scalability experimental simulation confirmed the performance of the FOCUSS 

framework in terms of the time it takes to rank top-k services. A linear regression analysis 

of data collected from the simulation shows that the FOCUSS framework scales linearly 

with an increase in service alternatives in terms of performance, thus confirming the 

computational efficiency of the FOCUSS QoS-based ranking module. The second 

simulation experiment tested the ranking accuracy of two versions of the FOCUSS 

ranking algorithm compared to existing methods and tested the hypothesis that there will 

be no significant difference between the ranking performances of a method that accepts 

exact numeric values as QoS requirement and those that use linguistic descriptors to 

approximate values for QoS requirements. Judging by the results from both the 

descriptive and inferential analysis, the two versions of the FOCUSS methods 

(FOCUSS_Num and FOCUSS_Lin) produce more accurate results on all four metrics 

considered and were in all cases closer to the benchmark metric (TOPSIS) than the other 

two methods used in this simulation. Finally, a user study was undertaken to ascertain the 

usability attributes of the visualisation component of the FOCUSS framework. The 

summary of the results of the user study showed that the use of bubble graph recorded 

higher accuracy, faster completion time and greater ease in carrying out the assigned 

tasks; thus corresponding to the higher quality of user experience. 



 

193 

 

6.3 CONTRIBUTIONS TO KNOWLEDGE 

This study contributes to the general research areas of cloud service selection and 

decision making as it applies to cloud service e-marketplaces.  More specifically, the 

main contribution of this study caters for the observed limitations in the existing cloud 

service selection approaches by enabling the 1) formal composition of atomic services to 

satisfy complex user requirements beyond what atomic services can deliver; 2) elicitation 

and processing of subjective user QoS requirements in ranking cloud services; 3) 

presentation of search results in a visually intuitive way that aids in better decision 

making.  

To this end, the Fuzzy-Oriented Cloud Service Selection (FOCUSS) framework was 

formulated to improve the user experience in a cloud service e-marketplace. FOCUSS is 

an integrated framework for cloud service ranking and selection, proposed as an efficient 

integrated visual-rich fuzzy-based decision support that incorporates a feature modelling, 

constraint-based reasoning, fuzzy decision making, fuzzy optimisation and visualisation 

in its design for cloud service selection in cloud service e-marketplace context. More 

concretely the FOCUSS framework: 

a) Satisfies complex user requirements beyond what atomic services can deliver. 

Currently, users are constrained to make choices only from a set of predefined 

atomic services, or at best, manually configure their desirable features and QoS 

requirements in order to realise their complex requirements given that they have 

deep knowledge of the service domain. FOCUSS employs constraint-based 

reasoning on the feature model to formally compose atomic services to fulfil 

complex user requirements. 

b) Elicits and processes subjective user QoS preferences and aspirations. 

Without proper articulation of requirements, cloud service selection can be 

overwhelming, and leads to service choice overload; more so that user 

requirements, broken into QoS aspiration and QoS preferences, are often shrouded 

in vagueness and subjectivity. Contrary to existing approaches in which either 

vague QoS preferences or aspirations are considered, FOCUSS elicit user QoS 

requirements in a way that captures the vagueness inherent in both the users’ QoS 
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preferences and aspirations and optimises these QoS inputs dimensions to identify 

suitable services options. 

c) Presents search results in a visually intuitive way that aids in better decision 

making. The search results from many cloud service e-marketplace are usually 

presented as an unordered list of icons representing the services that best fit users’ 

keyword-based queries. The drawback of such presentation mechanisms is that 

users are not able to immediately discriminate among the cloud services for easy 

decision making. FOCUSS simplifies decision making as users can identify 

services that best fit their requirements quicker and easier compared to tabular 

formats. 

6.4 CONCLUSION 

The popularity of cloud computing has led to the proliferation of services that are 

commoditized and traded via cloud e-marketplaces. The benefits of employing cloud-

based services compel many enterprises, particularly small businesses, to migrate over to 

the cloud (Budniks and Didenko, 2014; Ross and Blumenstein, 2015; Sultan, 2011). 

Realising the vision of a true cloud service e-marketplace in the face of the growing trend 

for personalised products and services requires that user satisfaction and user experience 

be given top priority. An organisation’s resolution to adopt a new cloud service requires 

decision support in navigating the vast plethora of services (Qu and Buyya, 2014; 

Saripalli and Pingali, 2011). Without proper articulation of requirements, cloud service 

selection in the face of so many choices can be overwhelming and leads to service choice 

overload. Decision support becomes essential because cloud service selection involves 

the consideration of multiple QoS attributes, which are compared to a variety of services; 

often based on QoS requirements that are vague or subjective in nature.  

The overall goal of this study was to simplify cloud service selection while optimising 

user experience in the decision-making process. For this, an integrated fuzzy-oriented 

framework was proposed to facilitate an enhanced user experience in cloud e-

marketplaces through the formal composition of atomic services to satisfy complex user 

requirements, elicitation and processing of subjective user QoS requirements, and 

presentation of search results in a visually intuitive way that aids users’ decision making. 

To do this, an integration of key concepts such as constrained-based reasoning on feature 
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models, fuzzy pairwise comparison of QoS attributes, fuzzy decision making, and 

information visualisation have been used. Results from experiments performed showed 

that the FOCUSS framework is scalable; ranks services using subjective descriptors and 

optimises the user experience in cloud service e-marketplace. 

6.5 RECOMMENDATIONS FOR FUTURE WORK 

The study provides possibilities for further research in tandem with the dynamism of the 

cloud computing landscape and user experience dimensions. The issues related to future 

works identified are as follows: 

a) Managing the Heterogeneity of QoS Information 

Although QoS are measurable non-functional attributes that describe and distinguish 

services and forms the basis for service selection (Chen et al., 2013; Abdelmaboud et al., 

2015), QoS properties are usually heterogeneous in nature, covering both quantitative and 

qualitative (or categorical) attributes. Besides, the Service Measurement Index (SMI) 

defines seven main metrics to measure QoS of cloud services, which includes 

Accountability, Agility, Assurance, Financial, Performance, Security and Privacy, and 

Usability; including multiple attributes under each categories and have values that are 

either quantitative or qualitative (or categorical) in nature. For example, response time is 

measured using quantitative numeric values (in milliseconds), while security and user 

friendliness or ecosystem friendliness are measured based on qualifier tags such as good, 

high etc. Many cloud service selection frameworks have only considered quantitative 

attributes, for example Rehman et al. (2011), Jung et al. (2013) and Mirmotalebi et al. 

(2012), based on the assumption that all QoS attributes are quantitative in nature, such 

approaches are limited and cannot suffice to handle the heterogeneous QoS model of 

cloud services, to cover for both quantitative and qualitative (or categorical) QoS 

dimensions. To effectively achieve a QoS-based ranking of cloud services in cloud 

service e-marketplaces, there is need to consider both the quantitative and qualitative QoS 

dimensions that characterise cloud services and rank cloud services accurately with 

respect to user requirements. To achieve this, heterogeneous similarity metrics that 

combines quantitative and qualitative dimensions, such as the Heterogeneous Euclidean 

Overlap Metric and Heterogeneous Value Difference Metric (Wilson and Martinez, 1997) 
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can be employed for QoS-based ranking to enable the selection of services in cloud 

service e-marketplace.  

b) Managing the Fuzzy Nature of QoS information 

Since the cloud computing landscape is characterised by dynamism, the correct and 

accurate evaluation of the QoS performance of cloud services should be a constant. The 

objective evaluation of cloud services sourced from service monitoring or benchmark 

third party services (Ruiz-Alvarez and Humphrey, 2011) or subjective feedback 

assessment from other users would constantly alter the QoS information of cloud services 

in the ecosystem. Hence a means to update aggregated QoS information and a constant 

update of the QoS information of the services is required. The automated and dynamic 

update is activated as new services join, or exit the ecosystem and also when there is an 

adjustment in the QoS information of a service. So we must find a means to capture and 

manage the uncertain nature of the QoS information of services using a fuzzy number or 

interval numbers according to the QoS history of services. 

c) Managing the Size of Cloud Ecosystem feature model 

To further increase the business value of their services, more service providers will likely 

participate in cloud ecosystems. Consequently, as the size of the cloud ecosystem 

increases, the potential number of composite service formally or incidentally composed 

will also increase. Retrieval of services in response to user queries and requirements will 

be enhanced by efficient storage of these composite offerings with multiple QoS 

attributes. One challenge with the plethora of services is managing the storage of a large 

number of services. In realising the FOCUSS framework, a relational database 

management system (RDBMS) was employed to store the list of service. The efficiency 

of retrieval will be reduced with the use of RDBMS. Since the service registration phase 

usually occurs offline together with the derivation of valid composition, a plausible 

approach is to apply case retrieval nets (Lenz and Burkhard, 1996). Each service can be 

referred to as a case, while the case retrieval nets are employed to manage the large size 

of the resultant service compositions and provide efficient retrieval compared to 

traditional RDBMS. 
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d) Serendipity and Diversity in Service Selection 

Existing approaches elicit user’s QoS requirements preference a priori. A priori 

elicitation suggests that QoS requirements are specified at the onset while the system 

generates and present services that satisfy the user requirements. Similarity-based 

retrieval based on a priori requirements elicitation cannot address the Stonewalling and 

Diversity problem of recommendation (Bridge, 2001). Stonewalling refers to a scenario 

where the system respects all the preference of the consumer and yet no recommendation 

is returned (e.g. system returns ‘No Match Found!”). Diversity problem arises when the 

system returns a number of similar services, and the similarities among the services are so 

close without any diversity. In both scenarios, the user is expected to start the search all 

over again from scratch, since the recommendation system does not remember nor 

consider previously specified preferences. 

e) Group Decision Making Scenarios 

The GUISET project is designed to enable a cluster of SMEs to use technology in their 

business by lowering the initial cost of acquisition and maintenance. A cluster of SME 

comprises at least two SME, whose inputs matter in the selection of cloud services for 

their businesses. In such scenarios, it is also possible to include group decision-making 

scenarios in the quest for cloud service selection; this is particularly true considering the 

unique model of the GUISET project in which the prospective users are a cluster of 

SMME who require cloud services to e-enable their business activities. Each stakeholder 

in an SMME cluster should make sufficient input in the decision-making process to select 

a cloud service. The selection takes into cognisance all stakeholders’ QoS requirements 

and aggregates the requirements to produce a single service. The scope of this research 

was mainly focused on a single user organisation, and there is a value in expanding it to 

address and incorporate inputs from users in a group. Although one major challenge with 

group decision making is conflicting user requirements, this challenge can be solved by 

finding the Pareto optimal services that match all the requirements (Yu, 2014). Also, the 

best set of services matching the group QoS requirements can be obtained by employing 

regression analysis to determine the QoS values of the services that with the least 

contradictions among users QoS requirement. The QoS values solution can then be 

mapped to utility functions that can be used to evaluate all services in the cloud e-

marketplace.   
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APPENDIX B: DATA USED IN EXPERIMENTS 

B.1. Queries used in Experiment-2 

Table B1.1: Minimum QoS Values, Maximum QoS Values and 5 Test Queries for Dataset, 
n=100 

Availability Response Time Reliability Cost 

Min 23 42.5 42 100.28 

Max 100 4207.5 83 498.21 
 

Query1 92.33 1478.33 53.41 467.4 

Query2 52.49 3580.85 46.15 116.64 

Query3 90.89 3346.46 67.05 177.94 

Query4 77.94 3855.53 64.64 299.05 

Query5 40.83 898.46 66.6 453.86 

 

Table B1.2: Minimum QoS Values, Maximum QoS Values and 5 Test Queries for Dataset, 
n=350 

Availability Response Time Reliability Cost 

Min 9 42.5 42 100.79 

Max 100 4637.61 89 497.86 
 

Query1 58.89 1587.48 81.58 323.47 

Query2 38.88 1790.82 48.16 453.56 

Query3 16.25 3889.45 69.64 463.36 

Query4 92.17 4247.19 76.43 479.14 

Query5 59.83 909.44 79.12 332.55 

 

Table B1.3: Minimum QoS Values, Maximum QoS Values and 5 Test Queries for Dataset, 
n=750 

Availability Response Time Reliability Cost 

Min 8 40 33 103.2 

Max 100 4758 89 499.54 
 

Query1 21.69 2140.04 81.38 318.1 

Query2 24.6 3079.98 34.01 456.6 

Query3 22.97 2846.15 76.23 412.06 

Query4 94.91 2551.7 35.14 131.65 

Query5 10.86 2651.62 67.95 316.65 
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Table B1.4: Minimum QoS Values, Maximum QoS Values and 5 Test Queries for Dataset, 
n=1000 

Availability Response Time Reliability Cost 

Min 7 37 33 101.5 

Max 100 4989.67 89 499.9 
 

Query1 52.23 960.51 44.33 200.64 

Query2 13.66 903.83 50.41 433.1 

Query3 23.07 3984.38 63.61 142.07 

Query4 70.26 1853.95 62.41 377.11 

Query5 14.28 1292.89 84.57 440.49 

B.2. Data obtained for Exeperiment-1 

Table B2.1: Execution time in milliseconds for top-10 rankings 

#Trials 50 Services 
100 

Services 
350 

Services 
750 

Services 
1000 

Services 
Trial1 359 313 344 406 360 
Trial2 343 360 328 390 328 
Trial3 313 312 328 376 359 
Trial4 344 343 339 344 344 
Trial5 328 328 359 344 359 
Trial6 343 378 340 344 328 
Trial7 368 376 344 328 359 
Trial8 328 328 312 328 344 
Trial9 333 328 375 359 344 
Trial10 391 344 312 359 344 
Trial11 313 313 328 328 391 
Trial12 328 328 391 344 343 
Trial13 312 329 329 328 343 
Trial14 313 313 344 328 343 
Trial15 313 359 328 360 344 
Trial16 336 328 438 375 359 
Trial17 344 328 344 344 344 
Trial18 328 399 359 359 329 
Trial19 328 375 328 344 329 
Trial20 360 359 329 344 328 
Trial21 312 312 344 313 359 
Trial22 359 328 390 338 344 
Trial23 344 391 344 328 359 
Trial24 343 343 313 313 328 
Trial25 336 343 323 328 343 
Trial26 328 328 328 312 359 
Trial27 328 328 328 375 406 
Trial28 328 344 312 344 391 
Trial29 375 328 328 328 329 
Trial30 328 328 375 328 343 

Mean Execution time 336.8666667 340.4667 342.8 344.6333 349.4333 



 

223 

 

B.3. Data obtained from simulation Experiment-2 

 
Figure B3.1: Methods versus ranking accuracy by four metrics  


