
i

A FUZZY-ORIENTED FRAMEWORK FOR SERVICE

RANKING AND SELECTION IN CLOUD
E-MARKETPLACES

COVER PAGE

EZENWOKE, AZUBUIKE ANSALEM

CU033020045

JULY, 2017

ii

A FUZZY-ORIENTED FRAMEWORK FOR SERVICE

RANKING AND SELECTION IN CLOUD E-MARKETPLACES

BY

EZENWOKE, AZUBUIKE ANSALEM
B.Sc. and M.Sc. Computer Science

(Covenant University)
MATRICULATION NUMBER: CU033020045

TITLE PAGE

BEING A THESIS SUBMITTED TO THE DEPARTMENT OF COMPUTER AND

INFORMATION SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY,
COVENANT UNIVERSITY, OTA, NIGERIA. IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE AWARD OF DOCTOR OF PHILOSOPHY (Ph.D) DEGREE

IN COMPUTER SCIENCE.

JULY, 2017

iii

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the

award of the degree of Doctor of Philosophy in Computer Science in the Department of

Computer and Information Sciences, College of Science and Technology, Covenant

University, Ota.

PHILIP JOHN AINWOKHAI

(Secretary, School of Postgraduate Studies)

Signature and Date

PROFESSOR SAMUEL WARA

(Dean, School of Postgraduate Studies)

Signature and Date

iv

DECLARATION

I, EZENWOKE Azubuike Ansalem (CU33020045), declare that this research work was

carried out by me under the supervision of Professor Matthew Adigun of the Department

of Computer Science, University of Zululand, South Africa, and Dr. Olawande Daramola

of the Department of Computer and Information Sciences, Covenant University, Nigeria.

I attest that this thesis has not been presented either wholly or partly for the award of any

degree elsewhere. All the sources of the materials consulted in the course of this

academic research are duly acknowledged.

EZENWOKE, AZUBUIKE ANSALEM

Signature and Date

v

CERTIFICATION

We certify that the thesis titled “A Fuzzy-Oriented Framework for Service Ranking

and Selection in Cloud E-Marketplaces” is an original research work carried out by

EZENWOKE, AZUBUIKE ANSALEM (CU033020045), in the Department of Computer and

Information Sciences, College of Science and Technology, Covenant University, Ogun

State, Nigeria, under the supervision of Professor Matthew Adigun and Dr. Olawande

Daramola. We have examined and found the work acceptable for the award of a degree of

Doctor of Philosophy in Computer Science.

PROFESSOR MATTHEW ADIGUN

(Supervisor)

Signature and Date

DR. OLAWANDE DARAMOLA

(Co-Supervisor)

Signature and Date

DR. OLUFUNKE OLADIPUPO

(Head of Department)

Signature and Date

PROFESSOR CHARLES UWADIA

(External Examiner)

Signature and Date

PROFESSOR SAMUEL WARA

(Dean, School of Postgraduate Studies)

Signature and Date

vi

DEDICATION

To God, the Source of All Life and Force behind All Living.

To Chidi and Angelina Ezenwoke, my loving parents, who brought me up in the ways of

the Lord and sacrificed everything to give me the best education. Mummy, although

Daddy is no more with us, all your dreams and aspiration will still come to pass.

To all young and aspiring researchers desiring to make a mark in this world, I say to you,

that all things are possible to him that believes.

vii

ACKNOWLEDGEMENTS

… I, Wisdom, dwell with prudence and search out knowledge of witty inventions

…But there is a spirit in man and the inspiration of the Almighty gives him

understanding.

I thank God, My Source, My Help, My Shield and Buckler, by whom all things were

created, in whom all things consist, and for whom all things exist. This Ph.D. journey

began with inspiration from HIM, as HE began to guide and shape my understanding of

how concepts relate and how to make sense of all things. The results in this thesis are

beyond those listed in the concluding sections; rather, it was a process that changed me as

an individual. I believe the Ph.D. adventure opened me up to greater possibilities than I

could have ever been exposed to, through the various trains of explorations, and flights of

new discoveries. By undertaking this Journey, God has revealed my passion, pointing me

to the contributions I look forward to making in my lifetime. Through God, I am

becoming a thought leader in the variety of domains I have come to appreciate in

Computer science and beyond. For these changes in me, I am deeply grateful to God.

Most times, God sends help through people. The people who made this research and

thesis a reality are forever esteemed.

First, I most respectfully acknowledge Dr. David Oyedepo (Daddy), whose life and

values provided the platform for me to fulfil my destiny. I am always inspired to action

by his lifestyle of continuous contribution and the firm belief that nothing is impossible.

The Covenant University platform and all that it represents remains the stage for the

blossoming and unveiling of many destinies and the forte of many career exploits. Thank

you, daddy, for your strong but gentle nudges to get this Ph.D. over with and challenging

me to give more than is expected.

Prof. Matthew Adigun came into my life at a time when I needed light and has since then

shaped and reshaped my whole concept of research during the three months visit he

facilitated, to the centre of mobile e-services, University of Zululand, South Africa. I

thank God, that that privilege afforded me the proximity required to learn from you the

differences between the practice of software engineering and research; which remains my

most favourite lesson learnt under your tutelage. I salute your passion for training and

mentoring young researchers, and I watched you turn ‘boys’ and ‘girls’ into ‘men’ and

viii

‘women’, and the privilege of being one of them. In addition, your research journey

reminds me the place of consistency of focus in the pursuit of my future endeavour; your

strong guidance and unapologetic corrections together with those from Dr. Olawande

Daramola, my Co-supervisor, are inestimable and have made this thesis a reality.

Dr. Olawande Daramola was present, interpreting both the high concepts and

expectations of Prof. Adigun in a language I could understand. At many cross-roads, your

promptings, suggestions and encouragements resolved many deadlocks in the course of

this research. Your dexterity in both written and spoken words is a standard I look up to

attaining, as I remember with fondness the first time you confirmed to me that I could

write too, after reading the very first draft of my proposal. Honestly, I felt like I had won

a million dollars! That affirmation gave me all the impetus I needed to forge ahead and I

always look forward to affirming younger research students in the same manner and hope

it sparks the same fire of confidence in them.

I acknowledge the immense contributions of HELPERS whom God placed in my path of

destiny. These individuals sowed great seeds that are becoming a forest of values today.

Professor Aize Obayan, Pastor Yemi Nathaniel and Pastor Daniel Rotimi. You all

provided your shoulders for me to stand, taught me valuable life principles, led your lives

as examples to follow, and looked forward to the completion of this thesis with great

expectation. I am glad to let you know that your wait is over. I’ll always cherish your

motherly and fatherly inputs, I celebrate you all.

I acknowledge members of the Covenant University management, spearheaded by

Professor AAA Atayero, for forging an inspiring ReCITe agenda towards the

actualization of the 1-of-10-in-10 mandate. Also, I acknowledge the immediate past VC,

Professor CK Ayo for his constant encouragements, as well as all the members of the

software engineering and intelligent systems cluster, and the members of the Department

of Computer and Information Sciences, led by our amiable and action-driven Head of

Department, Dr. Olufunke Oladipupo. These individuals made a very valuable

contribution to my ability to articulate and communicate effectively through their very

numerous technical suggestions to improve the work.

I sincerely appreciate Professor Ezekiel Adebiyi, for believing in me. You saw something

in me right from my undergraduate days and made me my first offer in the world of

ix

research. You connected me to destiny and through your life stories, you gave me an

example of what I can become and contribute. I am always inspired by your story and

your passion for quality. It was your firm conviction for obtaining the best that linked me

with Professor Matthew Adigun, and I am also deeply grateful to you, Professor Adebiyi,

for the sacrifices you had to make to establish that connection with Professor Adigun.

I acknowledge the critical contributions of the imminent individuals who served as

members of the panel of assessors and examiners, and their vital inputs indeed improved

the quality of this thesis. They include Professor C. Uwadia, Professor S. Chiemeke, Dr.

J. Oyelade, Dr. E. Adetiba, Dr. U. Uwuigbe, Dr. P. Adamu, and Dr. A. Boluwaji.

I thank my friends who were a constant reminder of the cause: Dr Olumuyiwa Oludayo,

Arch. Gbenga Alalade (Ph.D.), and Dr Stephen Oluwatobi. I’m glad that you guys went

ahead, and paved the path of possibilities for me. Now I know that we can and shall

change the world together. I appreciate Ndukwe Uwakwe (Mr. Kalu) for his kind support

throughout the period of the thesis and excitement in seeing to its completion.

Finally, I thank my ever loving and patient Wife, whose deep and insightful perspectives

on issues is unparalleled. Thankfully, it is not good for man to be alone, and with you, I

have learnt that all a man needs is just one right company. I have thoroughly enjoyed

every waking, living, and sharing moments with you all these years. This Ph.D. journey

started just about when we got married in 2011 and your support towards its completion

since its inception has remained unwavering; just as your love and commitment to our

marriage. From sharing my thoughts with you, demonstrating my presentations, asking

your help on statistical data analysis, to caring for our beautiful young Eden and then yet

to be born Beth-el, all by yourself, while I am unavailable doing research, are all

treasured supports I’ll never forget. To my Eden (of God), those times you missed daddy,

insisted that daddy stayed home with you or promised not to disturb daddy while he

‘works on his laptop’ is treasured memories I appreciate. I love you more than words can

describe. To my Beth-el, your arrival at the concluding stages of this thesis is a strong

reminder of the power of faith in God’s word. The enemy tried to distract me with those

negative medical reports, but your presence with us today remains a song of victory to

God and joy to our hearts. As you both grow up to appreciate the sacrifices you have

made, I excitedly look forward to the intellectual contributions you both will make

towards advancing God’s kingdom and humanity.

x

TABLE OF CONTENTS

Cover Page .. i

Title page ... ii

Acceptance ... iii

Declaration .. iv

Certification ... v

Dedication ... vi

Acknowledgements .. vii

Table of Contents ... x

List of Tables .. xiv

List of Figures .. xvii

List of Abbreviations .. xix

Abstract .. xx

CHAPTER ONE: INTRODUCTION ... 1

1.1 Background ... 1

1.2 Motivation ... 2

1.3 Statement of the Problem .. 5

1.4 Research Aim and Objectives ... 6

1.5 Research Methodology .. 6

1.6 Research Context ... 9

1.7 Significance of the Study .. 10

1.8 Delimitations of the Scope of the Study .. 11

1.9 Organisation of the Thesis ... 11

CHAPTER TWO: LITERATURE REVIEW .. 13

2.1 Introduction ... 13

2.2 Cloud Services and Cloud Service Selection .. 13

2.2.1 Overview of Cloud Computing ..14

2.2.2 Cloud Services and Web Services ...15

2.2.3 Cloud Service Ecosystem ..15

2.2.4 Cloud Service e-Marketplace ...17

2.2.5 Key enablers for Cloud Service e-marketplaces ..18

2.2.6 Service Choice Overload ...21

xi

2.2.7 Modelling User QoS Requirements ...22

2.2.8 Cloud Services QoS Model ..24

2.2.9 Cloud Service Selection as a Decision-Making Problem26

2.2.10 Approaches to Cloud Service Selection ...28

2.3 State-of-the-art in Cloud Service Selection ... 33

2.3.1 Review of Cloud Service Selection Techniques ..33

2.3.2 Comparative Analysis of Cloud Service Selection Techniques48

2.3.3 Gaps Identified in the Literature ..60

2.4 Emergent Perspectives in Cloud Service Selection ... 62

2.4.1 Key Requirements for Cloud Service Selection Framework62

2.4.2 Considerations for the Design of a framework for Cloud Service Selection65

2.4.3 Variability Management for Atomic Services in Cloud Ecosystems65

2.4.4 Fuzzy-Oriented Elicitation of User QoS Requirements73

2.4.5 Fuzzy Optimization for QoS-based Service Evaluation86

2.4.6 Interactive GUI and Information Visualization for Ranking Results94

2.5 Chapter Summary .. 107

CHAPTER THREE:METHODOLOGY ... 108

3.1 Introduction ... 108

3.2 Problem Description: Cloud Service Ranking and Selection 108

3.2.1 A Set of Atomic Cloud Services ..109

3.2.2 Quality of Service (QoS) Attributes ..109

3.2.3 The e-marketplace Cloud Services Directory ..110

3.2.4 User QoS requirements ..111

3.2.5 QoS Evaluation and Ranking ...112

3.3 Requirements for a Cloud Service Selection Framework 113

3.4 Overview of the Proposed Framework .. 114

3.4.1 FOCUSS: The Process Model ...115

3.4.2 FOCUSS: The Conceptual Architecture ..116

3.4.3 Justification for the FOCUSS Framework ...126

3.5 Assumptions .. 128

3.6 Chapter Summary .. 129

CHAPTER FOUR: IMPLEMENTATION .. 130

4.1 Introduction ... 130

xii

4.2 Implementation Details ... 130

4.2.1 Integrate Development Environment: NetBeans 8.1130

4.2.2 Front-end Web-based UI ..131

4.2.3 Back-end Components ...133

4.3 Illustrative Case Study .. 135

4.4 Practical Demonstration of the FOCUSS Framework .. 139

4.4.1 CRMaaS Ecosystem Model and Reasoning Engine ..139

4.4.2 Fuzzification of QoS Information of Services in Service Directory142

4.4.3 Eliciting User Requirements ..143

4.4.4 QoS Requirements Processing ...145

4.4.5 QoS-based Ranking of Service Alternatives ..146

4.5 Chapter Summary .. 150

CHAPTER FIVE: EVALUATION .. 151

5.1 Introduction ... 151

5.2 Performance and Usability Evaluation .. 151

5.3 Experiment-1: Scalability Evaluation ... 153

5.3.1 Experiment Goal and Hypothesis ..153

5.3.2 Experiment Dataset ..153

5.3.3 Simulation Parameters and Protocol ..154

5.3.4 Results and Analysis ..156

5.3.5 Discussion ..157

5.4 Experiment-2: Ranking Accuracy Evaluation ... 157

5.4.1 Experiment Goal and Hypothesis ..157

5.4.2 Experiment Dataset ..158

5.4.3 QoS-based Ranking Methods Evaluated ...159

5.4.4 Evaluation Metrics ...161

5.4.5 Experiment Design...164

5.4.6 Simulation Parameters and Protocol ..164

5.4.7 Results and Analysis ..166

5.4.8 Discussion ..174

5.5 Experiment-3: User Experience Evaluation .. 175

5.5.1 Experiment Goal and Hypothesis ..175

5.5.2 Experiment Instrumentation...176

xiii

5.5.3 Experiment Design and Protocol ...180

5.5.4 Results and Analysis ..182

5.5.5 Threats to Validity ...185

5.5.6 Discussion ..186

5.6 Chapter Summary .. 187

CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS .. 189

6.1 Introduction ... 189

6.2 Summary ... 189

6.3 Contributions to Knowledge ... 193

6.4 Conclusion ... 194

6.5 Recommendations for Future Work .. 195

REFERENCES .. 198

Appendix A: List of Publications so far from the Thesis .. 220

Appendix B: Data used in Experiments ... 221

Appendix C: Survey Instruments ... 224

Appendix D: Sample Code Listing .. 228

xiv

LIST OF TABLES

Table 1.1: Summary of Research Approach, Objectives, Methods and Activities 9

Table 2.1: Extrinsic and Intrinsic Factors Affecting Choice Overload 21

Table 2.2: Saaty’s Relative Rating Scale .. 30

Table 2.3: Summary of method for organising atomic services 49

Table 2.4: Summary of Service evaluation and ranking methods 51

Table 2.5: Eliciting QoS aspiration in Cloud Service Selection Techniques 53

Table 2.6: Eliciting QoS preferences in Cloud Service Selection Techniques 54

Table 2.7: QoS Preference and Aspiration in Cloud Service Selection Techniques 56

Table 2.8: The use of GUI in Cloud Service Selection Techniques 57

Table 2.9: Visualisation Mechanism Employed in Cloud Service Selection 58

Table 2.10: Performance Evaluation Metrics Employed for Cloud Service Selection 59

Table 2.11: Summary of Gaps Identified in the Literature .. 61

Table 2.12: Feature Model Mapping to CSP and PL ... 71

Table 2.13: Fuzzy Version of Saaty’s 9-point Comparison Scale 80

Table 2.14: A tabular representation of cloud services with QoS properties 99

Table 2.15: Datatypes and supporting data representation .. 101

Table 3.1: Linguistic Terms for fuzzy QoS goals and constraints for Availability 120

Table 3.2: Rules for Mapping Cloud Ecosystem Feature Model into CSP 124

Table 3.3: Aggregation Functions Used in the FOCUSS Framework 125

Table 4.1: Summary of Tool Support to Realise the FOCUSS Framework 135

Table 4.2: Candidate Cloud Services to realize CRMaaS Components 139

Table 4.3: Require and Exclude Constraints.. 140

Table 4.4: List of Valid combinations based on CRMaaS Cloud Ecosystem Model 141

Table 4.5: QoS Attributes, fuzzy sets and underlying membership function 142

Table 4.6: Linguistic Hedges and Membership Functions for each QoS Attributes 143

Table 4.7: QoS Pairwise comparison for MFB .. 143

Table 4.8: QoS Aspiration for MFB .. 143

xv

Table 4.9: QoS Pairwise comparison and Aspiration for Online Drug Store 144

Table 4.10: QoS Aspiration for Online Drug Store ... 144

Table 4.11: Priority Weights and Order of Relative Importance for QoS attributes
(MFB) ...145

Table 4.12: Priority Weights and Order of Relative Importance for QoS attributes
(ODS) ..145

Table 4.13: Synthesised QoS Aspiration for Microfinance Bank.................................... 145

Table 4.14: Synthesised QoS Aspiration for Online Drug Store 146

Table 4.15: Completely elicited QoS requirements of MFB and ODS 146

Table 4.16: Comparison of Initial QoS Requirements and Optimised QoS values 146

Table 4.17: Top ten Services that match optimal requirements for MFB 147

Table 4.18: Top ten Service Alternatives to Optimal Requirements for ODS 147

Table 5.1: Descriptive Statistics for Dataset, n=50.. 154

Table 5.2: Descriptive Statistics for Dataset, n=100.. 154

Table 5.3: Descriptive Statistics for Dataset, n=350.. 154

Table 5.4: Descriptive Statistics for Dataset, n=750.. 155

Table 5.5: Descriptive Statistics for Dataset, n=1000.. 155

Table 5.6: Summary of Parameters for Simulation Experiment-1 155

Table 5.7: Execution Time for Ranking Top-20 Services vs. Number of Services 156

Table 5.8: Minimum Values, Maximum Values and Five Test Queries for Dataset
(n=50) ...159

Table 5.9: Methods Evaluated in Experiment-2 ... 160

Table 5.10: Summary of Experiment Variables, levels, methods, and metrics 165

Table 5.11: Median and Mean Ranking Accuracy for Methods by Metrics 166

Table 5.12: Median Accuracy based on QoS Input Type (Linguistic and Numeric) 168

Table 5.13: Summary of Kruskal-Wallis Test on Ranking Accuracy 169

Table 5.14: Mean Ranks for each Accuracy Metrics for all methods 170

Table 5.15: Mann-Whitney Test Results (FOCUSS_lin Vs eWD_lin) 171

Table 5.16: Mann-Whitney Test Results (FOCUSS_lin Vs eWD_num) 172

Table 5.17: Mann-Whitney Test Results (FOCUSS_num Vs eWD_lin) 173

xvi

Table 5.18: Mann-Whitney Test Results (FOCUSS_num Vs eWD_num) 173

Table 5.19: Mann-Whitney Test Results (FOCUSS_lin Vs FOCUSS_num).................. 174

Table 5.20: QoS requirements used in Experiment-3 .. 177

xvii

LIST OF FIGURES

Figure 1.1: Outline of the Thesis ... 12

Figure 2.1: Conceptual View of the Content Structure of Chapter Two 13

Figure 2.2: QoS Preference and Aspiration for Two Users ... 23

Figure 2.3: SMI 7 Top categories of attributes .. 26

Figure 2.4: A Typical MCDM Decision Matrix .. 27

Figure 2.5: Approaches for Cloud service selection .. 28

Figure 2.6: Taxonomy of cloud service selection techniques .. 34

Figure 2.7: Considerations for designing a suitable framework .. 65

Figure 2.8: Extended Feature Model ... 69

Figure 2.9: Process for Organising and Composing Ecosystem Atomic Services 72

Figure 2.10: User Requirements Elicitation Model ... 74

Figure 2.11: Bell-shaped fuzzy set: ‘Around 20’ ... 76

Figure 2.12: Fuzzy Comparison Matrix ... 80

Figure 2.13: Similarity Computation based on QoS Attributes ... 91

Figure 2.14: Fuzzy Multi-function Service Evaluation Model .. 94

Figure 2.15: Graphical User Interface Framework .. 96

Figure 2.16: Information Visualization Reference Model ... 98

Figure 2.17: Example of Bubble Graph ... 106

Figure 3.1: High-level Flow chart of FOCUSS Framework .. 115

Figure 3.2: Architecture of the FOCUSS Framework ... 116

Figure 3.3: Sketch of UI Design showing Availability QoS Requirements for two
Users ...118

Figure 4.1: High-level Structure of the components of a CRMaaS 137

Figure 4.2: High-Level Feature Model of CRMaaS Cloud Ecosystem 140

Figure 4.3: Linguistic Variables for QoS attributes ... 142

Figure 4.4: Availability QoS Requirements for Microfinance Bank in FOCUSS GUI... 144

Figure 4.5: Availability QoS Requirements for Online Drug Store in FOCUSS GUI 144

Figure 4.6: Bubble Graph for Ranked Services for MFB Requirements 148

xviii

Figure 4.7: Bubble Graph for Ranked Services for ODS Requirements 148

Figure 4.8: Complete GUI Showing Requirements, Table and Bubble Graph (MFB) ... 149

Figure 4.9: Complete GUI Showing QoS Requirements, Table and Bubble Graph
(ODS) ..149

Figure 5.1: Evaluation Process for the FOCUSS framework .. 152

Figure 5.2: Average Execution Time to Rank Services vs. Number of Services 156

Figure 5.3: Median Ranking Accuracy for all Six Methods by each Metric 167

Figure 5.4: Mean Ranking Accuracy for all Six Methods by each Metric 167

Figure 5.5: Median Accuracy for Numeric and Linguistic QoS Requirements 168

Figure 5.6: Tabular listing of top-k services from Table 5.20 requirements 177

Figure 5.7: Bubble Graph Visualisation of Top-10 Services ... 177

Figure 5.8: List of 16 ‘Locate’ User Tasks used in Experiment-3 178

Figure 5.9: Task performance Survey Instrument ... 179

Figure 5.10: Sample of Modified Post-Study-Satisfaction-User-Questionnaire 180

Figure 5.11: Median Time to Locate Services by Task Type .. 182

Figure 5.12: Median score for Post-Study Questionnaire .. 184

Figure 5.13: Perceived User satisfaction (Single QoS Attribute) 185

Figure 5.14: Perceived User satisfaction (Double QoS Attributes) 185

xix

LIST OF ABBREVIATIONS

AHP Analytic Hierarchy Process

AWS Amazon Web Service

CRM Customer Relationship Management

CRMaaS Customer Relationship Management as a Service

CSP Constraint Satisfaction Problem

DM Decision Maker

eEUD Exponential Euclidean Distance

EUD Euclidean Distance

FM Feature Model

GUI Graphical User Interface

HCI Human Computer Interaction

IaaS Infrastructure as a Service

IV Information Visualisation

KRC Kendall Tau Rank Coefficient

MAP Mean Average Precision

MAUT Multi-Attribute Utility Theory

MCDA Multi-Criteria Decision Analysis

MCDM Multi-Criteria Decision Making

MCKP Multiple Choice Knapsack Problem

MCSP Multi-Criteria Selection Problems

MF Membership Function

MOEA Multi-Objective Evolutionary Algorithms

NDCG Normalized Discounted Cumulative Gain

NLP Natural Language Processing

PaaS Platform as a Service

PC Product Configuration

PSSUQ Post-Study-Satisfaction-User Questionnaire

QoS Quality of Service

SaaS Software as a Service

SAW Simple Additive Weighting

SLA Service Level Agreement

SOA Service Oriented Architecture

SPLE Software Product Line Engineering

SRC Spearman Rank Coefficient

TFN Triangular Fuzzy Number

TOPSIS Technique for Order Preference by Similarity to Ideal Solution

UI User Interface

VSSE Very Small Software Enterprise

XaaS Anything or Everything as a Service

xx

ABSTRACT

Despite the successes of commercial cloud service e-marketplaces, opportunities still
exist to improve user experience as these e-marketplaces do not yet enable dynamic
composition of atomic services to satisfy complex user requirements. More so, the
platforms employ keyword-based search mechanisms that only allow the selection of
atomic services. The elicitation mechanisms do not consider user’s QoS requirements, nor
support the elicitation of these requirements in ways akin to subjective human
expressions. In addition, search results are presented as unordered lists of icons, with
minimal comparison apparatus to simplify decision making. Existing cloud selection
approaches do not currently provide the sophistication required to optimise user
experience in the cloud e-marketplace, hence this study proposed a framework to address
the observed limitations. First, a state-of-the-art survey was conducted and six design
criteria were identified for a selection framework suitable for cloud e-marketplaces. These
criteria guided the formulation of an integrated framework, Fuzzy-Oriented Cloud
Service Selection (FOCUSS) framework. The proposed framework comprises four
modules: Cloud ecosystem and service directory, Graphical User Interface (GUI) &
Visualisation, QoS Requirement Processing, and Service Evaluation & QoS Ranking
modules. In the first module, atomic services are combined to realise the set of composite
services offered in the e-marketplace; subjective QoS requirements are then inputted via
the GUI module, and processed in the QoS requirements processing module. In service
evaluation and ranking module, the requirements are optimised and used to rank services
and the ranking results are shown to the users via bubble graph visualisation. The utility
of the proposed framework was demonstrated via a Java-based web application prototype
using a case study of a Customer Relationship Management-as-a-Service e-marketplace.
Simulation experiments and user studies were performed to evaluate the performance of
the proposed framework in terms of its scalability, ranking accuracy, and quality of user
experience. A linear regression analysis showed that the proposed framework is linearly
scalable when measured by the time it took to rank top-20 services as the number of
alternatives increased. Kruskal-Wallis and Mann-Whitney tests revealed that ranking
accuracy of proposed framework is not compromised by using subjective descriptors to
approximate user’s QoS requirements, and the ranking accuracy is higher compared to
existing approaches. Based on Wilcox signed tests, the results of the user studies showed
that users can complete tasks faster and easier compared to traditional tabular
representations. These results confirmed that the proposed framework is viable for cloud
service selection in cloud e-marketplaces. This study contributes to knowledge by
providing an integrated framework for cloud service selection that organises atomic
services within the cloud ecosystem and guides formal service composition on the fly
beyond what atomic services can deliver; handle both subjective users QoS preferences
and aspiration, and enable easy comparison of query results along multiple QoS
dimensions. In addition, it provides a framework will improve user experience, which in
turn boosts the commercial viability of cloud e-marketplaces.

Keywords: Cloud Service Selection, Cloud Ecosystem, Cloud e-Marketplace, Feature
modelling, Fuzzy set theory, Information visualisation

1

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

Advancement in information and communications technology has significantly influenced

the computing landscape, as more than ever, it is now fashionable to contract out

technology demands to the cloud. Cloud computing is a model of internet-based service

provisioning where dynamically scalable and virtualized resources (infrastructure,

platform and software) are delivered and accessed as services (Rimal et al., 2011; Lewis,

2011; Qaisar, 2012). It enables ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction (Mell and Grance, 2011). Basic cloud

computing service models are Infrastructure-as-a-Service (IaaS), Platform-as-a-Service

(PaaS), and Software-as-a-Service (SaaS) (Lewis, 2011; Qaisar, 2012), with more

complex model morphing into the concept of Anything- or Everything-as-a-Service

(XaaS).

Because everything and anything can be offered as a service, the maturity of cloud

computing is fast-tracked by commoditizing services in an e-marketplace facilitated by

cloud ecosystem (Buyya et al., 2008; Menychtas et al., 2014). A service ecosystem

consists of a platform, a set of internal and external providers and a community of service

brokers providing value-added services to a community of service users, who consume

relevant services (Bosch and Bosch-Sijtsema, 2010; Menychtas et al., 2014). In the

future, there will be a large number of cloud services available from multiple providers

and brokers (Zeng et al., 2009; Jung et al., 2013), more so that multiple actors (for

example, service providers, users, brokers, infrastructure providers etc.) will congregate

in an ecosystem to provide, broker, and consume cloud services in a more sophisticated

market environment that transcend existing traditional e-marketplaces (Khadka et al.,

2011; Vigne et al., 2013; Menychtas et al., 2014). The overabundance of services, that are

sometimes functionally equivalent, will leave users with the dilemma of which service to

choose; a phenomenon that can be referred to as service choice overload (Chernev et al.,

2015; Haynes, 2009; Toffler, 1970). Examples of existing cloud service e-marketplace

2

include SaaSMax, Oracle e-marketplace, Google play store, AppExchange etc. Although,

these e-marketplaces consist of basic features that underscore the operations of an e-

marketplace, like the product (or service) search, product catalogue, billing etc., more

sophisticated features that maximise the dynamism of service orientation and optimise

user experience are still lacking (Akolkar et al., 2012).

The cloud service e-marketplace of the future provides, among others, an environment

where service providers can combine their offerings in unprecedented ways to create

composite services that fulfil complex business processes on the fly; and users can then

discover, consume and pay for these services (Akolkar et al., 2012; Barros and Dumas,

2006). It is expected that these e-marketplaces incorporate service combination, service

discovery and presentation mechanisms; service combination will be based on service

interrelationships established on specific rules and constraints; service discovery and

selection mechanisms that enables the elicitation of subjective user requirements, and

ranks available services according to those requirements; presentation mechanisms for

showcasing suitable service options in a highly interactive and easy-to-understand manner

in response to user requirements.

1.2 MOTIVATION

The motivation of this study is threefold: i) Handling of complex user requirements; ii)

Enabling flexibility to accommodate the subjective Quality of Service (QoS)

requirements, and iii) Improved presentation format for the search results to aid decision

making. Next, each point is discussed in details.

1.2.1 Handling of Complex User Requirements

An important enabler for the realisation of a true cloud service e-marketplace is the

possibility of formal and/or incidental service composition to satisfy complex user

requirements (Akolkar et al., 2012). Formal composition refers to the combination of one

or more services into composite services beforehand, while the incidental composition is

described as ‘on the spot’ service composition based on specific user request (Akolkar et

al., 2012). Existing e-marketplaces possess basic features like product search and

directory but lacks the sophistication that can enable dynamic service composition in

order to support the realisation of complex business processes (Akolkar et al., 2012). A

3

cloud e-marketplace can benefit from an ecosystem, such that atomic services can be

aggregated into composite offerings to be listed in the e-marketplace directory (Akolkar

et al., 2012; Barros and Dumas, 2006).

Existing proposals for a cloud service e-marketplace (Gatzioura et al., 2012; Menychtas

et al., 2014; Akolkar et al., 2012) did not specify particular methodology of realising

service composition but rather presented architectural blueprints of possibilities.

Likewise, most cloud service selection methods only enable a user to make selections

from a list of predefined atomic services, which cannot address more complex situations

where a user’s requirements extend beyond the limit of individual atomic services (Zeng

et al., 2009; Garg et al., 2011; Rehman et al., 2011). But some authors, such as Wittern et

al. (2012), Quinton et al. (2014), and Quinton et al. (2013) have attempted to address

these kinds of complex scenario, by enabling prospective users to select desirable features

that are available in specific atomic services in order to realise their complex set of

requirements. This usually includes specifying both the QoS requirements and selecting

features of the services. Still, the drawback of these attempts is that it is cognitively

demanding because the user is expected to have deep knowledge of the domain in order

to make useful selections. This gap is bridged in this study by the aggregation of atomic

services in a way that satisfies complex user requirements.

1.2.2 Enabling flexibility to accommodate subjective QoS requirements

The abundance of cloud service options leaves users in a dilemma of selecting the right

service or services amidst a variety of similar services that conforms to certain quality

criteria (Zeng et al., 2009; Jung et al., 2013; Garg et al., 2011; Martens et al., 2011;

Alrifai et al., 2010). This dilemma, also referred to as choice overload (Toffler, 1970),

underscores the paradox of choice (Schwartz, 2004), by describing how difficult it is

making a choice in the face of multiple options, particularly when such decisions are

made by considering several criteria. Apart from the functional capabilities they provide,

cloud services possess non-functional or quality of service (QoS) attributes (e.g.

reliability, response time, cost, availability etc.), which becomes the criteria by which

selection of services are made (Chen et al., 2013; Barros and Dumas, 2006; Garg et al.,

2011).

4

Although a number of cloud service selection techniques have been proposed in the

literature, many of these techniques require that user’s QoS requirements are specified in

exact or precise terms. Most times, users do not provide QoS requirements in exact crisp

terms, but rely on subjective descriptions that approximate these requirements; thus

shrouding QoS requirements elicitation with vagueness and imprecision (Barros and

Dumas, 2006; Wittern et al., 2012; Rehman et al., 2011; Akolkar et al., 2012). Qu and

Buyya (2014) observed that user’s QoS requirements can indeed be specified in terms of

preferences (user’s priority for each QoS dimension) and aspiration (user’s values of QoS

dimension); which are two important considerations for determining which cloud services

to select. However, some existing approaches that have considered subjectivity in user

requirements elicit either QoS preferences or QoS aspirations alone from the user but

rarely both (e.g. (Esposito et al., 2016; Yu and Zhang, 2014). Still, some others, like

Esposito et al. (2016), Mirmotalebi et al. (2012), Rehman et al. (2011), and Qu and

Buyya (2014), require users to assign priority weights to QoS attributes, with the

downside of being less accurate compared to a pairwise comparison of the relative

importance of QoS attributes (Millet, 1997).

Noting that the ranking of service alternatives depends on the user’s QoS requirements,

the accuracy of the ranking should not be compromised by subjective approximate

descriptions. Nonetheless, giving users the flexibility of expressing QoS requirements by

allowing for subjective descriptions is a plus to the user experience, as the cognitive load

of having to craft crisp or precise values is reduced (Akolkar et al., 2012). Hence, this

study explores the elicitation of user’s requirements in a way that reduces choice overload

and improves the user experience of cloud service e-marketplace.

1.2.3 Improved presentation format for the search results to aid decision making

Another dimension of user experience is how information is presented. The search results

from existing e-marketplaces are usually presented as an unordered list of icons

representing the services that best fit user’s keyword-based queries. The drawback of

such presentation mechanisms is that users are not able to immediately discriminate

among the cloud services presented. Users are required to explore each service one after

the order to gain more insights about the QoS attributes to guide their decisions. The

additional complexity on the part of the users impacts negatively on user experience.

5

A number of cloud service selection approaches (Esposito et al., 2016; Yu and Zhang,

2014; Qu and Buyya, 2014; Wittern et al., 2012) have been proposed; however, some of

these frameworks present service rankings in textual format, either in a list or tables,

which does not fully describe the implicit trade-off factors inherent in the search results.

Such presentations are ineffective in supporting the decision making in online e-

marketplace environment and can increase cognitive load of users (Beets and Wesson,

2011; Lurie and Mason, 2007; Adnan et al., 2008; Pajic, 2014). Others have used

Information Visualizations (IV) like the radar or kiviat charts; which are limited in

presenting a large number of cloud services. In addition, such IV approaches exhibit low

object coherence and object correlation (Teoh and Ma, 2005), referring to how compactly

and distinctly the visual encodings represents the services and their relationships to

facilitate easy decision making. Realising the vision of a true cloud service e-marketplace

in the face of the growing trend for personalised products and services requires that user

satisfaction and user experience be given top priority (Riemer and Totz, 2003; Schubert

and Ginsburg, 2000; Liang et al., 2006). Hence the need to simplify cloud service

selection, while optimising user experience and satisfaction in the decision-making

process (Almulla et al., 2012).

1.3 STATEMENT OF THE PROBLEM

Despite the successes of commercial cloud e-marketplaces (e.g. AppExchange and

SaaSMax), these platforms do not yet enable dynamic composition and employ keyword-

based search mechanisms that do not consider the user’s QoS requirements, nor support

the elicitation of these requirements in ways akin to subjective human expressions (Sun et

al, 2014; Qu et al., 2014). In addition, search results on these platforms are presented as

unordered lists of icons, with little or no comparison apparatus that simplifies decision

making (Gui et al., 2014).

Existing cloud selection approaches do not currently provide the sophistication to

optimise user experience in the cloud service e-marketplace (Akolkar et al., 2012); which

ultimately hamper the user experience in the cloud service e-marketplace. Hence the need

for an integrated framework that caters for observed limitations in the existing cloud

service selection approaches.

Concisely the questions investigated in this study include:

6

i. How do we formally combine atomic service offerings from different service

providers in order to satisfy complex user requirements?

ii. How do we elicit user’s QoS requirements, in a way that accommodates human

subjective expressions and judgment?

iii. How can we present query results in a manner that simplifies decision making?

1.4 RESEARCH AIM AND OBJECTIVES

The aim of this research is to develop a framework for cloud service selection that

improves the quality of user experience in cloud service e-marketplace.

In order to realise the aim of this study, the objectives of this study include the following:

1. The formulation of an integrated service selection framework that will

improve the quality of user experience in a cloud service e-marketplace.

2. A design of models and algorithms that will enable the components of the

cloud service selection framework.

3. The implementation of a prototype of the cloud service selection framework

and a demonstration of its plausibility.

4. An evaluation of the proposed framework in terms of its performance and

usability attributes.

1.5 RESEARCH METHODOLOGY

The research approach employed in carrying out this study is a design cycle that

comprises of five sub-processes as developed by Takeda et al. (1990). The five sub-

processes include the awareness of research problem; the suggestion of a solution; the

development and implementation of the solution; the solution validation and evaluation;

and the conclusion. The application of each sub-process in this research is summarised as

follows:

a) Awareness: Based on the state-of-the-art study of the problem of cloud service

selection in the context of cloud service e-marketplace and the various attempts at

7

proffering solutions by existing approaches, the gap in the literature that

necessitates this study was identified, presenting an opportunity for contribution.

The framed problem is accomplished by research.

b) Suggestion: From the study of the literature, key requirements and candidate

techniques were identified to develop a selection framework that is suitable for a

cloud service e-marketplace and solves the problem identified above.

c) Development: Design and implementation of a solution based on key

requirements and techniques identified in the previous sub-process.

d) Evaluation: Validation and evaluation of the solution developed using established

validation methods in software engineering to answer the research questions and

test the hypotheses.

e) Conclusion: Present the validity of the developed solution and the possibility for

generalisation of results.

Within the five-phase research design described above, the research methods employed to

carry out this study are a literature review, model formulation, prototyping, and

experimentation. Literature survey allows the classification of the existing body of

knowledge on the subject matter, while modelling is used to describe real world concept.

Prototyping uses an experimental prototype implementation to demonstrate proof-of-

concept of the proposed model and experiments are employed to test a hypothesis and

arrive at a conclusion. While the summary of research design, objectives, and methods

employed in this study is presented in Table 1.1, the research methods employed in this

study are details as follows:

1.5.1 Literature Survey

To achieve the objectives of this research and answer the research questions posed in this

thesis, a state-of-the-art survey of the literature pertaining to cloud service selection was

conducted and six issues were identified and captured as key requirements for a cloud

service selection framework suitable for e-marketplace context. Based on the

requirements identified, an integrated framework for cloud service selection was

formulated.

8

1.5.2 Model Formulation

The proposed framework christened Fuzzy-Oriented CloUd Service Selection (FOCUSS)

framework is presented as an improvement to existing cloud service selection approaches.

The framework employed an integration of relevant models and algorithms such as i)

feature modelling and constraint-based reasoning - to organize atomic services within the

cloud ecosystem and to guide formal service composition on the fly; ii) Fuzzy-based

prioritization and analysis methods – to handle subjective user QoS preferences and

aspiration; and iii) information visualization – to enable easy comparison of query results

along multiple QoS dimensions.

1.5.3 Prototyping

To demonstrate the plausibility and the utility of the proposed framework, a prototype

web application within an illustrative case study was undertaken. A collection of tools

was identified, categorised into front-end components, and back-end components, with

Java as the primary programming language used to implement components of the

proposed framework in NetBeans 8.1. The front-end technologies employed consist of

JavaServer Pages (JSP) and BootStrap 3.3.6. The bubble graph was implemented using

customizable JavaScript classes provided by Google charts for visualising data on web

pages. For the back-end components, Java servlets and classes were used to implement

the business logic of the proposed framework. The application was deployed in the

GlassFish web server.

1.5.4 Experiments

Lastly, an evaluation of the proposed framework was performed using controlled

experiments. In software engineering, controlled experiments are one of the three often

used validation methods (Wohlin et al., 2012). Simulation experiments and user studies

were performed to compare the performance of FOCUSS in terms of scalability, ranking

accuracy, and quality of user experience in comparison to existing techniques. The

scalability was measured in terms of execution time it took to rank top-k services as the

number of alternatives increased. Four ranking accuracy metrics were used as metrics to

measure the accuracy of the rank results. User studies were carried out to ascertain the

quality of user experience and satisfaction dimensions of the visualisation component of

9

the proposed framework. Thereafter, the results were analysed for statistical significance

using a variety of statistical techniques.

Table 1.1: Summary of Research Approach, Objectives, Methods and Activities

Research Phase
Research

Objectives
Research
Methods

Activities

Awareness and
Suggestions

Objective 1
Literature

Survey

 Derive taxonomy of cloud service selection
techniques.

 Identify Key Requirements of an e-marketplace-
worthy cloud service selection framework.

 Identify candidate techniques for evolving a
suitable cloud selection framework

Solution
Development

Objective 2
Model

Formulation

 Evolve an integrated cloud service selection
Framework.

 Developed models and algorithms to implement
key processes of the framework.

Solution
Implementation

Objective 3 Prototyping
 Implement prototype of the framework
 Demonstrate the plausibility of the framework

using an illustrative case study

Evaluation and
Conclusion

Objective 4
Experiments

 Performance Evaluation results for:
o Scalability Simulation Experiment
o Accuracy Simulation Experiments
o User Experience User Studies

 Analysis of Results and Generalisation

1.6 RESEARCH CONTEXT

This work was carried out in the context of the GUISET project (Shezi et al., 2006).

GUISET is envisioned as both an enabling infrastructure and a suite of on-demand

Services. The primary motivation for the GUISET project is economic advantages of

enterprise clusters over stand-alone organisation such as resource sharing, cost reduction,

and the ability to compete with larger firms (Braun, 2005). As a cloud computing model,

GUISET is aimed at offering affordable e-enabling and “appliance-like” technology

services through the Internet to lower the total cost of ownership. The GUISET

infrastructure would provide small businesses with business-relevant services on a pay-

as-you-go basis. These services are aimed at e-enabling the activities of under-resourced

local Very Small Software Enterprises (VSSE) and provide the platform for these VSSE

to participate in the global market of e-services. VSSE can leverage the capabilities of the

GUISET platform to offer business-relevant services, which is then searched for and used

by other small businesses that are part the GUISET cloud service ecosystem. In this

research, a GUISET service use-case scenario was adopted as the basis of developing and

demonstrating the utility and evaluation the cloud service selection approach proposed in

this work.

10

1.7 SIGNIFICANCE OF THE STUDY

The significance of this study is in several folds as follows:

a) This study identifies some gaps in existing cloud service selection literature and

proposes a set of key requirements for designing a service selection technique for

the cloud service e-marketplace. Cloud e-marketplace platform creators will find

these design requirements useful as fulfilling these requirements will both serve

the e-marketplace users satisfactorily and facilitate the achievement of the

business objectives of the marketplace platform itself.

b) The pursuit of an ecosystem-driven e-marketplace initiative provides a viable

platform for local under-resourced small-scale service providers to readily

participate in a global ecosystem of e-services. Since the framework proposed in

this study encourages variability in the ecosystem, multiple functionally

equivalent atomic services can collaborate in service provisioning; thus promoting

the profitability of these service providers by multiplying their revenue and

economic impact (Venesaar and Loomets, 2006; Hamwele, 2005).

c) The automated analysis reveals a number of useful information about the

ecosystem. Therefore, the e-marketplace provider is abreast of the number of

composite services that can be offered based on the number of participating

atomic services. The provider can also determine those atomic services that will

not fully benefit from the value-chain of the ecosystem (partly or fully due to their

presence in a few or none of the likely compositions), and advise accordingly.

d) The framework proposed in this study makes it easier to accommodate new

atomic services in a manner that is seamless and natural to an e-commerce

platform, with little or no disruption to e-marketplace operations. With each case

of entrants or exits based on the stated entrance and exit policies on the e-

marketplace, such that if the feature model is altered; a seamless automated

update of the e-marketplace service directory can still be achieved. This

presupposes that service registration and disengagement from the ecosystem is

performed offline, not at request time.

11

e) Existing e-marketplaces (e.g. SaaSMax and AppExchange) readily benefit from

the findings made in this study by incorporating visualisation mechanisms to aid

effective browsing and comparison of alternatives towards improved and

satisfactory decision-making by users of the e-marketplace.

1.8 DELIMITATIONS OF THE SCOPE OF THE STUDY

The functions of a cloud service e-marketplace can be summarized as follows (Menychtas

et al., 2014; Bakos, 1998; Vigne et al., 2012; Akolkar et al., 2012): (a) Facilitate a

structured platform for service provision and consumption within an infrastructural

regulatory framework and policies that enable the efficient operations of the e-

marketplace. (b) Match providers’ offerings with users’ requirements. (c) Negotiate

service pricing and conditions associated with service delivery. (d) Facilitating the

delivery of services and payments. However, the focus of this study is limited to

identifying those cloud services that meet the user’s QoS requirements.

1.9 ORGANISATION OF THE THESIS

The rest of this thesis is outlined as follows (see Figure 1.1):

i. Chapter two contains discussions of relevant cloud computing concepts and

technologies in relations to cloud ecosystems and cloud service e-marketplaces,

and a state-of-the-art survey of the cloud service selection techniques to reveal a

set of requirements, which formed the basis for the design of the proposed

framework.

ii. In Chapter three, the general overview of the proposed framework, which is

modelled as a decision-making framework for cloud service selection in e-

marketplace context, was presented. This chapter also presents insights into the

strategies of the proposed framework and its underlining assumptions, process

model, conceptual architectural framework, and a description of the sub-

components.

iii. Chapter four reports the utility of the proposed framework as demonstrated by a

prototype Java-based web application with an illustrative case study. This chapter

also outlines the limitations of the proposed framework.

12

iv. Chapter five contains the reports of three experiments conducted to evaluate the

proposed framework on account of scalability, ranking accuracy, and user

experience; and presents the basis for generalisation of results.

v. Chapter six concludes this thesis with a summary of the findings and opportunity

for further research.

Figure 1.1: Outline of the Thesis

Source: Researcher (2016)

13

CHAPTER TWO

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter is structured into three parts that are closely linked. The first part discusses a

general background of cloud computing concepts in relation to cloud ecosystems and

cloud service e-marketplaces, and the effect of choice overload on the selection of cloud

services. The overview of the background in the first part led to the second part, which

discusses related work in cloud service selection and a comparative analysis of existing

approaches. The emergent perspectives from the review of related work, which formed

the basis of the framework proposed in this thesis, are presented in the last part. A

conceptual view of the content structure of this chapter is presented in Figure 2.1.

Figure 2.1: Conceptual View of the Content Structure of Chapter Two

Source: Researcher (2016)

2.2 CLOUD SERVICES AND CLOUD SERVICE SELECTION

This section contains an overview of cloud computing, cloud services, and the selection

of cloud services in the cloud service e-marketplace context.

14

2.2.1 Overview of Cloud Computing

Cloud computing has recently emerged as a new paradigm for hosting and delivering

services over the Internet. Cloud computing is a growing phenomenon in the IT landscape

with over $677 billion spent on cloud services worldwide between 2013 and 2016, and

about $310 billion spent on cloud advertising in 2014 (Gartner, 2016). Cloud computing

has been referred to as the fifth utility along with electricity, gas, water and

telecommunication services (Al-Shammari and Al-Yasiri, 2014). Cloud computing, as a

paradigm, has the potential to technologically enable new business models, which may

not have existed before (Qaisar, 2012). More than ever, new business models are finding

relevance in the emergence of cloud computing, which promises an infinite and reliable

source of computing facilities on a pay-as-you-go basis over the Internet (Qaisar, 2012).

These facilities are hosted and managed by a third party, usually called the cloud

providers, and this model of service provisioning introduces flexibility to organisations

that rely on such cloud providers’ infrastructure (Quinton et al., 2012). This is a radical

departure from the traditional IT provisioning models of on-premise computing, in which

the computing facilities are owned and managed in-house by an organisation. In the

traditional models, organisations make concrete upfront plans on expansions and

extensions of these facilities to avoid sudden inability of IT infrastructure to cope with

business demands. Furthermore, traditional computing models are characterised by over

provisioning and under-provisioning due to the organisations’ inability to accurately

predict the demands on IT resources per time (Avram, 2014).

Some key attributes of cloud computing that makes it more desirable than traditional

models include: Elasticity-which refers to the ability to expand and reduce the computing

resource as required. Scalability-scalability means the ability to handle a sudden increase

in demands for processing capabilities, storage and bandwidth as required. Multi-tenancy-

Multi-tenancy is the ability to share a given cloud resource among many consumers

(tenants) seamlessly to make cloud computing economically viable for commercially

hosted public cloud providers. Pay-as-you-go Utility Model- Cloud computing offers a

metered usage scenario in which payment is made only as resources are consumed, rather

than a fixed cost associated with acquiring on-premise IT infrastructure.

15

2.2.2 Cloud Services and Web Services

Cloud services are somewhat similar to web services and many existing cloud services

(SaaS, PaaS, and IaaS) are enabled by web services (Sun et al., 2014); (For example,

Amazon cloud services are called Amazon Web Service -AWS). Due to the connection

between cloud services and web services, a significant body of work has been done in the

context of web service selection, not all of which is applicable in the cloud service

selection context. According to Sun et al. (2014), some key dimensions of cloud

computing differ from web services such as:

i. Different target user groups- cloud services are categorised into SaaS, PaaS and

IaaS, targeted at different user group;

ii. Payment policies- the cloud supports pay-as-you-use model compared to the fixed

pricing model of web services, which adds another layer of complexity to the

selection;

iii. Evaluation criteria – even though quality criteria such as response time,

reliability etc. also applies to web services, cloud service is exclusively

characterised by other criteria such as eco-friendliness, virtual machine capacity,

geographical location etc. (Gatzioura et al., 2012; Jung et al., 2013);

iv. Heterogeneity in cloud providers- a standard means for representing cloud service

properties is still in its infant stages, compared to a more established web service

description (Sundareswaran et al., 2012).

The differences between cloud and web service paradigms necessitate new approaches for

service selection suitable for the cloud environment (Dastjerdi and Buyya, 2011;

Sundareswaran et al., 2012; Sun et al., 2014).

2.2.3 Cloud Service Ecosystem

In spite of the promises of cloud computing, some challenges with the current monolithic

model require an extension to the current stack. The monolithic model still imposes

vendor lock-in such that services cannot be dynamically combined with other services

from external third party sources to offer more value-adding functionalities to the users.

Papazoglou et al. (2011) proposed blueprinting the cloud, a model that allows the

syndication, configuration, and deployment of virtual service-based applications in the

16

cloud. Such proposal is followed by the emergence of the cloud ecosystem (Papazoglou

and van den Heuvel, 2011). However, the current state of cloud ecosystem does not

support the ultimate vision of offering XaaS (Gatzioura et al., 2012), as it is expected that

the cloud ecosystem would evolve to offer XaaS in the future.

The advancements in Service Orientation and Virtualization provide the opportunity to

fast-track the evolution of cloud ecosystems (Li and Jeng, 2010); as current success in the

cloud ecosystem domain, is hinged on the full adoption of a Service-Oriented

Architecture (SOA). SOA is an architectural model for application development that

supports the use of services as application building blocks (Papazoglou et al., 2007); and

services are autonomous, technology-independent software functionalities with prescribed

interfaces that can be described, published, discovered, and invoked over a network

(OASIS, 2007).

In the context of cloud computing, a cloud ecosystem describes the complex system of

interdependent atomic services that work together to enable cloud services. The future of

cloud computing would be fast-tracked by successful partnerships and collaborations with

multiple service providers to tie services together, and enabling an environment where

anything/everything as services are delivered to meet business needs (Baek et al., 2014).

A cloud ecosystem model is a natural way to manage the evolution of cloud computing as

an unconstrained model of possibilities and plethora of services available in and through

the cloud. Organisations are realising that the competencies and services required to

deliver business services cannot be domiciled in one organisation alone, as there is a need

to collaborate with other third party providers to make up for required services.

Therefore, in a cloud service ecosystem, several heterogeneous cloud service providers

across the cloud computing stack come together in ways that are unprecedented to deliver

anything/everything as a service (XaaS) that extends the value chain and meets business

goals.

A typical example of a cloud ecosystem is Saleforce.com (Salesforce.com, 2000-2015).

Salesforce.com is reputed to pioneer the cloud business model based on partnerships.

Salesforce.com is a PaaS ecosystem that allows thousands of independent software

vendors, developers and consultants contribute to the ecosystem.

17

2.2.4 Cloud Service e-Marketplace

The popularity of cloud computing will culminate in more service providers joining the

cloud ecosystem, interconnecting heterogeneous computing capabilities to co-create

value-adding services through composition strategies, to satisfy complex user

requirements (Akolkar et al., 2012; Gatzioura et al., 2012). As this trend continues, the

need for a platform arises to enable co-creation, showcasing and trading of value-adding

service offerings all in one e-marketplace environment (Akolkar et al., 2012). To this end,

the future of cloud computing comprises the evolution of cloud ecosystem and the rise of

cloud services e-marketplaces for trading cloud-based services; enabling service

composition, service discovery, service selection, service deployment, service

monitoring, and payment resolutions in a single one-stop shop infrastructure (Menychtas

et al., 2014; Akolkar et al., 2012; Gatzioura et al., 2012).

The cloud e-marketplace extends the concept of an electronic e-marketplace, which is a

platform where the demand and supply for certain products or services are fulfilled using

information and communication technologies (Bakos, 1998; Menychtas et al., 2014;

Akingbesote et al., 2014). On this platform, service providers store their offerings, and

deploy cloud services capable of integrating with other services to form composite

services; while users can discover, consume and pay for service offerings (Papazoglou

and van den Heuvel, 2011; Menychtas et al., 2014; Javed et al., 2016; Gatzioura et al.,

2012; Akolkar et al., 2012; Vigne et al., 2013; Schulz-Hofen, 2007). The vision of an e-

marketplace for cloud services is similar to Amazon.com model, where multiple

providers, showcase variety of offerings and an e-marketplace mechanism regulates the

interactions and transactions between providers, consumers, and other participants

(Akolkar et al., 2012).

The e-marketplace provides a unified view of all available offerings and becomes a single

point of access to offerings available in the ecosystem, and hides the complexity of the

underlying interconnections among the partners of the ecosystem (Gatzioura et al., 2012).

While offering a single portal for interaction for all ecosystem parties, the e-marketplace

also integrates a mechanism for managing pricing, revenue sharing, service advertisement

and promotion, and billing (Gatzioura et al., 2012; Menychtas et al., 2014).

18

Examples of commercial cloud e-marketplaces include Windows Azure Marketplace,

Amazon Web Service, Google Apps Marketplace, App Store, AppExchange, Android

Market, SuiteApp.com, and Zoho (Menychtas et al., 2011). Based on a survey conducted

by Menychtas et al. (2011), AppExchange was adjudged the most advanced as covering

e-marketplace requirements for trading services. AppExchange is the business app store

of the Salesforce.com ecosystem, and it expands Salesforce.com’s cloud-based Customer

Relationship Management (CRM) software into a larger business software portfolio and

exposes this portfolio as a collection of services. AppExchange showcases thousands of

enterprise and small business applications, and over 1.8 million users shop for services

(Apps) from AppExchange (AppExchange, 2015).

In spite of the success of existing commercial e-marketplace, the actualization of the true

vision of a XaaS e-marketplace is in its early stages. On-going research provides

blueprints and framework to enable the services e-marketplace of the future (Akolkar et

al., 2012; Gatzioura et al., 2012; Menychtas et al., 2011; Menychtas et al., 2014). A case

to mention is the 4CasST platform (Menychtas et al., 2014; Menychtas et al., 2011).

4CasST is a cloud e-marketplace model that enables an integrated platform for the

development and trading XaaS. On the 4CaaST platform, software developers are

provided with applications, services and components that simplify the process of building

applications and service providers can sell services by a platform infrastructure that

support the whole process of an actual e-marketplace transaction.

2.2.5 Key enablers for Cloud Service e-marketplaces

Motivated by a number of existing services e-marketplaces, Akolkar et al. (2012)

identified six enablers for the realisation of the vision of an electronic emporium of cloud-

based services, referred to as the e-marketplace of the future. They include service

composition, consumability, social network-driven ecosystem, e-marketplace economy

and support, producibility, and intelligence. The detailed descriptions of these enablers

are presented as follows:

a) Service Composition

The ability to compose services into more complex business solutions as part of the

ecosystem will increase the number of valuable offerings in the e-marketplace. Service

19

compositions can be formal or incidental. Formal composition refers to the combination

of one or more services from same or heterogeneous providers; the composite services are

offered as a commodity in the e-marketplace, and several instances of the service are

created on-demand. The incidental composition is a one-time composition based on a

specific user request.

b) Consumability

Consumability addresses how easily consumers are able to access services that match

their requirements, noting that consumers naturally express such requirements in vague

terms that do not necessarily relate directly to actual service descriptions. Therefore, the

e-marketplace must possess a deep understanding of consumer requirements in a way that

can translate into actual solutions. Desirable are alternatives in the form-based and menu-

based interfaces for eliciting requirements; likewise, presenting the results as a table

containing a list of alternatives makes it complex for the consumer to fully understand the

relationships among these alternatives (Song et al., 2007). Flexibility in expressing

requirements is a must for cloud service e-marketplace of the future; and as such

incorporates natural language processing, and mechanisms to turn vague and imprecise

requirements into actual search queries. Furthermore, the e-marketplace should be able to

engage users in a conversation to further elicit details of requirements, allowing for the

exploration of candidate solutions, and to perform trade-off analysis, after which an URL

can be provided for the consumer to use the service.

c) Social Network-driven Ecosystem

This promotes the exchange of information among providers and consumers. The pattern

of information exchange is categorised into consumer-to-provider, provider-to-provider

and consumer-to-consumer networking. In consumer-to-provider networking, providers

can discern popular consumer demands and get consumer’s feedback to upgrade or

improve their service offerings; while consumers can access the available variety of

offerings. Provider-to-provider networking allows the exchange of information among

providers to identify opportunities for collaborations to offer more value-added offerings

through service composition and can learn from other provider’s product reviews to

enhance its’ own offerings. In networking among themselves, consumers willingly

volunteer experiences on services consumed, providing a sufficient basis for other

20

consumers’ to make a decision as to engage a particular service. Leveraging on the

consumer purchase information, the e-marketplace makes intelligent service

recommendations to other users.

d) E-marketplace Economics and Operations Support

This is the e-marketplace’s core framework for business and operations support to enable

the actual commoditization and commercialization of service offerings. This includes

bringing together and managing the underlying computing infrastructure and services to

support e-marketplace operations; while providing a mechanism for multi-tenancy, self-

service configuration, APIs, pricing management, profile management, billing, payment,

monitoring, revenue sharing (particularly in cases of composite services), etc. supporting

service provisioning.

e) Producibility

The e-marketplace should provide means for creating and enlisting services on the

services catalogue. For example, Salesforce provides Lightning Design System, Lightning

App Builder and Lightning Components, for developing enterprise apps on the Salesforce

platform. These apps are available on AppExchange e-marketplace. Such move would

attract more developers to participate in the ecosystem, promoting innovation and value

co-creation (Baek et al., 2014). Additionally, providers should be able to publish as much

information as possible about the service capabilities, QoS features, and pricing etc. Such

information should be machine-readable, which is useful in matching user requirements.

f) Intelligence

The intelligence of a service e-marketplace refers to the e-marketplace ability to know a

lot about the semantic properties and capabilities of service offerings either single or

composite and what application domain it belongs to (e.g. Insurance, IT, financial,

accounting, etc.) and the variations of those services. In addition, it should return precise

results to request queries. It should be able to incorporate advancement in Natural

Language Processing (NLP), information retrieval and machine learning.

21

2.2.6 Service Choice Overload

The concept of a cloud service e-marketplace naturally culminates in a plethora of

services, with varied quality factors that appeal differently to different users. Service

selection in the face of so many options (along multiple decision criteria), without proper

articulation of requirements, can be overwhelming, increasing the cognitive demand of

the user, and affects user satisfaction of both the process and outcome of decision making

(Javed et al., 2016; Iyengar and Lepper, 2000; Schwartz, 2004; Haynes, 2009;

Scheibehenne et al., 2010).

The difficulties experienced when selecting from an assortment is referred to as choice

overload (or overchoice). According to Alvin Toffler (Toffler, 1970), who first introduced

the term, “overchoice takes place when the advantages of diversity and individualization

are cancelled by the complexity of the buyer's decision-making process”; in other words;

the more the number of options, the lesser the motivation to choose or the lesser the

satisfaction with the final choice (Chernev et al., 2015; Haynes, 2009). In the context of

this thesis, the term Service Choice Overload was coined to describe this phenomenon;

the consequence of which is that users may end up selecting a suboptimal option or not

make any decision at all (Jung et al., 2013; Townsend and Kahn, 2014). Table 2.1 shows

the four major factors, classified into extrinsic and intrinsic factors have been identified to

impact choice overload in classical choice assortment literature (Chernev et al., 2015).

Table 2.1: Extrinsic and Intrinsic Factors Affecting Choice Overload

Factors Description Items

Extrinsic
Factors

Decision task
difficulty

This includes the structural
properties of the decision problem

The number of alternatives available

Number of attributes describing each
alternative

Time constraints

Decision Accountability

Information Presentation Format

Choice set
complexity

This involves the particular value
of a choice alternatives or options

The similarity among the alternatives

The overall attractiveness of the alternatives

Intrinsic
Factors

Preference
uncertainty

This refers to the extent to which
the decision maker has articulated
preferences

Knowledge of product and product
properties

The availability of a well-defined ideal point

Decision goal
This refers to the consumer's goal
which involves choosing among
the options in a given assortment

Decision intent (buying vs. browsing)

Decision focus (choosing a set of alternative
vs. choosing a particular one)

Source: Chernev et al. (2015)

22

From Table 2.1, extrinsic factors refer to the decision aspect that borders on the structural

characteristics of the problem, defined as decision task difficulty and choice set

complexity, whereas intrinsic factors pertain to the decision maker in particular and

consist of preference uncertainty and decision goal (Chernev et al., 2015). Service choice

overload can be minimised by using low cognitive demand decision support mechanisms

for eliciting user requirements, in a way that captures the vagueness and uncertainty that

characterise human decision making.

2.2.7 Modelling User QoS Requirements

Apart from the capabilities they provide, cloud services possess non-functional or quality

attributes classified into technical concerns; for example, reliability, response time, cost,

availability; and business concerns- security, usability, eco-friendliness, geographical

location and political dimensions etc. (Barros and Dumas, 2006; Gatzioura et al., 2012;

Garg et al., 2011; Rehman et al., 2011; Soltani et al., 2012). The measure of these

attributes in service usage scenarios, as perceived by the user, is described as Quality-of-

Service (QoS). QoS factors represent the non-functional performance of cloud services

and are among the key determinants in the selection of cloud services (Chen et al., 2013;

Choi and Jeong, 2014), in which the system returns services that meet the required

threshold defined by users (Qu and Buyya, 2014). QoS performance information is

obtained using an objective and/or subjective assessment. Objective QoS assessment is

obtained from QoS monitoring and benchmark testing, whereas subjective assessments

are based on user feedback and rating of the service quality after use. Sometimes, service

providers can self-publish QoS information as contained in the service-level-agreement

(SLA). When service requestors express their expectation from services, they identify

functional and non-functional QoS characteristics of the required service; they also have

to identify which of the QoS criteria are more important compared to the others. One of

the primary ways to model the importance of criteria of user’s preferences is to ask the

user to weigh each criterion. However, the major drawback of this approach is the

complexity of finding proper weight coefficients in the real world applications (Millet,

1997). Furthermore, user’s QoS preferences in terms of tendencies have to be considered.

For example, it has to be defined whether a parameter value is more desirable for a

particular user when it is smaller or greater. In this study, the user’s QoS requirements are

23

described in terms of both QoS preferences and QoS aspirations and are discussed in

more details below.

a) User’s QoS Preference

QoS preferences are determined by the relative importance given to each service attribute.

Since cloud service cannot be evaluated based on one attribute alone, the degree of

relevance of each attribute is not the same to the user. The user’s order of preference for

each of the attributes contributes to the overall quality of the final option and determines

the user’s satisfaction about the option. For example, given the QoS attributes: Cost,

Security, Availability and Eco-friendliness; order of preference for the attributes for Users

A and B’s is shown in Figure 2.2. The search results should only present service offerings

that have duly considered these inputs during preference elicitation (Knijnenburg and

Willemsen, 2009).

Figure 2.2: QoS Preference and Aspiration for Two Users

User A rates Eco-friendliness as highest priority irrespective of the cost. User B is more
budget conscious and is willing to compromise Security for Lower Cost.

Source: Researcher (2016)

b) User’s QoS Aspiration

QoS aspirations define the users’ desired ideal points for each of the service attributes. It

comprises the goals and constraints for each QoS criteria. QoS attributes have specific

values that define the actual non-functional performance of the cloud service. Users are

able to define their own ideal values, and/or constraints on those values, which serve as

inputs to generating optimal service alternatives (see Figure 2.2).

It is obvious that QoS preferences and aspiration differ from one user to the other, as

shown in Figure 2.2, thereby increasing the complexity of meeting user requirements

24

(Sahri et al., 2014; Javed et al., 2016). Each user desires to maximise (or minimise) to a

certain extent the values of each attribute and requires the most optimal service that meets

these requirement thresholds. User’s preference and aspiration define utility functions

which form the basis for the ranking of service alternatives and ultimately determines

which alternative is selected by the user. Moreover, the heterogeneity of service providers

and disparity in QoS data of cloud services requires a model that can serve as a basis for

comparison and evaluation of services based on user’s QoS requirements (Patiniotakis et

al., 2014). Hence, a more holistic QoS model of cloud services is required.

2.2.8 Cloud Services QoS Model

A cloud service quality model encompasses the critical aspects and Key Performance

Indicators (KPIs) for decision-making to adopt a particular cloud service. The cloud

service quality model comprises the important comparable criteria (or metrics) that define

each service, the inter-criteria relationships among those criteria. It is used for matching

QoS requirements to available services in the service directory (Tajvidi et al., 2014; Gui

et al., 2014).

One of the most comprehensive cloud service QoS models is the Service Measurement

Index (SMI) (CSMIC, 2014). The Cloud Services Measurement Initiative Consortium

(CSMIC) was launched by Carnegie Mellon University to develop the Service

Measurement Index (SMI). The SMI is a framework of critical characteristics, associated

attributes, and metrics that can be used to compare and evaluate cloud-based services

from different service providers (Garg et al., 2013; Garg et al., 2011). SMI was designed

as the standard method to measure any type of cloud service (i.e. XaaS) based on the user

requirements. The SMI is a hierarchical framework, with seven top level categories, and

each category is further broken into four or more attributes that underscore the categories

The seven main categories of the SMI framework include (see Figure 2.3):

Accountability, Agility, Assurance, Financial, Performance, Security and Privacy, as well

as Usability. The attributes of the various categories are described below:

i. Accountability: Accountability refers to a set of attributes used to measure the

properties related to the service provider organisation, and may be independent of

the services being provided. Securing trust of the user is important to any

25

provider, as users will find it more convenient to use service from a provider that

complies with required standards. Attributes like Ownership, Governance,

Provider Support, Compliance, and Auditability measure the dependability of the

service provider.

ii. Agility: Agility indicates how seamlessly, and effectively the service/service

provider is able to adapt to changes in user’s demand or cloud environment with

minimal disruptions or expenditure. Attributes like Adaptability, Elasticity,

Extensibility, Scalability, Portability, and Flexibility underscores the agility of a

cloud service.

iii. Assurance: This category describes key attributes that measure the likelihood that

a service will be available as stated. Assurance is made up of the following

attributes: Availability, Reliability, Fault Tolerance/ Resiliency, Maintainability,

Recoverability, Service Stability, and Serviceability.

iv. Financial: Financial indicates the cost of service and how cost effective it is to

adopt a particular service/service provider. It is measured by Billing process, Cost,

Financial Agility, and Financial Structure.

v. Performance: Performance covers the features and functions of the provided

services and users need assurance as to how the service meets expected business

requirements as claimed. It is measured by Accuracy, Functionality, Suitability,

Interoperability and Response time.

vi. Security and Privacy: This category includes measures to access the

effectiveness of a service provider’s control of access to services, data and the

physical facilities from which services are provided. This is an important criterion,

especially for security-critical applications in finance or health. More specifically,

metrics include Security Management, Retention/Disposition, Access control and

Privilege Management, Physical and Environmental Security, Data Privacy and

Data Loss, Data Integrity, Data Geographic/Political, Proactive Threat and

Vulnerability Management.

vii. Usability: Usability describes how easy to use a service and it is measured in

terms of Accessibility, Client personnel requirement, Installability, Learnability,

Operability, Transparency and Understandability.

26

Figure 2.3: SMI 7 Top categories of attributes

Source: CSMIC (2014)

2.2.9 Cloud Service Selection as a Decision-Making Problem

Some cloud services available in the service directory may have similar functionalities

with varied QoS dimensions, and the user’s choice of these dimensions defines the basis

on which the user evaluates available service. The need for this type of evaluation

increases the difficulty of making an optimal selection from the list (Zeng et al., 2009;

Jung et al., 2013; Garg et al., 2011). For many real world problems, decision making

requires that many alternatives be evaluated along some criteria, in order to arrive at the

best choice, which is a nontrivial process (Abraham et al., 2005; Bollen et al., 2010).

Therefore selecting a service(s) from a cloud e-marketplace can be regarded as a Multi-

Criteria Decision Analysis (MCDA) problem, because the properties that define an

MCDA problem are similar to the cloud service selection problem (Garg et al., 2011; Gui

et al., 2014; Rehman et al., 2011).

MCDA is a popular branch of the decision making and consists of decision alternatives-

representing a finite number of available alternatives. These alternatives usually have

multiple attributes, and the attributes are the decision criteria (also referred to as goals,

interestingness dimensions or objectives) by which the alternatives are evaluated by a

Decision Maker (DM). The criteria often conflict (e.g. cost and availability are attributes

of a cloud service, a service with low cost may not be high on availability); and the units

of measurement are often disproportionate (e.g. cost can be measured in Dollars, while

availability is measured in percentage). Furthermore, the criteria may not be of equal

priority to the DM, therefore weights are apportioned to determine the degree of

27

importance of each criterion. To this end, an MCDA problem can be defined using a

matrix format as described in (Triantaphyllou, 2013):

Definition 2.1: Let	ܣ ൌ 	 ሼܣ௜, ݅	ݎ݋݂ ൌ 1, 2, 3, … ,݉ሽ be a set of decision alternatives and

ܥ ൌ ൛ܥ௝, ݆	ݎ݋݂ ൌ 1, 2, 3, … , ݊ൟ be a set of criteria according to which the desirability of an

alternative is evaluated. An MCDM problem is to determine the optimal alternative ܣା

with the highest degree of desirability with respect to all relevant criteria	ܥ௝ (See Figure

2.4).

Figure 2.4: A Typical MCDM Decision Matrix

Source: Triantaphyllou (2013)

Multi-Criteria Decision Analysis (MCDA) is a well-established area in the field of

operations research and has proven its effectiveness in addressing different complex real-

world decision-making problems. The requirements of MCDA are similar across all

decision-making methods and includes the following elements- a finite or infinite set of

actions, at least two evaluation criteria, and a decision maker (DM) (see Figure 2.4). The

goals of MCDA include choosing, ranking, or sorting alternatives (Whaiduzzaman et al.,

2014). Typically, it is necessary to use DM’s preferences and goals to differentiate the

solutions. An Ideal Solution is an alternative that has the highest values for all criteria;

conversely, an Anti-ideal Solution is the alternative that has the lowest values for all

criteria. Both ideal and anti-ideal solutions rarely exist in the decision matrix. A more

feasible solution is referred to as a Non-dominated Solution. A non-dominated solution is

an alternative that is not dominated by any other alternative. For example, an alternative

ܺ is said to dominate alternative ܻ if ܺ is at least as good as ܻ against all criteria and is

better than ܻ in at least one criterion (Rehman et al., 2012). A non-dominated solution

has the property that without sacrificing at least one criterion, it is not possible to move

away from it to any other solution.

 Criteria

݊ܥ … 3ܥ 2ܥ 1ܥ

Alternatives ݊ݓ … 3ݓ 2ݓ 1ݓ))

11ܽ 1ܣ ܽ12 ܽ13 … ܽ1݊

21ܽ 2ܣ ܽ22 ܽ23 … ܽ2݊

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

݉ܣ 	 ܽ݉1 ܽ݉2 ܽ݉3 … ܽ݉4

28

Service selection is effectively enabled by matching the representations of the user’s QoS

requirements of the properties of the service offerings (Wittern et al., 2012). With well-

articulated preferences and aspiration, the decision maker would be selecting an optimal

alternative from the list of all non-dominated alternatives (Aruldoss et al., 2013; Rehman

et al., 2012). Therefore, understanding user’s QoS requirements, which also include how

to both elicit correct priority weights for each criterion (QoS preferences) and actual QoS

values (QoS aspirations), is the key to solving an MCDA problem. Decision-making

techniques that consider both dimensions are effective for searching and navigating the

product/service space in e-marketplace environments (Pu et al., 2011). Many of such

techniques abound in the literature, and an exploration of some of these techniques is the

focus of the next section.

2.2.10 Approaches to Cloud Service Selection

In this study, the approaches to cloud service selection have been classified into five

categories, which include-MCDM-based, Optimization-based, Recommendation-based,

Proximity-based approaches, and others. This classification is based on the commonalities

among cloud service selection techniques. Figure 2.5 graphically depicts a classification

of approaches that have been used for cloud service selection so far in the literature. A

detailed overview of each category is presented as follows:

Figure 2.5: Approaches for Cloud service selection

Source: Researcher (2016)

I. MCDM-based Cloud Service Selection Approaches

MCDM-based approaches are also referred to as (Multi-Attribute) Decision-Making

(MADM) (Dastjerdi and Buyya, 2011; Whaiduzzaman et al., 2014; Triantaphyllou,

2013), or Multi-Criteria Selection Problems (MCSP) (Rehman et al., 2012). MCDM-

based approaches are best suited for scenarios with multiple finite alternatives, known a

Cloud Service Selection Approaches

MCDM-
based

Optimization-
based

Recommendation-
based

Proximity-
based Others

29

priori (Triantaphyllou, 2013; Dastjerdi and Buyya, 2011). The aim is to select one that

best satisfies the DM’s goals and constraints (Dastjerdi and Buyya, 2011; Sun et al.,

2014).

Specific techniques in the MCDM-based approaches for cloud service selection include

Multi-Attribute Utility Theory (MAUT), the Analytic Hierarchy Process (AHP), Simple

Additive Weighting (SAW), Technique for Order Preference by Similarity to Ideal

Solution (TOPSIS), Outranking Methods (e.g. Elimination and choice expressing reality -

ELECTRE), Compromise Programming, Min-Max, and Max-Min methods (Rehman et

al., 2012). An overview of the popular methods in the MCDM-based approaches is

discussed as follows:

a) Multi-Attribute Utility Theory

Multi-Attribute Utility Theory (MAUT) is a value-based model that uses a utility function

to aggregate the decision makers’ preferences on the decision criteria. The goal of MAUT

is to find a certain function reflecting usefulness (or utility) of a particular alternative

(Ehrgott et al., 2009). According to MAUT, the overall evaluation ݒሺݔሻ of an object x is

defined as a weighted addition of its evaluation with respect to its relevant utility

objectives (Schäfer, 2001). The overall utility function is defined as ܷሺݔሻ ൌ

∑ ሻݔ௜ሺݑ௜ݓ
௡
௜ୀଵ ,	 where ݊ is the number of evaluation criteria relevant to the decision

problem; ݓ௜ represents the weight of the decision makers’ preference on the ݅௧௛ criteria;

and ݑ௜ሺݔሻ is the marginal utility for the ݅௧௛ criteria.

b) Analytic Hierarchy Process

Analytic Hierarchy Process (AHP) was developed by Saaty (1988), and it is based on

priority theory, founded on mathematics and psychology. AHP is applicable to complex

problems that involve the consideration of multi-criteria/alternatives simultaneously by

reducing multidimensional problem into one dimension (Saaty and Sodenkamp, 2010).

Apart from its application in cloud service selection, AHP and has been applied

extensively in problems such as choice, ranking, prioritisation, resource allocation,

benchmarking, quality management, and conflict resolution (Forman and Gass, 2001).

AHP uses the straightforward mathematical structure of consistent matrices and

eigenvectors to determine priority weights of each criterion relative to other criteria

(Forman and Gass, 2001; Garg et al., 2013). In contrast to MAUT method, the AHP

30

method uses pairwise comparisons of decision criteria based on the Saaty scale as shown

in Table 2.2, rather than utility and weighting functions. Details of the AHP method are

available in (Forman and Gass, 2001).

Table 2.2: Saaty’s Relative Rating Scale

INTENSITY OF IMPORTANCE DEFINITION
1 Equal importance
3 Somewhat more important
5 Definitely more important
7 Much more important
9 Extremely more important

Source: Forman and Gass (2001)

c) Simple Additive Weighting

The SAW method is the simplest and one of the most commonly known and very widely

applied approaches for solving MCDM problems (Afshari et al., 2010; Chou et al., 2008).

It combines the values of criteria and priority weights associated with them into a relevant

estimation value used to evaluate each alternative (Abdelhamid, 2012). SAW is also

known as a weighted linear combination or scoring methods (Abdelhamid, 2012; Afshari

et al., 2010), and is based on a weighted average using the arithmetic mean. An

evaluation score for each alternative is obtained by the summation of all the products of

the value of each criterion and the weight of relative importance of that criterion

(Abdelhamid, 2012). The weights can be assigned directly by the decision maker or

obtained by determining the relative importance of each criterion to each other by

pairwise comparison prioritisation methods (e.g. Eigenvector method of AHP). The

weight assigned to a criterion affects the final score for all alternatives, and also the

eventual ranking of alternatives. The linear transformation of the raw data is proportional

to the order of magnitude of the standardised evaluations (Abdelhamid, 2012). The

strength of the SAW method is its ease of implementation and use (Abdelhamid, 2012).

The details of the steps of SAW method are available in (Abdelhamid, 2012; Afshari et

al., 2010).

d) Technique for Order Preference by Similarity to Ideal Solution

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method

was originally developed by Hwang et al. in 1981 (Hwang and Yoon, 1981; Yoon, 1987;

Hwang et al., 1993). TOPSIS method ranks as best the alternative that is both closest to

31

the ideal solution (Positive Ideal Solution [PIS]) and far from the anti-ideal solution

(Negative Ideal Solution [NIS]) (Abdelhamid, 2012).

The PIS maximises the ‘performance’ criteria and minimises the ‘cost’ criteria. In

TOPSIS, the decision matrix is first normalised into a dimensionless scale using vector

normalisation in order to identify the ideal and anti-ideal solutions. This is done to

achieve monotonically increasing or decreasing criteria values that have commensurable

units. Next, the distance of each alternative to both the ideal and anti-ideal solution is

determined using a similarity or distance metrics. Each alternative is ranked according to

the value obtained from the similarity or distance metrics, which is a measure of the

relative distances or similarity to both the ideal and anti-ideal solutions. The ‘best’

alternative simultaneously is one with the shortest distance from the PIS and the farthest

from the NIS. The computation involved is not complex compared to outranking

methods. The detailed steps of the TOPSIS methods are available in (Jahanshahloo et al.,

2006).

e) Outranking Methods

In outranking methods, one alternative is evaluated to be higher than another, or

otherwise, denoted by outranking relations derived by pairwise comparison (Bouyssou,

1996; Garg et al., 2013). The underlying principle of outranking method is evaluating the

extent to which an alternative dominates another, without necessarily seeking to derive

one best alternative (Garg et al., 2013). Outranking Methods compares the performance

of alternatives for each criterion and identifies the extent of a preference of one

alternative over another, and is applied if the unit of measurement of criteria is

incomparable and when it is complex to aggregate criteria metrics (Garg et al., 2013).

Besides the technicality of implementation, another drawback of the outranking method is

that it does not always arrive at a decision because Outranking Methods allows for the

expression of incomparability (Garg et al., 2013; Bouyssou, 1996). Two methods fall

under the outranking approaches: ELECTRE (Benayoun et al., 1966; Roy, 1991) and

PROMOTHEE (Brans et al., 1986).

II. Optimization-based Cloud Service Selection Techniques

Generally, the application of optimisation approaches in decision making usually favours

scenarios with a large set of alternatives. These alternatives are often times not known a

32

priori (Triantaphyllou, 2013; Dastjerdi and Buyya, 2011). The aim is to select an

alternative that best satisfies the decision maker’s preference, goals and constraints, by

minimising or maximising one or several criteria (Dastjerdi and Buyya, 2011; Sun et al.,

2014). The constraints imposed by a decision maker demands that the preferable

alternative minimises or maximises one or several criteria while observing the imposed

constraints (Dastjerdi and Buyya, 2011).

The cloud service selection problem has been formulated as a Constraint Satisfaction

Problem (CSP), Multiple Choice Knapsack Problem (MCKP) and its variants, tree-search

problem etc. The solutions to these optimisation problems are either optimal solutions or

near-optimal solutions and employed the use of heuristics, greedy algorithm, evolutionary

algorithm etc. (Dastjerdi and Buyya, 2011; Sun et al., 2014).

III. Recommendation-based Cloud Service Selection Techniques

Cloud service selection has also been formulated as a recommendation problem. The field

of recommendation is concerned with assisting consumers to deal with information and

choice overload by providing more personalised items recommendations (e.g. products or

services) from a large assortment of items. Recommendation techniques have been

applied in recommender systems, which are a type of decision-support systems that

leverage historical data on consumer, consumer preferences, and items, to provide

recommendations (Han et al., 2009).

Recommender systems have been successfully deployed in e-commerce, movies and

book retail and rental sites, with success (e.g. Amazon.com, Netflex.com) and have been

adapted to the domain of cloud service selection also. Cloud service selection approaches

based on recommendation proposed service alternatives to a potential user based on the

similarity between existing/previous users of that service and the potential user. There are

basically two types of filtering techniques in the recommendation, collaborative filtering

or content-based filtering approaches, together with a hybrid of the two techniques.

Collaborative filtering approaches recommend to the current user, items that other users

with similar tastes (ratings) liked in the past. The similarity in the rating of two users is

calculated based on the similarity in the rating history of the users. The drawbacks of the

collaborative filtering approach are cold-start and data sparseness (Han et al., 2009). In

content-based filtering approach, the system learns to recommend items that are similar to

33

the ones that the user liked in the past. The similarity of items is calculated based on the

properties associated with the compared items. Collaborative and Content-based filtering

approaches are often combined with hybrid approaches for more effective

recommendation result.

IV. Proximity-based Approaches

Proximity-based cloud service selection approaches employed similarity or distance

metrics to rank cloud services. The similarity metric is a measure of proximity between

two or more objects or variables (Ayeldeen et al., 2015). A number of cloud service

selection methods are based on such proximity-driven scheme that explores the similarity

between the QoS attributes of the user’s requirements and the features description of

specific cloud services in order to rank them (Mirmotalebi et al., 2012). The most

popularly used distance metric for cloud service selection in the literature is the Euclidean

distance metrics and its variants.

V. Other Cloud Service Selection Approaches

Apart from the cloud service selection approaches discussed in preceding sub-sections,

some methods for cloud service selection can be classified according to specific

methodologies used to rank cloud services. A number of these methods employ semantic

models, that includes the use of ontologies or specific data model to represent cloud

service QoS information. These methods also use logic-based techniques, like constraint

programming, to reason on the models in order to evaluate or rank cloud services with

respect to users’ requirements (Sun et al., 2014).

2.3 STATE-OF-THE-ART IN CLOUD SERVICE SELECTION

This section contains the review of the state-of-the-art in cloud service selection, as well

as a comparative review of existing works in the literature.

2.3.1 Review of Cloud Service Selection Techniques

Cloud service selection techniques provide means to capture decision alternatives, elicit

and interpret user QoS requirements, evaluate and ranks alternatives, according to user

requirements, and present results to users in a manner that is easy to understand. While

34

these techniques can be distinguished by their support for handling fuzziness or

subjectivity in QoS information, in this section, various techniques have been classified

into the following five categories. These categories include the following:

i. MCDM-based approaches

ii. Optimization-based approaches

iii. Recommendation-based approaches

iv. Proximity-based techniques approaches

v. Other approaches

Figure 2.6 summarises the techniques in the literature grouped under each cloud service

selection approach.

Figure 2.6: Taxonomy of cloud service selection techniques

Source: Researcher (2016)

I. Review of MCDM-based Cloud Service Selection Techniques

A systematic framework to filter, evaluate and select cloud services was proposed in (Gui

et al., 2014). Specifically, the framework comprises a hierarchical information model for

bringing together disparate cloud information from a variety of providers; a cloud service

classification model; a schema for generating rules for creating specific solutions; a

dynamic preference-driven evaluation model that recommends service solutions based on

application’s provider preferences; and visually communicate a comparison of solutions

through an interactive user interface. The service evaluation is performed using MAUT-

based and TOPSIS-based techniques. Another proposed scalable service selection

algorithm that considers user preferences for optimal performance at minimum cost is

presented by Zeng et al. (2009). The service selection algorithm proposed computes the

service cost and gains, as the user only needs to specify two goals (maximum gains or

35

performance and minimum cost). The service proxy will then review the service attributes

and select the optimal service that aligns with the goals specified by the user. The proxy

selects all related services from the cloud service repository, evaluates the services’ state

and availability and based on a SAW technique, aggregated score of each service against

a threshold. The proxy then computes the performance and cost utility functions and

ranks the optimal services that satisfy the goal of the clients using an MAUT.

CloudIntegrator is another MAUT-based approach that performs service composition by

searching for services that fulfil the activities designated in a workflow and generates

candidate execution plans as an orchestration of a set of actual services (Cavalcante et al.,

2012). The proposed algorithm employs the cost and the metadata of services’ QoS

parameters to optimise the selection process by first filtering out what the authors called

coincident services. They described coincident services as services that are always part of

any execution plan, contributing to any execution plans, in terms of cost and quality

values. The authors argue that this filtering would reduce the time it takes to select

services since the evaluation process considers fewer services. The identification and

removal of coincident services precede the actual service selection process, while the

process itself involves computing the global cost and quality values based on each QoS

dimension and then combine these values in MAUT-based technique to rank and select

the alternatives with maximal utility value.

Some approaches based on aggregated weighted sum include Cloud service recommender

system (CSRS) and Multiple Attribute Decision Methodology for Adoption of Clouds

(MADMAC). CSRS is a cloud service selection framework proposed for the cloud

market (Han et al., 2009). The CSRS is based on a Service-Rank (S-Rank) algorithm that

ranks services with respect to user requirements. S-Rank value is the weighted aggregate

of quality of virtualization hypervisors, QoS values, and user feedback (ܵ െ ܴܽ݊݇௙௜௡௔௟ ൌ

ߙ ∗ ݁௏ெ೑ೌ೎೟೚ೝ ൅ ߚ ∗ ݁ொ௢ௌ ൅ ܷ݂), and services can be selected based on the result of S-

rank after applying cost filters. MADMAC is a cloud adoption framework that utilizes a

careful description of attributes, alternatives and priority weights on attributes in order to

build a decision matrix, for generating relative rankings in identifying the optimal

alternative (Saripalli and Pingali, 2011). MADMAC uses a modified Wideband Delphi

method for determining relative weights for each QoS attribute and rankings are achieved

using the SAW that incorporate these weights. Wideband Delphi is a highly moderated

36

iterative convergent expert opinion survey, used to collect input from subject matter

experts to determine unanimity on the relative importance of the weights.

Rather than considering QoS evaluation results in real-time or average historical QoS

information of cloud services when recommending a service alternative as the best, the

approach presented by Rehman et al. (2014) utilises the QoS history of cloud services

from different time periods. A parallelized MCDM-based method is used to rank all cloud

services in each time period with respect to users’ preferences before combining the

results used in ranking the alternatives. Rehman et al. (2014) argued that utilising an

average historical QoS hides the frequent variations in QoS performance, and real-time

QoS monitoring does not consider the performance history; hence may yield a sub-

optimal alternative in both cases. The approach integrates users’ preference information

in a TOPSIS and ELECTRE-based approach to rank services at different non-overlapping

time slots. The evaluations at each time slot are independent of each other and are

executed in parallel after which the results are aggregated to determine the overall best

alternative. The entropy method used in information theory was employed to estimate the

relative weights of the importance of the criteria (Wang et al., 2007).

Since the interdependence between each QoS attribute affects the service evaluation

process, and its impact on overall ranking depends on their eventual priority weight in the

overall selection process, Garg et al. (2013) proposed SMICloud, an approach based on

SMI QoS model and uses historical QoS measurements, combined with self-published

QoS information from service providers to derive the actual QoS values. The SMICloud

is an AHP-based implementation that assigns weights to QoS attributes by considering

the interdependence between them, thereby providing a quantitative basis to rank cloud

services. In the same vein, DBaaS-Expert is an AHP-based framework proposed to assist

in choosing the right DBaaS provider among several Database-as-a-Service (DBaaS)

offerings (Sahri et al., 2014). The DBaaS-Expert framework consists of an ontology

modelling and a ranking module. The ontology model is employed to capture the

concepts of data management systems such as workload type, data model etc. The

ranking module based on AHP to rank DBaaS offerings according to quality, capacity and

cost of service dimensions. After the user submits a query, the list of DBaaS offerings

that does not match user requirements is filtered out, while the pruned list is then ranked

based on priorities assigned to each criterion by the user. The Weight Service Rank

37

(W_SR) approach for cloud service ranking, proposed by Jahani et al. (2014), is similar

to the Min-Max algorithm elaborated by Rehman et al. (2012), and it compares the

different services based on user defined preference on QoS, so as to select the most

optimal service. When compared to AHP, the performance of the W_SR approach

showed a significant computational advantage.

A number of MCDM-based approaches do consider uncertainty information in the service

evaluation process. Specifically, a cloud service selection model was proposed by Mu et

al. (2014), which combines both the uncertainty inherent in user’s subjective preference

information and objective weights. In this approach, subjective weight preferences are

explicitly expressed by users using linguistic terms and these inputs are processed using

intuitionistic fuzzy set theory. The objective weight preference is useful when the user has

no knowledge of the preference and based on the user’s incomplete history of preference

information on that service; the rough set is used to derive objective weights. The

aggregation of the subjective and objective weights is integrated with TOPSIS to obtain a

ranking of the alternatives. Wang et al. (2014) introduced an approach to accurately

evaluate the QoS of cloud services for a service-oriented cloud computing context. The

approach employs fuzzy synthetic decision to estimate cloud services in accordance with

users’ preferences and computes the uncertainty of cloud services based on monitored

QoS data. After which final evaluation of cloud service is obtained using fuzzy logic

control. A personalised trust evaluation system to support IaaS selection is proposed by

Qu and Buyya (2014). The approach measures the trust of cloud services as the degree of

satisfaction of specific user requirements based on past QoS performances. Membership

functions and fuzzy hedges were used to elicit users’ subjective QoS requirements and

generated trust levels for each cloud service through a hierarchical fuzzy inference

system.

In order to address uncertainty in the input into MCDM-based evaluation process and the

evaluation itself, such as uncertainty in service requests, QoS descriptions, user

preferences, Sun et al. (2014) proposed a hybrid fuzzy MCDM-based framework for

cloud service selection that uses fuzzy-ontology for function matching and service

filtering. Based on the pruned alternatives, a Fuzzy-AHP technique was adopted to derive

informed criteria weights based on vague expression, and, together with fuzzy TOPSIS

approach, the fuzzy weights were used for service ranking based on fuzzy descriptions on

38

service performance. In the same line of work, Kwon and Seo (2013) present an IaaS

selection model based on Fuzzy-AHP, to enable the user to select a suitable service

provider that aligns with the goals of the company. Furthermore, Tajvidi et al. (2014)

proposed a four-phase fuzzy-based multi-criterion decision-making framework that works

with cloud service data gathered from third party runtime QoS monitoring tools, together

with user feedback about the past performance of services. This approach handles the

imprecision in user’s QoS preferences by capturing the linguistic weight of criteria using

fuzzy logic, which then converts the triangular fuzzy numbers into precise numbers.

These numbers were later used in the ranking algorithm, located in the service selection

process module. This module has two components, metrics calculation and ranking, and

the ranked resulted was presented to the user via the user interface layer. Complementing

the hierarchical SMI cloud QoS model, this approach employed a fuzzy AHP-based

technique to rank cloud services. The ranking is based on the fuzzy perception of users’

preferences on QoS dimensions, expressed as weights derived using the Buckley’s

method (Buckley, 1985).

An approach was presented by Esposito et al. (2016) to handle uncertainty in users’ QoS

preferences in the face of untrustworthy indications concerning the QoS levels and prices

of services posed by selfish providers. The approach, based on multi-objective

optimisation, maximises the satisfaction and minimises the cost based on user

requirements. The proposed approach uses fuzzy set theory to handle uncertainty in users’

subjective preferences to derive priority weights and employs a TOPSIS-based method to

rank the alternatives. The approach further integrates the Dempster-Shafer theory of

evidence to perform a distributed selection of services; and a Mechanism Design, based

on game theory to reveal actual QoS performance evaluation of service offerings; which

the authors’ believe promotes truth-telling among service providers. The distribution of

the selection process is motivated by the limitation of the centralization of the overall

process, which often results in performance bottleneck that reduces the efficiency of the

overall infrastructure.

Apart from the single cloud user, there are scenarios where a cloud service is to be

selected based on the preferences of members of a group, and the service selected must

optimise all preferences of members of that group. To solve this problem, a QoS-aware

SaaS Services Selection with Interval Numbers for Group User (QSSSIN_GU) is

39

proposed by Yu and Zhang (2014). The approach integrates vague QoS preferences of

members of a group in the evaluation process using Interval Numbers (IN). The authors

argue that the vagueness in QoS preferences of group users can be expressed in a range of

values, using IN. Since the QoS preference of the member of a group varies, the use of IN

can conveniently capture the variety of QoS preferences and obtain a collective

satisfactory ranking. To normalise the varying dimensions of QoS properties,

QSSSIN_GU applies a linear scale transform normalisation function to ensure that the

range of normalised interval numbers belongs to [0, 1]. QSSSIN_GU applies TOPSIS to

rank and identify the most optimal alternatives.

Following the review of the MCDM-based techniques, it is observed that none of them

provided a means to organise or aggregate atomic services to meet composite user

request. Also, a number of these techniques require users to express their requirements

using crisp or exact entities. Some other MCDM-based techniques elicit either subjective

QoS preferences or QoS aspirations but do not elicit both subjective QoS preferences and

aspirations. Hitherto, the most techniques did not include a user interface to elicit those

requirements nor provide a means to visualise the ranking results to simplify decision

making.

II. Review of Optimization-based Cloud Service Selection Techniques

Noting that the number of service alternatives is very large in a cloud service

marketplace, Sundareswaran et al. (2012) proposed a brokerage model that uses a unique

indexing technique for handling the large information from a large number of services

and efficient service selection algorithms that rank potential service providers. The cloud

broker analyses and index providers, according to similarities in their properties using the

B+-tree as the base structure. A k-means algorithm is used to group all the service

providers according to the Hamming distance between the encodings of the service

information, after which the concept of iDistance is used to generate the indexing key to

index service points as data points on the B+-tree. The indexing enables efficient

arrangement of services in a way that the speed of retrieval is enhanced. A simplified GUI

is provided to facilitate requirement elicitation and based on those requirements the

broker will search the index, using a greedy algorithm, to generate a ranked list of

candidate services (single or composite) that best match user requirements.

40

CloudAdvisor enables interactive exploration of various cloud configurations and

recommends optimal configurations in line with the users’ workload and preferences

(Jung et al., 2013). The preference dimensions include budget, performance expectation,

and energy saving for a given workload. It also allows the comparison of a present

configuration to other cloud offerings. The approach includes an easy to use interface for

specifying preferences and making a comparison such that the user need not specify

preferences in crisp terms. The estimated near optimal configuration is determined using

a constraint optimisation method that considers user’s preferences, availability of

resources, and dependency of proper hardware and software. The constraint optimisation

problem is solved using A* search algorithm, while the comparison of current

configuration to other near-optimal configurations offered by other providers are

formulated as a knapsack problem, solved by a benchmarking based approximation

technique based on a greedy algorithm.

A greedy algorithm was also employed in the MSSOptimiser (Multi-tenant SaaS

Optimiser) approach (He et al., 2012). The multi-tenant nature of cloud services, in which

a single computing resource is shared by a large pool of users, necessitates that a multi-

tenant SaaS serves same functional SaaS to multiple end-users with varying QoS

requirements. The decision process to customise and deploy SaaS for multiple tenants is

complex; more so, because SaaS developers usually composed services with varied QoS

to fulfil end-users’ requirements in a way that optimises the cost of resources with the

best system performance. Since existing QoS-aware service selection approaches are

targeted at a single tenant, MSSOptimiser (Multi-tenant SaaS Optimiser) (He et al., 2012)

is proposed to overcome this limitation. MSSOptimiser capture and model users’ QoS

requirements and constraints; and both assist in selecting services to be composed into

SaaS that approximates the QoS requirements, while generating a near optimal

deployment environment that minimises the cost of resource usage and maximises overall

SaaS performance irrespective of usage cost. The selection problem is formulated as a

constraint optimisation problem, which employed a greedy algorithm to efficiently find a

near optimal solution.

CloudPick simplifies cross-cloud deployment via QoS modelling and deployment

optimisation (Dastjerdi et al., 2015). Ontology-enriched cloud service description can be

discovered with improved accuracy, particularly considering QoS descriptions from a

41

variety of domains. CloudPick uses two deployment optimisation algorithms based on

genetic and Forward-Checking-Based Backtracking (FCBB) algorithms to deploy

networks of virtual appliances based on minimum cost, high reliability and low latency.

Through CloudPick, the deployment optimisation is expected to yield the near optimal

configuration (combination of cloud virtual machines) that optimises the cost of data

communication, latency and reliability between multiple clouds based on user

preferences. The VM configuration is achieved through the aggregation of multiple cloud

services. Qian et al. (2013) argued that proximity plays an important role in choosing

IaaS, and designed an approach called Cloud Service Selection (CSS), which considers

the location of IaaS cloud infrastructures, the application clients, and how the

intercommunication among application components affect IaaS selection. The approach

manages the scalability issue arising from a large number of data centres and applications

by introducing a heuristic-based stepwise application placement optimisation algorithm

that is able to discover near optimal solution in a short time, with the objective of

minimising cost and maximising high QoS performance of the applications. The trade-off

between cost and proximity is determined by assigning importance weights.

The review of the optimization-based cloud service selection techniques revealed that

these techniques scarcely provided means to compose atomic services or consider

subjective user requirements; instead, the techniques rely on definite or exact QoS

preference provided by the user. In addition, only the techniques proposed by

Sundareswaran et al. (2012), Dastjerdi et al. (2015), and Jung et al. (2013) included a

user interface to elicit user requirements; meanwhile just the technique presented by Jung

et al. (2013) technique integrates a visualization mechanism to explore alternatives.

III. Review of Recommendation-based Cloud Service Selection Techniques

Since the cold start problem inherent in collaborative filtering and differences in client-

side context (location, device, or integrated development environment [IDE]), the

accuracy of QoS evaluations and feedback cannot be uniform as its best to express such

variation in a range rather than real, binary or integer numbers. To this end, Ma and Hu

(2014) proposed RecTIN, a cloud service recommendation approach to cater for this

variation by using ternary interval numbers (TIN). TIN enabled the description of QoS

evaluations from existing users in order to determine the QoS trustworthiness of a cloud

service for potential cloud service users. K-means clustering algorithm was employed on

42

the basis of multi-attributes trust aggregation, which uses Fuzzy-AHP to rank TIN while

selecting trustworthy services.

The trustworthiness of a cloud service will be in question if the feedback from service

usage is at variance with the expectations on such service expectations. Therefore, trust is

recognised as a key point of consideration in cloud service selection. Sometimes, the

information that determines trust degree of service is determined through objective and/or

subjective feedback assessments. Objective assessment is obtained from QoS monitoring

and benchmark testing, whereas subjective feedback is obtained from user rating of the

service quality. Adopting either assessment approach has inherent drawbacks.

Specifically, it is difficult to evaluate the qualitative aspect of the services using objective

assessment; whereas subjective assessments are based on the subjective feelings of the

cloud user, and may contain biases and also depends on the context of the user.

Considering the fact that many trustworthiness evaluation problems require both objective

and subjective assessments some cloud service recommendation approaches have

combined both assessment methods.

CSTrust, proposed by Ding et al. (2014), is a framework for determining the

trustworthiness of cloud services by combining QoS prediction obtained from objective

assessment, and subjective user satisfaction estimation. CSTrust uses collaborative

filtering and a utility function, referred to as Constant Relative Risk Aversion (CRRA), to

improve the accuracy of QoS value prediction, by predicting the missing QoS value of

quantitative attributes from the previous usage scenario of other similar services.

Furthermore, Yu (2014) advocated that sole dependence on the performance evaluation

reports from the service providers or experts is not in alignment with the distributed

nature and openness of the cloud. CloudRec is proposed as a cloud selection framework

that utilises a user-focused strategy for personalised QoS evaluation of cloud services

(Yu, 2014). CloudRec is able to use an iterative algorithm on community-based QoS

assessment model to discover a set of similar user and service communities from scarce

and large-scale QoS data, as users connect to approximate the QoS values of unknown

cloud services. CloudRec employs the Regularised Posterior Probabilistic Nonnegative

Matrix Factorization (RPPNMF). Since RPPNMF is able to handle data scarcity

characteristic of a cloud environment, it is used to capture the inherent cloud-related

features, and group cloud services and its users into communities based on this feature.

43

Arising from the review recommendation-based techniques for cloud service selection,

the following observations were made: apart from Ma and Hu (2014), all the

recommendation-based techniques expect crisp QoS inputs from the users. Moreover,

none of the techniques aggregates atomic service to form composite offerings, in addition

to built-in means by which user requirements can be elicited and the mechanism to

visualise the services recommended.

IV. Review of Proximity-based Cloud Service Selection Techniques

Mirmotalebi et al. (2012) argue that modelling users’ online behaviour would profit

search engines as well as e-commerce sites and those benefits could be extended to the

software service selection context. According to Mirmotalebi et al. (2012), ranking

services would be more satisfactory when users’ preferences are understood, and the

authors proposed an approach to generate a personalised ranking of cloud services based

on both explicitly stated and implicitly determined user preferences on non-functional

properties. While the explicitly stated requirements are clearly expressed by the decision

maker, the implicit preferences are determined based on information from a stored user

profile of the decision maker of past usage. The approach by Mirmotalebi et al. (2012)

assumes the existence of an exact matching algorithm and the personalised ranking is

computed as the similarity between user’s non-functional preferences and the values of

the non-functional properties of services. Services with higher matching scores with the

user’s profile are ranked higher in the result list.

The need for a search engine for cloud services motivated the work of (Kang and Sim,

2010), in which Cloudle was proposed. Cloudle is a multi-criteria search engine for cloud

services with a matching algorithm for cost, technical and functional requirements. The

search engine’s accuracy is powered by a cloud ontology model, which is designed to

determine similarity among cloud services, based on the following similarity dimensions-

concept, object property and datatype property similarities. The functional aspects of

Cloudle include Query processing module, where the user query is received and

processed via a web page and sent to the Similarity Reasoning Module to perform

similarity reasoning. The query is also sent to the price and timeslot utilise Matching

Module to determine which services match the price and time slot. Finally, in the Rating

Functional Module, each service from the providers is evaluated based on a utility score.

44

The service with the highest utility score is ranked as the best match and the search result

is presented as a textual ranked list of cloud services.

Based on the formal description of the cloud service selection problem, Rehman et al.

(2011), proposed two weighted sum-based cloud service selection methods (Weighted

Difference and Exponential Weighted Difference) that compute the similarity between

two vectors representing user requirement criteria and each service’s properties. Based on

the similarity index, the service whose properties best match user requirements is selected

as the best. Three comparison cases were identified which include 1) Exact match

between properties vector and user requirement vector. 2) Properties vector has

(generally) lower values than user requirement vector. 3) Properties vector has (generally)

higher values than user requirement vector. The Weighted Difference (WD) approach is a

sum of the weighted difference between the criteria of the user and service properties

(ܵ݅݉ሺܷݍܴ݁ݎ݁ݏ, ሻݎ݁ܵ ൌ ∑ ௜ݓ ∗ ሺܷݐܸܿ݁ݍܴ݁ݎ݁ݏ௜ െ ௜ሻݐܸܿ݁ݏ݁ܦ݁ܿ݅ݒݎ݁ܵ
௡
௜ୀଵ); while the

Exponential Weighted Difference (EWD) overcomes the drawback of WD in that the

criteria in which the service’s properties is below the user requirement is balanced by

those exceeding user requirements. EWD (ܵ݅݉ሺܷݍܴ݁ݎ݁ݏ, ሻݎ݁ܵ ൌ

∑ ݁ି௪೔∗ሺ௎௦௘௥ோ௘௤௏௘௖௧೔	ି	ௌ௘௥௩௜௖௘஽௘௦௏௘௖௧೔ሻ௡
௜ୀଵ) utilizes an exponential function to limit the

effect of mutual elimination between criteria that is below or exceeds the user

requirement.

Qu et al. (2014) proposed a context-sensitive service selection model that compares and

aggregates subjective assessment extracted from the feedback of previous cloud service

users and objective assessment obtained from quantitative performance testing. Biased

subjective assessment is eliminated by objective assessment; while both subjective and

objective assessments and their context information (relating to time-based and location-

based contexts) are combined in evaluating the global performance of cloud services with

respect to personalised requirements of a potential user. The comparison is performed by

using a modified bipartite SimRank algorithm to compute the context similarity of the

objective and subjective assessments, so as to dynamically adjust the benchmark level, in

order to enhance the exactitude aggregation process to reflect the total quality of cloud

services. Based on the rating matrix obtained, potential user’s preference is acquired via

linguistic weights and converted to fuzzy numbers to determine the importance weights

45

assigned to both objective and subjective attributes. Services ranking is then achieved

using fuzzy-SAW computation.

Resulting from the review of proximity-based cloud service selection techniques, it is

observed that just two of the techniques consider either subjective QoS aspiration (Qu et

al., 2014) or subjective QoS preferences (Mirmotalebi et al., 2012) in the evaluation of

service alternatives with respect to user requirements, as well as integrating a user

interface to elicit user requirements. So far, the techniques in this category did not include

any visualisation mechanism nor focused on the composition of atomic services to meet

complex user requirements.

V. Review of Other Cloud Service Selection Techniques

An extensible approach for cloud storage service selection was proposed by Ruiz-Alvarez

and Humphrey (2011). The approach is used to select the service that best matches each

dataset of a given target user application by relying on XML schema containing service

capabilities and attributes of each cloud storage system. The XML schema is

algorithmically processed using a matchmaking framework based on the work of Raman

et al. (1998) to match services and users’ requirements, such that data storage

recommended satisfies users' requirements of availability and durability, meets

performance expectations of latency and throughput, and with corresponding cost

estimates. Based on the SMI QoS model, Baranwal and Vidyarthi (2014) applied ranked

voting method for ranking and selecting cloud services combined with Data Envelopment

Analysis (DEA) technique. In ranked voting methods, voters rank the alternatives in order

of preference. More specially, the approach considers each QoS criteria as voters, and the

cloud providers are alternatives to be voted for. Since DEA suggests more than one

optimal alternative, additional rank voting techniques are required to discriminate optimal

alternatives. However, the ranking order is usually affected by the information about

other non-optimal alternatives. The approach presented here is formulated as a linear

programming model (Obata and Ishii, 2003). The model augments DEA with a rank

voting technique, while eliminating inefficient candidates, and identifying efficient

candidates derived from the DEA in order to consequently determine the best alternative.

CloudRecommender, proposed by Zhang et al. (2012), is a declarative approach for

selecting Cloud-based infrastructure services. In CloudRecommender, cloud service

46

configurations are captured in an ontology-based data model and manipulated using

regular expressions and SQL. The domain knowledge representing a variety of

infrastructure service configurations is identified and formalised by a declarative logic-

centred language and implemented as a recommender module atop a relational data

model. CloudRecommender work based on transactional SQL queries semantics used to

query, insert, and delete infrastructure services’ configurations. Users interact with

CloudRecommender via an intuitive widget-based interface both to set criteria, and to

browse recommendation results.

Furthermore, the cloud ecosystem involves the interplay of a wide variety of cloud

capabilities at a different scale of functionalities that must be correctly combined or

configured by a variety of stakeholders for the application to work efficiently (Quinton et

al., 2014). The plethora of cloud providers and the variability among cloud services

usually increases the complexity and the error propensity of configuration choices made

in an ad hoc manner (Quinton et al., 2014). Software Product Line (SPL) Engineering is a

software engineering approach that supports the systematic reuse of software assets in a

pre-planned way to achieve quick, cost effective and quality software products. It enables

the effective capture of the commonalities and variabilities of software artefacts under

one variability model and reuses those artefacts to derive the software products

automatically, therefore reducing the cost of development while the reliability of software

products is increased. The concept of adopting SPL-based approaches in the cloud service

context has been explored in (Benlachgar and Belouadha, 2013; Wittern et al., 2012;

Garcıa-Galán, 2013).

An SPL-based approach for cloud service selection that employs feature models,

extended with cardinalities and attributes, to describe the variability in cloud

environments has been proposed by Quinton et al. (2014). The approach utilises a domain

model to support the consistent configuration of the complete stack of cloud services that

comply with user’s functional and quality requirements and automates the deployment of

such configurations by generating executable deployment scripts. Feature models provide

the template for how artefacts are to be combined to yield a complete software product

that satisfies a set of defined constraints. A tool support was developed based on

Constraint Satisfaction, as part of an earlier SALOON framework to demonstrate the

plausibility of this approach (Quinton et al., 2013). Meanwhile, the limitation imposed by

47

using a given cloud service and the benefit inherent in using several cloud platforms to

deploy multi-cloud applications necessitate approaches that can handle the intrinsic

variabilities among heterogeneous cloud service providers.

SALOON is a model-driven Ontology-based approach founded on feature models, to

handle the variability in cloud services while managing the derivation of specific cloud

configurations (Quinton et al., 2013). Ontology was employed to model the semantics

underlying the description of a variety of cloud systems. SALOON is proposed as a

solution that can assist in deploying the multi-cloud application, particularly when one

provider is incapable meeting all application requirements rather than doing so in an ad

hoc manner. The SALOON framework is extensible by adding new feature model that

conforms with the originating SALOON-based feature model meta-model. Cloud services

are modelled as features, and selected features are transformed into propositional logic

and constraints, and satisfiability (SAT) solvers (e.g. Sat4j) are used to confirm the

validity of the configuration.

In the same line, Wittern et al. (2012) argue that the increase in cloud services provides

the need for a means to capture the variety of capabilities, and asserts that many cloud

service section approaches assume the underlying representation of the cloud service

capabilities which should serve as input to the selection process. Therefore, Wittern et al.

(2012) presented an approach to harness cloud service capabilities using variability

model. The variability models serve as representation mechanisms and are called Cloud

Feature Models (CFMs). CFMs are used to elicit requirements and to perform filtering

operations within a process the authors referred to as a cloud service selection process

(CSSP). The CSSP prunes the list of likely candidates based on decision makers’

requirements, and these candidates (called Alternative models) are configurations that can

be deployed. The Alternative models are subjected to a preference-based ranking process,

subject to decision maker preferences on QOS values. The QoS values expressed by the

decision maker are considered as the minimum threshold by the CSSP and the CSSP

allows for evolutionary Cloud service selection, in which requirements can be updated in

an iterative manner.

The approach is encapsulated in a prototypical tool based on the Eclipse Modelling

Framework (EMF) that uses a Choco-based reasoning engine to perform automated

48

analysis on the CFM; and requirement matching module, to determine alternative models

that satisfy the decision makers’ requirements.

The review of techniques for cloud service selections in this category showed that a

number of these techniques made provision for the mechanism to aggregate atomic

services, as well as a user interface to elicit the users’ QoS preferences and aspirations.

However, these techniques do not support the elicitation of subjective user requirements,

and most of the techniques lack the means to present ranking results in a manner that

reduces the complexity of exploring service alternatives.

2.3.2 Comparative Analysis of Cloud Service Selection Techniques

In order to foster the objectives of this study, a comparative analysis of cloud service

selection techniques was conducted to identify gaps in the literature using a comparative

framework that embraced some of the key issues in cloud service selection. As the first

step, 35 related works in the literature were carefully selected based on their relevance to

the objectives of the comparative survey. These identified works were analysed along six

dimensions based on the issues observed in the review, and the analyses were captured in

a tabular format. The comparison framework comprises six analysis dimensions, which

are:

i. Organisation and Composition of Atomic Services- describes how a specific

cloud service selection technique organises and combines atomic services to

satisfy more complex user requirements.

ii. The techniques employed to evaluate and rank service alternatives- which

includes the specific method employed to rank services.

iii. Elicitation of users’ QoS requirements- explores how the selection technique

elicits subjective user’s QoS requirements as it relates to QoS preferences and

aspiration.

iv. Interactive GUI support- analyse the presence of a user interface mechanism to

elicit QoS information from users.

v. Presentation of ranking results- describes the visualisation mechanism

employed to display ranking result in a manner to aid easy decision making.

49

vi. Evaluation metrics employed- explores the metric for evaluating the

performance of the cloud service selection techniques.

The findings of the comparative review are as follows:

I. Organise and Compose Atomic Services

Most techniques in the literature, except for (Wittern et al., 2012), (Quinton et al., 2013)

and (Quinton et al., 2014), assume an underlying decision matrix, comprising of service

alternatives together with their QoS properties (see Table 2.3). To effectively galvanise

the potentials of cooperating atomic services, feature models from the domain of

Software Product-line engineering were employed in Wittern et al (2012), Quinton et al.

(2013) and Quinton et al. (2014).

Table 2.3: Summary of method for organising atomic services

Method Source

1
Feature
Models

 SALOON (Quinton et al., 2013),
 CSSP (Wittern et al., 2012)
 Quinton et al. (2014)

2 None

 Qu and Buyya (2014)
 ALPHA (Sun et al., 2014)
 Kwon et al. (2013)
 Tajvidi et al. (2014)
 Mu et al. (2014)
 QSSSIN_GU (Yu and Zhang,

2014)
 Esposito et al. (2016)
 Wang et al. (2014)
 SMICloud (Garg et al., 2013)
 Gui et al. (2014)
 Zeng et al. (2009)
 CSRS (Han et al., 2009)
 MADMAC (Saripalli and

Pingali, 2011)
 CloudIntegrator (Cavalcante et

al., 2012)
 W_SR (Jahani et al., 2014)

 Rehman et al. (2014)
 DBaaS-Expert (Sahri et al., 2014)
 MSSOptimiser (He et al., 2012)
 Sundareswaran et al. (2012)
 CloudAdvisor (Jung et al., 2013)
 CloudPick (Dastjerdi et al., 2015)
 CSS (Qian et al., 2013)
 Qu et al. (2014)
 Kang and Sim (2010)
 Mirmotalebi et al. (2012)
 Rehman et al. (2011)
 CSTrust (Ding et al., 2014),
 CloudRec (Yu, 2014)
 RecTIN (Ma and Hu, 2014)
 CloudRecommender (Zhang et al.,

2012)
 Ruiz-Alvarez et al. (2011)
 Baranwal et al. (2014)

Source: Researcher (2016)

II. Techniques Employed to Evaluate and Rank Service Alternatives

Specific methods employed by existing techniques to evaluate, rank and select services

were classified into five categories, which include approaches based on MCDM,

optimisation, recommendation, proximity metrics, and others. Within each category,

techniques that provide a mechanism to handle fuzziness in relation to the user’s QoS

requirements were also explored.

50

Table 2.4 shows that existing techniques employ a variety of techniques for service

evaluation, ranking and decision making to assist users to select the most optimal cloud

services. Specifically, MCDM-based techniques employ AHP, TOPSIS, SAW, MAUT,

and ELECTRE. To manage subjectivity in QoS information, other MCDM-based

techniques employed uncertainty theories like fuzzy set theory, rough sets, interval

number arithmetic, fuzzy inference and the fuzzy synthetic decision to evaluate service

alternatives.

In optimization-based techniques the cloud service evaluation and selection problem were

formulated as Constraint Satisfaction and/or Optimization Problem (CSP/CSOP), multi-

objective optimization problem, the Multiple-Choice Knapsack Problem (MCKP) and its

variants, tree-search problem etc.; while solutions are either optimal solutions or near-

optimal solutions by the use of heuristics, greedy algorithm, and genetic algorithms.

Recommendation-based approaches rely on historical QoS information on services and

evaluations from previous users to provide recommendations (Han et al., 2009), while

similarity computation based on similarity/distance metrics is applied in proximity-based

techniques to determine the closeness of the user’s QoS requirement to the QoS

description of cloud services. Some other techniques employ semantic models based on

ontology and custom matching algorithms to determine optimal services.

51

Table 2.4: Summary of Service evaluation and ranking methods

Category Source
Summary of QoS-based Service Ranking and

Evaluation Techniques

Fuzzy-
MCDM-
based

Qu and Buyya (2014) Hierarchical Fuzzy Inference

ALPHA (Sun et al., 2014)
Fuzzy-based Ontology Similarity Matching, Fuzzy-
AHP, Fuzzy-TOPSIS

Kwon and Seo (2013) Fuzzy-AHP
Tajvidi et al. (Tajvidi et al., 2014) AHP and Fuzzy-AHP,
Mu et al. (Mu et al., 2014) Intuitionistic Fuzzy Set, Rough Set, and TOPSIS
QSSSIN_GU (Yu and Zhang,
2014)

Arithmetic on Interval Numbers and TOPSIS

Esposito et al. (2016)
Fuzzy Inference, TOPSIS, Dempster-Shafer theory of
Evidence, Mechanism Design (Game Theory)

Wang et al. (2014) Fuzzy Synthetic Decision

MCDM-
based

SMICloud (Garg et al., 2013) AHP
Gui et al. (Gui et al., 2014) MAUT, TOPSIS
Zeng et al. (2009) SAW, MAUT
CSRS (Han et al., 2009) SAW
MADMAC (Saripalli and Pingali,
2011)

SAW

CloudIntegrator (Cavalcante et al.,
2012)

MAUT

W_SR (Jahani et al., 2014) Min-Max (Rehman et al., 2012)
Rehman et al. (2014) TOPSIS, ELECTRE
DBaaS-Expert (Sahri et al., 2014) Ontology, AHP

Optimization
-based

MSSOptimiser (He et al., 2012) Constraint Optimisation (Greedy Algorithm)
Sundareswaran et al. (2012) B+-Tree indexing, Greedy Algorithm

CloudAdvisor (Jung et al., 2013)
Constraint optimisation Satisfaction with Greedy
Algorithm, benchmarking-based approximation
technique

CloudPick (Dastjerdi et al., 2015)
Description Logic Matching Algorithm based on Genetic
Algorithm

CSS (Qian et al., 2013) Multi-objective Optimization- heuristic algorithm

Proximity -
based

Qu et al. (2014) Similarity Computation, Fuzzy-SAW-based approach
Kang and Sim (2010) Ontology similarity reasoning, Matching Algorithm
Mirmotalebi et al. (2012) Similarity Computation

Rehman et al. (2011)
Similarity Computation based on Weighted Difference
and Exponential Weighted Difference methods

Recommenda
tion-based

CSTrust (Ding et al., 2014) Collaborative Filtering and Utility Computation
CloudRec (Yu, 2014) Regularised posterior probabilistic nonnegative matrix

factorization
RecTIN (Ma and Hu, 2014) Ternary Interval Number, Fuzzy-AHP

Others

CloudRecommender (Zhang et al.,
2012)

Declarative SQL, Ontology Mapping

Ruiz-Alvarez et al. (2011) Matching Algorithm
Baranwal et al. (2014) Rank Voting Method, Data Envelope Analysis
Quinton et al. (Quinton et al.,
2014)

Feature Modelling, Constraint Satisfaction

CSSP (Wittern et al., 2012)
Matching Algorithm, Constraint Satisfaction
Programming

SALOON (Quinton et al., 2013)
Feature modelling, Ontology Similarity Reasoning,
Prepositional Logic based on SAT

Source: Researcher (2016)

52

III. Elicitation of Users’ QoS Requirements

Decision-making has been defined as a process in which alternative(s) are identified and

selected choosing an alternative(s) in accordance with the goals of, preferences of and

constraints imposed by a decision maker. The assumption is usually that there are many

alternatives available and the aim is to select the one that best approximates decision

makers’ requirements. Most techniques unrealistically assumed that the user would

provide perfectly crisp, precise and exact preference and aspiration information in the

evaluation process, which is not congruent with the way humans think and communicate

(Esposito et al., 2016; Sun et al., 2014; Qu and Buyya, 2014). The analysis explored how

existing techniques elicit users’ preferences and aspirations in these three dimensions:

Handling subjectivity in user’s QoS requirements, evaluating interrelationship of QoS

criteria when eliciting preferences, and if the requirements elicitation covers both users’

QoS preferences and QoS aspirations.

a) Managing Subjectivity of Users’ QoS Requirements

The complexity of QoS factors blurs the preference perception of users (Dastjerdi and

Buyya, 2011), thereby affecting how users express the degree of relative importance of

each criterion and expected ideal points. Some techniques focused on measuring precise

quantitative data and expect users to express requirements in the same manner, which

sometimes requires expert knowledge (Qu and Buyya, 2014). Although user requirements

are elicited in the form of weights and/or aspiration values, the difficulty inherent in

expressing such requirements in exact or crisp values necessitates a QoS-aware

techniques that can capture the vagueness in both user’s QoS preferences and aspiration

(Barros and Dumas, 2006; Sun et al., 2014; Qu and Buyya, 2014; Esposito et al., 2016).

In the literature, a few techniques have considered fuzziness in the elicitation process for

QoS preferences by using fuzzy set and rough set theory; while the predominant

technique for handling fuzziness in determining preference weights is fuzzy-AHP, as

shown in Table 2.6. Table 2.5 shows that the subjectivity inherent in the users’ QoS

aspiration requirements is elicited using: fuzzy set theory e.g. (Qu and Buyya, 2014),

(Esposito et al., 2016) and (Mirmotalebi et al., 2012); interval numbers (e.g. (Ma and Hu,

2014) and (Yu and Zhang, 2014)). However, the approach presented in (Wang et al.,

2014) engaged fuzzy synthetic decision method of eliciting QoS requirements, and all

other techniques elicit expected QoS values by users expressing crisp values.

53

Table 2.5: Eliciting QoS aspiration in Cloud Service Selection Techniques

QoS Aspiration
Information

Method Sources

Fuzzy

Interval Number
 RecTIN (Ma and Hu, 2014)
 QSSSIN_GU (Yu and Zhang, 2014)

Fuzzy Set Theory
 Qu and Buyya (2014)
 Esposito et al. (2016)
 Mirmotalebi et al. (2012)

Fuzzy Synthetic
Decision  Wang et al. (2014)

Non-Fuzzy
Direct Crisp
Elicitation

 CloudRecommender (Zhang et al., 2012)
 Gui et al. (2014)
 Sundareswaran et al. (2012)
 Ruiz-Alvarez and Humphrey (2011)
 Quinton et al. (2014)
 Zeng et al. (2009)
 CSSP (Wittern et al., 2012)
 CloudAdvisor (Jung et al., 2013)
 Kang and Sim (2010)
 CloudPick (Dastjerdi et al., 2015)
 CSS (Qian et al., 2013)
 CSRS (Han et al., 2009)
 MSSOptimiser (He et al., 2012)
 SALOON (Quinton et al., 2013)
 Rehman et al. (2011)
 W_SR (Jahani et al., 2014)
 Rehman et al. (2014)
 DBaaS-Expert (Sahri et al., 2014)

Source: Researcher (2016)

b) Considering Relationship among QoS Criteria

When evaluating multiple criteria in decision-making scenarios, the priority of

importance of each criterion in relation to other criterion is important in determining the

overall best alternative(s). In most cases, user preferences are captured as weights

denoting the priority of each criterion. Quantifying the relative importance of each

criterion to another criterion is a precise means to capture user preferences, and promotes

objectivity in the evaluation of services (Garg et al., 2013; Sun et al., 2014). It is

desirable that techniques should objectively determine the priorities by catering for the

interrelationships among criteria and one way to achieve this is by employing pairwise

comparison.

The approaches for eliciting weights that denote relative importance were summarised

and classified into pairwise comparison and non-pairwise comparison approaches while

analysing how fuzziness is handled in the elicitation process (see Table 2.6).

54

Table 2.6: Eliciting QoS preferences in Cloud Service Selection Techniques

Domain
Preference

Information
Method Sources

Pairwise
Comparison

Fuzzy Fuzzy-AHP

 RecTIN (Ma and Hu, 2014)
 Qu and Buyya (2014)
 ALPHA (Sun et al., 2014)
 Kwon and Seo (2013)
 Tajvidi et al. (2014)

Non-fuzzy AHP
 DBaaS-Expert (Sahri et al., 2014)
 SMICloud (Garg et al., 2013)
 Wang et al. (2014)

Non-pairwise
Comparison

Fuzzy

Arbitrarily fuzzy weights
assigned by users (Fuzzy
set and rough set
theories)

 Mu et al. (2014)

Arbitrarily fuzzy weights
assigned by users using
fuzzy set theory

 Qu et al. (2014)
 Esposito et al. (2016)

Non-Fuzzy

Arbitrarily static weights
assigned by users

 Gui et al. (2014)
 Sundareswaran et al. (2012)
 Baranwal and Vidyarthi (2014)
 Zeng et al. (2009)
 Kang and Sim (2010)
 CSS (Qian et al., 2013)
 CSRS (Han et al., 2009)
 Mirmotalebi et al. (2012)
 CloudIntegrator (Cavalcante et al., 2012)
 MSSOptimiser (He et al., 2012)
 Rehman et al. (2011)
 W_SR (Jahani et al., 2014)

From Expert (Wide-band
Delphi method)  MADMAC (Saripalli and Pingali, 2011)

Significance Weighing
Method
(Zheng et al., 2011)

 Kang and Sim (2010)

Entropy Method
(Wang et al., 2007)  Rehman et al. (2014)

Source: Researcher (2016)

As presented in Table 2.6, the techniques classified under pairwise comparison that used

AHP include Sahri et al. (2014), Garg et al. (2013), Wang et al. (2014); while those that

employed fuzzy-AHP include Ma and Hu (2014), Qu and Buyya (2014), Sun et al.(2014),

Kwon and Seo (2013), and Tajvidi et al. (2014).

However, it is observed that more techniques are classified under non-pairwise

comparison as priority weights are arbitrarily assigned by users as static weights to

signify the importance of criteria, without consideration for the interrelationships among

the criteria. Qu et al. (2014), Esposito et al. (2016) and Mu et al., (2014) are classified

under non-pairwise comparison, and they allow users’ to express subjectivity in

arbitrarily assigning priority weights using fuzzy set theories and rough sets. Apart from

55

the user directly assigned weights arbitrarily, weights are sometimes obtained from expert

surveys employing Wideband Delphi method, significance weighing method (Zheng et

al., 2011) and entropy method (Wang et al., 2007).

c) Service Evaluation Based on both QoS Preferences and Aspirations

QoS factors are rarely of equal importance to users (Sahri et al., 2014; Javed et al., 2016),

and the importance of each QoS criteria is specified by weights that reflect QoS

preferences, with which a ranking of the cloud services can be realised. QoS aspirations

define the user’s desired ideal points for each criterion, and it comprises the goals and

constraints for each QoS criteria as it pertains to each user; as such, users should be able

to define their own ideal values, and/or constraints on those values, which serve as

important inputs to the evaluation process of service alternatives.

Simultaneously considering both user preferences and aspiration in the service evaluation

process requires a service evaluation and ranking approach that is able to incorporate

subjective preference weights while resolving the subjective goals and constraints on QoS

values expressed by the user. The analysis of QoS preference and aspiration information

employed in techniques was classified into three categories: those that employ

information of both QoS preference and aspiration, QoS preference alone, and QoS

aspiration alone; the consideration of subjectivity in this QoS information was also

surveyed. Although Table 2.7 shows that a lot of techniques incorporate both weights and

aspiration values in the evaluation of service alternatives, most of these techniques do not

cater for subjectivity in QoS requirements.

As shown in Table 2.7, the techniques that absolutely catered for the fuzziness in both

QoS preference and aspiration include (Ma and Hu, 2014), (Qu and Buyya, 2014) and

(Esposito et al., 2016); however, (Mirmotalebi et al., 2012) and (Wang et al., 2014)

elicited QoS aspiration as fuzzy inputs, while the priority weights are captured as crisp

values (see footnote in Table 2.7). Other techniques require users to express either

preference or aspiration information, which is sometimes based on the assumption that

the alternatives have met all other user’s criteria.

56

Table 2.7: QoS Preference and Aspiration in Cloud Service Selection Techniques

QoS
Requirement
Information

QoS Aspiration and QoS
Preferences

Preferences Only Aspiration Only

Fuzzy

 RecTIN (Ma and Hu, 2014)
 Qu and Buyya (2014)
 Esposito et al. (2016)
 Mirmotalebi et al. (2012) *
 Wang et al. (2014)*

 Kwon and Seo (2013)
 ALPHA (Sun et al., 2014)
 Mu et al. (2014)
 Tajvidi et al. (2014)
 Qu et al. (2014)

 QSSSIN_GU (Yu and
Zhang, 2014)

Non-fuzzy

 Gui et al. (Gui et al., 2014)
 Sundareswaran et al. (2012)
 Zeng et al. (2009)
 Kang and Sim (2010)
 DBaaS-Expert (Sahri et al.,

2014)
 Rehman et al. (2014)
 W_SR (Jahani et al., 2014)
 Rehman et al. (2011)
 MSSOptimiser (He et al.,

2012)
 CSRS (Han et al., 2009)
 CSS (Qian et al., 2013)
 Mirmotalebi et al. (2012) **
 Wang et al. (2014)**

 SMICloud (Garg et al., 2013),
 Baranwal and Vidyarthi

(2014)
 CloudIntegrator (Cavalcante et

al., 2012)
 MADMAC (Saripalli and

Pingali, 2011)
 CSTrust (Ding et al., 2014)

 CloudRecommender
(Zhang et al., 2012)

 Ruiz-Alvarez and
Humphrey (2011)

 Quinton et al. (2014)
 CSSP (Wittern et al.,

2012)
 CloudAdvisor (Jung et

al., 2013)
 SALOON (Quinton et

al., 2013)
 CloudPick (Dastjerdi et

al., 2015)

* QoS aspiration are elicited as fuzzy inputs(fuzzy)
** QoS preference weights are elicited as crisp weights (non-Fuzzy)

Source: Researcher (2016)

IV. Interactive GUI Support

Users’ engagement with the marketplace to select cloud service should be facilitated by

intuitive and interactive Graphical User Interfaces (GUI). The essence of such interfaces

is not to overwhelm users with excessive input fields, so as to reduce the cognitive load

on users when specifying requirements (Zhang et al., 2012). The interface captures the

requirements and converts it into queries used to search for optimal alternatives.

Therefore, such interfaces should support the input of the subjective requirements by

incorporating fuzziness in the input process in a manner that is easy to understand. Noting

the complexity of eliciting exact, crisp numerical values, the interface should intuitively

allow for and interpret vague user input requirements by incorporating linguistic

expressions and on-screen interaction elements such as sliding and clicking (Sundar et al.,

2014).

However, observed in Table 2.8 is that most techniques (22 out of 35 techniques

reviewed) do not incorporate intuitive user interfaces in their approaches. The GUI

support identified with techniques can be mainly classified into two domains: web-based

and window-based; with the exception of (Sundareswaran et al., 2012) and (Kwon and

57

Seo, 2013). User interface support was reported in (Sundareswaran et al., 2012), but it

was difficult to ascertain the domain it belonged; also, the techniques proposed in (Kwon

and Seo, 2013) employed a third party desktop application, called Expert Choice 11.5 to

capture user requirements.

Table 2.8: The use of GUI in Cloud Service Selection Techniques

GUI Domain Sources

Web-based

 Qu and Buyya (2014),
 Gui et al. (2014),
 CloudAdvisor (Jung et al., 2013)
 Kang and Sim (2010)

 CloudPick (Dastjerdi et al., 2015)
 CloudRecommender (Zhang et al.,

2012)

Windows-based
 Ruiz-Alvarez and Humphrey (2011)
 Quinton et al. (2014)
 CSSP (Wittern et al., 2012)

 Mirmotalebi et al. (2012)
 SALOON (Quinton et al., 2013)

Third Party Software
(Expert Choice 11.5)  Kwon and Seo (2013)

Unspecified  Sundareswaran et al. (2012)

No GUI Support
Reported

 RecTIN (Ma and Hu, 2014)
 ALPHA (Sun et al., 2014)
 SMICloud (Garg et al., 2013)
 Baranwal and Vidyarthi (2014)
 Zeng et al. (2009)
 CSTrust (Ding et al., 2014)
 Qu et al. (2014)
 CSS (Qian et al., 2013)
 CSRS (Han et al., 2009)
 Tajvidi et al. (2014)
 MADMAC (Saripalli and Pingali,

2011)
 Esposito et al. (2016)
 Mu et al. (2014)

 CloudIntegrator (Cavalcante et al.,
2012)

 QSSSIN_GU (Yu and Zhang,
2014)

 MSSOptimiser (He et al., 2012)
 Wang et al. (2014)
 Rehman et al. (2011)
 W_SR (Jahani et al., 2014)
 CloudRec (Yu, 2014)
 Rehman et al. (2014)
 DBaaS-Expert (Sahri et al., 2014)

Source: Researcher (2016)

V. Presentation of Ranking Result

Analysis of techniques in the literature revealed a minimal emphasis on presentation of

ranking results; with respect to means to explore evaluation and ranking results (see Table

2.9). Only 5 out of 35 studies incorporated visual exploration mechanisms, including:

charts (line and radar chart), as in (Gui et al., 2014); and kiviat charts, as in (Garg et al.,

2013); multi-cloud comparison tables, as in (CloudAdvisor (Jung et al., 2013)); web-

based widgets, as in CloudRecommender (Zhang et al., 2012) and third party desktop

application software, Expert Choice 11.5, as in the work of Kwon and Seo (2013); while

most techniques did not incorporate any intuitive mechanism for visualizing service

evaluations and rankings.

58

Table 2.9: Visualisation Mechanism Employed in Cloud Service Selection

Visualization Type Sources
Charts
(e.g. line, kiviat and radar)

Gui et al. (Gui et al., 2014),
SMICloud (Garg et al., 2013)

Multi-cloud Comparison
Table

CloudAdvisor (Jung et al., 2013)

Web Widgets CloudRecommender (Zhang et al., 2012)
Third-party Software
(Expert Choice 11.5)

Kwon and Seo (2013)

No Information Visualization
support Reported

 ALPHA (Sun et al., 2014)
 Baranwal and Vidyarthi (2014)
 CloudIntegrator (Cavalcante et

al., 2012)
 CloudPick (Dastjerdi et al.,

2015)
 CloudRec (Yu, 2014)
 CSRS (Han et al., 2009)
 CSS (Qian et al., 2013)
 CSSP (Wittern et al., 2012)
 CSTrust (Ding et al., 2014)
 DBaaS-Expert (Sahri et al.,

2014)
 Esposito et al. (2016)
 Kang and Sim (2010)
 MADMAC (Saripalli and

Pingali, 2011)
 Mirmotalebi et al. (2012)

 MSSOptimiser (He et al., 2012)
 Mu et al. (2014)
 QSSSIN_GU (Yu and Zhang,

2014)
 Qu and Buyya (2014)
 Qu et al. (Qu et al., 2014)
 Quinton et al. (2014)
 RecTIN (Ma and Hu, 2014)
 Rehman et al. (2011)
 Rehman et al. (2014)
 Ruiz-Alvarez and Humphrey

(2011)
 SALOON (Quinton et al., 2013)
 Sundareswaran et al. (2012)
 Tajvidi et al. (2014)
 W_SR (Jahani et al., 2014)
 Wang et al. (2014)
 Zeng et al. (2009)

Source: Researcher (2016)

VI. Metrics for Evaluating Cloud Service Selection Techniques

Performance evaluation results are vital benchmarks to determine the utility, plausibility

and applicability of existing techniques. It forms the basis to appraise the pros and cons of

techniques in order to motivate new proposals or identify new research directions. A

summary of performance evaluation methods of existing techniques was presented in

Table 2.10 and five main performance metrics employed in the techniques under review

was identified. They include accuracy, efficiency, scalability, use case/case study, and

usability. Accuracy describes the ability of the proposed techniques to evaluate and rank

service alternatives with respect to approximating users’ requirements. Efficiency is a

measure of the time cost and computational overhead of the proposed approach, while

scalability describes the performance of the techniques with an increase in the number of

service alternatives. To show the practicality of the techniques, use case or case studies

were employed and usability describes empirical user studies to test the applicability of

techniques. As illustrated in Table 2.10, accuracy metric topped the list of performance

evaluation methods as it was employed in 18 out of 35 sources.

59

Table 2.10: Performance Evaluation Metrics Employed for Cloud Service Selection

Sources

A
cc

u
ra

cy

E
ff

ic
ie

n
cy

S
ca

la
b

il
it

y

U
se

 C
as

e

U
sa

b
il

it
y

A
va

il
ab

il
it

y

E
xt

en
d

ib
il

it
y

1 ALPHA (Sun et al., 2014) ● ● ◌ ◌ ◌ ◌ ◌
2 Baranwal et al. (2014) ◌ ◌ ◌ ◌ ◌ ◌ ◌
3 CloudAdvisor (Jung et al., 2013) ● ◌ ◌ ◌ ◌ ◌ ◌
4 CloudIntegrator (Cavalcante et al., 2012) ◌ ◌ ◌ ◌ ◌ ◌ ◌
5 CloudPick (Dastjerdi et al., 2015) ◌ ● ● ◌ ◌ ◌ ◌
6 CloudRec (Yu , 2014) ● ◌ ◌ ◌ ◌ ◌ ◌
7 CloudRecommender (Zhang et al., 2012) ◌ ◌ ◌ ● ◌ ◌ ◌
8 CSRS (Han et al., 2009) ● ● ◌ ◌ ◌
9 CSS (Qian et al., 2013) ● ● ● ◌ ◌ ◌ ◌
10 CSSP (Wittern et al., 2012) ◌ ◌ ◌ ◌ ◌ ◌
11 CSTrust (Ding et al., 2014), ● ◌ ◌ ◌ ◌ ◌
12 DBaaS-Expert (Sahri et al., 2014) ◌ ◌ ● ◌ ◌ ◌
13 Esposito et al. (2016) ● ● ◌ ◌ ◌ ◌ ◌
14 Gui et al. (2014) ● ◌ ◌ ◌ ◌ ◌ ◌
15 Kang and Sim (2010) ● ◌ ◌ ◌ ◌ ◌ ◌
16 Kwon and Seo (2013) ◌ ◌ ◌ ● ◌ ◌ ◌
17 MADMAC (Saripalli and Pingali, 2011) ◌ ◌ ◌ ● ◌ ◌ ◌
18 Mirmotalebi et al. (2012) ● ◌ ◌ ● ◌ ◌ ◌
19 MSSOptimiser (He et al., 2012) ● ● ◌ ◌ ◌ ◌ ◌
20 Mu et al. (2014) ● ◌ ◌ ◌ ◌ ◌
21 QSSSIN_GU (Yu and Zhang, 2014) ● ◌ ● ◌ ◌ ◌
22 Qu and Buyya (2014) ● ◌ ● ● ◌ ◌ ◌
23 Qu et al. (2014) ● ◌ ◌ ◌ ◌ ◌ ◌
24 Quinton et al. (2014) ◌ ● ◌ ● ◌ ◌
25 RecTIN (Ma and Hu, 2014) ● ◌ ◌ ◌ ◌ ◌ ◌
26 Rehman et al. (2014) ● ◌ ◌ ◌ ◌ ◌ ◌
27 Rehman et al. (2011) ◌ ◌ ◌ ◌ ◌ ◌ ◌
28 Ruiz-Alvarez et al. (2011) ◌ ● ◌ ◌ ◌ ● ◌
29 SALOON (Quinton et al., 2013) ● ◌ ◌ ● ◌ ◌ ◌
30 SMICloud (Garg et al., 2013) ◌ ● ● ● ◌ ◌ ◌
31 Sundareswaran et al. (2012) ◌ ● ◌ ◌ ◌ ◌ ◌
32 Tajvidi et al. (2014) ◌ ◌ ◌ ● ◌ ◌ ◌
33 W_SR (Jahani et al., 2014) ◌ ◌ ● ◌ ◌ ◌ ◌
34 Wang et al. (2014) ● ◌ ◌ ◌ ◌ ◌
35 Zeng et al. (2009) ◌ ◌ ● ◌ ◌ ◌ ●

Count 18 12 7 14 1 1 1
Extendibility: refers to the cost of extending the proposed algorithm to process new elements and attributes
in the XML descriptions of the cloud provider;
Availability: Describing the ubiquitous nature of the algorithm to be deployable to any device by context-
awareness.
●= Present ◌= Absent

Source: Researcher (2016)

Accuracy metric is closely followed by the use of use cases to demonstrate how the

techniques work. The time efficiency of techniques in relation to baseline approaches or

other techniques occurred 12 times, with scalability evaluations occurring 7 times out of

35 sources. A user study to determine the utility and applicability of the technique was

only reported in (Quinton et al., 2014), where authors conducted the experiment with a

group of real participants to evaluate the effectiveness compared to a manual process.

60

Extendibility and availability (see footnote on Table 2.10) are other metrics found during

analysis. Based on this analysis, there seems to be more emphasis on performance metrics

such as accuracy, efficiency and scalability compared to user satisfaction.

2.3.3 Gaps Identified in the Literature

From the foregoing, the comparative survey revealed that a number of key issues have

attracted the attention of authors on the subject of cloud service selection and this has

influenced the trends of research in this domain so far. However, there exist some gaps

with respect to the suitability of the existing techniques for service selection in cloud e-

marketplaces. The gaps have been identified based on the following – the organisation

and composition of atomic services; elicitation of users’ QoS preferences and QoS

aspiration; interactive GUI support to elicit QoS information from users; mechanisms for

the presentation of ranking results; and the evaluation processes employed. The gaps in

the existing techniques were summarised in Table 2.11.

The analysis of the 35 techniques summarised in Table 2.11 shows that only 3 out of 35

techniques reviewed provided a means to organise and aggregate atomic services into

composite offerings to meet complex user requirements. Meanwhile, 8 techniques possess

the mechanism to elicit subjective QoS preferences and only 6 techniques elicit subjective

QoS aspirations. Besides, RecTIN (Ma and Hu, 2014), as well as, the techniques

proposed by Qu and Buyya (2014) and Esposito et al. (2016), are the only techniques that

elicit both the QoS preferences and aspirations from the users. Five techniques employed

the use of a user interface through which users can express their QoS requirements, while

only 5 techniques reviewed used a form of visualisation to present ranking results.

Although user experience is a vital consideration when designing a cloud service

selection technique, only one technique reported a usability evaluation of its service

selection technique. Meanwhile, the result of our analysis showed that no technique

completely addressed the vital dimensions that are required to reduce service choice

overload and improve user experience in cloud service e-marketplaces. Therefore, this

study fills these gaps by formulating a framework for cloud service selection that will

improve the quality of user experience in cloud service e-marketplace.

61

Table 2.11: Summary of Gaps Identified in the Literature

Source Summary of Technique

O
rg

an
is

e
A

to
m

ic
 S

er
vi

ce
s

E
li

ci
t

S
u

b
je

ct
iv

e
Q

oS
 P

re
fe

re
nc

e

E
li

ci
t

S
u

b
je

ct
iv

e
Q

oS
 A

sp
ir

at
io

n

E
m

p
lo

y
G

U
I

In
co

rp
or

at
e

V
is

ua
li

za
ti

on

U
sa

b
il

it
y

E
va

lu
at

io
n

1
Qu and Buyya
(2014)

A cloud service evaluation system using hierarchical fuzzy inference
system

     

2 Sun et al.(2014) A fuzzy framework for cloud service selection      

3
Kwon and Seo
(2013)

A model to choose a cloud service using fuzzy AHP      

4 Tajvidi et al. (2014) A Fuzzy-based cloud service selection framework      
5 Mu et al. (2014) service selection based on uncertain user preference      
6 Yu and Zhang (2014) Group user SaaS services selection using interval numbers      

7 Esposito et al. (2016)
Smart cloud storage service selection based on fuzzy logic, theory of
evidence and game theory

     

8 Wang et al. (2014)
A fuzzy synthetic decision and fuzzy logic based cloud service
selection framework

     

9 Garg et al. (2013) An AHP-based framework for comparing and ranking cloud services      

10 Gui et al. (2014)
A service brokering and recommendation mechanism for better-
selecting cloud services

     

11 Zeng et al. (2009) A SAW and MAUT-based approach for cloud service selection      
12 Han et al. (2009) A service recommendation system for cloud computing market      

13
Saripalli and Pingali
(2011)

A multiple attribute decision methodology for adoption of clouds      

14
Cavalcante et
al.(2012)

An approach to optimize service selection in cloud Multiplatform
Scenarios

     


15 Jahani et al. (2014) A Min-Max QoS-based ranking approach for ranking cloud services      
16 Rehman et al. (2014) Parallel cloud service selection and ranking based on QoS history      
17 Sahri et al. (2014) A recommender system for the selection of the right cloud database      
18 He et al. (2012) A QoS-driven service selection for multi-tenant SaaS      

19
Sundareswaran et al.
(2012)

A brokerage-based approach for cloud service selection      

20 Jung et al. (2013) A recommendation platform for cloud configuration and pricing      

21
Dastjerdi et al.
(2015)

A cross-cloud framework for QoS-aware service deployment      

22 Qian et al. (2013) An approach for cloud service selection in IaaS platforms      
23 Qu et al. (2014) Context-aware cloud service selection based on assessment aggregation      

24
Kang and Sim
(2010)

A multi-criteria cloud service search engine      

25
Mirmotalebi et al.
(2012)

A preference-based approach for personalized service ranking      

26 Rehman et al. (2011) Distance-based approach for cloud service ranking      
27 Ding et al. (2014) An approach for evaluating trustworthiness of cloud services      
28 Yu (2014) A framework for personalized service recommendation in the cloud      
29 Ma and Hu (2014) Cloud service recommendation using ternary interval numbers      
30 Zhang et al. (2012) A recommender system for cloud infrastructure services selection      

31
Ruiz-Alvarez and
Humphrey (2011)

An approach to cloud storage service selection based on matchmaking      

32
Baranwal et al.
(2014)

A framework for cloud service selection using ranked voting method      

33 Quinton et al. (2014) A selection and configuration of Cloud environments using SPL      
34 Wittern et al. (2012) Cloud service selection based on variability modelling      

35 Quinton et al. (2013)
An approach for cloud configurations using feature models and
ontologies

     

Count 3 8 6 9 5 1
 = Supported  = Not Supported

62

2.4 EMERGENT PERSPECTIVES IN CLOUD SERVICE SELECTION

Consequent on the findings from the comparative survey, a number of emerging

perspectives on the key ingredients of a service selection framework that will improve the

user experience in a cloud service e-marketplace are highlighted in this section. These

emergent perspectives cover the key requirements for a cloud service selection

framework that will suffice for a cloud service e-marketplace context, as well as relevant

concepts that enable the realisation of the framework.

2.4.1 Key Requirements for Cloud Service Selection Framework

Addressing some of the open issues based on the comparative review is the first step to

uncovering the requirements for an effective technique suitable for the e-marketplace

context. The key requirements for a cloud service selection framework are listed and

described as follows:

a) Requirement 1: Organise and Compose Cloud Ecosystem Atomic Services

A cloud marketplace is an ecosystem of heterogeneous services from multiple providers.

The different ways in which these services are aggregated creates a plethora of potential

offerings with varied QoS factors that can satisfy complex user needs of users (Barros and

Dumas, 2006). There is a need to explicitly capture the cloud service attributes

(functional and non-functional), and the cross-service relationships and constraints that

guide the cloud service compositions (Akolkar et al., 2012) in a logical and structural

manner (Wittern et al., 2012). Previous works have proposed the use of feature models to

capture the variabilities of Cloud services and applied automated means generate valid

cloud service offerings (Wittern et al., 2012; Quinton et al., 2014). However, users are

still expected to painstakingly configure cloud services, with the assumption that all users

are full domain experts. A cloud marketplace should among others, provide a real online

shopping experience similar to existing e-commerce platforms (Akolkar et al., 2012;

Menychtas et al., 2014), where available service offerings can be listed in the marketplace

catalogue and seamlessly updated in a manner completely transparent to the users.

63

b) Requirement 2: Elicit both Fuzzy QoS Preference and Aspirations from users

An accurate elicitation of user requirements involves the interpretation of fuzzy

expressions in evaluating services (Qu and Buyya, 2014; Esposito et al., 2016; Sun et al.,

2014). The ability to naturally express vague preferences or aspiration using linguistic

terminologies is a better way to explore cloud services for selection purposes and would

enable easier and quicker expression of requirements (Esposito et al., 2016; Qu and

Buyya, 2014; Gatzioura et al., 2012). For example, it is more convenient to use the

following linguistic terminologies when expressing QoS aspiration “the threshold of

reliability metric should be in the vicinity of x”, or “cost should be the in the range of x

and y” or “High availability close to the value z” etc., (where x, y and z are specific QoS

values).

Furthermore, the advantage of pairwise comparisons is that it allows the derivation of

priority weights of the criterion from comparison matrices, rather than arbitrarily

assigning weights directly (Javanbarg et al., 2012). Since human judgment is shrouded

with impression and vagueness in most practical cases, users might be reluctant or unable

to assign exact numerical values in comparison judgements (Mikhailov and Tsvetino,

2004). It has been proposed that a better approach to capturing the user’s claim about the

relative importance of criteria is to delineate comparison ratios as fuzzy numbers (Cakir

and Canbolat, 2008; Tajvidi et al., 2014; Mikhailov and Tsvetino, 2004). In addition, a

cloud service selection framework should consider both users’ QoS preferences and

aspiration in the service evaluation process.

c) Requirement 3: Evaluation and Rank a Large Assortment of Service

Alternatives

Cloud services are characterised by multiple QoS attributes, and there is need to evaluate

the overall performance of all services by some utility functions, with respect to users’

QoS requirements. The cloud e-marketplace context requires approaches that can deal

efficiently with a large number of alternatives without accruing high computational

overhead (Dastjerdi et al., 2015).

64

d) Requirement 4: Integrate Fuzzy-based User Interfaces

The user interface underscores input and output features of the cloud service e-

marketplace; input is how a user expresses QoS requirements, whereas the output

presents the result of those requests to the user (Galitz, 2007). In eliciting users’

requirements, user interface designs that intuitively capture these requests that are

subjective in nature are desirable, because the user’s perception of the interface affects

attitude to what comes out through it (Sundar et al., 2014), and ultimately affects user

satisfaction (Kuniavsky, 2003; Sundar et al., 2014). Furthermore, integrating fuzzy-

enabled web-based widgets for eliciting vague preferences and aspirations under one

integrated visual interface can also enhance user experience.

e) Requirement 5: Visualise Cloud Service Ranking Results

One of the laws of e-commerce states that if users cannot find it, they cannot buy it either;

the primary medium of user’s engagement of the cloud service e-marketplace is visual,

enabling an information visualisation mechanism aid effective user interaction and

simplifies decision making. Most cloud service selection approaches act like black boxes

that generate a ranked list of cloud services without providing insight into the basis of the

rankings (Chen et al., 2013). Cloud service selection frameworks should incorporate

visualisation mechanism that improves users’ understanding of the rationale of rankings.

f) Requirement 6: Take into cognizance usability and user experience factors

Apart from the efficiency and accuracy evaluations which are predominant in the

literature, more user studies should be carried out on techniques to ascertain its suitability

for a cloud service e-marketplace context. The user interface obscures all the technical

and computational processes underlying marketplace operations while showcasing a

productive, enjoyable and satisfying means to explore and select services. Cloud service

selection frameworks should include unobtrusive graphical user interfaces to both

exploration and selection. An unduly complex design increases the difficulty in

performing the both tasks, and negatively impacts on user experience (Galitz, 2007).

65

2.4.2 Considerations for the Design of a framework for Cloud Service Selection

Having identified the key requirements for a service selection technique that will suffice

for selecting services in a cloud service e-marketplace, this subsection elaborates on

considerations of relevant concepts and techniques that could realise a cloud service

selection framework that meets these requirements. These concepts and techniques

formed the basis for the framework proposed in this study. The concepts and techniques

include the following: i) Organize cloud ecosystem atomic services and populate the

service e-marketplace directory; ii) Elicit user fuzzy QoS preferences and aspirations; iii)

Perform QoS-based evaluation and ranking of cloud service alternatives with respect to

user QoS requirements; iv) Wrap the underlying functionalities of (i), (ii) and (iii) in a

tidy graphical user interface. Figure 2.7 shows the elements of the considerations for the

design of a cloud service selection framework, and details concerning each of the

elements are presented in subsequent sections.

Figure 2.7: Considerations for designing a suitable framework

Source: Researcher (2016)

2.4.3 Variability Management for Atomic Services in Cloud Ecosystems

The cloud service e-marketplace provider is the one who manages the ecosystem and

decides on the strategies for enhancing the value chain of the ecosystem. Enhancing the

value inherent in the ecosystem entails deciding how services can be combined to deliver

maximum value. Besides, to determine valid combinations of service in an ad hoc

manner, would undermine the net value characteristic of ecosystems; more so, such ad

hoc processing is error-prone and time-consuming (Deelstra et al., 2005; White et al.,

Proposed
Framework

Organize
Ecoystem
Services

Elicit Fuzzy
Requirements

Information
Visualization

66

2008; Rabiser et al., 2009). Therefore, to adequately estimate the value of the ecosystem,

first, there is a need for a logical hierarchical arrangement of all the participating services

into a knowledge model based on a specific combinatorial blueprint and, secondly, a

means to automatically derive useful information from the analysis of the logical

hierarchy of these services. Automating the analysis of the ecosystem knowledge model

produces a number of useful information about the ecosystem and aids the e-marketplace

to make informed decisions about the ecosystem. For example, the provider may be

interested in knowing how many valid combinations are possible in the ecosystem; this

information implies the number of composite services indexed in the service directory

and provisioned via the e-marketplace. Potentially, this number can be very high

depending on the number of collaborating atomic services and knowing the number of

possible composite services is enough basis for the e-marketplace provider to decide the

range of services the e-marketplace would offer. Other useful information is identifying

atomic services that will not fully benefit from the value chain in the ecosystem (partly or

fully due to their presence in a few or none of the possible combinations). Consequently,

a structured model and automated analysis would offer some strategic benefit to service

providers, so that service providers can estimate the profitability of the e-marketplace

platform to make strategic decisions for improving the competitiveness in the ecosystem.

The structure of the cloud ecosystem is analogous to the concepts of Software Product

Line Engineering (SPLE) and product configuration (PC) (Hubaux et al., 2012; Berger et

al., 2014) Therefore, the variability modelling techniques used in the SPLE and PC is

applicable and can be adapted to effectively structure the hierarchical interrelationships

among the ecosystem services. The PC domain is concerned with the ability to mass

customise products targeted at specific requests and/or user segments, which is a crucial

determinant of reducing lead time, and increase business process efficiency in mass-

manufacturing (Haug et al., 2011). Mass-customization techniques have been applied to

concrete products, for example, bicycles (bikeconfig.com) and baby strollers

(bugaboo.com), as well as insubstantial products like software and services (e.g.

insurance, tourism, etc.). Configuration software is employed to adapt products or

services to suit specific requirements by combining components, characterised by

specified attributes, based on the constraints that underlay the valid combinations of those

components (Hvam et al., 2008). On the other hand, a software product line is a “set of

software-intensive systems that share a common, managed a set of features satisfying the

67

specific needs of a particular market segment or mission and that are developed from a

common set of core assets in a prescribed way” (Bass and Kazman, 2003). The

cornerstone of achieving product configuration and coming up with software instance

from a software product line is:

i. The knowledge representation of the component/software features based on

variabilities and commonalities;

ii. The computer-aided reasoning techniques employed to support both product

configuration and software product line;

On the grounds that the domains of product configuration and software product lines

share a lot of similarities with the concept of cloud ecosystems, the application of

variability modelling and automated reasoning techniques to organise and populate the

service directory with valid composite services were explored in this study.

I. Variability Management Techniques

Variability models are used to describe and centrally organise variabilities in the product

line and product configuration and to support product derivation and configuration.

Modelling variability is the core of any software product line engineering and product

configuration endeavour and has received a lot of attention in the research community,

with several techniques reported in the literature (Deelstra et al., 2005; Czarnecki et al.,

2012; Hubaux et al., 2012). These approaches are classified into two main categories:

Feature-based Modelling and Decision-based Modelling. While feature model first

abstracts the product line constituents as hierarchical features with cross-tree

relationships, creating a basis for product derivation, decision models are the set of

decisions that are adequate to distinguish among the products of an application

engineering product line and to guide the adaptation of outputs of application

engineering. For the purpose of this study, the feature-based modelling approach was

adopted since both approaches are equally viable for managing variability (Czarnecki et

al., 2012).

a) Feature Model

In software product line engineering, a feature model is a graphical representation of

common aspects and di�erences in a collection of products in a product line and is used

68

to structure and constrain the product options. A feature is defined as the end-users’

understanding of the capabilities of systems in the domain (Berger et al., 2014). A feature

model is a hierarchically arranged collection of features and consists of the

interrelationships between a parent feature and its child features, and a set of cross–tree

constraints that define the criteria for feature inclusion or exclusion. A feature model

represents in a single model, all possible alternatives that the scope of the feature covers.

Each solution is a valid instance of the feature model.

In this study, each participating atomic service has been defined and abstracted as a

feature in a feature model, and the range of possible solutions that are obtainable from the

ecosystem is defined by the entire model. Cross-tree constraints provide a ‘legal’ basis of

how services and their QoS attributes can be legally combined. Benavides et al.

(Benavides et al., 2010), identified three main types of feature-based models: basic

feature models (Kang et al., 1990), cardinality-based feature models (Czarnecki et al.,

2005); and extended feature models (Benavides et al., 2006).

The basic feature model describes three feature types-Mandatory, Optional, and

Alternative, and two cross-tree constraints-Requires and Excludes. A mandatory feature

is a feature that must be included in a product, while an optional feature is a feature that

may or may not be included in a feature. Given a set of features from which only one

feature is selected to be included in a product is called an alternative feature. However,

the inadequacy of alternative relationship to model situations with multiple children

features motivated cardinality-based feature model, in which numbers are introduced to

denote the multiplicities of the set of features of the basic feature model.

Although basic feature model and cardinality-based feature model can be used to provide

a basis for automated configuration of actual products, there is need to sometimes include

in the feature model quality information about features (such as non-functional attributes).

In extended feature models, feature model is annotated with quality information; the

analysis could use these qualities as a basis to determine valid combinations. In classic

software product line domain, extended feature models are desirable variability modelling

techniques for modelling cloud ecosystem; they can capture cloud services, their QoS

attributes and interrelationships constraints, which is important in order to generate valid

combinations to populate the e-marketplace service directory; an example of a feature in

69

the extended feature model is shown in Figure 2.8. Benavides et al. (2010) presented the

concepts that describe the extended feature model as follows:

i. Feature: A functional characteristic of a product or an increment in product

functionality. E.g. an SMS notification cloud service, or an email cloud service

ii. Attribute: Any measurable characteristic of a feature that can be measured. For

example, the SMI factors defined by the CSMIC are measurable entities that form

the attributes of a cloud service. For Example, reliability is a cloud service QoS

attributes.

iii. Attribute domain: The attribute domain specifies the range of values that an

attribute can assume. Domain covers either qualitative or quantitative (discrete

and continuous) values corresponding to the heterogeneous QoS of cloud services.

iv. Attribute value: Attribute values define the actual value that belongs to a

particular domain. The attributes values of a concrete product are usually an

aggregation of all the values of corresponding features of the final product. For

example, the cost of a product aggregates all the cost of the features included in a

product.

Figure 2.8: Extended Feature Model
Showing, mandatory, alternative, Optional and ‘Or’ features and relationships

Adapted from Benavides et al. (2010)

b) Automated Analysis of Feature Model

Deriving useful information from the ecosystem model requires an automated mechanism

that is able to reason on and analyse the knowledge model upon which the service

interrelationship is built (Benavides et al., 2006; Benavides et al., 2010; Karataş et al.,

2012; Elfaki et al., 2012). Automated analysis of feature models uses computer-aided

mechanisms to extract important information from feature models (Batory et al., 2006;

Benavides et al., 2010). The automated approach entails mapping the feature models into

a specific formal logic-based representation, which becomes inputs to solvers, and

70

analysis operations are performed to obtain useful information. A Solver is a software

package that accepts formal representations as inputs and determines some satisfiability

criteria (Benavides et al., 2010). Logic representations are classified into description

logic, propositional logic, and constraint programming.

i. Description Logic- Description logic represents a family of formal languages

used to conceptualise, reason about knowledge and are more expressive than

propositional logic. Feature models are mapped into description logic formalism

and logic reasoners such as RACER or Pellet are used for analysis and provide

explanations for the result.

ii. Propositional Logic- Propositional logic (PL) is the branch of logic that studies

propositions defined over a set of Boolean variables and the logical operators: ൓	,

∧, ∨, ⇒ ܽ݊݀	 ⇔. In the PL approach, the feature models are translated into a

propositional formula and solvers are used to perform analysis operations based

on the propositional formulae. The propositional formulae is either encoded as a

conjunctive normal form (CNF), and then solvers such as satisfiability solvers

(SAT solvers) is employed to perform, or as Directed Acyclic Graph (DAG), used

by Binary Decision Diagram Solvers (BDD solver) (Benavides et al., 2010;

Benavides et al., 2006).

iii. Constraint Programming- Constraint programming uses constraints as a

programming method to encode and solve Constraint Satisfaction Problems

(CSP). Formally, CSP is fined as:

Definition 2.2 (CSP): A Constraint Satisfaction Problem (CSP) is defined as a finite set

of variables, each of which is associated with a finite domain, and a set of constraints that

restrict the values the variables can simultaneously take.

Feature models are mapped into a CSP model and CSP solvers use constraint

programming to find an assignment for each variable that satisfies the constraints

(Benavides et al., 2010). The mapping from a feature model to a particular CSP solver is

less straightforward than with propositional logic because the encoding structure is

solver-dependent. However, the following steps apply (Benavides et al., 2010):

71

i. Step 1: Each feature of the feature model maps to a variable of the CSP with a

domain of ሾ0. .1ሿ (i.e. true or false), depending on the kind of variable supported

by the solver.

ii. Step 2: Each relationship in the model is mapped into a constraint depending on

the type of relationship.

iii. Step 3: The resulting CSP is the one defined by the variables of step 1 and the

corresponding domains and constraints that are the conjunction of all precedent

constraints plus additional constraint assigning true to the variable that represents

the root, depending on the variable’s domain.

The rules mapping feature model to propositional logic and CSP are presented in Table

2.12.

Table 2.12: Feature Model Mapping to CSP and PL

Relationships in CEFM CSP Mapping PL Mapping

Mandatory

ܣ ൌ ܣ ܤ ↔ ܤ

Optional

݂݅ሺܣ ൌ 0ሻ
ܤ ൌ 0

ܤ → ܣ

OR

݂݅ሺܣ ൐ 0ሻ
,ଵܤሺ	݉ݑܵ					 ଶܤ ௡ሻ݅݊ܤ… ሺ1…݊ሻ
 ݁ݏ݈݁

1ܤ ൌ 0, 2ܤ ൌ 0. . . ௡ܤ ൌ 0

ܣ ↔ ሺܤଵ ∨ ଶܤ ∨ …∨ ௡ሻܤ

Alternative

݂݅ሺܣ ൐ 0ሻ
,ଵܤሺ	݉ݑܵ					 ଶܤ ௡ሻ݅݊ܤ… ሺ1…1ሻ
 ݁ݏ݈݁

1ܤ ൌ 0, 2ܤ ൌ 0. . . ௡ܤ ൌ 0

൫ܤଵ ↔ ሺ൓ܤଶ ∧ …∧ ൓ܤ௡ ∧ ሻ൯ܣ ∧
൫ܤଶ ↔ ሺ൓ܤଵ ∧ …∧ ൓ܤ௡ ∧ ሻ൯ܣ ∧	
ሺܤ௡ ↔ ሺ൓ܤଵ ∧ ൓ ଶܤ …∧ ൓ܤ௡ିଵ ∧ ሻሻܣ

Requires

݂݅ሺܣ ൐ 0ሻ
ܤ					 ൐ 0 ܣ → ܤ

Excludes

݂݅ሺܣ ൐ 0ሻ
ܤ					 ൌ 0

൓ሺܣ ∧ ሻܤ

Source: Benavides et al. (2010)

c) Automated Analysis Operations on Feature Models

After the transformation of the knowledge model into a formal logic-based representation,

mathematical operations based on the semantics of the underlying logic-representation

can be performed to derive useful information about the feature model. A number of

72

analysis operations exist (Benavides et al., 2006; Benavides et al., 2010), but the

following analysis operations are relevant to the cloud ecosystem context are: Determine

the Satisfiability of a feature model, solutions count, and generate all the valid solutions.

Next, each of the operations is discussed in details.

i. Determine the Satisfiability of a model- This operation examines the feature

model and determines returns a verdict that determines the satisfiability of the

feature model, by telling if the feature model is void or not. A feature model is

said to be satisfiable, when at least one valid combination, can be derived from it.

ii. Count Number of Products- This operation returns the number of valid

combinations that can be derived from the feature model. The e-marketplace

provider can estimate at every point the number of services that can be offered in

the e-marketplace.

iii. Generate all the valid products- This operation generates all valid combinations

in the feature model that satisfies all the constraints in their interrelationship. In

the context of this study, the set of valid combinations forms the set of services

from which the user selects a cloud service that approximates user requirements.

II. Feature Modelling for Cloud Service Ecosystem

Based on the foregoing discussions, Figure 2.9 depicts a way of organising ecosystem

information into a model for obtaining useful information pertinent to operationalizing

the cloud service e-marketplace:

Figure 2.9: Process for Organising and Composing Ecosystem Atomic Services

Source: Researcher (2016)

73

One way to model the cloud ecosystem is the adopt feature models (Berger et al., 2014);

and term Cloud Ecosystem Feature Model (CEFM) can be adopted. The CEFM employs

the extended feature model due to its flexibility for modelling of services, their QoS and

the constraints that exist among them. This decision is further strengthened by the

availability of existing tool support. The CEFM can then be encoded as a formal

representation using constraint programming approach. The CSP-based logic encoding

was engaged in this study for its suitability for automated reasoning on attributed feature

models, such as CEFM. The CSP-based encoding could then be cast into the solver to

perform automated analysis of the CEFM. The overall QoS attributes of the valid

combinations are determined by the QoS factors of constituent services. The result of the

analysis operations is used to update the e-marketplace service directory with candidate

solutions that would be offered via the e-marketplace platform (Wittern et al., 2012).

However, this approach also automatically captures scenarios of entrants and exits of

services. With each case of entrants or exists based on the stated entrance and exit

policies of the e-marketplace, the CEFM is altered; and a seamless automated update of

the e-marketplace service directory can still be achieved.

2.4.4 Fuzzy-Oriented Elicitation of User QoS Requirements

An accurate elicitation of user requirements involves the interpretation of fuzzy

expressions and the use of this information in evaluating service alternatives. The

difficulty imposed by expecting users to use exact or crisp values when expressing

requirements necessitates the employment of uncertainty theories, such as fuzzy set

theory, to effectively capture and interpret the vagueness that characterizes user QoS

requirements for services (Qu and Buyya, 2014; Esposito et al., 2016; Sun et al., 2014).

To this end, vague QoS preferences or aspirations can be expressed using linguistic

terminologies, which is a preferable mode of communicating such requirements (Esposito

et al., 2016; Qu and Buyya, 2014; Gatzioura et al., 2012). This section discusses how

fuzzy set theory applies in the elicitation of user’s QoS preferences and aspirations. More

specifically, the preference weights derivation is achieved using the fuzzy pairwise

comparison of the fuzzy extension of the AHP technique, Fuzzy AHP (or FAHP). Also,

the fuzziness in user’s QoS aspirations can be elicited and analysed as a system of fuzzy

goals and constraints using fuzzy linguistic variables and linguistic hedges. The decision-

making technique used to determine optimal service alternative is based on fuzzy multi-

74

objective optimisation, in which the objectives of the user, which is mainly to maximise

their private utility (of the most optimal alternative available) while satisfying their

aspiration and constraints. A depiction of a proposed fuzzy decision-making model is

shown in Figure 2.10.

Figure 2.10: User Requirements Elicitation Model

Source: Researcher (2016)

I. Overview of Fuzzy Set Theory

Many classes of objects encountered in the real world do not have precisely defined

inclusion criteria, e.g. the class of expensive holiday resorts, the class of cheap cars, etc.,

and such class expressions underlie human judgements, particularly in decision making

(O’Hagan, 1993). Fuzzy Theory, proposed by Zadeh (Zadeh, 1974), is one way to handle

such vagueness. The use of fuzzy theory is a potent tool that allows us to represent

objects or concepts in a vague or ambiguous way, similar to a human concept and thought

process (Bai and Wang, 2006). However, a formal definition of a fuzzy set is given as

follows:

Definition 2.3: Let ܺ ൌ ሼݔሽ denote a collection of objects denoted generically by	ݔ. Then

 :is a set of ordered pairs ܺ	݊݅	ܣ	ݐ݁ݏ	ݕݖݖݑ݂

ܣ ൌ ൛൫ݔ, ,ሻ൯ൟݔ஺ሺߤ ݔ ∈ ܺ (2.1)

:஺ߤ and ,ܣ	݊݅	ݔ	ሻ is the grade membership ofݔ஺ሺߤ ܺ → is a function from ܺ to a ܯ

space	ܯ, called the	membership	space; ܯ represents the interval ሾ0,1ሿ, with 0 and 1

representing the lowest and highest membership grades respectively.

a) Basic Definitions of Fuzzy Sets

Definition 2.4 (Intersection): Intersection (or logical and) is the membership function of

the intersection of two fuzzy sets ܣ and ܤ defined as:

μ஺∩஻ሺܺሻ ൌ min൫μ஺ሺݔሻ, μ஻ሺݔሻ൯, ݔ∀ ∈ ܺ (2.2)

Linguistic
Variable &
Membership
Function

Aspiration
Elicidation

Fuzzy AHP

Pairwise comparsion
for Preference

weight Derivation

User QoS
Requirement

75

Definition 2.5 (Union): Union (or exclusive or) is the membership function of the union

of two fuzzy sets ܣ and ܤ defined as:

μ஺∪஻ሺܺሻ ൌ max൫ μ஺ሺݔሻ, μ஻ሺݔሻ൯, ݔ∀ ∈ ܺ (2.3)

b) Linguistic Variable

To overcome the complexity involved in quantifying certain real world phenomena,

Zadeh (1974) introduced the notion of linguistic variables to conveniently describe and

quantify real-world concepts using linguistic terminologies. A linguistic variable is

decomposed into a set of linguistic terms or values, and each term (or value) represents a

fuzzy set and makes up a portion of the variable’s domain (or Universe of Discourse). A

linguistic term can be described using a fuzzy number, connecting the linguistic variable

to a base numeric value, and are defined by an associated membership function. Formally,

the linguistic variable is defined as follows:

Definition 2.9: A linguistic variable is characterised by a quintuple ሺݔ, ܶሺݔሻ, ܷ, ,ܩ ෩ሻܯ

in which ݔ is the name of the variable, ܶሺݔሻ (or simply	ܶ) denotes the term set of	ݔ, that

is, the set of names of linguistic values of	ݔ. Each of these values is a fuzzy variable,

denoted generically by ܺ and ranging over a universe of discourse	ܷ, which is associated

with the base variable	ܩ ;ݑ is a syntactic rule (which usually has the form of a grammar)

for generating the name,	ܺ, of values of ܯ .ݔ is a semantic rule for associating with each

ܺ its meaning. ܯ෩ሺܺሻ	is a fuzzy subset of ܷ. A particular	ܺ, that is, a name generated

by	ܩ, is called a term.

c) Fuzzy Numbers

A much larger class of fuzzy sets represents approximate numbers of one type or another.

Some of these fuzzy sets are explicitly “fuzzified” numbers, whereas others simply

represent fuzzy numeric intervals over the domain of a particular variable. Fuzzy numbers

can take many shapes: bell curves, triangles, and trapezoids. Within each of these shapes,

the actual meaning of the fuzzy set depends on the width or spread of the set itself. The

flexibility and robustness of fuzzy sets are made possible by fuzzy numbers. A bell-

shaped, triangular-shaped, or trapezoid-shaped fuzzy set represents a central value and is,

in essence, a fuzzy number.

76

i. Bell Shaped Fuzzy Number- Figure 2.11 illustrates a typical bell-shaped fuzzy

number. This is a numeric quantity, Around 20. The fuzzy set About 20 shows

two principal attributes of fuzzy numbers: a central value and a degree of spread

around the value.

`
Figure 2.11: Bell-shaped fuzzy set: ‘Around 20’

Source: Cox (2005)

ii. Trapezoid fuzzy number- The descriptions of a trapezoidal number are

somewhat different from the bell and triangular numbers because the set does not

hinge around a single central crisp value. However, a trapezoidal fuzzy number

can be considered a special case of the triangular fuzzy set (with a plateau width

of zero) (Cox, 2005). The trapezoidal fuzzy number is defined by:

ሻݔெ෩ሺߤ ൌ

ە
ۖ
۔

ۖ
ۓ
ݔ െ ܽ
ܾ െ ܽ

, ܽ ൑ ݔ ൑ ܾ

1,																		ܾ ൑ ݔ ൑ ܿ
݀ െ ݔ
݀ െ ܿ

, ܿ ൑ ݔ ൑ ݀

0, ݁ݏ݅ݓݎ݄݁ݐܱ

	 (2.4)

iii. Triangular fuzzy number- Triangular fuzzy number (TFN) is popular for its low

computational cost; however, it is less flexible than a bell-shaped fuzzy number.

The form of a triangular fuzzy number is	 ෤ܽ ൌ ሺ݈, ݉, ݈ ሻ, whereݑ ൑ ݉ ൑ ݈ and ,ݑ

is the lower bound of ෤ܽ, ݉ is the middle value of ෤ܽ, while ݑ is the upper bound of

෤ܽ. A TFN can be described by:

ሻݔெ෩ሺߤ ൌ

ە
ۖ
۔

ۖ
ۓ
ݔ െ ݈
݉ െ ݈

, ݈ ൑ ݔ ൑ ݉

ݑ െ ݔ
ݑ െ݉

, ݉ ൑ ݔ ൑ ݑ

0, ݁ݏ݅ݓݎ݄݁ݐ݋

	 (2.5)

77

d) Membership Function

A Membership Function (MF) is considered as a curve that defines how a crisp input is

mapped to a membership grade. Each fuzzy set, quantified by a linguistic variable, is

defined by an associated membership functions. There are several types of membership

functions, which includes (but not limited to): triangular, trapezoidal, Gaussian, bell-

shaped, and sigmoidal MF. The type of MF to employ depends on the specific situation

(Bai and Wang, 2006).

i. Triangular membership function- A triangular MF is described by three

parameters ܽ, ܾ and	ܿ; where ܽ	and	ܿ, is located at the base of the triangle, and the

parameter ܾ locate the peak. Variable ݔ is the crisp value, whose membership

grade is to be determined by the membership function within the UoD. The

triangular MF is defined as follows:

݂ሺݔ; ܽ, ܾ, ܿሻ ൌ max ቀmin ቀ
ݔ െ ܽ
ܾ െ ܽ

,
ܿ െ ݔ
ܿ െ ܾ

ቁ , 0ቁ (2.6)

ii. Trapezoidal membership function- A trapezoid MF is described by four

parameters	ܽ, ܾ, ܿ and	݀; where ܽ	and	݀, is located at the base of the trapezoid, and

the parameters ܾ and ܿ is located at the ‘shoulder’. The shoulder of a trapezoid can

either be narrow or wide. Variable ݔ is the crisp value, whose membership grade

is to be determined by the membership function within the UoD. The trapezoid

MF is defined as follows:

݂ሺݔ; ܽ, ܾ, ܿ, ݀ሻ ൌ max ൬min ൬
ݔ െ ܽ
ܾ െ ܽ

, 1,
݀ െ ݔ
݀ െ ܿ

൰ , 0൰	 (2.7)

iii. Gaussian membership function- A Gaussian MF is described by two

parameters	ܿ and	ߪ; where c, is the centre of the distance from the origin,

corresponding to the centre of the graph, ߪ is the width of the graph, while ݔ is the

crisp value, whose membership grade is to be determined by a membership

function. The Gaussian MF is defined as follows:

݂ሺݔ; ܿ, ሻߪ ൌ ݁
ିሺ௫ି௖ሻమ

ଶఙమ
(2.8)

78

iv. Bell-shaped membership function- A bell-shaped MF has a symmetrical shape

and it is described by three parameters ܽ, ܾ and	ܿ. The parameter c is the centre of

the curve, ܾ is usually positive, (a negative ܾ value would produce an inverted

bell), while ܽ represents the width of the curve. The bell-shaped MF is smooth

and non-zero at all possible points of	ݔ. The bell-shaped MF is defined as follows:

݂ሺݔ; ܽ, ܾ, ܿሻ ൌ
1

1 ൅ ቚݔ െ ܿ
ܽ ቚ

ଶ௕ (2.9)

v. Sigmoidal membership function- Generally, a sigmoidal MF is open to the left

or right and has two parameters ܽ and	ܿ. The parameter ܿ is the centre of the

curve, while ܽ determines the gradient of the curve at crossover point	ݔ ൌ ܿ; and

determines the direction (left or right) of the opening of the curve (when ܽ is

positive, MF curve opens to the right and left otherwise). In linguistic terms, the

MF can be used to represent concepts such as ‘very large’ or ‘very negative’,

depending on the sign of parameter	ܽ. The sigmoidal MF is described as follows:

݂ሺݔ; ܽ, ܿሻ ൌ
1

1 ൅ ݁ି௔ሺ௫ି௖ሻ
(2.10)

II. Preference Weight Derivation Using Fuzzy Pairwise Comparison

Although the AHP method proposed by (Saaty, 1980) allows for some flexibility in

judgment by providing intermediate values in the Saaty’s discreet scale, it requires that

users make comparison judgements based on the crisp or exact numerical values (Cakir

and Canbolat, 2008). However, in many practical cases, the human judgment is shrouded

with impression and vagueness and users' decision- makers might be reluctant or unable

to assign exact numerical values to the comparison judgements (Mikhailov and Tsvetino,

2004). Comparison judgement using on crisp numerical values lacks the flexibility and

robustness required to effectively capture the vague perception inherent in human

judgement, and sometimes, lead to unsatisfactory decisions (Yang and Chen, 2004; Cakir

and Canbolat, 2008; Torfi et al., 2010; Javanbarg et al., 2012; Mikhailov and Tsvetino,

2004). It has been proposed that a better approach to capturing the user’s claim about the

relative importance of criteria is to define comparison ratios as fuzzy numbers (Yang and

Chen, 2004; Cakir and Canbolat, 2008; Torfi et al., 2010; Javanbarg et al., 2012;

79

Mikhailov and Tsvetino, 2004). The application of a fuzzy model to handle the user’s

vague perception of priorities of all QoS factors is presented in this section.

a) Main Steps in Fuzzy AHP

The main steps of fuzzy AHP are as follows: Establish the dimension for evaluation using

fuzzy numbers and linguistic variables; Perform pairwise comparison judgments; Check

consistency of judgments, and determine the fuzzy priority weights.

i- Step 1: Evaluation Dimension using Fuzzy Number and Linguistic Variables

The blurriness in human judgement can be best captured as an approximation of the crisp

or exact comparison ratio; such that, when an exact comparison ratio	ܽ௜௝ is represented as

a fuzzy number,	 ෤ܽ௜௝, the assessment of users’ judgement can correspond to ‘about ܽ௜௝’ or

‘close to ܽ௜௝’ which is closer to how humans think. Fuzzy linguistic variables are used to

define comparison judgement values and to represent the underlying fuzzy numbers; and

Triangular Fuzzy Numbers (TFN), characterised by triangular membership function, are

popularly used in this regards. As earlier discussed, linguistic variables are variables,

whose values are words or sentences in a natural language and each fuzzy comparison

judgment can be performed by using linguistic terms such as “absolutely important”,

“very strongly important”, “essentially important”, “weakly important”, and “equally

important” with respect to a fuzzy comparison scale (as shown in Table 2.13). So rather

than users making comparison judgements mapped to exact values, Nine fuzzy linguistic

terms, defined by TFN would naturally capture the imprecision and vagueness inherent in

human judgment and preferences (Cakir and Canbolat, 2008).

ii- Step 2: Perform Pairwise Comparison Judgements

Based on the established dimensions, users can use linguistic terms to evaluate the

importance of QoS criteria, thus performing the mutual pairwise comparison for each of

the QoS factors. The user assigns a fuzzy weight that reflects the user’s subjective

preference using fuzzy linguistic terms. The total number of comparisons is	݊ሺ݊ െ 1ሻ/

2,	where	݊	is the number of criteria, and the output of the pairwise comparisons is

captured in a comparison matrix as shown in Figure 2.12.

80

Table 2.13: Fuzzy Version of Saaty’s 9-point Comparison Scale

Linguistic
Term

Description

Comparing Criterion ࢏ to
Criterion ࢐

Comparing Criterion ࢐ to
Criterion ࢏ (Reciprocal)

Saaty
Scale

Fuzzy
Number

TFN
Saaty
Scale

Fuzzy
Number

TFN

Equally
Important

Criterion ݅ is fuzzily equally as
important as criterion ݆ 1 1෨ ሺ1, 1, 2ሻ 1 1෨ିଵ ൬

1
2
,
1
1
,
1
1
൰

Moderately
Important

Criterion ݅ is fuzzily moderately
more important than criterion ݆ 3 3෨ ሺ2, 3, 4ሻ

1
3

 3෨ିଵ ൬
1
4
,
1
3
,
1
2
൰

More
Important

Criterion ݅ is fuzzily more
important compared to criterion ݆ 5 5෨ ሺ4, 5, 6ሻ

1
5

 5෨ିଵ ൬
1
6
,
1
5
,
1
4
൰

Strongly
Important

Criterion ݅ is fuzzily more
strongly important than criterion ݆ 7 7෨ ሺ6, 7, 8ሻ

1
7

 7෨ିଵ ൬
1
8
,
1
7
,
1
6
൰

Absolutely
Important

Criterion ݅ is fuzzily absolutely
more important than criterion ݆ 9 9෨ ሺ8, 9, 9ሻ

1
9

 9෨ିଵ ൬
1
9
,
1
9
,
1
8
൰

Intermittent Values between two adjacent scales

2 2෨ ሺ1, 2, 3ሻ
1
2

 2෨ିଵ ൬
1
3
,
1
2
,
1
1
൰

4 4 ̃ ሺ3, 4, 5ሻ
1
4

 4෨ିଵ ሺ
1
5
,
1
4
,
1
3
ሻ

6 6 ̃ ሺ5, 6, 7ሻ
1
6

 6෨ିଵ ሺ
1
7
,
1
6
,
1
5
ሻ

8 8 ̃ ሺ7, 8, 9ሻ
1
8

 8෨ିଵ ሺ
1
9
,
1
8
,
1
7
ሻ

Criterion ݅ or criterion ݆ is compared to itself (i.e.
݅ ൌ ݆, representing the diagonals)

1 1ሖ
ሺ1, 1, 1ሻ

1 1ିଵሖ
ሺ1, 1, 1
)

Source: Ayhan (2013)

Figure 2.12: Fuzzy Comparison Matrix

Source: Ayhan (2013)

iii- Step 3: Check Consistency of Judgement

Checking for consistency in comparison judgement is an important step before deriving

the priorities from the pairwise comparison matrix. Saaty’s AHP requires that the

regularity of the crisp comparison judgements be checked to ensure consistency. The

Consistency Ration (CR) is employed to check consistency in comparison judgement, and

is determined using the formula ܴܥ ൌ ஼ூ

ோூ
.

Where CI is the Consistency Index and defined as:	ܫܥ ൌ ఒ೘ೌೣି௡

௡ିଵ
 where ߣ௠௔௫ is the largest

Eigen value of comparison matrix and RI is the random index, a 9-point scale consistency

index generated through pairwise comparison. The value of CR is expected to be ൑ 0.1

81

for a matrix larger than 4 ൈ 4 (Saaty, 1990). However, for fuzzified comparison matrix,

Csutora et al. (Csutora and Buckley, 2001) provided a proof that, for a fuzzy, positive,

and reciprocal matrix	ܣሚ ൌ ሾ ෤ܽ௜௝ሿ, where	 ෤ܽ௜௝ ൌ ሺߙ௜௝, ,௜௝ߚ ,௜௝ߛ ௜௝ሻ, (a trapezoidal fuzzyߜ

number) select a value ෤ܽ௜௝ ∈ ሾߚ௜௝, ܣ	௜௝ሿ to generate a corresponding crisp matrixߛ ൌ ሾܽ௜௝ሿ.

The consistency of the generated matrix ܣ confirms the consistency of matrix	ܣሚ.

According to (Sun et al., 2014), ߚ௜௝ ൌ can be ܣ ௜௝, for TFN, and the crisp matrixߛ

generated using values	ܽ௜௝௠ ൌ ሺߚ௜௝ ൅ ௜௝ߛ 2⁄ ሻ of all the fuzzy numbers in fuzzy matrix	ܣሚ,

while the consistency ratio is computed.	

iv- Step 4: Determine Fuzzy Priority Weights to obtain Crisp Priority Weights

The fuzzy priority vector ݓ෥்can be obtained by applying prioritization methods, after

comparison matrix ܣሚ	passes the consistency check. Prioritization is the process of

deriving the priority values for column vector	்ݓ 	ൌ 	 ሾݓ௜ሿ, ݅	 ൌ 	1, . . . , ݊ from the

comparison judgment matrix	ܣሚ. There are two ways in which priorities can be derived

(Zhu et al., 2012):

i. By deriving fuzzy weights from the comparison matrix. For example, the

Logarithmic Least Square (LLS) method (Van Laarhoven and Pedrycz, 1983),

Lambda-Max Method and, the Geometric means method (Buckley’s Method)

(Buckley, 1985).

ii. Deriving a set of crisp weights directly from the comparison matrix. For example,

the Synthetic Extent Analysis method (SEA) (Chang, 1996), and the fuzzy

preference programming method (Mikhailov, 2003).

In the former category, fuzzy weights are converted to crisp weights by applying

defuzzification methods, whereas the defuzzification step is not required in the latter.

b) Overview of Buckley’s Prioritisation Method

Buckley (Buckley, 1985) initially investigated fuzzy weights and fuzzy utility for AHP

technique, extending AHP by the geometric mean method to derive the fuzzy weights.

The Buckley’s method considered a fuzzy positive reciprocal matrix ܣ ൌ ሾܽ௜௝ሿ extending

the geometric mean technique to define the fuzzy geometric mean of each row ̃ݎ௜ and

fuzzy weight	ݓ෥௜, corresponding to each criterion as follows:

82

௜ݎ̃ ൌ ቎ෑ ෤ܽ௜௝

௡

௝ୀଵ

቏

ଵ
௡

, ݅ ൌ 1,2, …݊ (2.11)

And the fuzzy weight is obtained by

෥௜ݓ ൌ ప෩ݎ̃ ⊗ ሺ̃ݎଵ 	⊕	 ଶݎ̃ ⨁ ଷݎ̃ ⨁…⨁ ௡ሻݎ̃ , ݅ ൌ 1,2, … , ݊ (2.12)

Where ෤ܽ୧୨ is fuzzy comparison value of dimension ݅ to criterion ݆, thus, ̃ݎ௜ is a geometric

mean of fuzzy comparison value of criterion ݅ to other criteria; ݓ෥௜ is the fuzzy weight of

the ݅௧௛ criterion, can be indicated by a TFN, ݓ ൌ ሺ݈ݓ௜,݉ݓ௜, ௜ݓݑ ௜, andݓ݉,௜ݓ݈	௜ሻ. Theݓݑ

stand for the lower, middle, and upper values of the fuzzy weight of the ݅௧௛ dimension

(Sun, 2010). Since the fuzzy weight ݓ෥௜is a fuzzy number, defuzzification is applied to

obtain crisp values using centre of area method. The result is then normalized to obtain

the weight vector. More details on the application of the Buckley’s method are available

in (Ayhan, 2013).

III. Aspiration Elicitation as Fuzzy Goals and Constraints

Fuzzy decision making is concerned with the decision-making process in which the goals

and/or the constraints are fuzzy in nature. In other words, the goals and/or constraint

constitute set of elements whose boundaries are not sharply defined, as they refer to an

objective which can be characterised as a fuzzy set in an appropriate space. Examples of a

fuzzy goal and constraints are “The Cost of the service should be low”, or “Cost should

be close to c; in the vicinity of c or substantially less than c”, where c is a specified

constant or cost value as indicated by the user. The linguistic words term “low”, “vicinity

of”, “close to” and “substantially less than” represent the source of fuzziness and model

human judgement. Bellman and Zadeh (Bellman and Zadeh, 1970) were the first to

explore decision-making problems in a fuzzy environment, and they introduced the

concepts of fuzzy decision based on fuzzy goals and fuzzy constraints. This is done with

the assumption that the goals and constraints are fuzzy, but the system under control (in

this case, the cloud service e-marketplace) is deterministic (Yager, 1977; Bellman and

Zadeh, 1970).

83

User’s QoS aspiration towards the selection of a cloud service can be modelled using

fuzzy goals and constraints. Modelling user’s aspiration as a combination of fuzzy goals

and constraints, based on the proposal in (Bellman and Zadeh, 1970; O’Hagan, 1993)

would allow cloud users to articulate QoS aspirations in a way that captures the

vagueness in such judgement. By illustration, a simple example of a fuzzy goal would be

that Security should be high, and a fuzzy constraint could be, it should be that the QoS

value of security should be substantially larger than a specific crisp threshold value, or in

the vicinity of a particular threshold value, or approximately within a given range.

As earlier mentioned, the italicised items represent the fuzziness inherent in the elicitation

process and are defined by linguistic variables, linguistic terms and linguistics hedges

characterised by different membership functions. Linguistic hedges are employed to

modify membership functions to further allow user naturally express their QoS

aspirations. Approximation Hedges are used as constraints on QoS goals. For example,

the user can express that security should be high and uses the approximation hedges to

indicate that the QoS value of security should be around, about or in the vicinity of a

specific threshold. The decision maker is often faced with the problem of selecting among

a set (usually finite) of alternatives while simultaneously satisfying a set of objective

criteria (goals) and observing (not violating) a set of constraints. The main contribution

of Bellman and Zadeh (1970) to this theory was in recognising that a ‘good’ decision had

to satisfy both goals and constraints and that for decision purposes, they should be treated

alike. That is to say, that a ‘good’ decision had to satisfy some conjunctive form of goals

and constraints associated with the decision-making environment. An optimal decision

would be one that ‘best’ satisfied all the criteria in some sense.

For example, Let	ܺ ൌ 	 ሼݔሽ, a set of alternatives. Then the fuzzy goal ܩ is represented as a

fuzzy set with the triangular membership function, denoted as:

ሻݔሺீߤ ൌ max ൬min ൬
ݔ െ ݈
݉ െ ݈

,
ݑ െ ݔ
ݑ െ݉

൰ , 0൰ (2.13)

Where ݈, ݉ and ݑ respectively correspond to values lower, medium and upper values of a

fuzzy set.

84

In the same regard, a fuzzy constraint,	ܥ, could be that “the value of ݔ should be in the

vicinity of	ܽ”, representing a fuzzy set whose membership function is bell-shaped, given

as:

ሻݔ஼ሺߤ ൌ
1

ሺ1 ൅ ሺݔ െ ܽሻସሻ
(2.14)

Where ܽ represents a specific constant indicated by the decision maker; the intersection

of both fuzzy sets of the goal,	ܩ and constraint,	ܥ is denoted as	ܩ ∩ The membership .ܥ

function that represents the intersection is determined by:

ሻݔ஼ሺ∩ீߤ ൌ min ൤max ൬min ൬
ݔ െ ݈
݉ െ ݈

,
ݑ െ ݔ
ݑ െ݉

൰ , 0൰ ,
1

ሺ1 ൅ ሺݔ െ ܽሻସሻ
൨	 (2.15)

A formal and more generic definition is presented next:

Definition 2.6: (Bellman and Zadeh, 1970): Suppose there are ݊ Goals ሺܩଵ ݉ ௡ሻ andܩ…

Constraints	ሺܥଵ, … , is the intersection of all Goals and ܦ	௠ሻ, then the resultant decisionܥ

Constraints, denoted as:

ܦ ൌ ଵܩ ଶܩ	∩ 	∩ ⋯∩ ௡ܩ ∩ ଵܥ ∩ ଶܥ ∩ ⋯∩ ௠ܥ (2.16)

Corresponding to:

ሻݔ஽ሺߤ ൌ 	min ቀ	μீ೔ሺݔሻ, μீమሺݔሻ… , μீ೙ሺݔሻ, μ஼భሺݔሻ, μ஼మሺݔሻ, … , μ஼೘ሺݔሻቁ		 (2.17)

The fuzzy set of alternatives is populated by the intersection of goals and constraints,

better still, “a confluence of goals and constraints” according to (Bellman and Zadeh,

1970). A maximising decision is a point in the set of alternatives at which the

membership function of a fuzzy decision attains its maximum value. The optimal

alternative is found using a maximising decision	ܦ∗ corresponding to:

μ஽∗ሺݔሻ ൌ argሼmax
௫∈௑

ሻሽݔ஽ሺߤ (2.18)

The maximising decision is obtained from the value of	ݔ with the highest membership

grade in the decision fuzzy set	ܦ.

85

To further explain the fuzzy decision making concept discussed in this section, a simple

example is presented on how to elicit the user QoS aspiration using linguistic variables

and hedges. Assume that the range of values that covers the Availability of a cloud service

is between	0%	݋ݐ	100%. These ranges can be further divided into three sub-ranges,

which are:

i. Low Availability: 0% ~ 40%

ii. Medium Availability: 30% ~ 75%

iii. High Availability: 70% ~ 100%

The sub-ranges can be converted to linguistic terms,	݈݅ܽݒܣ௅ைௐ, ݈݅ܽݒܣொ஽ூ௎ெ and

 .ுூீு, and can be defined by trapezoidal membership functions݈݅ܽݒܣ

Suppose the User’s Goal and constraints on Availability are as follows:

i. Goal One (ܩ): High Availability

ii. Constraint One (ܥ): The value of availability must be close to 99%.

The membership function for the goal ܩ is defined as follows:

ሻݔሺீߤ ൌ max ൬min ൬
ݔ െ ܽ
ܾ െ ܽ

, 1,
݀ െ ݔ
݀ െ ܿ

൰ , 0൰ (2.19)

Where ܽ ൌ 70%, ܾ ൌ 75%, ܿ ൌ 85% and	݀ ൌ 100%, representing the trapezoidal fuzzy

number of fuzzy sets	݈݅ܽݒܣுூீு.

The membership function of the Constraint ܥ is defined as follows:

ሻݔ஼ሺߤ ൌ
1

1 ൅ 10ሺݔ െ ߰ሻଶ
 (2.20)

Where	߰ ൌ 99% as indicated in constraint	ܥ; the user’s aspiration is said to be in the

decision set of the intercession of the goal and constraint:

ሻݔ஽ሺߤ ൌ ሻݔሺீߤ	 ∩ ሻݔ஼ሺߤ ൌ min൫ μீሺݔሻ, μ஼ሺݔሻ൯ (2.21)

86

The optimal value of availability that approximates user’s aspiration corresponds to any ݔ

in the support of	ܦ∗, which can be formulated as finding the value of ݔ maximizes the

intersection membership function, or equivalently:

maxߤ஽ሺݔሻ ൌ max݉݅݊൫ μீሺݔሻ, μ஼ሺݔሻ൯ (2.22)

Using MOEA Framework, a Java library of Multi-Objective Evolutionary Algorithms, in

NetBeans, the optimal solution that satisfies both the goal and constraint is ݔ ൌ 98.0%

at	ߤ஽ሺݔሻ ൌ 0.1224. The concept of fuzzy decision is applicable in determining the

approximate user QoS aspirations to evaluate cloud services and determine the best

matches. Aspirations are then elicited without the user explicitly specifying actual values,

but rather using natural, everyday language enabled by fuzzy set theory. Since humans

naturally use and respond to fuzzy concepts, using fuzzy terms to express QoS

requirements are more convenient and easier than using crisp numeric values.

2.4.5 Fuzzy Optimisation for QoS-based Service Evaluation

The next step after obtaining user’s QoS requirements is to evaluate each service

alternative with respect to user’s QoS requirements. The evaluation forms the basis by

which users can select the ‘most optimal’ service(s), and service selection depends on the

relative importance given to each QoS attributes and QoS aspiration specified by the user

(Rehman et al., 2011). Since cloud services are characterised by multiple QoS attributes,

utility functions can be employed to evaluate the overall quality of a given service. The

utility function maps the overall performance of a cloud service into a single real score

value, clarifying the goodness or usefulness of each alternative; and alternatives are

ranked based on these values.

Although some MCDM approaches discussed earlier can be used to evaluate service,

many of these approaches only take into consideration the priorities of user’s QoS

preferences, which is captured as importance weights, and do not cater for user’s

aspiration in the service evaluation process. For example, AHP does not consider user’s

ideal QoS aspiration value for each criterion; SAW and TOPSIS are used to derive

performance scores and alternatives are ranked to determine the alternative with the ‘best’

performance without recourse to user’s aspiration; moreover, these approaches are best

applicable when the number of alternatives is very few. An emergent perspective is a

87

multi-function service evaluation that is capable of considering both users’ preferences

and aspiration in the service evaluation process; and can be applied to evaluate a large set

of alternatives, as is the case in cloud service e-marketplace. Such evaluation model can

simultaneously rank service alternatives with respect to the ‘ideal’ alternative (based on

the available QoS information) and the user’s specified QoS preferences and aspiration.

To this end, an SAW-based technique (Yoon and Hwang, 1995) can be combined with a

proximity-based function (based on a similarity metric) to evaluate each service

alternative along with their QoS performance, with respect to user’s QoS requirements.

Owing to the simplicity and practicality of the SAW technique, it is popularly used to

derive a performance score as a weighted sum of all QoS attributes for each alternative.

The performance score forms the basis to estimate the ‘goodness’ of an alternative and for

benchmarking each alternative against the ‘ideal’ alternative. The ideal alternative is

defined as the alternative with the best value for all QoS criteria and usually does not

quite exist (Rehman et al., 2012). The application of SAW in evaluating service

alternatives supposes that the alternative with the highest performance score would be

selected; however, one would observe that the service alternative with the highest utility

may not necessarily correspond or approximates user’s QoS aspiration.

Another way to facilitate selection of cloud service is to rank alternatives in accordance to

their nearness to user’s QoS requirements; users can then make a selection from the

ranked list (Rehman et al., 2011). Similarity or distance metrics are used to determine to

what extent two vectors are alike and can be applied to determine the nearness of all

services available on the e-marketplace to user-defined QoS requirements (Mirmotalebi et

al., 2012). Proximity-based service evaluation involves a comparison between the user’s

requirement and all service alternatives, using a similarity metric to determine the service

alternative that best matches user requirements. Based on the use of similarity

computation, Rehman et al. (2011) identified three possible outcomes: i) Exact match

with user requirements. ii) Generally lower values than the user requirement and iii)

Generally higher values than the user requirement. Based on these outcomes, Rehman et

al. (2011) noted that the use of similarity metrics would suffice for outcomes (i) and (ii),

but would return dissimilarity for outcome three, in which case the QoS of the service

alternative exceeds the user requirement. So, an optimal alternative would be that

alternative which simultaneously maximises the utility function as much as possible and

88

closely approximates similarity with user’s aspiration or closest to the user’s QoS

requirements. Therefore, the search for an optimal alternative gives rise to multiple

objective programming problems, with fuzzy goal and constraint; and can be modelled

and solved as a fuzzy multi-objective optimisation problem.

A fuzzy multi-objective programming is a problem that involves two or more conflicting

fuzzy objective functions that must be simultaneously optimised in the face of some set of

constraints. The sources of fuzziness in the objective functions in this optimisation

problem are the word phrases ‘as much as possible’ and ‘closest to’. Therefore, solving

fuzzy multi-objective optimisation problems requires that both SAW and distance-based

functions are transformed into a fuzzy goal and constraints based on the fuzzy decision

making symmetric model proposed by Bellman and Zadeh (1970). Therefore the two

conflicting goals and constraint represented as functions are: seeking an alternative with

1) highest utility and 2) nearest to user’s ideal requirements.

Traditional optimisation techniques and methods have been successfully applied for years

to solve problems with a well-defined structure/configuration, sometimes known as hard

systems. Such optimisation problems are usually well formulated by crisply specific

objective functions and specific system of constraints, and solved by precise mathematics.

Unfortunately, real world situations are often not deterministic. In the light of this,

traditional models and solutions to optimisation problems do not reflect the real world

actualities, as they are rigid, confining the solution space, reduces the possibility to make

trade-offs, and sometimes cannot find an optimal solution (Oltean, 2004). In cases where

optimisation goals and/or constraints are vaguely expressed, the optimisation problem

cannot be effectively solved by formulating the problem using traditional optimisation

techniques (Tang et al., 2004). A better approach is to use fuzzy sets to define

optimisation objectives, associating the goals and/or constraints with one or two fuzzy

sets, whose membership functions will represent the corresponding fuzzy objective

functions. Modelling and optimisation under a fuzzy environment are called fuzzy

modelling and fuzzy optimisation (Tang et al., 2004).

I. Fuzzy Modelling and Fuzzy Optimisation

Solving problems under a fuzzy environment involves two tasks: fuzzy modelling and

fuzzy optimisation. The aim of fuzzy modelling is to construct a suitable model based on

89

the peculiarity of the problem and analysis of the fuzzy information. Fuzzy optimisation

aims at solving the fuzzy model ‘optimally’ using optimisation techniques and/or tools in

terms of their membership functions. Six of the 7-step methodology elaborated in (Tang

et al., 2004), was employed to outline the application of fuzzy optimisation for the cloud

service evaluation model proposed in this thesis.

II. Fuzzy Optimisation Problems: Modelling

The aspect which the fuzziness affects determines how fuzzy optimisation problems are

classified (Tang et al., 2004). Tang et al. (2004) further stated that the fuzziness affects

the goals, constraints and coefficients of a fuzzy optimisation problem. Fuzziness in fuzzy

goal is goals that are usually expressed vaguely, towards a specific aspiration level, which

gives the target value of the objective function some flexibility e.g. the target value of the

objective function ݂ሺݔ, ሻ should be maximised as much as possible. The phrase, ‘asݎ

much as possible’ removes the rigidity of ‘maximise’ and gives the target value some

flexibility. Fuzziness in fuzzy constraints refers to the system of constraints that gives a

degree of tolerances and flexibilities through the following relational operators	൑෩ , ൒෩ or	≅;

Fuzzy coe�cients may appear in the objective function and/or the system of constraints.

Formally the fuzzy optimisation problem can be defined as:

Definition 2.7: (Tang et al., 2004): Let universe ܺ	 ൌ 	 ሼݔሽ be a set of alternatives, ଵܺ a

subset or a fuzzy subset of X. The objective/utility function is a mapping	݂ ∶ 	 ଵܺ 	→

 ሺܴሻ is a subset or a class of fuzzy subsets of real value set R, the feasibleܮ ሺܴሻ, whereܮ	

domain is described by a subset or a fuzzy set	ܥ	 ⊂ 	ܺ, with a membership

function	μ஼ሺݔሻ 	∈ 	 ሾ0,1ሿ, which denotes the degree of feasibility of	ݔ. In this case, a fuzzy

optimization problem may be generally expressed as:

݂ሺݔ, ሻݎ → max
௫∈஼

݆ (2.23)

Where ݎ is either a crisp constant or a fuzzy coe�cient; the objective is to find the value

of ݔ that maximizes	݂	ሺݔ, ሻ, and can be solved by the approaches presented in the nextݎ

section.

90

III. Fuzzy Optimisation Problem: Solutions

Tang et al. (2004) have classified approaches to solving fuzzy optimisation into

symmetric and asymmetric approaches. In contrast to asymmetric approaches, symmetric

solution approaches handle fuzzy goals and constraints involved in the problem alike

(Zimmermann, 1975). Symmetric approaches based on the fuzzy decision (Bellman and

Zadeh, 1970) are approaches developed originally to deal with decision-making problems

with fuzzy goals and fuzzy constraints, based on the concept of the fuzzy decision, as

proposed by (Bellman and Zadeh, 1970). The fuzzy decision is defined as a fuzzy set of

alternatives resulting from the intersection of the goals and the constraints. By

introducing the fuzzy decision	ܦ, the solution to the fuzzy optimization problem can be

interpreted as the intersection of the fuzzy goal and the fuzzy constraints, i.e. ܦ	 ൌ 	ܩ	 ∩

 ∩ is a conjunctive operator, assuming different definitions and meanings in	where	,ܥ	

different practical application depending on the definitions of the conjunctive operator	∩.

The membership function of the fuzzy decision is formulated as:

μ஽ሺݔሻ 	ൌ 	 μீሺݔሻ ∩ μ஼ሺݔሻ, ݔ∀ ∈ ܺ (2.24)

Where μீ and μ஼ are the membership functions of the fuzzy goals and the fuzzy

constraints respectively, and preferences are involved. A maximizing decision ݔ∗ is then

defined to be an alternative with the highest membership in the fuzzy decision D, i.e.

μ஽ሺݔ∗ሻ ൌ 	max μ஽ሺݔሻ, 	ݔ∀ ∈ 	ܺ.

More generally, maximising decision ݔ∗ can be determined by

μ஽ሺݔ∗ሻ ൌ ራμ஽ሺݔሻ
௫∈௑

(2.25)

IV. Utility Functions to enable Cloud Service Selection

Two utility functions based on SAW method and Euclidean metrics can simultaneously

serve as objective functions in order to evaluate the performance of cloud services with

respect to user requirements. SAW is one of the most popular methods of solving MCDM

problems and can be used to determine the utility of alternatives. Also, the similarity is a

measure of proximity between two or more objects or variables (Ayeldeen et al., 2015)

and it has been applied in domains that require distance computation. The notion of

91

similarity considered here is between vectors with the same set of QoS properties, which

might differ in their QoS values i.e. users’ QoS requirement and service QoS description.

The similarity between the user’s QoS requirement and QoS description vector of a cloud

service is the sum of similarities between each of the corresponding QoS attributes of the

vectors (see Figure 2.13).

(a) Cloud service with QoS attributes (b) Notion of Similarity
Figure 2.13: Similarity Computation based on QoS Attributes

Source: Researcher (2016)

Suppose ܺ is a vector representing values of the user’s QoS aspirations; and ܻ is a vector

of values of QoS attributes of a cloud service ݏ௜belonging to service list S, such that ܺ ൌ

ሺݔଵ, ,ଶݔ … 	ܻ	௠ሻ andݔ ൌ 	 ሺݕଵ, ,ଶݕ … ௠ corresponds to the value of theݕ ௠ andݔ ௠ሻ; whereݕ

݉௧௛ QoS attribute of the users requirement and QoS attribute of the cloud Service ݏ௜

respectively, then Euclidean defined as follows:

,ݔሺ	ܦܷܧ ሻݕ ൌ ඩ෍ሺݔ௜
ଶ െ ௜ݕ

ଶሻ

௠

௜ୀଵ

(2.26)

Although there are several distance metrics in the literature, the Euclidean metrics is often

applied to compute distance in a multidimensional space. However, the exponential

Euclidean function is applied in other to reduce the effect of the value for each QoS

attribute on the similarity score as the values of the QoS attributes exceeds or fall below

the user’s QoS requirements. Therefore, the exponential Euclidean function proposed

and used in this study is given as follows:

92

,ݔሺܦܷܧ݁ ሻݕ ൌ ඩ෍݁ሺ௫೔
మି௬೔

మሻ

௠

௜ୀଵ

(2.27)

An emergent perspective posits that services should be evaluated on the basis that they

satisfy the highest utility as much as possible while closely approximating user

requirement. The fuzziness in objectives of finding an optimal alternative lies in these

italicise words (as much as possible and closely). Thus, both evaluation functions, i.e. the

SAW and eEUD functions (cf. Figure 2.14), are transformed into a fuzzy goal and

constraints based on the fuzzy decision making Bellman et al.’s symmetric model

(Bellman and Zadeh, 1970; Zimmermann, 2010). By representing the fuzzy goals and

constraints using membership functions to represent the fuzzy goal and fuzzy constraints,

the problem of finding an optimal alternative can then be translated into a linear

programming model. A maximising decision among the fuzzy decision set can be

achieved by solving the linear programming.

For example, let the fuzzy Goal ܩ෨ and constraint ܥሚ be given as:

 Goal	ܩ෨: The performance score alternative should be in the vicinity of the ideal

solution with respect to QoS preferences.

 Constraint	ܥሚ: The QoS values of the alternative should be very close to the user’s

aspiration with respect to QoS preferences.

Suppose, each alternative is evaluated by a SAW function described as ܣ௜ ൌ ,௜௝ݔ௝ݓ∑

where ܣ௜is the performance score of the ݅௧௛alternative, ݓ௝is the priority weight of the ݆௧௛

criterion as expressed by user, and ݔ௜௝ is the QoS value of the ݅௧௛ alternative with respect

to the ݆௧௛ criterion; ߮ is defined as the vector of performance scores for all alternatives

given as ߮௜ ൌ ሼܣଵ, ,ଶܣ … , ,௡ሽܣ ݅ ൌ 1, 2, … 	݊; n is the number of alternatives.

The goal would be represented by a bell-shaped membership function corresponding to:

ߤ ෨ீሺ߮௜ሻ ൌ
1

ሺ1 ൅ ሺ߮௜ െ ሻସሻߩ
(2.28)

93

Where, ߮௜ is the performance score of the ݅௧௛ alternative, and		ߩ, is the performance score

of the ideal alternative. The ideal alternative is the alternative with the best score for each

QoS value.

Likewise, given that similarity function computes the similarity between the ݅௧௛

alternative and the user’s aspiration with respect to QoS values, based on the

mapping	࢏ࡰࢁࡱࢋሺࢄ, :ሻ࢏࢙ ࣂ → ሾ૙, ૚ሿ, where ܺ is a user’s QoS aspiration vector, and ݏ௜

correspond to QoS description vector of a service	ݏ௜ ∈ ܵ; 0 indicates absolute

dissimilarity and 1 correspond to absolute similarity; ࣂ is defined as a vector variable of

all similarity values of user’s requirement to alternatives: ߠ௜ ൌ

ሼ݁ܦܷܧሺܺ, ,ଵሻݏ ,ሺܺܦܷܧ݁ ,ଶሻݏ … , ,ሺܺܦܷܧ݁ ,௡ሻሽݏ ݅ ൌ 1, 2, …݊;	where ݊ corresponds to the

number of services available in service directory ܵ.

The membership function of the constraints is also bell-shaped expressed as:

௜ሻߠ஼ሚሺߤ ൌ ൬
1

ሺ1 ൅ ሺߠ௜ െ 1ሻଶሻ
൰
ଶ

(2.29)

The elements of the fuzzy set describe by membership function ߤ஼ሚሺߠ௜ሻ will have a degree

of membership corresponding in extent to which ߠ௜ is close to the real value one (1).

Therefore, the membership function of the fuzzy decision sets ܦ෩ will then be:

μ஽෩ሺ߮௜, ௜ሻߠ ൌ μ ෨ீሺ߮௜ሻ ∧ μ஼ሚሺߠ௜ሻ (2.30)

Such that:

μ஽෩ሺ߮௜, ௜ሻߠ ൌ min ሺμ ෨ீሺ߮௜ሻ, μ஼ሚሺߠ௜ሻሻ (2.31)

The highest degree of the membership in ܦ෩ is given by:

argmax
஦,஘

	ሺmin ሺμ ෨ீሺ߮௜ሻ, μ஼ሚሺߠ௜ሻሻ (2.32)

Based on this, the equivalent in a linear programming model is:

94

Maximize ܖܑܕ 	ሺμ ෨ீሺ߮௜ሻ, μ஼ሚሺߠ௜ሻሻ

Subject to:

ߤ ෨ீሺ߮௜ሻ ൌ
1

ሺ1 ൅ ሺ߮௜ െ ሻସሻߩ
(2.33)

௜ሻߠ஼ሚሺߤ ൌ ൬
1

1 ൅ ሺߠ௜ െ 1ሻଶ
൰
ଶ

 (2.34)

Having formulated the optimisation model and solution approach, the problem can be

solved using optimisation algorithms such as genetic algorithm (e.g. NSGAII), or swarm

intelligence algorithms (e.g. Particle Swarm Optimisation [PSO] algorithm). The results

obtained from the optimisation process are optimal QoS values that best approximates the

user’s QoS requirements with respect to the spread of QoS attributes of all service

alternatives available in the service directory. The final step of evaluating the services

alternative is the use of a distance-based function to rank all alternatives, according to

their similarity with the optimal QoS values obtained. The ranked results are then

presented to the user to make service selection decision.

Figure 2.14: Fuzzy Multi-function Service Evaluation Model

Source: Researcher (2016)

2.4.6 Interactive GUI and Information Visualization for Ranking Results

The growing trend for personalised products and services in online shopping context

requires that usability and user experience be given top priority if the vision of cloud

service e-marketplace is to be realised (Riemer and Totz, 2003; Schubert and Ginsburg,

2000; Liang and Lai, 2002). Usability is a measure of how easy to use, effective a system

is (i.e. did the user achieve the goal?) and efficient a system is (i.e. how long it took the

user to achieve the goal?); while user experience defines the feelings of the user in

Optimal
Service

Alternative

SAW &
Distance‐Based
Utility Function

Distance‐based
Function

95

utilizing the system (e.g. is the interaction satisfying, enjoyable, engaging) (De Oliveira et

al., 2012; Travis, 2008) The goal of pursuing usability and user experience is in the

context of this research is to optimize user satisfaction (Bevan, 2009). Noteworthy is that

the Graphical User Interface (GUI) is the visual medium through which the user interacts

and engages the e-marketplace, and it plays a very prominent role in determining the

usability and user experience in the e-marketplace environment (Van Schaik and Ling,

2008; Wong et al., 2014).

Graphical User Interface is a subset of Human-Computer Interaction (HCI); HCI studies

the planning and design of how humans and computers work together to effectively meet

the needs of a human (Galitz, 2007). The GUI underscores input and output features;

input is how a user expresses business and technical requests or requirements, whereas

the output presents the result of those requests to the user (Galitz, 2007). The GUI

obscures all the technical and computational processes underlying the e-marketplace

operations while being a functional, enjoyable and satisfying means to explore the QoS

ranking of cloud services towards making a cloud service selection. Indeed, an arbitrarily

complex GUI design increases the cognitive difficulty in performing specific user-centric

tasks (Galitz, 2007), consequence for which could lead to a selection of a poor or sub-

optimal option or abandonment of the process altogether. Both outcomes have

implications on the profitability and the perpetuity of the e-marketplace (Galitz, 2007; Liu

et al., 2012; Bonastre and Granollers, 2014).

I. Graphical User Interface for Cloud Service e-marketplace

In the context of cloud service e-marketplace, the large number of functionally equivalent

cloud services sorted according to QoS ranking with respect to user requirements

emphasises the need for an effective decision-making aid to support the exploration of

cloud services. Similarly, in the regular e-commerce domain, the rate of shopping cart

abandonment, dissatisfaction and frustrations experienced in many e-commerce sites due

to the complexity involved in the search for commodities raises the need for user

experience in online shopping (Liu et al., 2012; Liang and Lai, 2002; Bonastre and

Granollers, 2014). Just like one of the laws of e-commerce states that if users cannot find

it, they cannot buy it either; the GUI design questions that must be answered in a cloud

service e-marketplace includes:

96

i. How conveniently can the user express QoS requirements?

ii. How quickly can optimal results be generated?

iii. Are the results presented in the best way possible for users to understand and

draw insights from?

Since the main medium of engagement in the e-marketplace environment is visual,

answering these questions facilitates a GUI design that ensures the user can conveniently

express QoS-based requests, for which optimal services match are found within the

shortest time possible and the information is intuitively presented in a manner that is easy

to understand and facilitates quality decision-making (Gui et al., 2014; Galitz, 2007).

Although the user experience covers all aspects of e-marketplace operations (Kuniavsky,

2003) – such as billing, payment, deploying of a service instance, and SLA monitoring,

its focus in this study is how users use the GUI to request for services based on QoS

requirements and to effectively explore a set of likely alternatives. An emergent

perspective would be a GUI framework delineated into two, based on the support for the

tasks users perform on the e-marketplace in their quest to select an optimal service

alternative. These include interface design that: i) allow users to express QoS

requirements and, ii) allows the visualisation and effective exploration of ranking cloud

services (see Figure 2.15).

Figure 2.15: Graphical User Interface Framework

Source: Researcher (2016)

Preferable are GUI designs that are intuitive and capture user QoS requirements in a

manner that is natural to the human judgement or perception. This is because the user’s

perception of the interface affects their attitude towards what comes out from it, and

ultimately affects user satisfaction (Kuniavsky, 2003; Sundar et al., 2014). Applying

visualisation would in a way enable low cognitive demand in exploration by giving the

Visualization
Framework

Elicit QoS
Requirements

Visualize QoS
Evalaution
Results

97

user a graphical overview of the rankings and in order to understand the relationship of

services to each other based on QoS attributes ranges. In addition, by interacting with this

visualisation, users can then perform a trade-off analysis by filtering services according to

the desired QoS factors. Such graphical depiction is more convenient and reduces

cognitive overload compared to a mere textual listing of the ranking results (Almulla et

al., 2012; Beets and Wesson, 2010; Pleuss et al., 2011; Spence, 2014; Mamoon et al.,

2013).

Similarly, the main drawbacks with textual representation in the domain of web service

discovery were highlighted as follows: ineffective search facility and poor presentation of

the web services, as textual lists, do not effectively support the user in finding suitable

web services (Beets and Wesson, 2011). Earlier studies on the effect of textual/tabular

representations of data as against graphical representation in decision-making contexts

revealed that graphical representations performed significantly better (Coll et al., 1994;

Jarvenpaa, 1989; Jarvenpaa and Dickson, 1988): thus providing a preliminary basis to

support the use of graphical representation to improve the user experience in cloud

service selection.

II. Information Visualisation: An Overview

It has been proven that humans possess the ability to recognise the spatial arrangements

of elements in a picture and decipher relationships among elements quickly and easily

(Shneiderman, 1994). Such abilities enable humans to derive greater insight and

comprehension of the content of a picture faster than mere text. This process leads to a

more informed decision-making by capitalising on the well-developed human visual

processing capability (Shneiderman, 1994). Similar to web service discovery, the

application of information visualisation technique for aiding cloud service selection

would improve cloud service exploration and insight into the rationale behind the ranking

of cloud services with respect to user’s QoS requirements (Beets and Wesson, 2011).

Information visualisation is concerned with the use of visualisation methods in assisting

users to make more sense of and use large volume and complex dataset as they analyse

and explore the data with a slight effort from users (Spence, 2014; Almulla et al., 2012;

Khan and Khan, 2011). The overarching goal of information visualisation is to

communicate information in an interactively graphical or spatial manner to aid user

98

understandability (Draper et al., 2009; Beets and Wesson, 2011; Almulla et al., 2012;

Khan and Khan, 2011). Integrating information visualization as part of a cloud service

selection framework is more beneficial compared to traditional textual listings in that

users can understand relationships among data elements as they can learn more from the

visualization in lesser time; users can, therefore, access to new understanding of, or

knowledge about, the QoS ranking results generated by the service alternative evaluation

module (Mamoon et al., 2013; Beets and Wesson, 2011; Chittaro, 2006).

III. Information Visualisation: Reference Model

Several frameworks and processes to enable the design of an effective IV have been

proposed in the literature (Chittaro, 2006; Card et al., 1999; Adnan et al., 2008; Spence,

2014; Khan and Khan, 2011); these taxonomies of information visualization processes

consist of several steps and activities for turning dataset into visualizations, and can be

categorized into four main modules (see Figure 2.16), which includes: Dataset,

Representation (or Mapping), Organization (or presentation), and Interaction.

Figure 2.16: Information Visualization Reference Model

Source: Spence (2014)

a) Dataset

According to (Shneiderman, 1996), there are seven data types that are identified in the

context of Information visualisation, they include:

i. 1-Dimensional datatype-also referred to as linear data types which are organised

by a single feature e.g. textual documents, alphabetical listing of items;

ii. 2-Dimensional datatype- also referred to as planer or map data e.g. floor plans,

geographic maps etc.;

iii. 3-Dimensional datatype- representing most real-world objects;

iv. Temporal datatype- includes data that have timelines denoting start and finish

time, e.g. project management timeline data;

Dataset Representation Organization Interaction

99

v. Multidimensional data- correspond to most relational and/or statistical data

which are usually manipulated such that items with ݊-attributes become points in

a n-dimensional plane e.g. a list of cloud services and their multiple QoS

dimensions;

vi. Tree data type- refers to hierarchies comprising a collection of items in which an

item is linked to one parent, with exception of the root e.g. computer directories;

vii. Network data type- which is a generalisation of tree data type where the items or

objects is linked to any number of other items.

The multi-dimensional dataset comprising a collection of cloud services in a ranked order

can be presented in a table format (see Table 2.14), such that each column corresponds to

service QoS attributes while each row refers to each service in the list. However, tabular

representations are limited in expressing the relationships among the rankings; depending

on the number of services in the ranked list and many QoS attributes to consider. To

explore each of the services one after the other is cumbersome and does not readily

satisfy the user’s quest to understand how each service in the ranked list differs from the

other.

Table 2.14: A tabular representation of cloud services with QoS properties
 Availability (%) Response Time(ms) Reliability (%) Cost($)
Cloud service 1 78.5 450 79 205.70
Cloud service 2 99.9 320.23 90 350.45
Cloud service 3 87.92 5400 83 190.44
Cloud service 4 93.76 237.88 90 301.50
Cloud service 5 50.5 403.66 92 211.22

Source: Researcher (2016)

b) Representation

Representation (or visual mapping) refers to how to transform symbolic representation

characteristic of the objects in a dataset and their interrelationship, into a graphical form

using visual encoding mechanisms. This mechanism includes object’s size, shape, colour,

orientation (or position), and dimensionality (text, 2D, or 3D) (Chittaro, 2006; Adnan et

al., 2008; Moere and Purchase, 2011; Bertin, 1983). The representation must take into

consideration data type, data dimensions, and the user’s perceptual and cognitive abilities

(Spence, 2014). The dimension of the dataset refers to the number of attributes that

characterise the dataset. The way users perceive the value of data elements is rooted in

how those data elements are visually encoded using size, orientation, shape, texture, and

100

colour (Shneiderman, 1994; Bertin, 1983; Spence, 2014). The application of these

encoding mechanisms (e.g. size, shape etc.), supports tasks associated with information

visualisation with varying degree of suitability (Bertin, 1983). Some of the cognitive and

perceptual factors to be considered include the user’s perception of values and if the

representation exhibits object or attribute visibility (Spence, 2014).

The concept of object and attribute visibility was first introduced by (Teoh and Ma,

2005). Teoh and Ma (2005) noted that one challenge with multi-dimensional (multi-

attribute) visualisation is the multiplicity of objects and dimensions, and introduced the

concept of coherence and correlation as it pertains to objects and their dimensions.

A representation is said to exhibit object coherence (or visibility) when the object is

encoded as a single and compact graphical entity (e.g. a point or bubble) and the user can

see all the attributes of the objects all at once. The converse of a representation possessing

object coherence is when the object is represented by multiple separate visual entities

(e.g. several points). Meanwhile, dimension coherence (or attribute visibility) refers to a

representation in which the attribute values of the objects are distributed across each

dimension, such that users can quickly see the relationships among the values of the

attributes for each object (Teoh and Ma, 2005).

On the other hand, a representation satisfies object correlation when the user can

immediately see the similarities among objects considering all the values of their

attributes. Dimension correlation refers to a representation that allows the user to easily

note the relationships among the dimensions of all objects in the dataset. In this study, the

inquiry to object coherence and are concerned with a mechanism to represent cloud

services in the ranked list as single coherent entities so as to enable the exploration of the

relationship among alternatives. Table 2.15 contains an overview of some representations

suitable for the data types as espoused by (Shneiderman, 1996).

a) Organization

Organisation (or Presentation) refers to the interface schemes that define the manner in

which these representations are laid out on a screen to enable user’s exploration and

interaction (Adnan et al., 2008; Spence, 2014; Burigat and Chittaro, 2013; Cockburn,

2009; Khan and Khan, 2011). Generally, the interface schemes facilitate sense-making, as

101

it impacts on user’s interpretation and perception of the information presented (Adnan et

al., 2008).

Table 2.15: Datatypes and supporting data representation
DATATYPE REPRESENTATION TYPES
1 1-Dimensional  Textual Lists

2 2-Dimensional
 Choropleth
 Self-organizing Maps

 Dot distribution map
 Proportional symbol map
 Cartogram

3 3-Dimensional  Surface and volume rendering  3D Computer models

4 Temporal
 Timeline
 Time series
 Gantt Chart

 Arc diagram
 Rose diagram (or Polar Area)

5
Multi-
Dimensional

 Tables
 Pie chart
 Histogram
 Tag cloud
 Unordered bubble chart

 Bubble chart
 Line chart
 Heat map
 Radar/spider chart
 Parallel coordinates plot
 Bar chart

6 Tree
 General tree visualisation
 Dendrogram
 Radial tree

 Hyperbolic tree
 Treemap
 Sunburst

7 Network
 Dependency Graph/Circular hierarchy
 Node-link diagram

 Matrix
 Tube map

Source: Zoss (2015)

The schemes adopted impacts on the effectiveness and ease of viewing and exploration of

content in order to make more informed decisions. Information visualisation techniques,

like those mentioned in Table 2.15, organises information on the screen with respect to

how objects from the dataset are positioned and can be viewed on the screen per time, and

the layout of the general overview of objects (Adnan et al., 2008). The layout of the

information on the screen affects the type of tasks that can be performed by users, as it

determines the interactions users can have with the information displayed (Spence, 2014).

Based on the layout of information on the display, there are three main schemes for

presenting/organising information, they include Zooming, Overview+Detail and

Focus+Context (Burigat and Chittaro, 2013; Cockburn, 2009; Spence, 2014; Adnan et al.,

2008).

i. Zooming- Zooming refers to the interface’s ability to provide a broader overview

or more detailed view by increasing or decreasing the levels of details the user can

view per time (Spence, 2014; Khan and Khan, 2011). Zooming can either be

geometric zoom or semantic zoom (Herman et al., 2000; Spence, 2014).

Geometric zoom happens when the display scales from a broader view to a

fraction of the same view with only change in size, limiting what is viewable on

102

that area of the display (e.g. zooming in and out of a geographic map). On the

other hand, semantic zoom does not only change the size of the information

displayed, but also its other visual properties such as information content, colours,

shape, and texture (Spence, 2014; Herman et al., 2000; Nestor et al., 2007).

ii. Overview + Detail- Some studies show that user satisfaction and efficiency are

enhanced when users can view and explore both contextual and detailed

information at the same time ((Beard and Walker, 1990; North and Shneiderman,

2000; Hornbæk, 2001; Hornbцk and Plaisant, 2002). The Overview+Detail (O+D)

interface scheme allows both the context and detailed views to be displayed

simultaneously in a separate spatial location on the screen (Adnan et al., 2008;

Cockburn, 2009; Hornbцk and Plaisant., 2002). The physical separation of both

views, enable the possibility of users interacting with both views separately, and

actions in one view, trigger a response in the other (Cockburn, 2009). Although

the O+D scheme lays a short-term memory load on users and more time is

expended in visual search, some benefits of the O+D schemes include efficient

navigation, with alternative views (detailed and overview) giving more control to

the user. Also, users cannot ‘get lost’ with access to the broader view of the

information space which provides task-relevant information (Beard and Walker,

1990; Plaisant et al., 1994; Shneiderman, 1987; Hornbцk and Plaisant., 2002).

iii. Focus + Context (F+C)- Zooming schemes provide on-demand focused and

contextual information separated temporally in time, but O+D schemes present

both views in co-existing in the same time in distinct spaces on the screen. F+C

schemes seamlessly combines focus and context information in the same space,

and focus is amplified by distorting the information space, while ensuring

continuity of the focus region of interest within its surrounding context by

maintaining relevant aspect of the context (Burigat and Chittaro, 2013; Spence,

2014, p. 131; Cockburn, 2009; Khan and Khan, 2011). F+C overcomes the short

term memory load demand on a user by presenting all information in single

coherent view, and users can easily understand and manipulate the information

displayed. However, the drawbacks of distortion-oriented views like fisheye view

are the misinterpretation of the underlying data (Cockburn, 2009).

103

b) Interactivity

Interactivity refers to the mechanisms available for making sense of the information space

by navigating, exploring, organising or rearranging the information space (Adnan et al.,

2008; Khan and Khan, 2011). Effective exploration of the information space is

determined by the method of interaction employed, the type of tasks those methods can

support and the rate of response to the interaction (Adnan et al., 2008; Spence, 2014;

Walker et al., 2016), also different interactions performs differently and are best suited

for different tasks (Nestor et al., 2007). The way in which users interact with the interface

can take different forms, such as use of menus (drop-down, pop-up), scrolling, flipping

(replacing one discreet view with the next), and direct manipulation by mouse over,

single click, double click directly on the visual elements in order to initiate a response

(Adnan et al., 2008; Sundar et al., 2014; Khan and Khan, 2011). Shneiderman (1996) has

proposed seven tasks that the interaction used in information visualisation should support.

The seven tasks include:

1. Overview: Gain an overview of the entire collection.

2. Zoom: Zoom in on items of interest

3. Filter: Filter out uninteresting items

4. Details-on-demand: Select an item or group and get details when needed.

5. Relate View relationships among items.

6. History: Keep a history of actions to support undo, replay, and progressive

refinement.

7. Extract: Allow extraction of sub-collections and of the query parameters.

IV. Information Visualisation for Cloud Service Selection

The e-marketplace interface should be designed with usability and user experience

intended, such that users can easily express QoS requirements and find optimal service(s)

within the shortest time (Chua et al., 2007). Apart from the functionality of the e-

marketplace, the ‘look and feel’ of a graphical user interface, both for eliciting

requirements and exploring results should use visual elements such as colours, shapes,

layout, and typefaces, as well as support some dynamic behaviours (Chua et al., 2007). In

addition, the result of the ranking process is usually presented in textual formats from

104

which the user is expected to make a selection. This approach usually demands more

cognitive effort as users are expected to make sense of the results unaided. Information

visualisation has been applied in the context of web service discovery and selection

(Beets and Wesson, 2010; Beets and Wesson, 2011; Almulla et al., 2012), in which

authors reported that textual list of web services can result in time-consuming and

ineffective web service discovery. The overall aim of pursuing a visualisation approach is

to assist users to effectively identify and explore the expected results with respect to their

QoS requirements, at the same time providing the opportunity to discover unexpected

items as they gain more insight into the ranking results. An effective visualisation

mechanism would allow the user to accomplish these tasks they wish to undertake with

the ranking results (Walker et al., 2016).

a) User Interface to Elicit User QoS Requirements

The goal of selecting a cloud service(s) based on QoS ranking produced by evaluating

alternatives with respect to user’s interest in and values for specific QoS attributes begins

with properly articulating those requirements. Fuzzy-intuitive interfaces allow users to

express their QoS requirements in a manner that capture the subjectivity inherent in those

requests. A cloud service selection framework should employ fuzzy set theory to model

users’ preferences and aspirations for each QoS attributes and the appropriate GUI

element to elicit these inputs is required.

i- Eliciting QoS Preferences using Graphical Fuzzy-AHP

There are three main implementation styles for eliciting users’ QoS preference using the

pairwise comparison of attributes; they include graphical, numeric and verbal

representations (Millet, 1997; Forman and Gass, 2001). Numeric implementations require

that users indicate preferences as a numeric ratio between two alternatives (e.g. Security

has ¼ times more priority than Availability), whereas graphical approaches involve the

adjustment of bar diagrams or sliders to acquire user’s preferences one pair per time

(Millet, 1997). Although most decision analysis systems are usually focused on the

accuracy of the results, the user satisfaction of the comparison techniques and the process

is also of vital consideration (Millet, 1997; Ge et al., 2010).

Millet (1997) reveals that the accuracy and ease of use factors of these approaches differ

with numerical and verbal approaches topping the list for accuracy, while graphical

105

approaches topped the list for ease of use and faster completion time and optimising both

accuracy and ease of use (Millet, 1997). Similar to (Cakir and Canbolat, 2008), an

emergent perspective is a QoS requirements elicitation technique that embeds fuzzy-AHP

into a web UI widget to improve the user experience in expressing QoS requirements

while maintaining high accuracy of the results.

ii- Eliciting QoS Aspiration using Interactive Interface

The user need not express exact values for interesting QoS attributes. Applying fuzzy

linguistic variable and membership functions allow the user the flexibility of expressing

values for QoS attributes in imprecise terms natural to human judgment. Rather than

entering some of these values as text, an intuitive GUI design should allow users to

perform this task easily. For example, an interactive interface comprises of the use of

drop-down menus, check boxes and text boxes. Typically, a user searching for a cloud

service could articulate these requirements using fuzzy expressions as follows,

‘Availability should be very high’ or ‘cost around $300/month’.

b) Information Visualisation to Display Ranking Results

The user’s QoS request forms the input into the fuzzy-based multi-function utility

evaluation and ranking module, which produces a top-k list of cloud services ranked

according to their suitability to user’s requests. The QoS ranking result forms the input

dataset into the information visualisation module, represented in a graphical form for

users to gain insight into the ranking results to obtain more insight into the information

space, explore the results in details and compare items on the list. Discussed next are the

design requirements and considerations for information visualisation with respect to

representation, presentation and the interaction supported by the IV techniques.

i. Dataset- the QoS-based ranking result is a multi-dimensional data type that

contains the values for all of the relevant QoS attributes (see Table 2.14).

ii. Representation- the items in the list can be visually encoded using a combination

of mechanisms, comprising size, colour, and position (or orientation), into single

coherent entities that exhibits object coherence and correlation; such that by

sighting a cloud service representation, the user can easily make sense of its

attributes compared to other services on the list. A potential information

106

visualisation technique that suffices for the multi-dimensional data considered is

the bubble graph. The bubble graph encodes each cloud service in the ranked list

as a ‘bubble’ and explicitly shows the QoS relationships of the top ranked cloud

services as well as the underlying structure of the QoS information space using

colours, size and position (or orientation). The bubble graph can be used to

visualise up to four QoS dimensions simultaneously, each dimension represented

by size, colour and position (x and y coordinates), see Figure 2.17.

iii. Presentation- The information visualisation to support cloud service exploration

and selection must be such that it lays out both the broader and more detail views

on the display screen. F+C presentation style is reported inappropriate for

decision-making environments because of its distorted view, as it may lead to

wrong interpretations (Yang et al., 2003). Other studies reported higher user

satisfaction and faster task completion time of O+D styles over zoom-based

presentation styles (Adnan et al., 2008; Ghosh and Shneiderman, 1999). For this,

O+D is considered, since the volume of information displayed must be such that

does not add to the cognitive load on users; impacting negatively on user

satisfaction (Pirolli et al., 2003; Adnan et al., 2008).

Figure 2.17: Example of Bubble Graph

Source: Researcher (2016)

iv. Interaction- Interactivity refers to the ability of users to engage the visualisation

of ranked results in real time, making changes to visualisation parameters and

viewing immediate responses in the visualisation (Khan and Khan, 2011). The

information visualisation should support various interaction methods, including

direct manipulation by hovering, clicking and the use of dynamic queries for

107

advanced filtering task. This research considered interaction methods that allow

users to explore the representation incrementally and dynamically using the sliders

(Spence, 2014). Based on Shneiderman’s Task by Data Type Taxonomy

(Shneiderman, 1996), two interaction tasks were identified: They include: to gain

a general overview of the ranking results (overview); view details of a particular

selection as desired, by either a mouse click or hovering (Details-on-demand).

2.5 CHAPTER SUMMARY

One major challenge of operationalizing a cloud service e-marketplace is service choice

overload; describing the complexity of decision making because of the availability of too

many service alternatives which often times lead to unsatisfactory choice. Service choice

overload can be minimised by using low cognitive demand decision support mechanisms

for eliciting user requirements. This must be done in a way that the techniques:

i. Provides an underlying organisation combination model for ecosystem services.

ii. Combines both fuzzy QoS preference and aspiration information in the evaluation

process.

iii. Employs intuitive user interface to elicit fuzzy user QoS requirements.

iv. Includes means to visualise ranking results in a way that reduces service choice

overload.

Although cloud service selection techniques have been proposed in the literature, a state-

of-the-art and a comparative analysis of these techniques were carried out to identify the

gaps in existing approaches and to propose key requirements for a framework that suits

the cloud service e-marketplace. Based on the key requirements, the emergent

perspectives provided the basis to formulate a set of design considerations to guide the

formulation of the cloud service selection framework.

108

CHAPTER THREE

METHODOLOGY

3.1 INTRODUCTION

This chapter presents the details of the methodology adopted to achieve the aim and

objectives of this study. The methodology describes the proposed framework as a

decision-making framework for cloud service selection in e-marketplace context. More

specifically, this chapter contains insights into its strategy and underlining assumptions,

process model, conceptual architectural framework, and a description of its sub-

components. Furthermore, the modalities for demonstrating the plausibility of the

proposed framework are presented, and this chapter concludes with a summary of its

content and discussion.

3.2 PROBLEM DESCRIPTION: CLOUD SERVICE RANKING AND SELECTION

So far in this thesis, the emerging cloud service e-marketplace has been defined as a one-

stop shop for cloud services, aimed at enabling the commoditization of vertical or

horizontal cloud service offerings as single or composite services from a variety of

providers (Menychtas et al., 2014); combining services in special ways not previously

thought of, enabled by the concept of a cloud ecosystem (Barros and Dumas, 2006).

Functionally equivalent service offerings are differentiated by their QoS factors (e.g.

availability, response time, reliability, etc.), and this information is contained in the e-

marketplace service directory or catalogue (Menychtas et al., 2014). It was also

mentioned that services are showcased through an e-marketplace interface, on which

users interact with the e-marketplace to find suitable services that satisfy user-specific

QoS requirements, towards fulfilling their business objectives.

Decision making involves the selection from a collection of items based on specific

interest in, and value for, the multiple attributes characterising those items. Selection is

further complicated by the unavailability of properly articulated ideal points and order of

preferences with respect to the underlying attributes, which must be considered in

evaluating each alternative. Besides, the presentation of the result of the evaluation is

109

another point where user satisfaction is necessary. The underlying assumptions in

selection problems can be summarised as follows:

i. There exist collections of items, and the items have multiple attributes and can

be represented using a data model.

ii. Users (as decision makers or information seekers) possess preferences (i.e. the

order of importance of all QoS attributes) and aspiration (i.e. actual values for

each QoS attribute) for the desired alternative.

iii. The selection task is to find all items that best approximates (and to what

degree) the users’ requirements.

Typically, cloud service selection is concerned with the performance evaluation of the set

of m offerings based on user’s priorities for each QoS attributes and desired QoS attribute

values for the set of n QoS criteria, so that users can then choose the service(s) with the

most optimal performance. On the basis of this, this study postulates improved quality of

user experience during user interaction with the e-marketplace front-end by reducing the

complexities of decision making through handling the subjectivity and vagueness often

associated with expressing QoS preferences and aspirations. Due to the multiplicity of

QoS dimensions and a large number of alternatives, cloud service selection is considered

as an NP-hard problem (Jula et al., 2014). Next, formal definitions describing the cloud

service selection problem are presented.

3.2.1 A Set of Atomic Cloud Services

Definition 3.1 (Set of atomic services): Let ܵ	 ൌ 	 ሼ ଵܵ, ܵଶ, ܵଷ 	…	ܵ௠ሽ	be a set of ݉ atomic

services that are part of the cloud ecosystem. A combination of these atomic services

creates a composite service that can satisfy complex user requirements.

3.2.2 Quality of Service (QoS) Attributes

Definition 3.2 (Set of QoS attributes): Let ܳ be a vector (1	 ൈ 	݊ matrix) that represents

a set of QoS attributes denoted by ܳ ൌ ሺݍଵ, ,ଶݍ ଷݍ ௡ሻ, as of ݊ components describingݍ…

the QoS attributes of a service	ݏ௜	߳	ܵ.

110

3.2.3 The e-marketplace Cloud Services Directory

Definition 3.3 (Cloud Ecosystem Feature Model): A cloud ecosystem feature model is

a sextuplet ܯܨܧܥ	 ൌ 	 ሺܨ, ,ைܨ ,ெܨ ,ூைோܨ ,௑ைோܨ and feature ܨ ௖ሻ consisting of featuresܨ

relationships in terms of parent-child and integrity constraints. ܨை represents a set of

parent and optional child feature pairs; ܨெ	is a set of parent and mandatory child feature

pairs; ܨூைோ		and	ܨ௑ைோ	 are sets of pairs of child feature and their common parent feature

grouped respectively into ‘or’ and ‘alternative’ groups; ܨ௖	 is a set of constraints-required

and excludes. A valid composition includes a set of features ܨ combined, according to

features relationships and integrity constraints	ܨ௖.

Definition 3.4 (QoS Aggregation): Let a service ݏ	 ∈ ܵ be a valid combination

composed of ܽ	ݐ	ݎܾ݁݉ݑ݊ of distinct services ܼሺଵ	௧௢	௧ሻ with ݊ QoS attributes and acts

sequentially. Let ݍ௜ሺܼ௞ሻ be the value of the ݅௧௛ QoS attribute for the ݇௧௛ distinct service.

Such that the aggregated value ݅௧௛ QoS attributes for all distinct services composed in ݏ is

given as:

ሻݏ௜ሺݍ ൌ ሺݍ௜ሺܼଵሻ ⋈ ௜ሺܼଶሻݍ ⋈ ⋯ ⋈ ௜ሺܼ௧ሻሻݍ (3.1)

Where ⋈ represents the aggregation operator based on the aggregation function employed

with respect to the QoS type and	ݐ ൐ 1. Meanwhile, the vector ܳ of QoS values for a

valid combination	ݏ is given as:

ܳሺݏሻ ൌ ሺݍଵሺݏሻ, …ሻݏଶሺݍ ሻሻݏ௡ሺݍ (3.2)

Definition 3.5 (Services Directory): Let ܣ be ݉	 ൈ 	݊ Matrix that contain the QoS

information of all valid composite services	ݏଵ …ܵ௠	߳	ܵ generated based on definitions 3.3

and 3.4, where each element ܽ௜,௝ represents the ݆௧௛ QoS value of the ݅௧௛ service,

while	݅, ݆	 ൐ 	2.

ܣ ൌ

ۉ

ۈ
ۇ

ܽଵଵ ܽଵଶ ⋯ ܽଵ௡

ܽଶଵ ܽଶଶ ⋯ ܽଶ௡

⋮
ܽ௠ଵ

⋮
ܽ௡ଶ

⋱
⋯

⋮
ܽ௠௡ی

ۋ
ۊ
	 (3.3)

111

From	ܣ, a row vector would describe a service ݏ௜ ∈ ܵ with QoS attributes where each

element represents the QoS attribute of composite service	ݏ௜.

3.2.4 User QoS requirements

The values of a user’s QoS requirements (aspiration) are captured in a vector that

corresponds to the number of QoS attributes that describes available e-marketplace

services. Users QoS preferences reflect the relative importance of each QoS attribute to

others and are denoted using priority weights derived from the pairwise comparison.

Similar to Rehman et al. (2011), user requirements are defined as:

Definition 3.6 (Fuzzy Pairwise Comparison Judgment): Suppose there are ݊ QoS

attributes, and that the user can provide a set ܮ ൌ ሼ ෤ܽ௜௝ሽ of ݉ ൑ ݊ሺ݊ െ 1ሻ/2 fuzzy

pairwise comparison judgments, where	݅ ൌ 1,2… , ݊ െ 1; ݆ ൌ 2, 3, … ݊; ݆ ൐ ݅, represented

as triangular fuzzy numbers ෤ܽ௜௝ ൌ ሺ݈௜௝,݉௜௝, ܹ ௜௝ሻ, a crisp priority vectorݑ ൌ

ሺݓଵ,ݓଶ, … ௝are approximately withinݓ/௜ݓ ௡ሻ் is derived such that the priority ratiosݓ,

the scopes of the initial fuzzy judgments, or ݈௜௝ ൑෩
௪೔

௪ೕ
൑෩ ௜௝; where ൑෩ݑ	 means ‘fuzzy less or

equal to’.

Definition 3.7 (Fuzzy QoS Aspiration): Suppose there are ݊ QoS attributes and there are

݊ Goals,		ܩ ൌ ሺܩଵ ܥ ,௡ሻ and Constraintsܩ… ൌ ሺܥଵ, … , ௡ሻ for the QoS attributes. Thenܥ

the resultant decision	ܦ௜ is the intersection of each Goal and Constraint, denoted as:

௜ܦ ൌ ௜ܩ ∩ ௜ܥ (3.4)

Corresponding to:

௜ሻݒ஽೔ሺߤ ൌ 	min ቀ μீ೔ሺݒ௜ሻ, μ஼೔ሺݒ௜ሻቁ (3.5)

Where μ஽೔, μீ೔, and	μ஼೔ are the membership functions for decision, goal and constraint.

However, the A maximizing decision is the point in the set of values at which the

membership function of a fuzzy decision attains its maximum. The optimal alternative is

found using a maximizing decision	ܦ∗, and its membership function corresponding to:

μ஽೔∗ሺݒ௜ሻ ൌ argሼmax ௜ሻሽݒ஽೔ሺߤ (3.6)

112

Therefore, the QoS aspiration vector ܸ ൌ ሺݒଵ, ,ଶݒ … , ௜ݒ	௡ሻ் is obtained as the values ofݒ

that has the highest membership grade in the decision fuzzy set	ܦ௜.

Definition 3.8 (User QoS Requirement): The user’s QoS requirement is a tuple	ܴ	 ൌ

	ሺܹ, ܸሻ. Where ܹ ൌ ሺݓଵ,ݓଶ, … , ௜ is the importance weight for ݅௧௛ QoSݓ ௡ሻ, and eachݓ

attributes derived from fuzzy pairwise comparison judgment performed by the user; ܸ	 ൌ

ሺݒଵ, ,ଶݒ … , QoS attribute	݅௧௛	 corresponds to user’s desired value for the	௜ݒ ௡ሻ, andݒ

obtained by fuzzy decision making process.

3.2.5 QoS Evaluation and Ranking

Users are expected to select the service(s) that most approximates their QoS requirements

from the available list of alternatives based on the performance evaluation obtained from

an evaluation function. First, optimal QoS values are synthesised from user’s

requirements (preferences and aspiration), and this information becomes the query to

retrieve the most optimal set of services relevant to the user’s requirements from the

service directory. This was achieved by formulating a fuzzy goal and constraint of finding

those QoS values that are in the vicinity of the ideal service (ܩ෨), and very close to the user

requirements (ܥሚ). Formally, the optimal values are defined as follows.

Definition 3.9 (Optimal QoS Values): Let ܸ∗	be the optimal QoS values synthesised

from user’s requirements with respect to the QoS information of all services	ݏ௜ ∈ ܵ. The

goal of the optimal QoS values is to find the optimal set of QoS values such that:

ܸ∗ ൌ argmaxΨ ሺܩ෨, ,ሚሻܥ ∀ ௜ݏ ∈ ܵ (3.7)

Where Ψ is the fuzzy multi-objective optimisation modelled as fuzzy decision making,

that finds the QoS values in the vicinity of the service with the best QoS performance, and

also very close to the user’s requirements	ܴ.

Definition 3.10 (Optimal Cloud Service Selection): For a given user’s requirements	ܴ,

an optimal cloud service selection is selecting cloud service ݏ௜ ∈ ܵ from ranking all ݏ௜ ∈ ܵ

such that:

௜ݏ ൌ max
௦೔∈ ௌ

ሼ݁ܦܷܧ ሺ0 , ௜ሻሽݏ (3.8)

113

Where ݁ܦܷܧ is a nearest neighbour ranking function that ranks all services, ݏ௜ ∈ ܵ

according to the optimal QoS values	ܸ∗.

3.3 REQUIREMENTS FOR A CLOUD SERVICE SELECTION FRAMEWORK

Addressing some of the open issues in cloud service selection is the first step to

uncovering the requirements of an effective cloud service selection technique that is

suitable for an e-marketplace context. This section highlights some requirements for a

service selection technique suited for an e-marketplace context based on the analysis

presented in Chapter two (Section 2.4.1). The six requirements can be summarised as

follows:

i. Requirement 1: Ability to organise and compose cloud ecosystem atomic

services - A cloud e-marketplace is an ecosystem of heterogeneous services from

multiple providers. There is a need to explicitly capture the cloud service attributes

(functional and non-functional), and the cross-service relationships and constraints

that guide the cloud service compositions in a logical and structured manner

(Wittern et al., 2012).

ii. Requirement 2: Ability to elicit both QoS preferences and aspirations - Most

cloud service selection approaches unrealistically assume the user would provide

perfectly crisp, precise and exact preference and aspiration information, which is not

congruent with human expressions (Esposito et al., 2016; Sun et al., 2014; Qu and

Buyya, 2014). Requirement 2 is further broken into the ability to capture vagueness

when users express QoS preferences and aspiration; the ability to evaluate the

interdependence of the user preferences in line with the multiple QoS criteria; and

the ability to evaluate services based on both the user’s QoS preferences and

aspirations.

iii. Requirement 3: Ability to perform QoS-based evaluation and ranking from a

large assortment of service alternatives: The e-marketplace context requires

approaches that can deal efficiently with a large number of alternatives, and

considers mixed QoS data, without accruing high computational overhead (Dastjerdi

et al., 2015). In addition, such approaches should allow for the optimisation of

specific QoS goals and should be scalable in handling multiple users simultaneously.

114

iv. Requirement 4: Capture fuzziness with interactive GUI: Users’ engagement with

the e-marketplace to select cloud service should be facilitated by intuitive and

interactive user interfaces with which users can conveniently express requirements.

v. Requirement 5: Visualise cloud service ranking results: Most cloud service

selection approaches presents service rankings in textual format, either in a list or

tables (Beets and Wesson, 2011). This does not fully describe the implicit trade-off

factors inherent in the available options, nor provide transparency into the reasoning

behind the rankings, and can increase cognitive load on users (Lurie and Mason,

2007). Search or evaluation result should be innovatively presented in a way that

eases understanding and reduces cognitive load (Zhang et al., 2012).

vi. Requirement 6: Take into cognizance usability and user experience factors: The

evaluations of cloud service selection approaches reported in literature focuses on

the performance and accuracy of the approach in ranking services that align with

user requirements. Similar to the evaluation of recommender systems, a more

holistic evaluation of cloud service selection approaches should include usability

and user experience dimensions.

Following the set of requirements listed above, the design agenda of the FOCUSS

framework is summarised as follows:

i. Organise and compose cloud ecosystem atomic services and populate the service

e-marketplace directory

ii. Elicit user fuzzy QoS preferences and aspiration;

iii. Perform QoS-based ranking and evaluation of cloud service alternatives with

respect to user QoS requirements;

iv. Wrap all the underlying functionalities in a tidy graphical user interface.

3.4 OVERVIEW OF THE PROPOSED FRAMEWORK

The Fuzzy-Oriented Cloud Service Selection (FOCUSS) framework is proposed as an

efficient integrated visual-rich fuzzy-based decision support that incorporates feature

modelling, fuzzy set theory, fuzzy optimisation methodology, widgets and visualisation in

115

its design for cloud service selection in cloud service e-marketplace context. The input

into the FOCUSS framework is a set of cloud service alternatives derived using

automated reasoning on an ecosystem model, and users QoS preferences and aspiration

captured through an interactive fuzzy-based user interface. The output is a QoS ranking of

services with respect to users’ requirements presented using interactive bubble charts. The

FOCUSS framework is proposed as a scalable approach that suffices for a large

assortment of services and improves the quality of user experience in a cloud e-

marketplace context. Subsequently, the process model and the conceptual architecture are

presented in details, as well as, a justification showing how each component of the

proposed framework satisfies the set of requirements listed in Section 3.3.

3.4.1 FOCUSS: The Process Model

The process model of the FOCUSS framework is summarised in Figure 3.1.

Figure 3.1: High-level Flow chart of FOCUSS Framework

A step-wise description of the workflow of the FOCUSS framework is presented as

follows:

i. Step 1: Service providers list and register their atomic services in the ecosystem.

Based on the ecosystem model, these services are organised, and formally

composed in a manner that increases the value proposition of individual atomic

services, and these valid combinations are stored in the service directory.

ii. Step 2: Users interested in using the services can specify their fuzzy QoS

requirements (preferences and aspiration), using a fuzzy-based GUI.

iii. Step 3: Based on the specified requirements, the system first resolves the user

requirements to obtain an optimal set of QoS values. The optimal QoS values are

used to generate an ordered ranking of appropriate services that approximates the

• Create
Ecosystem
Model

• Derive Valid
Combinations

Step 1
(System)

Users specify
QoS
Requirments

Step 2
(User)

• Optimze QoS
Requirments

• Generate and
visualize QoS
Ranking of
Alterrnatives

Step 3
(System)

• Users Explore
rankings via
visualization

• User Selects
desired
services

Step 4
(User)

116

user’s requirement, based on the QoS ranking mechanism of the proposed

framework. This ranking result is visualised in a bubble chart.

iv. Step 4: The user can then select appropriate service(s) through exploration of the

results with the capabilities provided in the visualisation and exploration GUI.

3.4.2 FOCUSS: The Conceptual Architecture

The FOCUSS framework (see Figure 3.2) consists of four modules, namely: Graphical

user interface (GUI), QoS requirements processing, QoS evaluation and ranking, and

Cloud ecosystem model and analysis modules. In accordance with the process model, the

conceptual architecture (point 0) shows how the atomic services are combined to realise

the set of composite services offered in the e-marketplace. Subjective QoS requirements

are then provided by the Fuzzy-based widgets at point 1, processed by the QoS

Preference Prioritizer and the QoS Aspiration Analyzer at point 2, optimised by the QoS

Requirements Optimizer at point 3, while the QoS Ranking Engine ranks services in the

directory at point 4. The ranked results are shown to the users via bubble graph

visualisation at point 5. Each module is discussed in details subsequently.

Figure 3.2: Architecture of the FOCUSS Framework

117

I. Graphical User Interface

The GUI is the visual medium through which the user interacts and engages the e-

marketplace, and it plays a very prominent role in usability and user experience in the e-

marketplace environment (Van Schaik and Ling, 2008). The GUI module comprises

Fuzzy-based Interactive GUI and Bubble graph visualisation components, which are

discussed next.

a) Fuzzy-based Interactive Graphical User Interface

The fuzzy-based interactive graphical user interface consists of drop-down menus, text

boxes and slider bars for eliciting users’ vague preferences and aspirations under one

integrated visual interface using slider bars can also enhance user experience. Users can

indicate the level of preference by pairwise comparison for each QoS attribute by

adjusting the slider handle left or right. The slider bar has two colour codes that

correspond to the QoS attributes, and indicates the amount of preference for a QoS

attribute; the lengthier colour means user prefers a QoS attributes more than the other to

an extent. The positions of the slider handle are underlined by fuzzy numbers, from the

fuzzified Saaty scale, and correspond to the degree of preference indicated during the

pairwise comparison by the user. The QoS aspiration level is specified by selecting an

option from the drop-down menu indicating linguistic values and a threshold that

approximates user’s QoS aspirations for a specific QoS attribute. A typical illustration of

the fuzzy-enabled GUI for eliciting user’s QoS preference and aspirations is shown in

Figure 3.3.

(a)

118

(b)

Figure 3.3: Sketch of UI Design showing Availability QoS Requirements for two Users
(a) User-I expect that Availability value should be high and substantially greater than 80%
(b) User-II specifies that Availability value should be Medium and should be about 60%.

b) Bubble Chart IV Module with dynamic exploration capabilities

The FOCUSS framework incorporates the bubble graph information visualisation

technique to intuitively present ranking results in a manner that is easy to understand and

facilitates quality decision-making. Each ranked cloud service is represented as a bubble

(shape), using a variety of colours, sizes and x-y coordinates to show services in the

QoS information space (cf. Figure 2.17). These dimensions (colours, size and x-

coordinates and y-coordinates) represents up to four QoS dimensions simultaneously.

Based on the SMI QoS model for cloud services (CSMIC, 2014), four QoS attributes

have been considered in this study, they include, Cost, Reliability, Response time and

Availability, which also have been the basis for QoS consideration in similar approaches,

for example (He et al., 2012; Karim, 2013; Zeng et al., 2009; Ludwig, 2012). Dynamic

exploration enabled by clicking to access details of each option is the form of direct

interaction that allows the users to view the details of each option almost immediately

(Shneiderman, 1994; Nestor et al., 2007).

II. QoS Requirements Processing Module

The user’s QoS requirements elicited via the GUI are processed in the QoS Requirements

Processing (QRP) module, in order to identify suitable cloud services that match those

requirements. The QRP module comprises of the QoS Preference Prioritizer (QPP) and

the QoS Aspiration Analyzer (QAA). An accurate elicitation of users’ QoS requirements

involves the interpretation of fuzzy expressions associated with evaluating service

alternatives (Qu and Buyya, 2014; Esposito et al., 2016; Sun et al., 2014). The ability to

119

express vague preferences or aspiration using natural linguistic terminologies enables

easier and quicker expression of users’ QoS requirements (Esposito et al., 2016; Qu and

Buyya, 2014; Gatzioura et al., 2012). To the user, this means that requirements need not

be stated in exact or precise terms of the service attributes (Akolkar et al., 2012), and are

therefore allowed some flexibility. The QPP and QAA modules are described in more

details next.

a) QoS Preference Prioritizer

To prioritise user’s QoS preferences, the FOCUSS framework employs Fuzzy AHP-based

approach. The evaluation dimension was achieved by using fuzzy numbers and linguistic

variables and employed nine fuzzy linguistic variables to define the scale for the

comparison judgements values. These values are triangular fuzzy numbers (TFN) with

their underlying triangular membership functions. Next, the user performs the pairwise

comparison for all criteria to fill the Fuzzy comparison matrix. For example, a user’s

degree of importance of the cost criterion over availability can be expressed by the fuzzy

number “about strongly important”, i.e. ෤ܽ௖௢௦௧,௔௩௔௜௟ 	ൌ 	 ሺ6, 7, 8ሻ. The corresponding

reciprocal from on the fuzzy comparison matrix becomes	 ෤ܽ௔௩௔௜௟,௖௢௦௧ 	ൌ 	 ሺ
ଵ

଼
, ଵ
଻
, ଵ
଺
ሻ. The QoS

Preference Prioritizer ensures consistency in the pairwise judgment based on a method

proposed by (Csutora and Buckley, 2001), and finally derives priority weights that reflect

the relative importance of each criterion to the user using the geometric mean method

(Buckley, 1985). Algorithm 1 outlines the process for deriving the priority weights.

b) QoS Aspiration Analyser

The QoS Aspiration Analyser models user-desired QoS values specified using fuzzy

linguistics terms and hedge membership functions (cf. Algorithm 2). For example, the use

the following linguistic terminologies can be employed when expressing QoS aspiration:

“the threshold of reliability metric should low and be in the vicinity of x”, or “cost should

be cheap and in the range of a and b” or “Availability should be high and close to the

value z” etc., where x, a, b, and z are specific and desired QoS values for reliability, cost,

and availability respectively. The fuzzy linguistic variables, ‘low’, ‘in the vicinity of’,

‘cheap’, ‘in the range of’, ‘high’ and ‘close to’ are represented using membership

functions. Moreover, each QoS attributes consist of a number of membership functions,

from which the user can select the ones that most approximates their intention (e.g. see

120

Table 3.1). Thus, the QoS Aspiration Analyser module synthesises user’s QoS values

based on fuzzy decision-making system, comprising of the membership functions framed

as fuzzy goal and constraints. Since the linguistic terminologies describing the QoS

aspiration reflect the semantic approximations of user’s intent, resolving the fuzzy

decision results in an optimal set of QoS values and the output of this module is a set of

values that approximate user’s QoS intent.

Table 3.1: Linguistic Terms for fuzzy QoS goals and constraints for Availability
Attribute Linguistic terms of QoS Goals Linguistic terms for QoS Constraints

Availability
High
Medium
Low

Substantially greater than x
In the vicinity of x
About x
Very Close to x

Algorithm 1: to Derive Priority Weights from Fuzzy Comparison Matrix

Input: Fuzzy Comparison Matrix M= ሾ ෤݆ܽ݅ ሿ of n QoS attributes, and ෤ܽ is a Triangular fuzzy
number TFN
Output: Vector W of priority weights
Begin

for each k=1 to 3
for each i=1 to n

 for each j=1 to n
 r[i] ×= a[i][j]
 end for
 r[i]= pow (r[i], n-1)
 TFN[i][k]=r[i]
 tot[k]= TFN[i][k]

tot[k]=inverse(tot[k])
 end for
 end for
 tot=sortIncreasingOrder(tot)
 for each i=1 to n
 for each k=1 to 3
 w[i][k]=TFN[i][k]*tot[k]
 end for
 end for

W=normalize(w)
Return W
End

Algorithm 2: Derive QoS values from Fuzzy Aspirations
Input: Fuzzy Goals G=[gi] and Fuzzy Constraints C=[ci] for n QoS attributes; Let MF be
membership functions
Output: Vector V of QoS Aspiration values
Begin

For all i=1 to n
V[i]= max min (MFgoal(G[i]), MFconstraint (C[i]))

End for
Return V

End

121

III. Service Evaluation and QoS Ranking Module

Cloud services are characterised by multiple QoS attributes, and there is need to evaluate

the overall performance of a given service by some utility functions with respect to users’

QoS requirements. Each service alternative is evaluated and ranked in accordance with

the user’s QoS requirements in the service evaluation and QoS ranking module and this

module comprise of the QoS requirements optimizer and the QoS ranking Engine.

a) QoS Requirements Optimizer

The QoS optimizer component computes the optimal QoS values that describe user’s

requirements based on the available QoS information on all the services contained in the

service directory. The inputs into this component are the priority weights for each QoS

attributes from the QoS Preference Prioritizer module and the values of the QoS

attributes synthesised from the QoS Aspiration Analyser. Based on the collective QoS

information about services in the directory, the FOCUSS framework employs two utility

functions: an SAW-based function and a distance metric, exponential Euclidean distance

metric- eEUD (2.27), to evaluate the performance of each service alternative. These

functions have been discussed in Section 2.4.5. The SAW function is used to evaluate

performance utility of each alternative in order to determine the QoS properties of the

services alternative with the highest utility, with respect to a user’s preferences, while

eEUD (see Section 2.4.5) is used to identify those QoS properties of the alternative that is

closest to users’ requirements, with respect to both preferences and aspiration. The returns

from the two functions are used to construct the optimal QoS properties drawn from

user’s requirement; this is based on the assumption that users always seek to maximise

utility subject to their personalised QoS requirements. Hence, the optimal QoS properties

are those which simultaneously maximise the utility function as much as possible and

closely approximate similarity with user’s aspiration. The conflicting nature of functions

gives rise to a multiple objective decision-making problems, which the QoS Requirement

Optimizer models and solves as a fuzzy multi- objective optimisation problem. The

objective functions are transformed into a fuzzy goal and constraint and also solved by

fuzzy decision making (Bellman and Zadeh, 1970). The resultant output (optimal QoS

properties) forms the input into the QoS Ranking Engine.

122

b) QoS Ranking Engine

The output from the QoS Requirement Optimizer forms the basis for ranking the

alternatives in the service directory. The main technique used in this module is the nearest

neighbour ranking algorithm, based on the eEUD metrics (2.27), that identifies the

nearest neighbours to the optimise QoS requirements. The output is the QoS ranking of

the alternatives, and top-k items become the dataset fed into the bubble chart

visualisation. Algorithm 3 outlines the process of the QoS Ranking Engine.

IV. Cloud Ecosystem and Service Directory Module

As part of the FOCUSS framework, a directory of available services is created based on

the combinations of atomic services in a systematic manner. The directory of services

serves as the baseline for the selection process proper. The cloud ecosystem and service

directory module consist of the cloud ecosystem feature model, the reasoning engine and

the service directory.

a) Cloud Ecosystem Feature Model

Information about the participating atomic services in the ecosystem, which includes QoS

properties, is collected and modelled using Variability Modelling techniques. Noting that

the cloud ecosystem structure is analogous to the fundamental principles of software

product line engineering (SPLE) (Berger et al., 2014), one of the variability modelling

Algorithm 3: Rank Services in Directory based on Optimized QoS Requirements
Input: Vectors V and W representing the QoS aspiration values and priority weights; the
service directory A; Let MF be membership functions
Output: Top-k List of services R
Begin

For each item ai in A do
perfScore[i]  Saw (ai, W,V)
simScore[i]  eEUD(ai ,W, V)

 For all i=0 to sizeOf(A)
 MFd  arg max min (MFsaw(perfScore[i]),MFeEUD(simScore[i]))
 OP  Evaluate MFd to return the optimal QoS values that approximate user

requirements W and V
 For all items ai in A

 L[i]=eEUD(O, a)
R  Rank all items in L according to most similar to O and return top-k
Return R

End

123

techniques used in the SPLE is used to effectively structure the hierarchical

interrelationships among ecosystem atomic services.

The cloud ecosystem feature model, based on extended feature model (Benavides et al.,

2006), is employed in the FOCUSS framework to organise the services participating in

the ecosystem; then the model is transformed into a constraint satisfaction problem based

on some mapping rules, and this forms the formal basis to enable automated reasoning on

the ecosystem feature model. An automated reasoning process called generate all

products, is used to populate the e-marketplace service directory. At least more than one

atomic services are composed to form valid combinations, therefore, the QoS properties

of the constituent services are aggregated to determine the overall QoS values for the

valid combination.

i- Mapping Cloud Ecosystem Feature Model to Constraint Programming

Table 3.2 contains the rules for mapping the Cloud Ecosystem Feature Model (CEFM)

into a constraint satisfaction problem using constraint programming.

ii- QoS aggregation functions

Usually, the overall QoS properties of the composite services, conceptualised into a

business process, are determined by the QoS attributes of constituent services and their

composition relationships. There are four basic composition patterns that inform the

arrangement of constituent services in a business process (Mohabbati et al., 2011;

Bouanaka and Zarour, 2013; He et al., 2012; Yu and Lin, 2005). They include:

i. Sequential: A sequential pattern describes an activity (or services) in the business

process that executes after another activity has concluded execution. In other words,

the services are executed one after the other.

ii. Parallel- In a parallel pattern, all the branches are executed at the same time.

iii. Conditional (or branch): Only one branch, with a set of activities, is selected for

execution in the branch pattern.

iv. Loop: In a loop pattern, an activity in the business process is executed for ሺ݊ ൐ 0ሻ
times.

124

Table 3.2: Rules for Mapping Cloud Ecosystem Feature Model into CSP

RELATIONSHIPS IN CEFM CSP MAPPING

Mandatory

ܣ ൌ ܤ

Optional

݂݅ሺܣ ൌ 0ሻ	
ܤ						 ൌ 0	

OR

݂݅ሺܣ ൐ 0ሻ
,ଵܤሺ	݉ݑܵ					 ଶܤ ሺ1…݊ሻ	௡ሻ݅݊ܤ…
 ݁ݏ݈݁

1ܤ ൌ 0, 2ܤ ൌ 0. . . ௡ܤ ൌ 0

Alternative

݂݅ሺܣ ൐ 0ሻ
,ଵܤሺ	݉ݑܵ					 ଶܤ ሺ1…1ሻ	௡ሻ݅݊ܤ…
 ݁ݏ݈݁

1ܤ ൌ 0, 2ܤ ൌ 0. . . ௡ܤ ൌ 0

 Requires

݂݅ሺܣ ൐ 0ሻ
ܤ ൐ 0

 Excludes

݂݅ሺܣ ൐ 0ሻ
ܤ ൌ 0

However, the sequential composition pattern was used in this research. The sequential

pattern is the fundamental pattern, as the other patterns (i.e. parallel, conditional and

loop), can be reduced or converted to the sequential pattern (Yu and Lin, 2005; Alrifai et

al., 2010). Based on the nature of QoS attribute, different aggregation functions can be

applied (Yu and Lin, 2005). However, for the purpose of this study, the FOCUSS

framework considers only the summation and multiplication aggregation functions (see

Table 3.3):

i. Summation: In summation aggregation function, the values of a QoS attributes are

summed up (e.g. cost and response time). The overall cost for a valid combination

service should be a summative total of the cost of all constituent services.

ii. Multiplication: Multiplication function implies that the aggregate is a product of all

the values of a QoS attribute of all the constituent services (e.g. availability).

125

The QoS aggregation rules for the four QoS properties considered in the FOCUSS

framework (i.e. cost, response time, availability and reliability) are given in Table 3.3.

Table 3.3: Aggregation Functions Used in the FOCUSS Framework

AGGREGATION TYPE QOS ATTRIBUTE AGGREGATION FUNCTION

Summation
Cost

ሻݏ௜ሺݍ ൌ෍ݍ௜ሺ ௝ܼሻ

௧

௝ୀଵ

Response Time

Multiplication
Availability

ሻݏ௜ሺݍ ൌෑݍ௜൫ ௝ܼ൯

௧

௝ୀଵ

Reliability

Source: Yu and Lin (2005)

The multiplication aggregation functions are non-linear functions. In order to make all

aggregate functions to be linear ones, these functions were transformed

using	log 	ሺݍ௜ሺݏሻሻ ൌ log൫∏ ௜൫ݍ ௝ܼ൯
௧
௝ୀଵ ൯ ൌ ∑ logሺݍ௜ሺݏሻሻ

௧
௝ୀଵ , a logarithmic function	used for

such purposes (Li et al., 2014).

b) Reasoning Engine

The FOCUSS framework employs Choco (Jussien, 2008), a general purpose constraint

solver, for reasoning on the cloud ecosystem feature model in order to derive useful

information from the model, case in point, all valid combinations of constituent services.

Choco solver employs, by default, a backtracking approach to find solutions. The search

is ordered as an enumeration tree and traversed using a Depth-First Search (DFS)

algorithm augmented with variable and value selection heuristics. The solver determines

the satisfiability of the CSP, and if a CSP is satisfiable, then solutions can be obtained.

The solver searches for a solution in a CSP, using its search strategy to generate all the

possible combinations of values for each variable in the CSP and certifies that they

correspond to a solution of the CSP. Table 3.2 shows the rule for mapping constructs in

the cloud ecosystem feature model into CSP. The corresponding CSP representation of

the model is read by the reasoning engine and performs automated analysis of the CSP

representation to generate all valid service combinations with aggregated QoS

information based on the aggregation functions listed in Table 3.3.

c) Service Directory

The service directory indexes all the QoS information about the collection of valid

combination services generated by all products operations on the cloud ecosystem feature

model. Based on Definition 3.3 and Algorithm 4, the service directory is modelled as case

126

base and stored in a relational database with columns and rows representing the QoS

attributes and the QoS values for each valid combination service.

3.4.3 Justification for the FOCUSS Framework

To satisfy Requirement 1, the FOCUSS framework uses a cloud ecosystem feature model

(CEFM) that is based on extended feature model (Benavides et al., 2006) to organise the

atomic services that are participating in the ecosystem. The CEFM is transformed into a

formal representation as a constraint satisfaction problem and one of the automated

reasoning operations performed on the formal representation of the CEFM generate all

valid combinations is used to populate the e-marketplace service directory.

The FOCUSS framework fulfils Requirement 2 by employing fuzzy set theory to elicit

QoS preferences and aspirations while taking into consideration both users’ preferences

and aspiration. To determine the user’s preferences on QoS attributes, the advantage of

pairwise comparisons to derive priority weights of each QoS attribute from comparison

matrices far outweighs direct and arbitrary assignment of weights (Javanbarg et al.,

2012). The result of each pairwise comparison is a numerical value denoting the

estimated ratio between the weights of any two criteria; and the weights are crisp values

obtained from Saaty’s scale (Saaty, 1980). The AHP method proposed by (Saaty, 1980)

provides some measure of flexibility in judgment by ensuring intermediate values in the

Saaty’s discreet scale (Cakir and Canbolat, 2008).

Algorithm 4: Populate Cloud service directory with Composite Services
Input: Cloud Ecosystem Feature Model (CEFM) of atomic services with n number of QoS
attributes
Output: Service Directory A
Begin

S  reasoningEngine(CEFM) generate sets of valid composite services based on
constraints

for each composite_service C in S
for each i=1 to n

for each atomic_service a in C
 As[i] = aggregate (QoS(a[i]))

end for
end for

end for
Return A

End

127

On the other hand, human judgment is shrouded with impression and vagueness. In most

practical cases, and users might be reluctant or unable to assign exact numerical values in

comparison judgements (Mikhailov and Tsvetino, 2004). Comparison judgement using

crisp numerical values lacks the flexibility and robustness required to effectively capture

the vague perception inherent in human judgement, and sometimes, lead to unsatisfactory

decisions (Cakir and Canbolat, 2008; Javanbarg et al., 2012; Mikhailov and Tsvetino,

2004). User’s claim about the relative importance of the QoS criteria can to delineated

comparison ratios as fuzzy numbers (Cakir and Canbolat, 2008; Tajvidi et al., 2014;

Mikhailov and Tsvetino, 2004).

Similarly, expressing QoS aspiration also benefits from the flexibility provided by

employing fuzzy set theory, where rather than expressing the value of QoS attributes

using exact crisp values, linguistic variables defined by membership functions can be

used together with hedges.

Cloud services e-marketplaces are characterised by a large set of services, which are most

times functionally equivalent. The FOCUSS framework fulfils Requirements 3, by

employing a fuzzy multi-objective optimisation mechanism that accurately evaluates and

rank a large set of services in accordance with user’s QoS requirements.

Requirement 4 is satisfied by the FOCUSS framework as it integrates fuzzy-based web

widgets for eliciting vague preferences and aspirations in an integrated visual interface.

GUI designs that can intuitively capture these requests are naturally desirable. Indeed, the

user’s perception of the interface affects attitude to what comes out of it, and ultimately

affects user satisfaction (Kuniavsky, 2003; Sundar et al., 2014). Estimating relative

pairwise comparison can be made numerically, graphically, or linguistically (Forman and

Gass, 2001). However, a graphical and linguistic approach further reduces cognitive load

on the user and is easier than expecting the user to enter crisp numeric ratios. The choice

of slider bars is motivated by the study performed by (Millet, 1997), which shows that

interaction or engagement is better off using slider by giving the user the opportunity to

adjust and interact directly with the elements on the screen.

The FOCUSS framework fulfils Requirement 5 by including the bubble graph as a

visualisation mechanism for improving the understanding of the rationale for the rankings

of cloud services based on the user’s requirements. Most cloud service ranking and

128

selection systems are black boxes, providing a list of ranked cloud services with no

transparency into the reasoning behind the ranking results (Chen et al., 2013). Arguably,

confidence in the ranking results would be enhanced if users are privy to the knowledge

of the underlying rationale. The graph explicitly would show the relationships of the top

ranked cloud services as well as the underlying structure of the QoS space by using

bubbles, colours, and size in a spatial arrangement. This exploratory mechanism provides

valuable insight into the QoS information space and enables an improved understanding

of how each service in the ranking relates to others in the QoS information space overall

performance evaluations of cloud services (Chen et al., 2013).

To validate the FOCUSS framework, an illustrative case study is undertaken to

demonstrate the practicality of the FOCUSS framework, while controlled experiments are

performed to assess the ranking accuracy and scalability of the FOCUSS framework.

Apart from the performance and accuracy evaluations which are predominant in

literature, user studies were carried out to ascertain the suitability of the FOCUSS

framework in the e-marketplace context; thus ensuring that the FOCUSS framework

fulfils Requirement 6.

3.5 ASSUMPTIONS

The underlying assumptions underpinning the proposed FOCUSS framework are

highlighted as follows:

1. It is assumed that there would be no failure on the part of any of the services and

that all services are available in every given instance.

2. The QoS information given is accurate and reflects the true performance of the

services.

3. All valid combinations would be deployed on host e-marketplace infrastructure.

4. There are service composition realisation or actuator mechanisms that concretise

valid combinations for onward cloud deployment for the user.

5. Every other aspect of the e-marketplace is functional, as this study is only

concerned with the aspect selecting cloud services from a large pool in an e-

marketplace context.

129

6. The number of QoS dimensions considered is limited to four, given the

multivariate constraints imposed by the bubble graph visualisation.

7. Noting the dynamic nature of the cloud computing domain, correctly evaluating

the performance of cloud service should be an on-going concern, a major

assumption is that the QoS properties of the atomic services remain unchanged

during the decision process, that is, all ݖ௜ 	 ∈ 	ܼ are constant. This assumption

reduces cloud into a decision problem without uncertainty (Rehman et al., 2011).

8. It is assumed that providers have correctly specified their QoS requirements;

however, a consistent update of the QoS information about the services, based on

monitoring benchmark values from third party services is required (Ruiz-Alvarez

and Humphrey, 2011).

3.6 CHAPTER SUMMARY

In this chapter, several models describing the Fuzzy-Oriented Cloud Service Selection

Framework (FOCUSS) were presented. The FOCUSS framework is presented as an

integrated, feature-based and visual-rich fuzzy-based decision making framework for

cloud service selection in cloud service e-marketplace context and attempts to answer the

research questions posed in this study. The automated analysis of cloud ecosystem feature

models populates the service directory, while the fuzzy theories are employed to elicit

user QoS requirements via interactive GUI, through which ranking of service alternatives

can also be explored. The practical demonstration and validation of the FOCUSS

framework will be discussed in the subsequent chapters.

130

CHAPTER FOUR

IMPLEMENTATION

4.1 INTRODUCTION

The previous chapter contained the description of the FOCUSS framework proposed in

this study for service selection in cloud service e-marketplace. In this chapter, the details

of the implementation of the FOCUSS framework are presented first, using some

software tools, technologies and middleware frameworks. Next, this chapter contains

details of an illustrative case study of a Cloud-based Customer Relationship Management

Software-christened Customer Relationship Management as a Service (CRMaaS). Based

on a GUISET use case, the CRMaaS provides a scenario through which the practical

application of the FOCUSS framework was demonstrated.

4.2 IMPLEMENTATION DETAILS

In order to realise the FOCUSS framework and demonstrate its applicability, a set of

technological tool has been identified. These tools were categorised into different

functional areas- Integrated Development Environment (IDE), Front-end Components,

and Back-end components- Java was the primary programming language used to

implement components of the FOCUSS framework. The tools used to implement the

components of the FOCUSS framework are presented as follows:

4.2.1 Integrate Development Environment: NetBeans 8.1

NetBeans 8.1 is a free open-source cross-platform integrated software development

platform written in Java and allows applications to be developed from a set of modular

software components called modules, which can be extended by third parties. Apart from

supporting developments in Java, the NetBeans IDE also supports other languages, such

as PHP, C/C++, XML and HTML5. The NetBeans IDE is cross-platform and runs on

platforms supporting a compatible JVM, including Microsoft Windows. The NetBeans

complete bundle provides complete tools for Java EE, SE and ME standards, including

Web profile, Enterprise Java Beans (EJB), Servlets technologies, Java Persistence API,

web services, and annotations. NetBeans also supports the JavaServer Pages (JSP) and

131

includes GlassFish and Apache Tomcat servers. With NetBeans IDE, desktop, mobile and

web applications can quickly be developed in Java, as well as HTML5 applications with

HTML, JavaScript, and CSS. Furthermore, the NetBeans IDE provides drivers for the

Java DB, MySQL, Oracle, and PostgreSQL database servers, as well as other JDBC

drivers. NetBeans 8.1 IDE served as the umbrella environment for the implementation of

the components of the FOCUSS framework.

4.2.2 Front-end Web-based UI

To achieve improved user experience in the FOCUSS framework, the graphical user

interface components were realised using a combination of front-end technologies,

languages and framework, which are presented subsequently.

a) JavaServer Pages (JSP)

JavaServer Pages (JSP) is a technology that is used to create dynamically generated web

pages based on HTML, XML or other document types using Java. JSP files are deployed

and run on a compatible web server that possesses a Servlet container (e.g. Apache

Tomcat or Jetty). JSP is considered high-level abstractions of Java Servlets and are

translated into Servlets at runtime. With JSP, Java codes and predefined actions are

commingled with markup languages (e.g. HTML) and are executed by a Java Virtual

Machine (JVM) that interacts with the server's host operating system to provide an

abstract, platform-neutral environment.

b) Hyper Text Markup Language

HyperText Markup Language (HTML) is the standard markup language for creating and

presenting web pages. Published in October 2014, HTML5 is the fifth and current version

of the HTML standard, and improves on previous HTML standards with support for the

multimedia, and provides API for complex web applications.

c) Cascading Style Sheets

Cascading Style Sheets (CSS) is a stylesheet language used for determining how a

document written in a markup language is presented in a web browser. Together with

HTML and JavaScript, CSS is employed to create visually engaging and appealing web

pages and user interfaces for web applications and mobile applications. The main concept

132

of employing CSS is to separate the content of a document from its presentation, and as

such improve content accessibility, enable multiple HTML pages to share formatting by

specifying the relevant CSS in a separate .css file, and reduce complexity and repetition in

the structural content. Apart from being used to create the visual appearance of web

pages.

d) JavaScript

JavaScript (JS) is a high-level, dynamic, untyped, and interpreted programming language

used together with HTML, and CSS to create web based contents. JavaScript is

prototype-based with first-class functions, making it a multi-paradigm language that

supports a variety of programming paradigms such as object-orientation, imperative, and

functional programming. It possesses API for manipulating text, arrays, dates and regular

expressions. JS is a client-side programming language used to dynamically alter the

content of an HTML document. JavaScript was heavily employed in the implementation

of the front-end components of the FOCUSS framework.

e) BootStrap Framework

The FOCUSS framework employs BootStrap 3.3.6 (bootstrap.com), a free and open-

source HTML, CSS and JS framework for creating and styling the web user interface.

BootStrap supports responsive web UI design, in that it adapts dynamically to the

characteristics of the device in use. It comprises design templates for layout, forms,

buttons, navigation and other UI components and provides a consistent appearance for

formatting text, tables and HTML form elements. BootStrap allows the use of modal

windows to reduce on-screen clutter, coloured buttons to dictate functionality, and tabbed

panes, to help split the system into smaller segments.

BootStrap is compatible with many modern browsers such as Google Chrome, Mozilla

Firefox, Apple Safari, Microsoft Edge, and Opera. The Jquery JavaScript library was used

to manipulate the HTML. Jquery is fast, light, and is a collection of feature-rich

JavaScript library, that greatly simplifies document traversal and manipulation, and event

handling.

133

f) Google Chart Visualization

Google Charts provide customizable JavaScript classes for visualising data on web pages.

The Google Chart JavaScript libraries expose a variety of chart types including line

charts, treemaps, scatter plot, bubble graph, etc. The Charts are rendered in an

HTML5/SVG technology that works across browser types. The Charts are populated from

data sources such as a database or directly from a web page. The FOCUSS framework

employs the Bubble Chart from the Google Chart types to visualise the QoS ranking of

Cloud service alternatives with respect to users’ QoS requirements.

4.2.3 Back-end Components

a) Glassfish Web Server

This is a fully compliant implementation of the Java EE 5 platform. It provides the

necessary middleware infrastructure support for all the Java APIs. The Application Server

includes a number of Java EE tools that are not part of the Java EE 5 platform but are

provided as an additional support to the developer.

b) Java Servlet Technology and Java Classes

A Java Servlet is a Java objects deployed in a web container and used to extend the

functionalities of a server. Servlets support hosted applications that comply with the

request-response communication model, and are the Java equivalent of dynamic web

technologies like PHP and ASP.NET. The web container in which the Servlets are hosted

handles the Servlet lifecycle and maps an URL to specific servlets while ensuring that the

URL requester possesses the correct access rights. Servlets and Java classes were used to

encapsulate the business logic of the FOCUSS framework. The business logic is the code

that fulfils the purpose of the application; For example, a method in a Java class

implements the business logic derivePriorityWeights. When derivePriorityWeights is

invoked, the QoS preferences of the users based on the Fuzzy comparison matrix would

be performed and the vector of the priority weights is returned for further processing.

Other components responsible for the core business logic of the FOCUSS framework

include the QoS Prioritizer, QoS Analyzer, QoS Requirement Optimizer, The QoS

Ranking Engine, and the Reasoning Engine.

134

c) Choco Constraint Library and Solver

Choco (Jussien et al., 2008) is a Free and Open-Source Software dedicated to Constraint

Programming. It is a Java library used to describe hard combinatorial problems as

Constraint Satisfaction Problems (CSP) and solved using constraint programming

techniques. Problems are modelled in a declarative way by stating the set of constraints

that need to be satisfied in every solution, and Choco solver solves the problem by

alternating constraint filtering algorithms with a search mechanism. Choco supports four

types of variables (Integer, Boolean, Set and Real), many global constraints, solution

search strategies, explanation-based engine, that enables conflict-based back jumping,

dynamic backtracking and path repair. The FOCUSS framework employed Choco 2.1.5

to describe the cloud ecosystem feature model that organises the participating services in

the cloud ecosystem and describes their relationship with each other. Choco solver uses,

by default, a backtracking approach to finding solutions. The search is ordered as an

enumeration tree and traversed using a Depth-First Search (DFS) algorithm augmented

with variable and value selection heuristics. The model provides a template for valid

combinations of services based on some imposed constraints.

d) The MOEA Framework

The MOEA Framework (moeaframework.org) is a free and open source Java library of

Multi-Objective Evolutionary Algorithms (MOEAs) and other general-purpose

multiobjective optimisation algorithms. The framework supports genetic algorithms,

differential evolution, particle swarm optimisation, genetic programming, and

grammatical evolution to formulate and solve multiobjective optimisation problems. New

problems are formulated in the MOEA Framework using decision variable(s) encoded as

any of binary, strings, real-valued numbers, and permutations. After the definition,

problems can then be optimised using the MOEA algorithms available in the framework.

Specifically, the MOEA Framework comprises the following algorithms NSGA-II,

NSGA-III, ε-MOEA, GDE3, PAES, PESA2, SPEA2, IBEA, SMS-EMOA, SMPSO,

OMOPSO, CMA-ES, and MOEA/D.

e) MySQL Database

MySQL is the most popular open-source relational database management system

(RDBMS) for web-based application and is a central component of the widely used

135

LAMP open source web application software stack (and other "AMP" stacks). The latest

MySQL version 5.7.11 was employed in implementing the service directory of the

FOCUSS framework. The MySQL database server was integrated into the NetBeans 8.1

IDE via the MySQL Connector/J Java Database Connectivity API. The API allows SQL

commands to be invoked from Java programming language methods. The connector is

used in an enterprise bean when there is a need for a session bean to access the database.

The connector can also be used from a Servlet or a JSP page to access the database

directly, bypassing the enterprise bean. The summary of the technologies employed to

implement the FOCUSS framework is presented in Table 4.1.

Table 4.1: Summary of Tool Support to Realise the FOCUSS Framework

MODULE LANGUAGE TECHNOLOGY/LIBRARY/ FRAMEWORK

1 GUI: Front-end

Java JSP
HTML
CSS
JavaScript

BootStrap 3.3.6

2 GUI: Visualization JavaScript Google Chart API
3 QoS Aspiration Analyzer Java MOEA Framework 2.9
4 QoS Preference Prioritizer Java Servlet and Java Class

6 QoS Requirements Optimizer Java
MOEA Framework 2.9,
Servlet

7 QoS Ranking Engine Java Servlet and Java Class
8 CEFM Java Choco 2.1.5

Servlet and Java Class 9 Reasoning Engine Java
10 Service Directory SQL MySQL 5.1.17, Java Servlet

Integrated Development Environment NetBeans 8.1
Web Application Server Glassfish Web Server

4.3 ILLUSTRATIVE CASE STUDY

In this section, a cloud ecosystem and e-marketplace scenario is presented to demonstrate

the practical application of the FOCUSS framework. As an illustrative case study, the

GUISET project was considered. GUISET is envisioned as both an enabling

infrastructure and a suite of on-demand services. The primary motivation for the GUISET

project is economic advantages of enterprise clusters over the stand-alone organisation.

These advantages include resource sharing, cost reduction, and the ability to compete

with larger firms (Braun, 2005). As a cloud computing model, GUISET is aimed at

offering affordable e-enabling and “appliance-like” technology services through the

Internet to lower the total cost of ownership. The GUISET infrastructure would provide

small businesses with business-relevant services on a pay-as-you-go basis. These services

are aimed at e-enabling the activities of under-resourced local Very Small Software

136

Enterprises (VSSE) and provide the platform for these VSSE to participate in the global

market of e-services in an ecosystem environment. VSSE can leverage the capabilities of

the GUISET infrastructure and e-marketplace platform to trade value-added services

relevant to other enterprises that are also part of the GUISET ecosystem. The relevance of

pursuing an e-marketplace for CRMaaS initiative is to provide a viable platform where

local VSSE can readily participate in provisioning services on the global scale. The

application of the FOCUSS framework will facilitate easy discovery of services offered

by local VSSE. Ultimately, this will promote the profitability of the VSSEs and multiply

their economic returns and impact. Even though many local VSSE are characterised by

meagre budgets, they still contribute directly and indirectly to the national GDP, through

employment generation and wealth creation (Venesaar and Loomets, 2006; Hamwele,

2005). This contribution can be sustained and possibly increased by participation in an

ecosystem exposed via a cloud e-marketplace. Based on a GUISET use case, a cloud-

based Customer relation management software, called Customer Relationship

Management as a Service (CRMaaS), serves as an illustration of cloud ecosystem and e-

marketplace scenario in order to validate the framework proposed in this research.

4.3.1 Customer Relationship Management

Customer Relationship Management (CRM) refers to ways by which companies

coordinate and analyse user interactions and data all through the lifecycle of a customer.

These ways may include technology, people and organisational strategies deployed to

collect user information about personal data, purchase history, preferences, and concerns

across different channels, through which the organisation engages with the user. These

channels may include phone conversations, emails, social media, etc. Customers

information are consolidated into the CRM database and the organisation utilises this data

to improve business relationships so as to achieve user retention and increased sales.

Traditional on-premise CRM software puts the burden of administration and maintenance

on the organisation, however, employing cloud-based solutions outsources these services

to a third party, leaving the organisation to focus on its core business, particularly when

technological expertise and budget is limited.

137

4.3.2 Customer Relationship Management as a Service (CRMaaS)

Customer Relationship Management as a Service (CRMaaS) is a cloud ecosystem of

CRM solutions for Small and Medium Enterprises (SME) delivered through the GUISET

cloud e-marketplace. The components that make up the CRMaaS ecosystem includes:

Contact Management, Database, Marketing and Social media analysis (see Figure 4.1).

The CRMaaS solution is realised by the participation of various service providers in the

ecosystem. One or many providers can contribute one or more of the following range of

services to the ecosystem with differentiated QoS factors. The description of each module

is as follows:

i. Contact Management Service: Tool to manage user contacts and communication;

including appointment management, task management and scheduling,

communication (SMS, email),

ii. Cloud Database: Cloud-based Relational Database Management System (RDBMS)

to store user information, including user personal data, purchase history, preferences

etc.

iii. Marketing Service: Tools for communicating with users; including email marketing,

text message marketing, social media marketing etc.

iv. Social Media Analytics: Tool that monitors conversations on social media and

analyses feedbacks, capturing user sentiments.

v. Cloud Platform: The valid combinations derived would require a cloud platform on

which to run.

Figure 4.1: High-level Structure of the components of a CRMaaS

CRMaaSContact
Management

Cloud
Database

Marketing
Services

Social Media
Analytics

Cloud
Platform

138

An instance of the CRMaaS offering is a combination of any/all of these services to

create a complete CRM solution. In the GUISET e-marketplace, multiple variants of

CRMaaS solutions exist and are differentiated by QoS factors that are relevant to any

SME. The SME can then search for and consume CRM solution that aligns with their

specific aspiration and preferences. Furthermore, the multi-tenant nature of the CRMaaS

allows for multiple SMEs (tenants) to be hosted per time, each having a variant view of

the CRMaaS that suits specific requirements. Therefore, the e-marketplace service

directory contains a set of m CRM solutions that can be evaluated along n decision

criteria with respect to an SME’s preferences and aspirations. The cloud service selection

in this context is concerned with the evaluation of the set of m offerings based on the

preferences and aspirations on the set of n criteria (Sahri et al., 2014). Having expressed

requirements, which are converted to a search query, the e-marketplace platform

generates search results in form ranking of complete CRM solutions that approximate the

requirements expressed. An SME that requires a complete cloud-based CRM solution for

managing its customer relationship processes in a bid to improve the business relationship

and increase the bottom-line can find the most appropriate solution via the GUISET e-

marketplace. Two examples of such SME are as follows: A micro-finance bank and a

newly opened on-line drug store, and these examples are used throughout the use case.

In the following paragraph, high-level scenario descriptions of their requirements are

presented.

i. Case One: Microfinance Bank- A microfinance bank (MFB) provides

microfinance services such as savings, loans, domestic funds transfer, and other

financial services to under-resourced, micro, small and medium enterprises to enable

them to conduct or expand their businesses. The operations of an MFB are time-

critical and data sensitive; thus they require a solution that is stable with little or no

unpredictable issue. MFB may also require that the solution should be of excellent

performance that must be available and highly reputable, as their operations involve

sensitive user information. The micro-finance bank requires a reliable solution that

meets all its requirements and has made adequate budgetary provisions to offset the

cost.

ii. Case Two: Online Drug Store- On the other hand, a new online drug store set up to

expand an existing brick-and-mortar drugstore. The online drugstore allows existing

139

and prospective users to purchase and pays for over-the-counter medication online.

The owner of the drug store prefers a low-priced reliable CRM solution that can

handle basic customer relationship management processes. Also, being a small start-

up, the owner is less keen on reliability, and based on current cash flow realities, is

constrained by the amount of funds that can be spent on the CRM solution.

4.4 PRACTICAL DEMONSTRATION OF THE FOCUSS FRAMEWORK

This section presents how the FOCUSS framework is used both to set up a cloud

ecosystem for realising the CRM software and create the e-marketplace platform that

enables the designated information technology officers of the MFB and the drug store to

search for and select the appropriate CRM solution that is based on their specific

requirements.

4.4.1 CRMaaS Ecosystem Model and Reasoning Engine

Based on the components of the CRMaaS presented in Figure 4.1, more than one

candidate cloud service, among others, would suffice in fulfilling each of contact

management, database, marketing, social media analysis and cloud platform on which the

CRMaaS runs. Table 4.2 contains the list of all the constituent services that can fulfil each

component, together with the values of the QoS attributes, and are part of the CRMaaS

ecosystem. The QoS attributes considered in this example includes availability and

reliability, measured in percentages (%); response time measured in milliseconds (ms),

while the cost is measured in Dollars/month ($/Month).

Table 4.2: Candidate Cloud Services to realize CRMaaS Components

CRMaaS
Components

Candidate
Services

QoS Values
Availability (%) Response Time (ms) Reliability (%) Cost ($/Mon)

Contact
Management

CM1 90 -- 90 30.50
CM2 95 -- 67 29.99
CM3 70 -- 40 25.50

CM4 99 -- 79 34.99

Cloud
Database

CD1 89 100.22 60 13.50
CD2 79 50.54 75 20.50
CD3 97 120.34 80 50.00

Marketing
M1 99 -- -- 55.50
M2 91 -- -- 59.99

Social Media
Analysis

SMA1 90 200.45 88 49.99
SMA2 95 138.56 90 50.00
SMA3 85 125.45 79 45.67

Platform
P1 99 300.45 70 199.99
P2 99 423.10 75 149.99

140

The candidates services for each CRMaaS component is given as follows (Table 4.2):

Contact management (CM1, CM2, CM3, CM4); Cloud Database (CD1, CD2, CD3);

Marketing (M1, M2); Social Media Analysis (SMA1, SMA2, SMA3); Platform (P1, P2).

The values of the QoS properties were populated by randomly generated numbers.

Figure 4.2 shows the feature model of the CRMaaS cloud ecosystem without the QoS

attributes annotated in the diagram. The model logically structures and describes the

relationship among the atomic services. The rules guiding the combination of these

candidate services are contained in Table 4.3, while the CEFM that models the

relationships and constraints is presented in Figure 4.2. All CRMaaS components are

mandatory; however, each candidate service is an alternative to other candidate services

within the same component group.

Figure 4.2: High-Level Feature Model of CRMaaS Cloud Ecosystem

(Without QoS Attributes)

Table 4.3: Require and Exclude Constraints

CM1 REQUIRES P1
CM1 REQUIRES CD1
CM2 EXCLUDES M1
SMA1 REQUIRES CD2
CD2 EXCLUDES P2
SMA2 REQUIRES M1
SMA3 EXCLUDES CD2

From the model, it is obvious that cloud database CD2 cannot run on cloud platform P2,

therefore no valid combination would contain both cloud database CD2 and platform P2.

The feature model is transformed into constraint programming based on the rules for the

141

mapping of feature model to CSP. The Java code for the constraint programme for the

model in Figure 4.2 is contained in Appendix D. A total of 38 valid combinations that

form actual CRMaaS instances that can be offered to users were obtained from the

automated reasoning on the CSP model that defines the Cloud Ecosystem Feature Model

(see Table 4.4). The QoS properties of the valid combination were computed based on the

aggregation functions described in Section 3.2.

Table 4.4: List of Valid combinations based on CRMaaS Cloud Ecosystem Model

Service_ID Constituents Services
Aggregate QoS Values*

Availability
(%)

Response
Time (ms)

Reliability
(%)

Cost
($/Mon)

S1 CM4 CD3 SMA3 M2 P2 98.68 668.89 75.73 340.64
S2 CM3 CD3 SMA3 M2 P2 97.16 668.89 72.78 331.15
S3 CM4 CD3 SMA3 M2 P1 98.67 546.24 75.43 390.64
S4 CM3 CD3 SMA3 M2 P1 97.16 546.24 72.48 381.15
S5 CM4 CD1 SMA3 M2 P2 98.29 648.77 74.48 304.14
S6 CM3 CD1 SMA3 M2 P2 96.79 648.77 71.53 294.65
S7 CM4 CD1 SMA3 M2 P1 98.29 526.12 74.19 354.14
S8 CM3 CD1 SMA3 M2 P1 96.79 526.12 71.23 344.65
S9 CM2 CD3 SMA3 M2 P2 98.49 668.89 75.02 335.64
S10 CM2 CD3 SMA3 M2 P1 98.49 546.24 74.72 385.64
S11 CM2 CD1 SMA3 M2 P2 98.11 648.77 73.77 299.14
S12 CM2 CD1 SMA3 M2 P1 98.11 526.12 73.47 349.14
S13 CM4 CD3 SMA3 M1 P2 99.03 668.89 75.73 336.15
S14 CM3 CD3 SMA3 M1 P2 97.53 668.89 72.78 326.66
S15 CM4 CD3 SMA2 M1 P2 99.51 682 76.3 340.48
S16 CM3 CD3 SMA2 M1 P2 98.01 682 73.34 330.99
S17 CM4 CD3 SMA3 M1 P1 99.03 546.24 75.43 386.15
S18 CM3 CD3 SMA3 M1 P1 97.53 546.24 72.48 376.66
S19 CM4 CD3 SMA2 M1 P1 99.51 559.35 76 390.48
S20 CM3 CD3 SMA2 M1 P1 98.01 559.35 73.04 380.99
S21 CM4 CD1 SMA3 M1 P2 98.66 648.77 74.48 299.65
S22 CM3 CD1 SMA3 M1 P2 97.15 648.77 71.53 290.16
S23 CM4 CD1 SMA2 M1 P2 99.14 661.88 75.05 303.98
S24 CM3 CD1 SMA2 M1 P2 97.63 661.88 72.1 294.49
S25 CM4 CD1 SMA3 M1 P1 98.66 526.12 74.19 349.65
S26 CM3 CD1 SMA3 M1 P1 97.15 526.12 71.23 340.16
S27 CM4 CD1 SMA2 M1 P1 99.14 539.23 74.75 353.98
S28 CM3 CD1 SMA2 M1 P1 97.63 539.23 71.8 344.49
S29 CM1 CD1 SMA3 M2 P1 97.88 526.12 74.75 349.65
S30 CM1 CD1 SMA3 M1 P1 98.24 526.12 74.75 345.16
S31 CM1 CD1 SMA2 M1 P1 98.73 539.23 75.32 349.49
S32 CM4 CD2 SMA1 M2 P1 98.02 551.35 75.62 360.46
S33 CM3 CD2 SMA1 M2 P1 96.52 551.35 72.67 350.97
S34 CM2 CD2 SMA1 M2 P1 97.84 551.35 74.91 355.46
S35 CM4 CD2 SMA2 M1 P1 98.62 489.46 75.72 360.98
S36 CM3 CD2 SMA2 M1 P1 97.12 489.46 72.76 351.49
S37 CM4 CD2 SMA1 M1 P1 98.39 551.35 75.62 355.97
S38 CM3 CD2 SMA1 M1 P1 96.88 551.35 72.67 346.48

*The QoS aggregation is performed using the functions listed in Table 3.3

142

4.4.2 Fuzzification of QoS Information of Services in Service Directory

The QoS information about the services offered through the e-marketplace was fuzzified

by representing three ranges of QoS values with linguistic variable and underlying

membership functions. The range of QoS values for Availability QoS is broken into four,

namely: Very High, high, medium and Low. The range of Reliability is Very high, high,

Average and Low, while that of Response time is Low, Acceptable and below Average.

The linguistic values for Cost QoS are Premium, Standard, Moderate and Cheap. Table

4.5 shows the QoS attributes, the linguistic variables and the membership function used to

represent each QoS attribute.

Table 4.5: QoS Attributes, fuzzy sets and underlying membership function

QOS ATTRIBUTE FUZZY SETS MEMBERSHIP FUNCTION
Availability Very High, High, Medium, Low

Trapezoidal Membership Function
Response Time Low, Acceptable, Below Average
Reliability Very High, High, Average, Low
Cost Premium, Standard, Moderate, Cheap

Based on the available QoS information of all services in the service directory (see Table

4.4), Figure 4.3 shows the range of values under each linguistic variable for each QoS

attribute and the membership function diagram used in this case study.

Linguistic Variable: Availability

Linguistic Variable: Response Time

Linguistic Term QoS Value Range
Very High 90% -- 100%
High 70% -- 95%
Average 60% -- 85%
Low 50% -- 75%

Linguistic Term QoS Value Range
Low 200ms – 560ms
Acceptable 500ms – 790ms
Below Average 700ms – 1000ms

Linguistic Variable: Reliability Linguistic Variable: Cost

Linguistic Term QoS Value Range
Very High 90% -- 100%
High 70% -- 95%
Average 60% -- 85%
Low 50% -- 75%

Linguistic Term QoS Value Range
Premium 370$ -- 500$
Standard 280$ -- 400$
Moderate 190$ -- 300$
Cheap 100$ -- 200$

Figure 4.3: Linguistic Variables for QoS attributes

Apart from the QoS range, users are also allowed to express some form of constraints to

qualify whatever linguistic term they select.

143

Table 4.6 shows the various linguistic hedges and their associated membership functions.

These constraints include: In the Vicinity of x, and very close to x, where x is a QoS value

specified by the user.

Table 4.6: Linguistic Hedges and Membership Functions for each QoS Attributes

LINGUISTIC HEDGES FOR QOS VALUE MEMBERSHIP FUNCTION

x is In the vicinity of a

x Very close to a

x Substantially Higher than a

x Substantially Lower than a

x Approximately between a and b

a and b are actual QoS values specified by the user

4.4.3 Eliciting User Requirements

Based on the two instances of the MFB and an online drug store discussed earlier, the

user performs a pairwise comparison of all QoS attributes to enable the system to

determine the relative importance of each QoS attributes to the user. In addition, the user

specifies QoS aspirations using the linguistics terms and hedges for QoS values described

in the previous section. Table 4.7 and Table 4.8 show the QoS priorities and aspirations

for MFB respectively; while Table 4.9 and Table 4.10 contain the QoS priorities and

aspirations for the ODS respectively. An example of how Availability QoS requirements

are expressed using the FOCUSS GUI for MFB and ODS are shown in Figure 4.4 and

Figure 4.5.

Table 4.7: QoS Pairwise comparison for MFB
QoS Attribute Fuzzy Judgement QoS Attribute
Availability Extremely more important than Response Time
Availability Extremely less important than Reliability
Availability Somewhat Less important than Cost
Response Time About equal Reliability
Response Time About equal Cost
Reliability Somewhat more important than Cost

Table 4.8: QoS Aspiration for MFB

QoS Attribute Goal Hedges/Constraints
Availability Very High In the Vicinity of 98%
Response Time Low Very close to 400ms
Reliability Very High In the Vicinity of 75%
Cost Premium In the Vicinity of 400$

ሻݔሺܥߤ ൌ
1

ሺ1 ൅ ሺݔ െ ܽሻ4ሻ

ሻݔሚሺܥߤ ൌ ൬
1

1 ൅ ሺݔ െ ܽሻ2
൰
2

144

Table 4.9: QoS Pairwise comparison and Aspiration for Online Drug Store

QoS Attribute Judgement QoS Attribute
Availability About Equal Response Time
Availability About Equal Reliability
Availability Extremely Less important than Cost
Response Time About Equal Reliability
Response Time Extremely less Important than Cost
Reliability Extremely less Important than Cost

Table 4.10: QoS Aspiration for Online Drug Store
QoS Attribute Goal Constraints

Availability High In the Vicinity of 90%
Response Time Acceptable In the Vicinity of 600ms
Reliability High Very close to 70%
Cost Cheap In the vicinity of 250$

Figure 4.4: Availability QoS
Requirements for Microfinance

Bank in FOCUSS GUI

Figure 4.5: Availability QoS
Requirements for Online Drug Store

in FOCUSS GUI

The GUI employs a dual colour coded slider bars that correspond to the colour code for

the two QoS attributes being compared. When the slider bar is in the middle (i.e. the

length of either colour in the slider bar are equal), then the underlying fuzzy comparison

scale is ‘about equal’. Furthermore, there are eight steps on either side of the midpoint of

the slider bar corresponding to the other scales in the fuzzy Saaty pairwise comparison

scale.

145

4.4.4 QoS Requirements Processing

I. QoS Prioritization

The fuzzy prioritisation method, based on Geometric Mean Method (Buckley, 1985) was

applied to derive crisp weights representing the relative importance of each QoS attributes

from the fuzzy pairwise comparison matrix. Based on the Geometric Mean Method

(Buckley, 1985), the crisp weights from the fuzzy pairwise comparison for MFB and

ODS are shown in Table 4.11 and Table 4.12 respectively. These tables show that the

order of relative importance of the QoS attributes for MFB is as follows

Reliability>Cost>Availability>Response Time; while the most important QoS attribute to

ODS is cost and the other QoS attributes have equal weights.

Table 4.11: Priority Weights and Order of Relative Importance for QoS attributes (MFB)
QOS ATTRIBUTES PRIORITY WEIGHT IMPORTANCE
Availability 0.12993 3
Response Time 0.12967 4
Reliability 0.53100 1
Cost 0.20939 2

Table 4.12: Priority Weights and Order of Relative Importance for QoS attributes (ODS)

QOS ATTRIBUTES PRIORITY WEIGHT IMPORTANCE
Availability 0.0950 2
Response Time 0.0950 2
Reliability 0.0950 2
Cost 0.7152 1

II. QoS Analyser

Applying the concept of fuzzy decision making discussed in Section 2.4, QoS values

were synthesised from users’ fuzzy estimations by finding the element with the highest

membership function from the intersection set of the fuzzy sets selected by users to

denote their desired QoS aspirations. Table 4.13 and Table 4.14 show how QoS

aspirations were synthesised from representing the fuzzy sets for MFB and ODS

respectively.

Table 4.13: Synthesised QoS Aspiration for Microfinance Bank

QOS ATTRIBUTE LINGUISTIC TERM LINGUISTIC HEDGES SYNTHESISED QOS VALUES
Availability Very High In the Vicinity of 98% 98.49%
Response Time Low Very close to 400ms 489.46ms
Reliability Very High In the Vicinity of 75% 75.43%
Cost Premium In the Vicinity of 400$ 390.64$/Month

146

Table 4.14: Synthesised QoS Aspiration for Online Drug Store

QOS ATTRIBUTE LINGUISTIC TERM LINGUISTIC HEDGES SYNTHESISED QOS VALUES
Availability High In the Vicinity of 90% 97.12%
Response Time Acceptable In the Vicinity of 600ms 559.35ms
Reliability High Very close to 70% 72.1%
Cost Cheap In the vicinity of 250$ 290.16$/Month

Table 4.15: Completely elicited QoS requirements of MFB and ODS

4.4.5 QoS-based Ranking of Service Alternatives

I. QoS Requirements Optimizer

Table 4.15 shows a summary of priority weights and QoS values obtained from the users.

These inputs are fine-tuned according to the values of the QoS attributes of available

services in the service directory. Optimized QoS requirement is obtained by finding those

QoS values that are the most ideal, and closest to user’s requirements. The FOCUSS

framework utilises an SAW-based and exponential Euclidean distance function (eEUD)

described in Section 2.4 for this purpose, by optimising the fuzzy goals very close to both

the most ideal QoS values, and user’s requirements. For this case study, each service

alternative is evaluated with respect to user’s weight of importance using SAW function,

and the similarity of each service QoS attributes to a combination of user’s preference

weights and aspiration values are performed with the eEUD function. Using MOEA

framework, the optimal QoS values that satisfy both the fuzzy goal and constraint are

obtained as being very close to the service alternatives with the best performance and

closest to user requirements. Table 4.16 shows a comparison of the initial QoS

requirements and the final QoS requirements with respect to user’s priority weights and

QoS aspiration.

Table 4.16: Comparison of Initial QoS Requirements and Optimised QoS values

QOS

ATTRIBUTES

MICROFINANCE BANK ONLINE DRUG STORE

Initial Requirements Optimized
Requirements

Initial Requirements Optimized
Requirements Weight Values Weight Values

Availability 0.1242 98.49 98.5 0.0950 97.12 97
Response Time 0.1237 489.46 489.5 0.0950 559.35 559
Reliability 0.5798 75.43 75.4 0.0950 72.1 72
Cost 0.1724 390.64 390.6 0.7152 290.16 290.2

QOS

ATTRIBUTES
MICROFINANCE BANK ONLINE DRUG STORE

QoS Weight QoS Values QoS Weight QoS Values

Availability 0.1242 98.49 0.0950 97.12

Response Time 0.1237 489.46 0.0950 559.35
Reliability 0.5798 75.43 0.0950 72.1
Cost 0.1724 390.64 0.7152 290.16

147

II. Service QoS Ranking

Having obtained the optimised QoS requirements, the final stage is to rank the services in

the service directory using these requirements. This is performed using flat memory

technique in case retrieval to find the k-nearest neighbours using the eEUD function to

the optimised requirements as shown in Table 4.16. Table 4.17 and Table 4.18 show the

10 most suitable CRM services with QoS values that match the optimised requirements

MFB and ODS respectively.

Table 4.17: Top ten Services that match optimal requirements for MFB

SERVICE RANK SERVICE_ID
AVAILABILITY

(%)
RESPONSE

TIME(MS)
RELIABILITY

(%)
COST

($/MONTH)
1 S3 98.67 546.24 75.43 390.64
2 S17 99.03 546.24 75.43 386.15
3 S10 98.49 546.24 74.72 385.64
4 S35 98.62 489.46 75.72 360.98
5 S19 99.51 559.35 76 390.48
6 S4 97.16 546.24 72.48 381.15
7 S18 97.53 546.24 72.48 376.66
8 S20 98.01 559.35 73.04 380.99
9 S7 98.29 526.12 74.19 354.14
10 S32 98.02 551.35 75.62 360.46

Table 4.18: Top ten Service Alternatives to Optimal Requirements for ODS

SERVICE RANK SERVICE_ID
AVAILABILITY

(%)
RESPONSE

TIME(MS)
RELIABILITY

(%)
COST

($/MONTH)
1 S22 97.15 648.77 71.53 290.16
2 S6 96.79 648.77 71.53 294.65
3 S11 98.11 648.77 73.77 299.14
4 S21 98.66 648.77 74.48 299.65
5 S24 97.63 661.88 72.1 294.49
6 S5 98.29 648.77 74.48 304.14
7 S23 99.14 661.88 75.05 303.98
8 S14 97.53 668.89 72.78 326.66
9 S2 97.16 668.89 72.78 331.15
10 S16 98.01 682 73.34 330.99

III. Visualising the Ranking

To enable further analysis, the results shown in Table 4.17 and Table 4.18 are then

visualised using a bubble chart, from which the user can explore the relationships among

the ranked alternatives. The MFB or ODS can then select the most satisfactory service

that best satisfies their respective requirements. Figure 4.6 and Figure 4.7 shows the

bubble graph for data contained in Table 4.17 and Table 4.18 respectively. Figure 4.8 and

Figure 4.9 shows the complete GUI for QoS requirements elicitation and the tabular and

bubble graph visualisation.

148

Figure 4.6: Bubble Graph for Ranked Services for MFB Requirements

On mouse over, the details for Service_ID 35 is shown.

Figure 4.7: Bubble Graph for Ranked Services for ODS Requirements

One mouse hover, the details of the Service_ID 23 is shown

149

Figure 4.8: Complete GUI Showing Requirements, Table and Bubble Graph (MFB)

Figure 4.9: Complete GUI Showing QoS Requirements, Table and Bubble Graph (ODS)

150

4.5 CHAPTER SUMMARY

This chapter contains a demonstration of the utility of the proposed FOCUSS framework,

by identifying the tool support base to realise the framework. The framework was further

validated via an illustrative case study of a Customer Relationship Management as a

Service (CRMaaS) e-marketplace that comprises the coming together of various atomic

services to realise a cloud ecosystem of CRM services. The demonstration of how these

services are combined was carried out following a structured organisation with respect to

constraints guiding their combination. Also demonstrated is how the users’ (a

microfinance bank and an online drug store) requirements would be elicited and how the

framework would rank available alternative which is then presented to the users through a

bubble graph visualisation. The validation performed shows that the FOCUSS framework

is a viable approach for cloud service ranking and selection in cloud service e-

marketplace. In the next chapter, the empirical evaluation of the FOCUSS framework is

presented.

151

CHAPTER FIVE

EVALUATION

5.1 INTRODUCTION

The previous chapter contains details of the prototype implementation as a proof of

concept to validate the proposed FOCUSS framework with an illustrative case study. This

chapter contains a quantitative and qualitative evaluation of the FOCUSS framework. In

the following sections, the methodology employed for evaluating the FOCUSS

framework is discussed, which include the experimental designs for FOCUSS evaluation

broken down into design parameters and test cases, as well as the analysis and discussion

of results. Specifically, this chapter presents the evaluation procedures employed to

validate the scalability, accuracy, and user experience of the FOCUSS framework using

descriptive and inferential statistics on data obtained from three experiments. The results

of the evaluation reported in this chapter serve as a justification of the performance of the

FOCUSS framework in line with the aim and objectives set forth in this thesis. This

chapter concludes with the summary of major themes discussed therein.

5.2 PERFORMANCE AND USABILITY EVALUATION

Having validated that the FOCUSS framework can be used to bring a variety of atomic

services together to form an ecosystem, from which valid combinations are determined,

the FOCUSS framework is evaluated with respect to its QoS-ranking performance and

efficiency, as well as user experience. A major aim of an evaluation is to show via

experimentations the performance differences when approaches or systems are compared

to each other with respect to some given factors. Moreover, it is also needful to

understand the factors that contribute to the differences in performance. In order to

determine the differences in performance, the trends of two or more test collections of

reasonable size are observed for consistency across the different data; after which

statistical significance test is performed to validate the fact that any observable difference

is not due to chance.

There are three empirical evaluation methods in software engineering; they include case

studies, surveys, and experiments (Wohlin et al., 2012). Experiments are more beneficial

152

in that they can be employed to answer specific questions by setting up a direct

comparison between the treatments of interest. In experiments, the biases and errors in

comparison are minimised, and the ability to control the factors enables stronger

inferences to be made about the difference in the results, providing a better basis to make

stronger inferences about causation (Oehlert, 2010). A design of the experiment or

experimental design is defined as a series of trials in which a number of individual

experimental units and responses are measured, which can be analysed to quantify and

compare the effects of the treatments, with which a cause-effect inference can be

established (Oehlert, 2010).

The evaluation of the FOCUSS framework is carried out via three experiments;

comprising two simulation-based evaluations and a user study (see Figure 5.1). Using

simulation experiments, the FOCUSS framework was evaluated for computational

efficiency (scalability), as well as QoS-based ranking accuracy, whereas user studies were

carried out to access the user experience dimension of the FOCUSS framework.

Efficiency measures scalability of the FOCUSS QoS-ranking mechanism by considering

how the number of available functionally equivalent service alternatives in the service

directory affects execution time for producing top-k ranked results. Accuracy measures

the degree to which the FOCUSS framework ranks available service alternatives

according to the QoS requirements of a user, as measured against a well-known

benchmark. The user studies were carried out to estimate the ease of use and degree of the

user experience of the FOCUSS framework. After the data generated from the

experiments were collected, inferential statistical tests were performed to analyse the

results of the experiments for statistical significance. The performance evaluation

experiments are presented in subsequent sections.

Figure 5.1: Evaluation Process for the FOCUSS framework

Evaluation
Process

Scalability
Evaluation

Accuracy
Evaluation

User Experience
Evaluation

153

5.3 EXPERIMENT-1: SCALABILITY EVALUATION

5.3.1 Experiment Goal and Hypothesis

The main goal of experiment-1 is to determine the computational efficiency of the

FOCUSS QoS-based ranking module. In order to achieve this, a simulation was

undertaken to determine the scalability of the FOCUSS QoS-based ranking module by

varying the number of services alternatives and measuring the execution time to produce

a top-k rank of services. Hence, the null hypothesis is stated as follows:

H0: The performance in terms of the execution time of the FOCUSS framework in

producing a rank of top-k services scales linearly with increase in service

alternatives.

5.3.2 Experiment Dataset

Since there are no publicly available cloud services dataset, the QoS values of web

services from a publicly available real-world datasets, the QWS dataset (Al-Masri and

Mahmoud, 2007), was adopted instead; web services shares many similarities with cloud

services (Sun et al., 2014) and the QWS dataset has been used in similar studies involving

cloud services, For example, (He et al., 2012; Jahani et al., 2014). The QWS dataset

comprises QoS information for 2,507 web services resulting from the evaluation of one

user with the measurements of nine QoS attributes. The nine QoS attributes of the QWS

dataset include response time, availability, and throughput, the likelihood of success,

reliability, compliance, best practices, latency, and documentation. For the purpose of this

experiment, the information of three QoS attributes (availability, response time and

reliability) was selected from the QWS dataset, and since the QWS dataset did not

contain values for cost, uniformly distributed values for cost was randomly generated in

the interval 10 to 500; the randomly generated values correspond to values between $10 -

$500 per/month as cost of the services. To simplify the scope of experiment-1, 4 QoS

attributes (Availability, Response time, Reliability and Cost) were considered, as the case

in similar studies, for example (Zhao et al., 2014; Ye et al., 2011; Ludwig, 2012).

154

5.3.3 Simulation Parameters and Protocol

The scalability of the QoS-based ranking mechanism of the FOCUSS framework is

measured by the execution time in milliseconds. The execution time is the time it takes to

produce top-k services as the number of service alternatives increases. The number of

services alternatives (n) was increased from 50 to 1000 based on the QoS dataset outlined

in the previous section.

To achieve variation in the QoS data and the number of cloud services used in this

experiments, the first 50 services was selected as the first case, then the next 100, then the

next 350, and then next 750, then the next 1000. In all, a total of 2150 services

(50+100+350+750+1000), together with their QoS information (including cost), were

taken from the 2507 services contained the QWS dataset. The descriptive statistics

(minimum value, maximum value, mean and standard deviation) of QoS information for

4 QoS attributes of the test datasets (n=50, 100, 350, 750 and 1000 services) are shown in

Table 5.1, Table 5.2, Table 5.3, Table 5.4, and Table 5.5.

Table 5.1: Descriptive Statistics for Dataset, n=50

QoS Attribute Min Max Mean Std. Deviation

Availability (%) 18.00 100.00 79.18 18.71

Response time (ms) 49.43 3321.40 328.39 519.55

Reliability (%) 53.00 83.00 68.92 8.10

Cost ($/month) 111.63 496.01 289.90 126.03

Table 5.2: Descriptive Statistics for Dataset, n=100

QoS Attribute Min Max Mean Std. Deviation

Availability (%) 23.00 100.00 78.59 19.12

Response time (ms) 42.50 4207.50 436.02 651.13

Reliability (%) 42.00 83.00 69.71 8.32

Cost ($/month) 100.28 498.21 323.74 112.53

Table 5.3: Descriptive Statistics for Dataset, n=350

QoS Attribute Min Max Mean Std. Deviation

Availability (%) 9.00 100.00 82.05 17.567

Response time (ms) 42.50 4637.61 419.42 624.70

Reliability (%) 42.00 89.00 69.93 8.32

Cost ($/month) 100.79 497.86 301.64 115.82

155

Table 5.4: Descriptive Statistics for Dataset, n=750

QoS Attribute Min Max Mean Std. Deviation

Availability (%) 8.00 100.00 80.55 18.98

Response time (ms) 40.00 4758.00 390.03 596.04

Reliability (%) 33.00 89.00 70.14 8.70

Cost ($/month) 103.20 499.54 293.91 115.58

Table 5.5: Descriptive Statistics for Dataset, n=1000

QoS Attribute Min Max Mean Std. Deviation

Availability (%) 7.00 100.00 81.70 18.57

Response time (ms) 37.00 4989.67 370.94 531.43

Reliability (%) 33.00 89.00 69.32 8.80

Cost ($/month) 101.50 499.90 299.39 119.50

To manage the scope of the experiment, the value of k was fixed at 20, and equal

distribution for priority weights are assumed, such that the weight for each QoS attribute

is equal to 1/ݍ	(where ݍ is the number of QoS criteria been evaluated); the value of ݍ is

equal to 4 (Availability, Response time, Reliability and Cost).

The simulation experiment was conducted by running the FOCUSS QoS-based ranking

algorithm 30 times against a set of QoS requirements, and computing the average

execution time (in milliseconds) it took to produce a ranking of top-20 (݇ ൌ 20) services

in the dataset with respect to the QoS requirements. The QoS-based ranking algorithm of

the FOCUSS framework was implemented with Java programming language in NetBeans

8.1 IDE. The simulation experiments was conducted on Lenovo PC running Windows 10

Home single language edition with the following specifications: Intel Pentium CPU

N3540 at 2.16GHz 2.16GHz processor and 4.00GB RAM on 64-bit Operating System,

x64-based processor.

The summary of the parameters for simulation experiments is presented in Table 5.6.

Table 5.6: Summary of Parameters for Simulation Experiment-1

Metric Execution Time (in milliseconds)

Top–k (k) 20

Number of QoS attributes (q) 4

Number of Alternatives (n) 50, 100, 350, 750, and 1000

Priority Weight (w) 1/q (corresponding to [0.25, 0.25,0.25,0.25])

Number of trial runs (t) 30

156

5.3.4 Results and Analysis

The results for simulation experiment are summarised in the descriptive statistics

contained in Table 5.7 and depicted by the line graph in Figure 5.2. A simple linear

regression was performed to determine the relationship between the numbers of service

alternatives (n) and mean execution time, and also to test for the statistical significance of

the scalability of the FOCUSS QoS-based ranking module as the number of service

alternative increases. The simple linear regression was used to test the null hypothesis

defined in Section 5.3.

Table 5.7: Execution Time for Ranking Top-20 Services vs. Number of Services

#Alternatives Range(ms) Min(ms) Max(ms) Mean(ms) Std. Deviation(ms)

50 79.00 312.00 391.00 336.87 19.80

100 87.00 312.00 399.00 340.47 23.98

350 126.00 312.00 438.00 342.80 27.86

750 94.00 312.00 406.00 344.63 22.83

1000 78.00 328.00 406.00 349.43 19.40

As shown in line graph in Figure 5.2, the trendline shows a linear relationship between

the number of alternatives and the mean execution time. The regression equation and

statistics are given as follows: ݕ ൌ ݔ2.928 ൅ 334.06, ܴଶ ൌ .967, ሺ1,3ሻܨ ൌ 119.085,

݌ ൏ .05; (where y = mean execution time, and x = number of service alternatives).

Figure 5.2: Average Execution Time to Rank Services vs. Number of Services

y = 2.928x + 334.06
R² = 0.9754

330

332

334

336

338

340

342

344

346

348

350

352

50 100 350 750 1000

M
e
an

 E
xe
cu
ti
o
n
 T
im

e
 (
m
s)

Number of Service Alternatives

157

5.3.5 Discussion

The adjusted R2 value from the regression analysis is	ܴଶ ൌ 0.967; and connotes that

96.7% of the variation in the time required to produce the top-20 rank is significantly

explained by the number of service alternatives available. Consequently, since the p-value

݌) ൌ .002) is less than the alpha value (݌ ൏ .05), the indication is that the QoS-based

ranking mechanism of the FOCUSS framework is timely efficient and linearly scalable as

can also be observed from Figure 5.2. On the basis of this, the null hypothesis (H0) is

accepted that the performance in terms of execution time of the FOCUSS framework in

producing a rank of top-k services scales linearly with increase in service alternatives.

5.4 EXPERIMENT-2: RANKING ACCURACY EVALUATION

The main approach employed for the design of Experiment-2 is comparative. It is

important that such experiment is planned so that data is collected to enable comparison

between the FOCUSS framework and other methods. This was achieved by first

establishing the metrics, on the basis of which these methods are compared. The data

generated from applying these metrics were then used to determine which method(s)

performs better or comparable. The design and execution of experiment 2 is carried out in

the following stages: 1) statement of the goal of the experiment; 2) Statistical design; 3)

Data collection; 4) Data validation; 5) Data analysis; 6) Experiment execution, and 7)

Interpretation of results. In the next sections, the application of each stage to the design,

execution and analysis of experimental results conducted in this study are presented.

5.4.1 Experiment Goal and Hypothesis

The main goal of the experiments was to find out the effect of fuzzy-based QoS

requirements, as implemented in the FOCUSS framework, on both the QoS-based

ranking accuracy compared to other methods that accept numeric QoS requirements. In

other words, the experiments aim to find out whether a QoS-based ranking method ܯଵሺݍሻ

that accepts fuzzy QoS requirements, i.e. q = linguistic query as inputs, performs

considerably well as compared to a QoS-based ranking method ܯଶሺݍሻ that accepts exact

numeric QoS requirements, i.e. q=numeric query as inputs, on cloud service datasets of

varying sizes. The design of the experiments involves the following important outcomes:

158

i. Determining the impact of QoS requirement input type (linguistic or numeric) on the

accuracy of QoS-based ranking results, thus justifying the proposal of applying

linguistic descriptors to approximate numerical QoS requirements.

ii. Determining the impact of the number of top-k ranked services in the set

ሾ3, 5, 10, 15, 20ሿ on the ranking accuracy and performance ranking performance.

Ranking order is important as most users would usually consider the top k results

(Mirmotalebi et al., 2012).

iii. Determining the effect of the number of service alternatives in the set

ሾ50, 100, 350, 750, 1000ሿ on the ranking accuracy.

iv. Deciding, whether method ܯଶሺ݊ܿ݅ݎ݁݉ݑሻ is better than method ܯଵሺ݈݅݊݃ܿ݅ݐݏ݅ݑሻ for

QoS-based ranking of cloud services in cloud service e-marketplace context.

The goal of this experiment is to compare the ranking accuracy of the FOCUSS

framework against other QoS-based ranking techniques using TOPSIS as the benchmark;

based on the null hypothesis:

H0: There will be no significant difference between the ranking performances of a

method that accepts exact numeric values as QoS requirement and those that

use linguistic descriptors to approximate values for QoS requirements.

5.4.2 Experiment Dataset

The same adapted QoS dataset described in Experiemnt-1 that contains QoS information

on Availability, Response time, Reliability and Cost for 2150 services and the 5 grouping

of the 2150 services into sets of 50, 100, 350, 750 and 1000 services were also used in

Experiment-2. Test cases for user’s QoS requirements were generated following the

conceptualization of QoS requirements as a collection of QoS preference and aspiration.

The user’s QoS aspiration was randomly generated following uniform distributions from

intervals with lower and upper bounds corresponding to the worst and best QoS values

respectively, of each of the 5 datasets of services collected derived from the QWS dataset.

For example, since the first set contained 50 services, the maximum and minimum values

for each QoS attributes were identified and these values formed the basis for generating 5

random QoS requirements (Queries) for hypothetical users. While details of the datasets

and corresponding user queries are contained in Appendix B, Table 5.8 shows the

159

descriptive summary of the dataset, n=50 and the five (5) QoS requirements randomly

generated for it (i.e. dataset, n=50), denoted as Query1 to Query5.

Table 5.8: Minimum Values, Maximum Values and Five Test Queries for Dataset (n=50)

Availability Response Time Reliability Cost

Min 18 49.43 53 111.63

Max 100 3321.4 83 496.01

Query1 24.66 492.69 62.1 197.92

Query2 90.79 1608.38 59.64 341.7

Query3 46.99 377.46 61.34 160.98

Query4 96.74 1279.35 71.9 466.13

Query5 60.17 346.89 74.89 152.97

5.4.3 QoS-based Ranking Methods Evaluated

The experimental units of this experiment are the methods whose ranking accuracies are

compared. The units to which the treatments are applied include TOPSIS, weighted

distance (WD) (Rehman et al., 2011), Exponential Weighted Distance (eWD) (Rehman et

al., 2011). The justification for selecting these methods is that they are closest to the

ranking principle underlying FOCUSS, in that they all considered both user’s aspiration

and priority of QoS attributes in the ranking of cloud services and can be applied to a

large collection of service alternatives. Of these methods, the TOPSIS method was

selected as a baseline for comparison. Apart from the fact that it was used in similar

studies such as Sun et al. (2014) and Chamodrakas et al. (2011), the rationale for

selecting TOPSIS as the benchmark is premised on the similarity of its fundamental

principle to that of the FOCUSS framework. In TOPSIS, the best alternative has the

shortest Euclidean distance from the ideal solution, at the same time farthest from the

worst solution; this is very similar to the underlying principle behind the FOCUSS

framework and the methods with which it is compared.

The FOCUSS framework utilises an exponential Euclidean distance metrics that estimate

the proximity of all alternatives to the optimised QoS requirements derived from user’s

QoS requirements. The optimised QoS requirements are determined by those QoS values

closest to the most optimal solution in the collection while maintaining closeness to initial

user’s requirements. In order to make the comparison suitable, the original TOPSIS

fundamental notion of what constitutes the ideal solution was modified and set to the

160

user’s requirements. This is reasonable as an ideal solution to a user’s requirement would

be those alternatives with values closest to the user’s requirements, and farthest from the

worst solution.

The eWD and WD methods (Rehman et al., 2011) both compute the similarity between

two vectors representing user requirements criteria and each service’s QoS properties, and

the best service is one whose QoS properties best match user requirements. The WD

approach is a sum of the weighted difference between the QoS values specified by user

and service’s QoS properties. The similarity for each service alternative compared with

user’s requirements is computed using:

ܵ݅݉௪ௗሺܷݍܴ݁ݎ݁ݏ, ሻݎ݁ܵ ൌ෍ݓ௜ ∗ ሺܷݐܸܿ݁ݍܴ݁ݎ݁ݏ௜ െ ௜ሻݐܸܿ݁ݏ݁ܦ݁ܿ݅ݒݎ݁ܵ
௡

௜ୀଵ

 (5.1)

Where n is the number QoS attributes. The similarity values of all the service alternatives

are then sorted and the lower the better.

The similarity values used to rank services using the eWD is computed using the

exponential weighted difference between QoS vectors of user requirements and service

alternatives, the formula is as follows:

ܵ݅݉௘௪ௗሺܷݍܴ݁ݎ݁ݏ, ሻݎ݁ܵ ൌ෍݁ି௪೔∗ሺ௎௦௘௥ோ௘௤௏௘௖௧೔ ି ௌ௘௥௩௜௖௘஽௘௦௏௘௖௧೔ሻ

௡

௜ୀଵ

 (5.2)

Two versions of FOCUSS ranking algorithms were implemented (FOCUSS_lin and

FOCUSS_num). FOCUSS_lin is the original FOCUSS method that uses fuzzy linguistic

descriptor to represent QoS requirements from users, while FOCUSS_num, following the

same ranking principle of the original FOCUSS method, utilises numeric QoS values.

Similarly, versions of eWD and WD to process queries expressed using fuzzy linguistic

descriptors were also considered. Consequently, the six methods involved in the

simulation experiments are listed in Table 5.9.

Table 5.9: Methods Evaluated in Experiment-2

QoS Version Method Method ID

Linguistic
Exponential Weighted Difference Metric eWD_lin
FOCUSS FOCUSS_lin
Weighted Difference Metric WD_lin

Numeric

Exponential Weighted Difference Metric eWD_num
FOCUSS FOCUSS_num
Weighted Difference Metric WD_num

161

5.4.4 Evaluation Metrics

A number of measures from the domain of information retrieval for measuring the

ranking performance of ranking algorithms were identified and used to evaluate the

performance of the FOCUSS framework compared to other QoS-based ranking methods

discussed earlier, using TOPSIS as the benchmark. These metrics have been used for

evaluation QoS-based ranking in similar studies, for example, (Qu and Buyya, 2014; Sun

et al., 2014; Qu et al., 2014; Mirmotalebi et al., 2012). Precision and recall are popular

retrieval evaluation metrics in Information Retrieval, but cannot be applied in this

evaluation because they are single-value metrics based on the whole list of service

alternatives relevant to a QoS requirement (query) and do not consider the order or

ranking of those services in the retrieved list. However, metrics such as Normalized

Discounted Cumulative Gain (NDCG), Mean Average Precision (MAP), Spearman Rank

Coefficient (SRC) and Kendall Tau Rank Coefficient (KRC) are applicable to measure

the ranking performance of QoS-based ranking algorithms. Unlike in Zanakis et al.

(1998), only the rank-order produced by the methods are being evaluated by the metrics

not the values or rating underscoring the rankings.

I. Normalized Discount Cumulative Gain (NDCG)

Since the value of top-k ranked service varies in this experiment, the ranking performance

of the QoS-based techniques compared is measured by normalising the cumulative gain at

each top-k position for each query (or user QoS requirement). This is achieved by sorting

list of services by relevance, producing the maximum possible Discount Cumulative Gain

(DCG) till position	݇, also referred to as the Ideal DCG (IDCG) till that position.

Normalized Discount Cumulative Gain (NDCG) at positions corresponding to value of

top-k is applied to measure whether the FOCUSS framework can still rank most

satisfactory services at the top. The relevance scores ሺ݈݁ݎ௜ሻ used in computing the NDCG

are performance values obtained by the TOPSIS method in response to a query. For a

query, the normalized discounted cumulative gain, or NDCG, is computed

mathematically as:

(5.3)

݇ܩܥܦܰ ൌ
݇ܩܥܦ
݇ܩܥܦܫ

162

And

(5.4)

While ܩܥܦܫ௞ corresponds to the ideal DCG at position	݇.

II. Mean Average Precision (MAP)

As earlier stated the precision and recall metric is best applicable considering the whole

list of relevant services to a query. In order to measure ranking performance for a ranked

sequence of services, the precision and recall at every position in the ranked sequence of

services are computed to plot a precision-recall curve. The precision-recall curve is

created by plotting precision ݌ሺݎሻ as a function of recall	ݎ. The Average Precision (AveP)

is computed as the average value of ݌ሺݎሻ over the interval from ݎ	 ൌ 	0	to	ݎ	 ൌ 	1, such

that:

ࡼࢋ࢜࡭ ൌ
∑ ሺࡼሺ࢏ሻ ൈ ሻሻ࢑࢏ሺ࢒ࢋ࢘
ୀ૚࢏

࢑
 (5.5)

Where ݅	is the rank in the sequence of the return services,	݇ is the number of top-k

services returned; ܲሺ݅ሻ is the precision at the rank ݅ in the list, given as:

ܲሺ݅ሻ ൌ
ݐ݊ܽݒ݈݁݁ݎ# ݁ܿ݅ݒݎ݁ݏ ݀݁ݒ݁݅ݎݐ݁ݎ @ ݅

ݐ݊ܽݒ݈݁݁ݎ	# ݏ݁ܿ݅ݒݎ݁ݏ @ ݅
 (5.6)

And ݈݁ݎሺ݅ሻ is an indicator function, such that compared to ranking produced by the

TOPSIS method, ݈݁ݎሺ݅ሻ ൌ 1 if the service at rank ݅ is a relevant service, and ݈݁ݎሺ݅ሻ ൌ 0

otherwise.

The MAP is the average of precision values at the ranks where there are relevant services

to the user QoS query. The mean is obtained by averaging over several queries. The total

number of queries used in this experiment is 5. Therefore, Mean Average Precision is

defined by:

ܲܣܯ ൌ
∑ ሻொݍሺܲ݁ݒܣ
௤ୀଵ

ܳ
 (5.7)

Where	ܳ is the number of queries; for this experiment, the value of ܳ is 5 according to

the experiment design (cf. Section 5.4).

݇ܩܥܦ ൌ 1݈݁ݎ ൅෍
݈݅݁ݎ

log2ሺ݅ሻ

݇

݅ൌ2

163

III. Spearman Rank Correlation Coefficient

Spearman's Rank Correlation (SRC) coefficient, also known as, Spearman's rho is used to

measure the rank correlation between two variables, by using a monotonic function to

describe the relationship between those variables. A perfect correlation QoS-based

ranking of service alternatives produced by two methods has a Spearman correlation of

+1, while the Spearman correlation of -1 when the ranking is extremely dissimilar.

Given a list of top-k service alternatives, produced by method M_1, and M_2, the list of

top-k are converted to ranks ݃ݎ	ܯଵ, and ݃ݎ	ܯଶ; therefore, Spearman rho, ߩ, is computed

as:

ߩ ൌ 1 െ
6∑݀௜

ଶ

݇ሺ݇ଶ െ 1ሻ
 (5.8)

Where ݀௜is the difference between the ranks computed as ݀௜ ൌ ଵሻܯሺ݃ݎ െ .ଶሻܯሺ݃ݎ

IV. Kendall Tau Coefficient

Kendall Rank Correlation (KRC) coefficient is also known as Kendall's tau coefficient

and is denoted as ࣎	is used to measure the ordinal association between two variables. The

Kendall correlation between two variables will be high when the top-k list produced by

two methods has a correlation value of 1, and low with a correction value of -1. Any pair

of observation between the top-k items produced by two methods, ܯଵ and ܯଶ are

concordant, if the position of an item produced by ܯଵis in the same position of that item

in the list produced method ܯଶ, and discordant otherwise. The Kendall tau coefficient is

computed as follows:

߬ ൌ
ሺܥ െ ሻܦ
ೖሺೖషభሻ

మ

 (5.9)

Where C = Concordant pairs; D = Discordant pairs; k is the number of top-k items

produced by the methods.

The metrics were implemented as Java methods in NetBeans, while the indicators for

metrics used to evaluate the methods are as follows: a perfect agreement between a QoS-

based method and TOPSIS, in terms of top-k items produced, would be signalled by the

following: NDCG=1, MAP=1, SRC=1, and KRC=1.

164

5.4.5 Experiment Design

The evaluation methodology employed in the study is based on a simulation modelling

technique similar to Chamodrakas et al. (2011). Simulation is a widely-used research

method to study and analyse complex scenarios and to gain insights into performance and

scalability for large-size problem instances. Moreover, it helps to evaluate the

generalizability of the results. Experimental designs indicate how to vary the settings of

the factors or independent variables to see if and how they impact on the response

variable or dependent variable (Sanchez, 2005). For the experiments conducted in this

study, a factorial design was selected as a suitable design for the simulation experiments

(Sanchez, 2005).

Factorial designs are represented more concisely as ܽ௞ where	݇ is the number of factors

under investigation at ܽ levels with a total of ܽ௞ design points. Also, factorial designs can

be written such that different set of factors are investigated at different number of levels.

As a case in point, a design with two factors, with 2 and 3 levels for each factor will be

written as 2 ൈ 3 design (also called crossed design). Every column in the design matrix

corresponds to a factor, and the entries within the column correspond to settings or

treatment for this factor. However, each row also represents a particular combination of

factor levels, and which is referred to as a design point. Repeating the whole design

matrix is called the replication of the design, and given ݊ design points and ܾ replications,

the total number of tests becomes	 ௧ܰ௘௦௧ ൌ ݊ ∗ ܾ.

Some benefits of a factorial design include 1) Ability to examine all possible

combinations of factors levels for each of the factors, which is useful in identifying

important interaction effect. 2) They are also orthogonal designs, such that the pairwise

correlation between any two factors is equal to zero. Experiment-2 follows a 3-way

factorial design and was inspired by the works of Chamodrakas et al. (2011) and Zanakis

et al. (1998).

5.4.6 Simulation Parameters and Protocol

The response variable for Experiment-2 is the ranking performance in terms of accuracy,

measured by four accuracy metrics (NDCG, MAP, SRC and KRC). The factors

considered are- the number of top-k ranked services (top-k), the number of service

165

alternatives (alternatives) and the QoS requirements input type (query). There are six

factor levels for the top-k results corresponding to k= 3, 5, 7, 10, 15, and 20; while there

are also five factor levels for alternatives- [50, 100, 350, 750, 1000]. The input types are

either numeric or linguistic, corresponding to two factors. Equal distribution for priority

weights are assumed, such that the weight for each QoS attribute is equal to 1/ݍ	(where ݍ

is the number of QoS criteria been evaluated); the value of ݍ is equal to 4 (Availability,

Response time, Reliability and Cost). For each combination, the trials were performed

five times using the five QoS requirements shown in the Appendix B, after which the

average for each combination case was taken. In all, the total number of solutions

generated is equivalent to: 5 QoS queries × each combination, which comprise 5 levels

for alternative × 6 levels for top-k × 6 levels for methods × 4 evaluation metrics = 3600

solutions. The average of the 3600 solutions produced 720 data points which are then

analysed using the Kruskal-Wallis test, the non-parametric equivalent of the Analysis of

variance (ANOVA) method. Table 5.10 shows the summary of the responses, factors and

factor levels for Experiment-2.

Table 5.10: Summary of Experiment Variables, levels, methods, and metrics

#Service
Alternatives

(n)

Top-k
(k)

QoS Preference
weight (w)

Methods to be
compared* (m)

Evaluation
Metrics (e)

#QoS
Attributes

(q)

#Queries
per Trial
runs (t)

50
100
350
750

1000

3
5
7
10
15
20

Uniform
Distribution

(1/q)

FOCUSS_lin
FOCUSS_num

eWD_lin
eWD_num

WD_lin
WD_num

NDCG
MAP

Kendall Tau
Spearman rho

4 5

*TOPSIS is the Benchmark method used for comparison
Total solutions = n × k × m × e × t = 5 × 6 × 6 × 4 × 5 = 3600 solutions

The protocol followed in Experiment-2 is outlined below:

i. The methods were implemented with Java programming language in NetBeans

8.1 IDE. The simulation experiments were conducted on the same PC

specification in section 5.3.3.

ii. The first step in each approach was to normalise the decision matrixes

(comprising datasets, n = 50, 100, 350, 750, 1000) using vector normalisation

so as to keep the values within [0, 1].

iii. Five QoS requirements were generated for which each method generated a

ranking of cloud services from the decision matrix. The queries were also

normalised using vector normalisation method.

166

iv. Each design point was repeated 5 times with each QoS query generated in point

(ii) above.

v. Each evaluation metric (m) was applied to measure the accuracy performance of

each method on the basis of each trial run.

vi. The value from the evaluation metrics was recorded in an Excel worksheet (See

Appendix B)

vii. A total of 3600 data points were collected (720 data items per QoS query).

viii. The average values from all metrics for all methods, resulting in 720 data point,

were analysed for significance and meaningfulness using Kruskal-Wallis test in

SPSS software package.

5.4.7 Results and Analysis

The descriptive analyses of the results are presented in the next section, while the results

are tested for statistical significance using the non-parametric equivalent of ANOVA

(Kruskal-Wallis test), along with the relevant post hoc analysis tests.

I. Descriptive Statistical Analysis

The mean and median ranking accuracy produced by the four metrics employed in this

simulation experiments for all six methods are contained in Table 5.11.

Table 5.11: Median and Mean Ranking Accuracy for Methods by Metrics

Methods
Median Accuracy Mean Accuracy

NDCG MAP SRC KRC NDCG MAP SRC KRC

eWD_num 0.941406 0.837057 0.362688 0.324128 0.935858 0.812477 0.362688 0.324128

eWD_lin 0.939955 0.806438 0.398779 0.356178 0.930129 0.772053 0.398779 0.356178

FOCUSS_num 0.982181 0.866667 0.67503 0.64148 0.96989 0.854511 0.67503 0.64148

FOCUSS_lin 0.981735 0.866667 0.691848 0.659023 0.966899 0.863404 0.691848 0.659023

WD_num 0.544211 0.623264 -0.11192 -0.09716 0.561568 0.657504 -0.11192 -0.09716

WD_lin 0.553056 0.554167 -0.10259 -0.09436 0.566099 0.634281 -0.10259 -0.09436

Meanwhile, Figure 5.3 and Figure 5.4 show that the FOCUSS_lin is closer to TOPSIS

than the other five methods. The only exception is the NDCG result for FOCUSS_num.

The next closer method to TOPSIS for all other metrics is FOCUSS_num. The vital

discovery from the results of the experiment is that both versions of the FOCUSS ranking

algorithms (FOCUSS_num and FOCUSS_lin) produced better ranking results than other

167

approaches compared, and clearly outperforms other methods, particularly for the SRC

and KRC metrics. The next best set of methods is eWD, and outperforms WD methods;

eWD_lin produced results closer to TOPSIS than eWD_num only in SRC and KRC,

while eWD_num is better with NDCG and MAP. However, it can also be observed that

the two versions of eWD produced better results than versions of WD; WD_num

produced worse results in all metrics than WD_lin, except for MAP where the results for

WD_num is than WD_lin.

Figure 5.3: Median Ranking Accuracy for all Six Methods by each Metric

Figure 5.4: Mean Ranking Accuracy for all Six Methods by each Metric

‐0.2

0

0.2

0.4

0.6

0.8

1

1.2

eWD_num eWD_lin FOCUSS_num FOCUSS_lin WD_num WD_lin

M
e
d
ia
n
 A
cc
u
ra
cy

Methods

NDCG MAP SRC KRC

‐0.2

0

0.2

0.4

0.6

0.8

1

1.2

eWD_num eWD_lin FOCUSS_num FOCUSS_lin WD_num WD_lin

M
e
an

 A
cc
u
ra
cy

Methods

NDCG MAP SRC KRC

168

The QoS input type did not considerably affect the ranking accuracy, with only

marginally differences (less than 0.02) in the median accuracy scores across the

evaluation metrics as shown in Table 5.12 and depicted in Figure 5.5.

Table 5.12: Median Accuracy based on QoS Input Type (Linguistic and Numeric)

Input-Type NCDG MAP SRC KRC

Numeric 0.935964 0.828724 0.340000 0.303810

Linguistic 0.927880 0.798562 0.316429 0.261203

Apart from the analysis of the descriptive statistics, there is still the need to further

determine the significance of the results using inferential statistics which is presented in

the next section.

Figure 5.5: Median Accuracy for Numeric and Linguistic QoS Requirements

II. Inferential Statistical Analysis

The initial consideration was to use parametric ANOVA for analysis of results, and

preliminary tests were conducted to ensure that the underlying assumption for ANOVA

was not violated. The test included checks for normality, linearity, univariate,

homogeneity of variance-covariance matrices, and it was observed that these assumptions

were violated. The violations were due to the inherent random structure of the simulation

experiments. Therefore, the non-parametric alternative, the Kruskal-Wallis test, was used

instead as the statistical procedure to investigate the ranking accuracy of the various

methods compared in the simulation experiments. Non-parametric tests do not make

assumptions about the normality of the distribution of variables.

0

0.2

0.4

0.6

0.8

1

NDCG MAP SRC KRC

M
e
d
ia
n
 A
cc
u
ra
cy

Evaluation Metrics

Numeric Linguistic

169

The four dependent variables (the accuracy metrics) are NDCG, MAP, SRC, and KRC,

while the five independent variables are: methods (method), the number of alternatives

(size), the number of top-k results (top-k) and QoS input type (input_type). The statistical

computations were performed using the SPSS statistical application package. The

Kruskal-Wallis test allows for the comparison of the scores on some continuous variable

for three or more groups; after the scores have been converted to ranks, the mean rank for

each group is then compared. The significance level chosen in the analysis is 95% (α =

0.05) as a standard benchmark; therefore, p-value < α is considered statistically

significant. Mann-Whitney U tests on pairwise statistical comparisons were performed as

a post hoc follow-up tests to identify the method(s) that are statistically significantly

different from the others.

a) Kruskal-Wallis Test

According to the non-parametric Kruskal-Wallis test, only the grouping variable, method,

showed significant difference across all accuracy metrics used. The results of other

grouping variables (the number of alternatives, the top-k results obtained and the QoS

input type) did not show a significant difference in all accuracy metrics, except for MAP

(see Table 5.13). From Table 5.13, it is obvious that there is no significant difference in

the ranking performance produced by the metrics for all methods with numeric QoS

inputs and those with linguistic inputs; for the metrics, ݌ ൐ 	0.05. In addition, the number

of alternatives (size) did not affect significantly the ranking accuracy obtained from the

metrics, neither did the number of top-k ranked services; as the p-values for size (NDCG,

p=.06; SRC, p=.056; KRC, p=.084) and top-k (NDCG, p=.142; SRC, p=.991; KRC,

p=.987) are greater than 0.05; except for MAP in both cases, where the p-values	൏ 0.05

for both variables size and top-k.

Table 5.13: Summary of Kruskal-Wallis Test on Ranking Accuracy
 NDCG MAP SRC KRC

χ2 df Sig. χ2 df Sig. χ2 df Sig. χ2 df Sig.

Method 128.89 5 .000 30.784 5 .000 127.114 5 .000 129.818 5 .000

Size 9.051 4 .060 49.036 4 .000 9.228 4 .056 8.207 4 .084

Top-k 8.269 5 .142 46.807 5 .000 .520 5 .991 .624 5 .987

Input_Type .003 1 .958 .571 1 .450 .273 1 .602 .178 1 .673

The grouping variable, method, confirms that there is a statistically significant difference

in the accuracy performance of the six methods when compared, NDCG [χ2 (5, N=180) =

170

128.89, p < 0.05]; MAP [χ2 (5, N=180) = 30.78, p < 0.05]; SRC [χ2 (5, N=180) = 127.11,

p < 0.05]; SRC [χ2 (5, N=180) = 129.82, p < 0.05]. An examination of the mean ranks

was done as an indication of the ranking accuracy of the methods compared. Higher mean

rank suggests better accuracy and vice versa. FOCUSS_num method recorded a higher

mean rank (M=137.02) on NDCG than the other five methods, closely followed by

FOCUSS_lin (M=136.85). The method with the lowest mean rank is WD_num

(M=30.75). The mean ranks for other methods includes: eWD_lin (M=103.52),

eWD_num (M=103.12), and WD_lin (M=31.75).

Similarly, an inspection of the mean ranks for MAP, SRC and KRC reveals that

FOCUSS_lin had the highest mean (M=114.88; M=140.27; M=141.08 respectively), and

closely followed by FOCUSS_num (M=112.45; M=136.90; M=138.45

respectively).Table 5.14 summarises the mean ranks of the six methods along four

metrics. Overall, FOCUSS_lin outperformed other methods on all metrics, except for

FOCUSS_num, that performed better than FOCUSS_lin on the NDCG metric.

Table 5.14: Mean Ranks for each Accuracy Metrics for all methods

METHODS
MEAN RANKS

NDCG MAP SRC KRC

eWD_num 103.12 101.47 97.73 96.95

eWD_lin 103.52 88.8 102.57 101.47

FOCUSS_num 137.02 112.45 136.9 138.45

FOCUSS_lin 136.85 114.88 140.27 141.08

WD_num 30.75 66.37 30.78 31.18

WD_lin 31.75 59.03 34.75 33.87

b) Mann-Whitney U Tests

Although, the Table 5.14 tells us that the methods differed according to the accuracy

metrics used, but does not reveal how the methods differed. Pairwise comparisons of the

methods were carried out using the Mann-Whitney test. Meanwhile, both versions of WD

evidently performed worse than versions of eWD and FOCUSS, and there is no

significant difference in the QoS input types, therefore, the pairwise comparisons were

limited to versions of eWD and FOCUSS. More specifically, the following five pairs

were considered for a follow-up test, and they include FOCUSS_lin Vs. eWD_lin;

FOCUSS_lin Vs. eWD_num; FOCUSS_num Vs. eWD_lin; FOCUSS_num Vs.

eWD_num; FOCUSS_lin Vs. FOCUSS_num. The summary of the Mann-Whitney U

171

follow-up tests are presented in Table 5.15, Table 5.16, Table 5.17, Table 5.18, and Table

5.19.

i- FOCUSS_lin Vs. eWD_lin

According to the Mann-Whitney U test for pairwise comparison between FOCUSS_lin

and eWD_lin, the U-statistics (cf. Table 5.15) revealed that there is statistically

significant difference between ranking accuracy on all metrics for the FOCUSS_lin

method and the eWD_lin method based on the following U-statistics (ܷ ൌ 	212.00	ሾܼ ൌ

	െ3.521ሿ, 	݌ ൏ 	0.01), produced by the NDCG metrics. Statistical significance in

difference was also recorded for SRC (ܷ ൌ 195.000	ሾܼ ൌ െ3.765ሿ, 	݌ ൏ 	0.01); and

KRC (ܷ ൌ 182.000	ሾܼ ൌ െ3.965ሿ, 	݌ ൏ 	0.01), but the MAP metrics did not produce

statistical significance (ܷ ൌ 301.500	ሺܼ ൌ െ2.201ሻ, 	݌ ൐ 	0.01).

The descriptive statistics showed that FOCUSS_lin (NDCG mean rank = 38.43; MAP

mean rank=35.45; SRC mean rank = 38.98; KRC mean rank = 39.43) scored higher on

NDCG, MAP, SRC and KRC respectively than eWD_lin (NDCG mean rank = 22.57;

MAP mean rank=25.55; SRC mean rank = 22.02; KRC mean rank = 21.57); with a

difference of between 9 to 17 points. Furthermore, the difference between accuracy of

FOCUSS_lin and eWD_lin method was somewhat large on all accuracy metrics used:

NDCG (r = -0.45); SRC (r = -0.49); KRC (r = -0.51), except for MAP, with medium

effect in the difference (r = -0.28).

Table 5.15: Mann-Whitney Test Results (FOCUSS_lin Vs eWD_lin)

Metric Method N Mean Rank U Z p-value Sig (0.01)

NDCG

eWD_lin 30 22.57

212.000 -3.521 0.000 Significant FOCUSS_lin 30 38.43

Total 60

MAP

eWD_lin 30 25.55

301.500 -2.201 0.028 Significant FOCUSS_lin 30 35.45

Total 60

SRC

eWD_lin 30 22.02

195.500 -3.765 0.000 Significant FOCUSS_lin 30 38.98

Total 60

KRC
eWD_lin 30 21.57

182.000 -3.965 0.000 Significant FOCUSS_lin 30 39.43
Total 60

172

ii- FOCUSS_lin Vs. eWD_num

The pairwise comparison between FOCUSS_lin and eWD_num methods (cf. Table 5.16)

revealed statistical significant difference between both methods on NDCG (ܷ ൌ

202.000	ሾܼ ൌ െ3.669ሿ, 	݌ ൏ 	 .05), SRC (ܷ ൌ 153.500	ሾܼ ൌ െ4.386ሿ, 	݌ ൏ 	 .05) and

KRC (ܷ ൌ 141.000	ሾܼ ൌ െ4.571ሿ, 	݌ ൏ 	 .05) and MAP (ܷ ൌ 364.000	ሾܼ ൌ 	െ1.277ሿ,

݌ ൏ 	 .05). However, the mean rank results showed that the accuracy of FOCUSS_lin is

higher than of eWD_num for all metrics: NDCG (Mean rank =38.77 Vs. 22.23), MAP

(Mean rank = 33.37 Vs. 27.63), SRC (Mean rank = 40.38 Vs. 20.62) and KRC (Mean

rank = 40.80 Vs. 20.20).

Table 5.16: Mann-Whitney Test Results (FOCUSS_lin Vs eWD_num)

Metric Method N Mean Rank U Z p-value Sig (0.01)

NDCG

eWD_num 30 22.23

202.000 -3.669 0.000 Significant FOCUSS_lin 30 38.77

Total 60

MAP

eWD_lin 30 27.63

364.000 -1.277 0.202 Insignificant FOCUSS_num 30 33.37

Total 60

SRC

eWD_lin 30 20.62

153.500 -4.386 0.000 Significant FOCUSS_num 30 40.38

Total 60

KRC
eWD_lin 30 20.20

141.000 -4.571 0.000 Significant FOCUSS_num 30 40.80
Total 60

iii- FOCUSS_num Vs. eWD_lin

The pairwise comparison between FOCUSS_num and eWD_lin methods (see Table 5.17)

showed statistical significant difference between FOCUSS_num and eWD_lin methods

on NDCG (ܷ ൌ 204.000	ሾܼ ൌ െ3.637ሿ, 	݌ ൏ 	0.01), SRC (ܷ ൌ 212.000	ሾܼ ൌ

െ3.519ሿ, 	݌ ൏ 	0.01) and KRC (U=184.000 [Z=-3.927], p < 0.01), except for MAP (ܷ ൌ

308.500	ሾܼ ൌ 	െ2.095ሿ, 	݌ ൌ 0.036). Besides, the mean rank descriptive statistics

showed that the accuracy of FOCUSS_num is higher than of eWD_lin for all four

metrics: NDCG (Mean rank = 38.70 Vs. 22.30), MAP (Mean rank = 35.22 Vs. 25.78),

SRC (Mean rank = 38.43 Vs. 22.65) and KRC (Mean rank = 39.35 Vs. 21.65). The effect

size is as follows is large for NDCG (r= -0.47), SRC (r = -0.45), KRC (r= -0.51), and

medium effect for MAP (r = -0.27).

173

Table 5.17: Mann-Whitney Test Results (FOCUSS_num Vs eWD_lin)

Metric Method N Mean Rank U Z p-value Sig (0.01)

NDCG

eWD_lin 30 22.30

204.000 -3.637 0.000 Significant FOCUSS_num 30 38.70

Total 60

MAP

eWD_lin 30 25.78

308.500 -2.095 0.036 Significant FOCUSS_num 30 35.22

Total 60

SRC

eWD_lin 30 22.57

212.000 -3.519 0.000 Significant FOCUSS_num 30 38.43

Total 60

KRC
eWD_lin 30 21.65

184.000 -3.927 0.000 Significant FOCUSS_num 30 39.35
Total 60

iv- FOCUSS_num Vs. eWD_num

The pairwise comparison between FOCUSS_num and eWD_num methods (see Table

5.18) suggested that there is statistical significant difference between the accuracy of both

methods judging from all metrics. The U statistics includes: NDCG (U=188.000 [Z=-

3.874], p < 0.01), MAP (U=387.000 [Z= -0.934], p =.350), SRC (U=152.000 [Z=-4.406],

p < 0.01) and KRC (U=134.000 [Z=-4.666], p < 0.01). Furthermore, the mean ranks for

both methods showed that the accuracy of FOCUSS_num is higher than of eWD_num for

all four metrics: NDCG (Mean rank = 39.23 Vs. 21.77), MAP (Mean rank = 32.60 Vs.

28.40), SRC (Mean rank = 40.43 Vs. 20.57) and KRC (Mean rank = 41.02 Vs. 19.98), to

a large effect (r = -0.5; r = -0.57; r = -0.6,) for NDCG, SRC and KRC respectively, and

small effect for MAP (r = -0.12).

Table 5.18: Mann-Whitney Test Results (FOCUSS_num Vs eWD_num)

Metric Method N Mean Rank U Z p-value Sig (0.01)

NDCG

eWD_num 30 21.77

188.000 -3.874 0.000 Significant FOCUSS_lin 30 39.23

Total 60

MAP

eWD_lin 30 28.40

387.000 -0.934 0.350 Insignificant FOCUSS_num 30 32.60

Total 60

SRC

eWD_lin 30 20.57

152.500 -4.406 0.000 Significant FOCUSS_num 30 40.43

Total 60

KRC
eWD_lin 30 19.98

134.500 -4.666 0.000 Significant FOCUSS_num 30 41.02
Total 60

174

v- FOCUSS_lin Vs. FOCUSS_num

The pairwise comparison between FOCUSS_lin and FOCUSS_num methods (see Table

5.19) suggested that there is no statistical significant difference between the accuracy of

both methods. The U statistics includes: NDCG (U=188.000 [Z=-3.874], p > 0.01), MAP

(U=387.000 [Z= -0.934], p > 0.01), SRC (U=152.000 [Z=-4.406], p > 0.01) and KRC

(U=134.000 [Z=-4.666], p > 0.01).

Table 5.19: Mann-Whitney Test Results (FOCUSS_lin Vs FOCUSS_num)

Metric Method N Mean Rank U Z p-value Sig (0.01)

NDCG

FOCUSS_num 30 30.08

437.500 -0.185 0.853 Insignificant FOCUSS_lin 30 30.92

Total 60

MAP

FOCUSS_num 30 29.97

434.000 -0.238 0.812 Insignificant FOCUSS_lin 30 31.03

Total 60

SRC

FOCUSS_num 30 29.03

406.000 -0.652 0.515 Insignificant FOCUSS_lin 30 31.97

Total 60

KRC
FOCUSS_num 30 29.08

407.500 -0.630 0.529 Insignificant FOCUSS_lin 30 31.92
Total 60

In addition, the mean ranks of the accuracy of both versions of FOCUSS methods showed

just marginal difference, as FOCUSS_lin was slightly higher than FOCUSS_num by a

maximum of one point across all metrics: NDCG (Mean rank = 30.92 Vs. 30.08), MAP

(Mean rank = 31.03 Vs. 29.97), SRC (Mean rank = 31.97 Vs. 29.03) and KRC (Mean

rank = 29.08 Vs. 29.08). The effect size is very low with r = -0.02, r = -0.03, r = -0.08, r=-

0.08 for NDCG, MAP, SRC and KRC respectively.

5.4.8 Discussion

The Kruskal-Wallis test revealed that the number of alternatives, size and QoS input type

did not affect the accuracy metrics considered, but the methods produced distinguishable

accuracy results. Judging by the results from both the descriptive and inferential statistical

analysis, the two versions of the FOCUSS methods (FOCUSS_num and FOCUSS_lin)

produce better accuracy results on all four metrics considered and were in all cases closer

to the benchmark metric (TOPSIS) than the other four methods compared in this

experiments.

175

Furthermore, the significantly higher mean rank of the FOCUSS_lin methods indicates

that FOCUSS_lin produces more accurate rankings than other methods. In addition, an

important discovery from the experiments is that expressing QoS requirements using

linguistic terms did not compromise the accuracy of the ranking method. This discovery

is aligned with the results of Sun et al. (2014), proving that there is no significant

difference in the rankings produced by methods that accept linguistic QoS requirements

as input and those that accept numeric QoS requirements (see Figure 5.5).

Although, the versions of FOCUSS had higher accuracy compared to other methods

evaluated, there exist only a marginal but insignificant difference between the ranking

produced by FOCUSS_lin and FOCUSS_num (see Table 5.19). On the basis of the

results obtained from experiment-2, the null hypothesis (H0) in section 5.4 is hereby

accepted. The hypothesis H0 states that there will be no significant difference between the

ranking performances of a method that accepts exact numeric values as QoS requirement

and those that use linguistic descriptors to approximate values for QoS requirements.

5.5 EXPERIMENT-3: USER EXPERIENCE EVALUATION

Experiment-3 is a controlled user study designed to evaluate the user experience of the

bubble graph visualisation integrated as part of the FOCUSS framework compared to

traditional tabular format. The use of visualisation techniques is expected to reduce the

cognitive load of the user by aiding the completion of user tasks accurately and time

efficiently (Sebrechts et al., 1999). The use of a controlled experiment is well suited for

the answering how one visualisation format technique compares to another (Lam et al.,

2012). In this experiment, a “head-to-head” comparison was carried out on both

visualisation formats (Lam et al., 2012). The effectiveness of the visualisations was

measured quantitatively using time and accuracy metrics, while subjective assessment of

the visualisations was carried out by soliciting participants’ feedback via the use of a

usability questionnaire.

5.5.1 Experiment Goal and Hypothesis

The objective of Experiment-3 is to determine the differences in quality of user

experience for users exploring the list of top-k alternatives produced by QoS-based

service ranking methods. It has been argued in this study that information visualisation is

176

a viable means to explore top-k alternatives as this gives the user the flexibility of

performing trade-off analysis much more easily compared to a traditional top-k list

presented with text in a tabular format. The objects studied in this controlled experiment

are bubble graph visualisation and textual-tabular visualisation of a list of top-k services.

The purpose of the experiment is to evaluate the two visualisation formats in representing

a list of ranked top-k services in the context of a cloud service e-marketplace, with respect

to the quality of user experience of both formats from a researcher’s viewpoint. The user

experience is measured in terms of how quickly and accurately users identify their

preferred alternatives.

To this end, the formulated null hypothesis to be rejected is as follows:

1. H0: There is no significant difference in task completion time of bubble graph

visualisation and tabular visualisation of the list of top-k service alternatives.

2. H0: There is no significant difference in perceived effectiveness, perceived efficiency,

and perceived correctness of bubble graph visualisation and tabular visualisation of

the list of top-k service alternatives.

5.5.2 Experiment Instrumentation

Wohlin et al. (2012) identified mainly three types of instruments used for an experiment:

objects, guidelines and measurement instruments; and these three instruments were

utilised in Experiment-3. Next, each instrument is described in more details.

I. Object

The object instrument is the prototype implementations of two hypothetical CRMaaS e-

marketplace with the result page implementing either bubble graph visualisation or

Tabular visualisation. The hypothetical CRMaaS e-marketplace was accomplished in Java

programming language, as a WAR file deployed on glassfish server and container

running on the same PC configuration presented in Section 5.3.3.

The QoS requirements for four QoS attributes (Availability, Response Time, Reliability

and Cost) presented in Table 5.20 produced the list of top-20 services that served as input

data for both visualisation formats. These predefined QoS requirements were inputted via

the UI component of the hypothetical CRMaaS e-marketplace prior to the commencement

177

of the tasks by participants. Participants accessed the visualisation formats via two

different tabs on a web browser. Figure 5.6 and Figure 5.7 show the bubble graph

visualisation and the tabular listing of the top-10 alternatives respectively, based on the

QoS requirements presented in Table 5.20.

Table 5.20: QoS requirements used in Experiment-3
QoS

Attributes
Preference

Aspiration
Goal Constraints

Availability
 Somewhat less important than response time
 Somewhat More important than reliability
 Extremely more important than cost

Very
High

In the vicinity of 99%

Response
Time

 Somewhat less important than reliability
 Very more important than cost

Low Very Close to 400

Reliability Very less important than cost High In the vicinity of 70%
Cost - Premium In the vicinity of 500$/Month

Figure 5.6: Tabular listing of top-k services from Table 5.20 requirements

`
Figure 5.7: Bubble Graph Visualisation of Top-10 Services

178

II. Guidelines

Guidelines are used to provide guidance to each participant for the experiments, and it

contains the descriptions and outline of specific tasks each participant is expected to

complete. The tasks were based on the taxonomy of user’s tasks proposed by Valiati

(2005) and elaborated in Pillat et al. (2005).

Although, the taxonomy describes seven user tasks (locate, compare, configure, infer,

determine, identify, and visualise), locate tasks were defined for this experiment, as they

represent the decision-making scenarios in a cloud service e-marketplace. Locate tasks

refers to finding specific information in the visualisation relating to data items,

dimensions, properties, values etc. (Pillat et al., 2005). The starting point of a Locate task

is the participant exploring the visualisation and ends with the participants identifying the

desired information (Pillat et al., 2005). A total of sixteen (16) tasks were defined and

documented in the guideline for this experiment (see Figure 5.8).

Figure 5.8: List of 16 ‘Locate’ User Tasks used in Experiment-3

III. Measurement

The measurement instrument is used to collect data from participants. Two measurement

instruments were used in this experiment; they include the task performance survey

(sample is in Figure 5.9) and a post-experiment questionnaire. The task performance

179

survey instrument was employed to capture time to complete it, while the post-

experiment questionnaire, a customization of the Post-Study-Satisfaction-User

Questionnaire (PSSUQ), was used to elicit user experience.

PSSUQ (Lewis, 1992) is a popularly used instrument used in conducting usability studies

in the literature, and it consists of 19 items, from which only 15 relevant questions were

selected for this study. These 15 items were specifically adapted for evaluating

participant’s impression of the visualisation formats used in this context of this research.

Participants were required to rate each item in the post-experiment questionnaire on a 7-

point Likert scale according to the following scale (7-Excellent and 1-Poor). The sample

questions of the modified PSSUQ for both Table and Bubble graph visualisation formats

are presented in Figure 5.10, the complete instrument is contained in Appendix C.

Figure 5.9: Task performance Survey Instrument

180

Figure 5.10: Sample of Modified Post-Study-Satisfaction-User-Questionnaire

5.5.3 Experiment Design and Protocol

The independent variable of the study is the visualisation format and it has two levels:

Bubble Graph Visualisation and Tabular Visualization. The dependent variables are the

speed of task completion and user satisfaction in performing defined tasks with the two

visualisation formats. Task completion time was achieved by tracking the overall

completion time in seconds, and the aggregated user satisfaction scores from participants’

feedback using the modified PSSUQ instrument. The objects evaluated are the bubble

graph and tabular visualisations of a list containing top 10 services based on the

requirements shown in Table 5.20. Although all QoS dimensions are important, we

considered four QoS dimensions, for the purpose of this study, to represent the attributes

of the services: Availability, Response Time, Reliability and Cost. Figure 5.6 shows the

tabular listing of 10 cloud services, their QoS attributes and corresponding bubble graph

visualisation is shown in Figure 5.7.

The legend of the bubble graph is as follows: x-axis represents availability measured in

percentage, y-axis the response time of the services in milliseconds, the colours of the

bubble represent the reliability, and the darker colour signifies higher reliability. The cost

is represented by the size of the bubble, as bigger bubbles signify higher cost.

181

The task guidelines contain the tasks that participants are expected to complete. The

starting point of a locate task is the participant exploring the visualisation and ends with

the participants identifying the desired information. Figure 5.8 shows the list of 16 tasks

grouped into two categories (eight tasks in each category) to represent the subset of

activities users undertake in a cloud service e-marketplace.

A completely randomised design was selected for experiment-3. The participants were

randomly divided into two groups; the first group is assigned to use the bubble graph

visualisation and then the tabular visualisation in that order, while the second group used

the tabular visualisation and then the bubble graph visualisation in a reverse order to the

first group. Experiment-3 can be described as one factor with two treatment type of

experiment, to which a paired comparison design (or cross-over design) is applied; the

same number of participants started with both visualisations formats to have a balanced

design (Wohlin et al., 2012; Oehlert, 2010). The experiment was run offline (i.e. not in a

real cloud service e-marketplace context). Because the experiments involve multiple

subjects (participants) and objects (bubble graph and tabular visualisation formats), it was

designed as a blocked subject-object study (Wohlin et al., 2012; Oehlert, 2010).

A total of 10 persons participated in the experiment, comprising 7 males and 3 females,

ranging in age from 20 to 25. The participants were undergraduate students studying

computer, engineering and mathematics-related courses. Participants were taken through

a ten minutes tutorial session where the purpose and the process of the experiments were

made known. Participants were given a tutorial on the use of both visualisation formats to

complete sample tasks and allowed to complete some preliminary tasks to ascertain their

ability to perform the main tasks defined for the experiments. As soon as participants

were comfortable with the process, they were presented with copies of guideline

containing tasks to be completed. The tasks involved using the bubble graph and tabular

visualisations, and the task performance survey instrument. The tasks guideline outlined

16 tasks (see Figure 5.8) grouped into two categories (eight tasks in each category) to

represent the subset of activities users undertake in a cloud service e-marketplace. The

tasks were grouped according to levels of complexity ranging from locating services by

both one to two QoS criteria. The experiment administrator recorded the time it took each

participant to complete each task with the aid of a stopwatch. Upon completion of the

182

tasks, a post-experiment survey was conducted in order to capture participants’

impressions of both visualisation formats.

5.5.4 Results and Analysis

Quantitative and subjective data were generated and analysed. While the quantitative data

collected via the task performance questionnaire were used to measure the speed of task

completed, the qualitative data was collected via the post-experiment questionnaire

completed by the participants and analysed. The next section describes the results of

Experiment-3 in more details.

I. Task Completion Time (Speed)

Overall, the use of bubble graph had faster completion time with a median completion

time of 10 seconds compared to 15 seconds for tabular visualisation. The magnitude of

the difference in completion time is demonstrated by U-statistics from Mann-Whitney

test, with U=8619.500, z=-4.983, p =.000. Furthermore, there was also a significant

difference in the speed between the tasks in both task types (U=6139.500, z=-7.996,

p=.000) with a median completion time of 9 seconds for tasks in category A, while the

tasks in category B took a median time of 19 seconds. Figure 5.11 shows the median

completion time for tasks in category A and category B using the bubble graph and

tabular visualisation types. For the bubble graph visualisation, it took 7.5 seconds to

complete category A tasks, and 13.5 seconds to complete category B tasks; whereas the

same tasks were completed in 10 seconds and 26 seconds for category A and B tasks

respectively using the tabular visualisation.

Figure 5.11: Median Time to Locate Services by Task Type

0

5

10

15

20

25

30

Category A Task Category B Tasks

M
e
d
ia
n
 C
o
m
p
le
ti
o
n
 T
im

e
 (
Se
c)

Tabular Bubble Graph

183

II. User Experience

Figure 5.12 presents the results from the post-study questionnaire. The goal of the post-

experiment questionnaire was to capture user’s impression and examine perceived quality

of user experience of the visualisation formats. For the bubble graph visualisation, most

of the questions received median scores from 6 on a 1-7 Likert scale. The highest score of

6 was received for the more general questions like “The bubble graph visualisation was

easy to use” and “Overall, I was satisfied with the bubble visualisation format”. In

contrast, the tabular visualisation had slightly lower median scores of not more than 5.

A Wilcoxon Signed Rank Test revealed a statistically significant difference in the user

experience of bubble graph (md=6.00) and tabular visualization (md=5.00), with z = –

5.237, p=0.018 (p < .05), with a medium effect size (r = .30). Furthermore, feedbacks

were sought from the participants to ascertain perceived ease, speed and accuracy using

both visualisation formats for both categories of tasks involving one and two QoS

attributes.

Participants were asked to indicate which visualisation types were easier, faster and

produced the most accurate result for both task categories. For exploration based on

single QoS attributes, 70% of the participants confirmed that the bubble graph was easier

to use compare to 30% who said the table was easier; 80% of participants said they

performed the task faster than using table (20%), while 10% reported that the use of

bubble graph was less accurate than tabular (90%) as shown in Figure 5.13. Also, while

performing exploration using two QoS attributes, 80% and 90 % of the participants

reported that the bubble graph was easier and faster respectively; while 70% said the use

of bubble graph was more accurate than the tabular visualisation (30%) as depicted in

Figure 5.14.

184

Figure 5.12: Median score for Post-Study Questionnaire

4.5

5

5

4

6

5

5.5

3

5

6

5.5

6

5

4

5

6

6

5.5

6

5

5.5

6

6

5

6

5

6

6

6

6

0 1 2 3 4 5 6 7

Overall, I am satisfied with how easy it is to use the
visualization format

It was simple to use the visualization format

I could effectively complete the tasks using the
visualization format

I was able to complete the tasks quickly using the
visualization format

I was able to efficiently complete the tasks using the
visualization format

I felt comfortable using the visualization format

It was easy to learn to use the visualization format

I believe I could find the desired service alternative
quickly using the visualization format

It was easy to find the service I needed

The visualization format was easy to understand

The visualization format was effective in helping me
complete the tasks and scenarios

The organization of the tabular visualization format
on the system screens was clear

The visualization format was pleasant

I liked using the visualization format

Overall, I am satisfied with visualization format

Bubble Graph Tabular

185

 Figure 5.13: Perceived User satisfaction (Single QoS Attribute)

 Figure 5.14: Perceived User satisfaction (Double QoS Attributes)

5.5.5 Threats to Validity

There are threats to experimental evaluations which often affect the validity of the results.

The possible threats to the validity of the results obtained from this experiment were

carefully investigated- including threats to internal, conclusion, external and construct

validities. Internal validity refers to the causal relationship between the visualisation types

and the effectiveness in performing locate task in terms of task completion time, as well

as the perceived ease, speed and accuracy of the visualisation types. The threat to internal

validity of our results is in the selection of the participants. Although the participants

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Easier Faster Accurate

P
e
rc
e
n
ta
ge

 o
f
P
ar
ti
ci
p
an

ts

Tabular Bubble Graph

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Easier Faster Accurate

P
e
rc
e
n
ta
ge

 o
f
P
ar
ti
ci
p
an

ts

Tabular Bubble Graph

186

were selected at random, they all had the required knowledge background to act

competently while participating in the experiment (Wohlin et al., 2012).

Threats to the conclusion validity affect the ability to arrive at the correct conclusion

about relations between the treatment and the outcome of an experiment (Wohlin et al.,

2012). The concern is the extent to which, we can generalise based on the experiment,

particularly considering the number of participants (10) and their level of experience. It is

possible to have obtained a different result with a bigger group and more experienced

subjects. However, from the experiment, the subjects who were students have similar

computing background as technology officers, who would normally make such decisions

for many organisations. They also showed that they had potential to make rational

decisions as regards the tasks assignment, although they are not adept as real technology

experts, but good enough to form a valid opinion on the suitability of bubble graph and

tabular visualisations. Also, for a first-rate evaluation experiment, 10 is an acceptable

sample size in order to obtain a valid first impression (Turner et al., 2006).

To ensure construct validity all participants performed exactly the same tasks based on

the same set of instructions thus minimising any mono-method bias (Lam et al., 2012).

Therefore, there are no serious threats to validity for our conclusions from the

experimental evaluation.

5.5.6 Discussion

Realising the vision of a true cloud service e-marketplace in the face of the growing trend

for personalised products and services requires that user satisfaction and user experience

be given top priority. The overall goal of this study is to simplify cloud service selection

while optimising user experience and satisfaction in the decision-making process. Just

like one of the laws of e-commerce states that if users cannot find it, they cannot buy it

either; integrating information visualization in the User Interface (UI) design of e-

marketplace provides the mechanisms for user to, in the shortest possible time and

through the easiest means, find a cloud service that meets their requirements.

Humans possess the ability to recognise the spatial arrangements of elements in a picture

and decipher relationships among elements quickly and easily. Such abilities enable

humans to derive greater insight and comprehension from the content of a picture faster

than mere text. This process leads to a more informed decision-making by capitalising on

187

the well-developed human visual processing capability. This study posits that applying

information visualisation technique for aiding cloud service selection would improve

cloud service exploration, and proposed a visualisation framework to allow users compare

cloud services with respect to their requirements.

The factors observed and measured in the experiments carried out were the speed at

which the tasks were completed and the ease at which it was done. Generally, a faster

completion time and greater ease in carrying out the assigned tasks meant the higher

quality of user experience for a particular visualisation format. Although the use of table

can be enhanced to include the ability to sort, the extra activity of sorting introduces

additional complexity for the user when making a comparison. However, the bubble

visualisation requires users just gazing at the visualisation (display) and with minimal

interaction with the display (e.g. hovering), can gather more insight about the various

alternatives. The task completion results show that bubble graph will drastically reduce

the time it takes to find the most suitable service.

Consequent to the feedback provided by the participants, the results clearly indicates that

using the tabular visualization to complete the tasks took longer time, and hence was

more difficult, which, based on the feedback provided by the participants, was a result of

the tabular formats could not adequately support participants in performing the required

tasks. The bubble graph was the faster of the two formats evaluated (with a median time

of 10 Seconds) particularly for more complex tasks involving two or more QoS attributes.

Based on the results obtained from this experiment, the two hypothesis set was rejected.

Specifically, H0 which states that there is no significant difference in task completion time

of bubble graph visualization over the tabular visualization was rejected as the results

showed significant difference in completion time (see Figure 5.11); in the same vein, H0

was also rejected because there was a significant difference in user experience of bubble

graph visualization compared to tabular visualization based on participants’ feedback.

5.6 CHAPTER SUMMARY

In this chapter, the quantitative and qualitative experiments carried out to evaluate the

FOCUSS framework were reported. This chapter described the experimental protocols

followed to validate the scalability, ranking accuracy, user experience of the FOCUSS

188

framework using descriptive and inferential statistics on data obtained from three

experiments. The results obtained showed that the FOCUSS framework is viable for

cloud service ranking and selection in cloud service e-marketplace contexts. The next

chapter contains the summary, a highlight of the contribution to knowledge and the

conclusion of this thesis.

189

CHAPTER SIX

CONCLUSION AND RECOMMENDATIONS

6.1 INTRODUCTION

This chapter highlights the summary and contribution of this thesis; and also contains

recommendations for future work directions.

6.2 SUMMARY

Service providers leverage cloud ecosystems and cloud e-marketplaces to increase the

business value of their services to reach a wider range of service users. A cloud services

ecosystem is an environment that host heterogeneous cloud service offerings from

different providers and affords the opportunity for collaborations. The cloud e-

marketplace extends the concept of an e-marketplace and is an online platform that

manages the distribution and trading of cloud services. On this platform, service providers

enlist services with the purpose of integration with other services to form composite

services for users to purchase. However, the growing popularity of cloud services requires

cloud e-marketplaces that optimise user experience by enabling the composition of

atomic services that satisfy complex user requirements beyond what atomic services can

provide, while considering that the user’s QoS requirements are elicited in ways akin to

subjective human expressions. In addition, the user experience on such platforms can also

be enhanced by showcasing a ranked result of services that match the user’s QoS

requirements via intuitive means that reduces the cognitive load of the users.

This study addresses the problem of service choice overload in cloud service e-

marketplaces, which impacts negatively on user experience. So far the following has been

accomplished in this study in line with the research questions and objectives of this study:

OBJECTIVE ONE: To formulate an integrated service selection framework that will

improve the quality of user experience in a cloud service e-marketplace.

A review of the literature reveals that existing cloud selection approaches do not currently

provide the sophistication to optimise user experience in the e-marketplace. Through the

analysis of the state-of-the-art studies, a set of requirements was identified for a cloud

190

service selection framework that would suffice in an e-marketplace context. Therefore,

the study filled the existing gap in literature by proposing the FOCUSS framework as an

integrated cloud service selection framework that incorporates mechanisms to address the

existing gaps in cloud service selection literature, which are: 1) the need to compose

atomic services on the fly to satisfy complex users’ requirements; 2) the need to allow

users the flexibility of expressing QoS requirements; both preferences and aspirations,

and to be able to do so with subjective descriptors that are more akin to human judgment;

and 3) the need to reduce choice overload by showing only the top best services in a

manner that facilitates easy comparison for effective decision-making. These identified

gaps formed the basis for the design of the FOCUSS framework, which comprises of four

main components, namely; Cloud ecosystem and service directory, GUI and

Visualisation, QoS requirement processing, and Service Evaluation and QoS ranking.

OBJECTIVE TWO: To design models and algorithms that will enable the components of

the service selection framework.

An assortment of models and algorithm were employed in the realisation of the

components of the FOCUSS framework. Each component is described thus:

i. Cloud Ecosystem and Service Directory: The framework uses the extended

feature model notations, to model the Cloud Ecosystem Feature Model (CEFM) that

organises and formally compose atomic services to populate the service directory.

The composite services are able to satisfy user complex requirements beyond what

atomic services can handle. The CEFM is mapped as a constraint satisfaction

problem and the Choco-based reasoning engine reasons with a Depth-First search

algorithm to derive all valid mappings. Possible combinations of atomic services

that can be generated from the pool of atomic services are made available in the e-

marketplace based on former composition approaches.

ii. GUI and Visualization: The framework integrates fuzzy-based web interface

widgets comprising sliders, drop-down menus and text boxes for eliciting vague

QoS preferences and aspirations, while bubble graph visualisation is employed to

improve understanding of the relationship among the ranked services. Users can

indicate preferences by pairwise comparison for each QoS attribute by adjusting the

slider handle. The slider bar has two colour codes that correspond to the QoS

191

attributes and indicates the level of preference for a QoS attribute. Besides, humans

derive better insight from a picture faster than mere text; therefore user experience is

improved by the use of information visualisation. More specifically, the FOCUSS

framework proposed the use of bubble graph visualisation to simplify decision

making by showing how each service in the ranked results relates to others.

iii. QoS Requirements Processing: The QoS Requirements Processing module

comprises the QoS Preference Prioritizer (QPP) and the QoS Aspiration Analyser

(QAA) sub-modules. The QPP module ensures consistency in the pairwise judgment

and uses the geometric mean method to derive priority weights. To prioritise user’s

QoS preferences, the QPP employs a Fuzzy AHP-based approach. The QAA module

synthesises user’s QoS values based on fuzzy decision making, comprising

membership functions framed as fuzzy goal and constraints. Since the linguistic

terminologies describing the QoS aspiration reflect the semantic approximations of

user’s intent, resolving the fuzzy decision results in an optimal set of QoS values

that approximate user’s QoS intent.

iv. Service Evaluation and QoS Ranking: The Service Evaluation and QoS Ranking

modules consist of two sub-modules: the QoS Requirement Optimizer (QRP) and

the QoS Ranking Engine (QRE). The QRP component computes the optimal QoS

values that describe user’s requirements based on the QoS information on all the

services in the service directory. The inputs into this component are the priority

weights and the value of QoS attributes. The framework defines two utility functions

to evaluate the performance of each service alternative with respect to user’s

requirement. The output from the QRP forms the basis for ranking the services in

the directory. The main technique used in this module is the nearest neighbour

algorithm and the ranked output is fed into the bubble graph visualisation.

OBJECTIVE THREE: To implement a prototype of the service selection framework and

demonstrate its plausibility

The study used an illustrative case study of a Customer Relationship Management as a

Service (CRMaaS) e-marketplace to demonstrate the plausibility of the FOCUSS

framework. The envisioned CRMaaS ecosystem involves multiple atomic service

providers who collaborate to provide CRM solutions, while prospective small businesses

192

can purchase CRM solutions in the e-marketplace. The components that make up the

CRMaaS ecosystem includes: Contact Management, Database, Marketing and Social

media analysis.

The use cases featured a scenario of how two organisations, a Microfinance bank and

online drug store, select appropriate services matching their respective QoS requirements

from the CRMaaS e-marketplace. The illustrative case study described the whole process

from ecosystem feature modelling, constraint-based reasoning, QoS aspiration and

requirement specification, and visualisation of ranking results.

OBJECTIVE FOUR: To evaluate the framework in terms of its performance and usability

attributes.

An evaluation, comprising simulation experiments and user studies was performed to

ascertain the performance and usability of the FOCUSS framework. First, the result of the

scalability experimental simulation confirmed the performance of the FOCUSS

framework in terms of the time it takes to rank top-k services. A linear regression analysis

of data collected from the simulation shows that the FOCUSS framework scales linearly

with an increase in service alternatives in terms of performance, thus confirming the

computational efficiency of the FOCUSS QoS-based ranking module. The second

simulation experiment tested the ranking accuracy of two versions of the FOCUSS

ranking algorithm compared to existing methods and tested the hypothesis that there will

be no significant difference between the ranking performances of a method that accepts

exact numeric values as QoS requirement and those that use linguistic descriptors to

approximate values for QoS requirements. Judging by the results from both the

descriptive and inferential analysis, the two versions of the FOCUSS methods

(FOCUSS_Num and FOCUSS_Lin) produce more accurate results on all four metrics

considered and were in all cases closer to the benchmark metric (TOPSIS) than the other

two methods used in this simulation. Finally, a user study was undertaken to ascertain the

usability attributes of the visualisation component of the FOCUSS framework. The

summary of the results of the user study showed that the use of bubble graph recorded

higher accuracy, faster completion time and greater ease in carrying out the assigned

tasks; thus corresponding to the higher quality of user experience.

193

6.3 CONTRIBUTIONS TO KNOWLEDGE

This study contributes to the general research areas of cloud service selection and

decision making as it applies to cloud service e-marketplaces. More specifically, the

main contribution of this study caters for the observed limitations in the existing cloud

service selection approaches by enabling the 1) formal composition of atomic services to

satisfy complex user requirements beyond what atomic services can deliver; 2) elicitation

and processing of subjective user QoS requirements in ranking cloud services; 3)

presentation of search results in a visually intuitive way that aids in better decision

making.

To this end, the Fuzzy-Oriented Cloud Service Selection (FOCUSS) framework was

formulated to improve the user experience in a cloud service e-marketplace. FOCUSS is

an integrated framework for cloud service ranking and selection, proposed as an efficient

integrated visual-rich fuzzy-based decision support that incorporates a feature modelling,

constraint-based reasoning, fuzzy decision making, fuzzy optimisation and visualisation

in its design for cloud service selection in cloud service e-marketplace context. More

concretely the FOCUSS framework:

a) Satisfies complex user requirements beyond what atomic services can deliver.

Currently, users are constrained to make choices only from a set of predefined

atomic services, or at best, manually configure their desirable features and QoS

requirements in order to realise their complex requirements given that they have

deep knowledge of the service domain. FOCUSS employs constraint-based

reasoning on the feature model to formally compose atomic services to fulfil

complex user requirements.

b) Elicits and processes subjective user QoS preferences and aspirations.

Without proper articulation of requirements, cloud service selection can be

overwhelming, and leads to service choice overload; more so that user

requirements, broken into QoS aspiration and QoS preferences, are often shrouded

in vagueness and subjectivity. Contrary to existing approaches in which either

vague QoS preferences or aspirations are considered, FOCUSS elicit user QoS

requirements in a way that captures the vagueness inherent in both the users’ QoS

194

preferences and aspirations and optimises these QoS inputs dimensions to identify

suitable services options.

c) Presents search results in a visually intuitive way that aids in better decision

making. The search results from many cloud service e-marketplace are usually

presented as an unordered list of icons representing the services that best fit users’

keyword-based queries. The drawback of such presentation mechanisms is that

users are not able to immediately discriminate among the cloud services for easy

decision making. FOCUSS simplifies decision making as users can identify

services that best fit their requirements quicker and easier compared to tabular

formats.

6.4 CONCLUSION

The popularity of cloud computing has led to the proliferation of services that are

commoditized and traded via cloud e-marketplaces. The benefits of employing cloud-

based services compel many enterprises, particularly small businesses, to migrate over to

the cloud (Budniks and Didenko, 2014; Ross and Blumenstein, 2015; Sultan, 2011).

Realising the vision of a true cloud service e-marketplace in the face of the growing trend

for personalised products and services requires that user satisfaction and user experience

be given top priority. An organisation’s resolution to adopt a new cloud service requires

decision support in navigating the vast plethora of services (Qu and Buyya, 2014;

Saripalli and Pingali, 2011). Without proper articulation of requirements, cloud service

selection in the face of so many choices can be overwhelming and leads to service choice

overload. Decision support becomes essential because cloud service selection involves

the consideration of multiple QoS attributes, which are compared to a variety of services;

often based on QoS requirements that are vague or subjective in nature.

The overall goal of this study was to simplify cloud service selection while optimising

user experience in the decision-making process. For this, an integrated fuzzy-oriented

framework was proposed to facilitate an enhanced user experience in cloud e-

marketplaces through the formal composition of atomic services to satisfy complex user

requirements, elicitation and processing of subjective user QoS requirements, and

presentation of search results in a visually intuitive way that aids users’ decision making.

To do this, an integration of key concepts such as constrained-based reasoning on feature

195

models, fuzzy pairwise comparison of QoS attributes, fuzzy decision making, and

information visualisation have been used. Results from experiments performed showed

that the FOCUSS framework is scalable; ranks services using subjective descriptors and

optimises the user experience in cloud service e-marketplace.

6.5 RECOMMENDATIONS FOR FUTURE WORK

The study provides possibilities for further research in tandem with the dynamism of the

cloud computing landscape and user experience dimensions. The issues related to future

works identified are as follows:

a) Managing the Heterogeneity of QoS Information

Although QoS are measurable non-functional attributes that describe and distinguish

services and forms the basis for service selection (Chen et al., 2013; Abdelmaboud et al.,

2015), QoS properties are usually heterogeneous in nature, covering both quantitative and

qualitative (or categorical) attributes. Besides, the Service Measurement Index (SMI)

defines seven main metrics to measure QoS of cloud services, which includes

Accountability, Agility, Assurance, Financial, Performance, Security and Privacy, and

Usability; including multiple attributes under each categories and have values that are

either quantitative or qualitative (or categorical) in nature. For example, response time is

measured using quantitative numeric values (in milliseconds), while security and user

friendliness or ecosystem friendliness are measured based on qualifier tags such as good,

high etc. Many cloud service selection frameworks have only considered quantitative

attributes, for example Rehman et al. (2011), Jung et al. (2013) and Mirmotalebi et al.

(2012), based on the assumption that all QoS attributes are quantitative in nature, such

approaches are limited and cannot suffice to handle the heterogeneous QoS model of

cloud services, to cover for both quantitative and qualitative (or categorical) QoS

dimensions. To effectively achieve a QoS-based ranking of cloud services in cloud

service e-marketplaces, there is need to consider both the quantitative and qualitative QoS

dimensions that characterise cloud services and rank cloud services accurately with

respect to user requirements. To achieve this, heterogeneous similarity metrics that

combines quantitative and qualitative dimensions, such as the Heterogeneous Euclidean

Overlap Metric and Heterogeneous Value Difference Metric (Wilson and Martinez, 1997)

196

can be employed for QoS-based ranking to enable the selection of services in cloud

service e-marketplace.

b) Managing the Fuzzy Nature of QoS information

Since the cloud computing landscape is characterised by dynamism, the correct and

accurate evaluation of the QoS performance of cloud services should be a constant. The

objective evaluation of cloud services sourced from service monitoring or benchmark

third party services (Ruiz-Alvarez and Humphrey, 2011) or subjective feedback

assessment from other users would constantly alter the QoS information of cloud services

in the ecosystem. Hence a means to update aggregated QoS information and a constant

update of the QoS information of the services is required. The automated and dynamic

update is activated as new services join, or exit the ecosystem and also when there is an

adjustment in the QoS information of a service. So we must find a means to capture and

manage the uncertain nature of the QoS information of services using a fuzzy number or

interval numbers according to the QoS history of services.

c) Managing the Size of Cloud Ecosystem feature model

To further increase the business value of their services, more service providers will likely

participate in cloud ecosystems. Consequently, as the size of the cloud ecosystem

increases, the potential number of composite service formally or incidentally composed

will also increase. Retrieval of services in response to user queries and requirements will

be enhanced by efficient storage of these composite offerings with multiple QoS

attributes. One challenge with the plethora of services is managing the storage of a large

number of services. In realising the FOCUSS framework, a relational database

management system (RDBMS) was employed to store the list of service. The efficiency

of retrieval will be reduced with the use of RDBMS. Since the service registration phase

usually occurs offline together with the derivation of valid composition, a plausible

approach is to apply case retrieval nets (Lenz and Burkhard, 1996). Each service can be

referred to as a case, while the case retrieval nets are employed to manage the large size

of the resultant service compositions and provide efficient retrieval compared to

traditional RDBMS.

197

d) Serendipity and Diversity in Service Selection

Existing approaches elicit user’s QoS requirements preference a priori. A priori

elicitation suggests that QoS requirements are specified at the onset while the system

generates and present services that satisfy the user requirements. Similarity-based

retrieval based on a priori requirements elicitation cannot address the Stonewalling and

Diversity problem of recommendation (Bridge, 2001). Stonewalling refers to a scenario

where the system respects all the preference of the consumer and yet no recommendation

is returned (e.g. system returns ‘No Match Found!”). Diversity problem arises when the

system returns a number of similar services, and the similarities among the services are so

close without any diversity. In both scenarios, the user is expected to start the search all

over again from scratch, since the recommendation system does not remember nor

consider previously specified preferences.

e) Group Decision Making Scenarios

The GUISET project is designed to enable a cluster of SMEs to use technology in their

business by lowering the initial cost of acquisition and maintenance. A cluster of SME

comprises at least two SME, whose inputs matter in the selection of cloud services for

their businesses. In such scenarios, it is also possible to include group decision-making

scenarios in the quest for cloud service selection; this is particularly true considering the

unique model of the GUISET project in which the prospective users are a cluster of

SMME who require cloud services to e-enable their business activities. Each stakeholder

in an SMME cluster should make sufficient input in the decision-making process to select

a cloud service. The selection takes into cognisance all stakeholders’ QoS requirements

and aggregates the requirements to produce a single service. The scope of this research

was mainly focused on a single user organisation, and there is a value in expanding it to

address and incorporate inputs from users in a group. Although one major challenge with

group decision making is conflicting user requirements, this challenge can be solved by

finding the Pareto optimal services that match all the requirements (Yu, 2014). Also, the

best set of services matching the group QoS requirements can be obtained by employing

regression analysis to determine the QoS values of the services that with the least

contradictions among users QoS requirement. The QoS values solution can then be

mapped to utility functions that can be used to evaluate all services in the cloud e-

marketplace.

198

REFERENCES

Abdelhamid, R. (2012). A decision support system for performance evaluation. Int. J.

Comput. Appl (Special Issue on Computational Intelligence and Information

Security), 1: 1-8.

Abdelmaboud, A., Jawawi, D. N., Ghani, I., Elsafi, A., and Kitchenham, B. (2015).

Quality of service approaches in cloud computing: a systematic mapping study.

Journal of Systems and Software, 101: 159-179.

Abraham, A., Jain, L. C., and Goldberg, R. (2005). Evolutionary Multiobjective

Optimization: Theoretical Advances and Applications. London: Springer-Verlag.

ISBN:1852337877.

Adnan, W. A., Daud, N., and Noor, N. L. (2008). Expressive information visualization

taxonomy for decision support environment. Third International Conference on

Convergence and Hybrid Information Technology (pp. 88-93). IEEE.

Afshari, A., Mojahed, M., and Yusuff, R. M. (2010). Simple additive weighting approach

to personnel selection problem. International Journal of Innovation, Management

and Technology, 1 (5): 511-515.

Akingbesote, A., Adigun, M., Jembere, E., Othman, M., and Ajayi, I. (2014).

Determination of optimal service level in cloud e-marketplaces based on service

offering delay. International Conference on Computer, Communications, and

Control Technology (I4CT) (pp. 283-288). Langkawi, Kedah, Malaysia: IEEE.

Akolkar, R., Chefalas, T., Laredo, J., Peng, C.-S., Sailer, A., Schaffa, F., et al. (2012).

The future of service marketplaces in the cloud. IEEE Eighth World Congress on

Services (SERVICES) (pp. 262-269). IEEE.

Al-Masri, E., and Mahmoud, Q. H. (2007). QoS-based discovery and ranking of web

services. IEEE 16th International Conference on Computer Communications and

Networks (ICCCN) (pp. 529-534). IEEE.

Almulla, M., Yahyaoui, H., and Almatori, K. (2012). Visualization of real-world web

services based on fuzzy logic. Proceedings of 2012 IEEE Eighth World Congress

on Services (pp. 330-335). IEEE.

Alrifai, M., Skoutas, D., and Risse, T. (2010). Selecting skyline services for QoS-based

web service composition. Proceedings of the 19th international conference on

World wide web (pp. 11-20). ACM.

199

Al-Shammari, S., and Al-Yasiri, A. (2014). Defining a metric for measuring QoE of SaaS

cloud computing. Proceedings of PGNET, (pp. 251-256).

AppExchange. (2015). AppExchange. Retrieved September 9, 2015, from Business app

store from Salesforce: https://appexchange.salesforce.com/

Aruldoss, M., Lakshmi, T. M., and Venkatesan, V. P. (2013). A survey on multi criteria

decision making methods and its applications. American Journal of Information

Systems, 1 (1): 31-43.

Avram, M.-G. (2014). Advantages and challenges of adopting cloud computing from an

enterprise perspective. Procedia Technology, 12: 529-534.

Ayeldeen, H., Shaker, O., Hegazy, O., and Hassanien, A. E. (2015). Distance similarity as

a CBR technique for early detection of breast cancer: an Egyptian case study. In J.

Mandal, S. Satapathy, S. Kumar, P. Sarkar, A. Mukhopadhyay (Eds.):

Information Systems Design and Intelligent Applications (pp 449-456).

Ayhan, M. B. (2013). A fuzzy AHP approach for supplier selection problem: A case

study in a Gear motor company. International Journal of Managing Value and

Supply Chains, 4 (3): 11-23.

Baek, S., Kim, K., and Altmann, J. (2014). Role of platform providers in service

networks: The case of Salesforce.com AppExchange. IEEE 16th Conference on

Business Informatics (CBI) (pp. 39-45). IEEE.

Bai, Y., and Wang, D. (2006). Fundamentals of fuzzy logic control – fuzzy sets, fuzzy

rules and defuzzifications. In Y. Bai; H. Zhuang, D. Wang (Eds.): Advanced Fuzzy

Logic Technologies in Industrial Applications (pp. 17-36).

Bakos, Y. (1998). The emerging role of electronic marketplaces on the Internet.

Communications of the ACM, 41 (8): 35-42.

Baranwal, G., and Vidyarthi, D. P. (2014). A framework for selection of best cloud

service provider using ranked voting method. IEEE International Advance

Computing Conference (IACC) (pp. 831-837). IEEE.

Barros, A. P., and Dumas, M. (2006). The rise of web service ecosystem. IT Professional,

8 (5): 31-37.

Bass, L., and Kazman, R. (2003). Software architecture in practice. M.A: Addison-

Wesley. ISBN: 0321815734.

200

Batory, D., Benavides, D., and Ruiz-Cortes, A. (2006, December). Automated analysis of

feature models: challenges ahead. Communications of the ACM, 49 (12): pp. 45-

47.

Beard, D. V., and Walker, J. Q. (1990). Navigational techniques to improve the display of

large two-dimensional spaces. Behaviour and Information Technology, 9 (6): 451-

466.

Beets, S., and Wesson, J. (2010). Can Information Visualization techniques be used to

support web service discovery. Retrieved May 17, 2015, from Proceedings of the

2010 Southern Africa Telecommunication Networks and Applications Conference

(SATNAC):

http://www.satnac.org.za/proceedings/2010/papers/progress/Beets%20FWIP%204

95.pdf

Beets, S., and Wesson, J. (2011). Using Information Visualization to support web service

discovery. Proceedings of the South African Institute of Computer Scientists and

Information Technologists Conference on Knowledge, Innovation and Leadership

in a Diverse, Multidisciplinary Environment (pp. 11-20). ACM.

Bellman, R. E., and Zadeh, L. A. (1970). Decision making in fuzzy environment.

MonogemenlScience, 17 (4): 141-164.

Benavides, D., Ruiz–Corte´s, A., Trinidad, P., and Segura, S. (2006). A survey on the

automated analyses of feature model. Jornadas de Ingenier´ıa del Software y

Bases de Datos, 367-376.

Benavides, D., Segura, S., and Ruiz-Cortes, A. (2010). Automated analysis of feature

models 20 years later: A literature review. Information Systems, 35 (6): 615-636.

Benayoun, R., Roy, B., and Sussman, B. (1966). ELECTRE: Une méthode pour guider le

choix en présence de points de vue multiples. Note de travail, no:49.

Benlachgar, A., and Belouadha, F.-Z. (2013). Review of software product line models

used to model cloud applications. ACS International Conference on Computer

Systems and Applications (AICCSA) (pp. 1-4). IEEE.

Berger, T., Pfeiffer, R.-H., Tartler, R., Dienst, S., Czarnecki, K., Wasowski, A., et al.

(2014). Variability mechanisms in software ecosystems. Information and Software

Technology, 56 (11): 1520-1535.

Bertin, J. (1983). Semiology of graphics: diagrams, networks, maps. University of

Wisconsin press. ISBN: 0299090604.

201

Bevan, N. (2009). What is the difference between the purpose of usability and user

experience evaluation methods? Proceedings of the Workshop UXEM’09 (Interact

09): (pp. 1-4).

Bollen, D., Knijnenburg, B. P., Willemsen, M. C., and Graus, M. (2010). Understanding

choice overload in recommender systems. Proceedings of the fourth ACM

conference on Recommender systems (pp. 63-70). ACM.

Bonastre, L., and Granollers, T. (2014). A set of heuristics for user experience evaluation

in e-commerce websites. The Seventh International Conference on Advances in

Computer-Human Interactions (pp. 27-34). Achi.

Bosch, J., and Bosch-Sijtsema, P. (2010). From integration to composition: on the impact

of software product lines, global development and ecosystems. Journal of Systems

and Software, 81 (3): 67-76.

Bouanaka, M. A., and Zarour, N. (2013). An approach for an optimized web service

selection based on skyline. International Journal of Computer Science Issues, 10

(1): 412-418.

Bouyssou, D. (1996). Outranking relations: do they have special properties? Journal of

Multi-Criteria Decision Analysis, 5 (2): 99-111.

Brans, J.-P., Vincke, P., and Mareschal, B. (1986). How to select and how to rank

projects: The PROMETHEE method. European journal of operational research,

24 (2): 228-238.

Braun, P. (2005). Small Business Clustering: Accessing Knowledge through Local

Networks. Unpublished paper presented at The CRIC Cluster conference: Beyond

Cluster- Current Practices and Future Strategies. Ballarat.

Bridge, D. (2001). Product recommendation systems: a new direction. Procs. of the

Workshop Programme at the Fourth International Conference on Case-Based

Reasoning, (pp. 79-86).

Buckley, J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17 (3): 233-247.

Budniks, L., and Didenko, K. (2014). Factors determining application of cloud computing

services in Latvian SMEs. 19th International Scientific Conference Economics

and Management 2014 (pp. 74 – 77). Riga, Latvia: Elsevier.

Burigat, S., and Chittaro, L. (2013). On the effectiveness of Overview+Detail

visualization on mobile devices. Personal and ubiquitous computing, 17 (2): 371-

385.

202

Buyya, R., Yeo, C. S., and Venugopal, S. (2008). Market-oriented cloud computing.

Proceedings of the 10th IEEE International Conference on High Performance

Computing and Communications (HPCC'08) (pp. 5-13). IEEE.

Cakir, O., and Canbolat, M. S. (2008). A web-based decision support system for multi-

criteria inventory classification using fuzzy AHP methodology. Expert Systems

with Applications, 35 (3): 1367–1378.

Card, S. K., Mackinlay, J. D., and Shneiderman, B. (1999). Readings in information

visualization: using vision to think. Morgan Kaufmann. ISBN: 1-55860-533-9.

Cavalcante, E., Batista, T., Lopes, F., Rodriguez, N., de Moura, A. L., Delicato, F. C., et

al. (2012). Optimizing Services Selection in a Cloud Multiplatform Scenario.

IEEE Latin America Conference on Cloud Computing and Communications

(LATINCLOUD) (pp. 31-36). IEEE.

Chamodrakas, I., Leftheriotis, I., and Martakos, D. (2011). In-depth analysis and

simulation study of an innovative fuzzy approach for ranking alternatives in

multiple attribute decision making problems based on TOPSIS. Applied Soft

Computing, 11 (1): 900--907.

Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP.

European Journal of Operational Research, 95 (3): 649-655.

Chen, X., Zheng, Z., Liu, X., Huang, Z., and Sun, H. (2013). Personalized QoS-Aware

web Service recommendation and visualization. IEEE Transactions on Services

Computing, 6 (1): 35-47.

Chernev, A., Böckenholt, U., and Goodman, J. (2015). Choice overload: A conceptual

review and meta-analysis. Journal of Consumer Psychology, 25 (2): 333–358.

Chittaro, L. (2006). Visualizing information on mobile devices. Computer, 39 (3): 40-45.

Choi, C. R., and Jeong, H. Y. (2014). A broker-based quality evaluation system for

service selection according to the QoS preferences of users. Information Sciences,

227: 553-566.

Chou, S.-Y., Chang, Y.-H., and Shen, C.-Y. (2008). A fuzzy simple additive weighting

system under group decision-making for facility location selection with

objective/subjective attributes. European Journal of Operational Research, 189

(1): 132-145.

203

Chua, F. F., Yuan, H., and Kim, S. D. (2007). A visualization framework for web service

discovery and selection based on quality of service. The 2nd IEEE Asia-Pacific

Service Computing Conference (pp. 312-319). IEEE.

Cockburn, A., Karlson, A., and Bederson, B. B. (2009). A review of overview+detail,

zooming, and focus+context interfaces. ACM Computing Surveys (CSUR), 41 (1):

1-31.

Coll, R. A., Coll, J. H., and Thakur, G. (1994). Graphs and tables a four-factor

experiments. Communications of the ACM, 37 (4): 76-87.

Cox, E. (2005). Fuzzy Modeling and genetic algorithms for data mining and exploration.

Elsevier Inc. ISBN: 9780121942755.

CSMIC. (2014, July). Service Measurement Index Framework Version 2.1. Retrieved

September 17, 2015, from Cloud Services Measurement Initiative Consortium:

http://csmic.org/downloads/SMI_Overview_TwoPointOne.pdf

Csutora, R., and Buckley, J. J. (2001). Fuzzy hierarchical analysis: the Lambda-Max

method. Fuzzy Set. Syst., 120 (2): 181-195.

Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., and Wąsowski, A. (2012). Cool

features and tough decisions: A comparison of variability modeling approaches.

Proceedings of the Sixth International Workshop on Variability Modeling of

Software-Intensive Systems (VaMoS '12) (pp. 173-182). NY, USA: ACM.

Czarnecki, K., Helsen, S., and Eisenecker, U. (2005). Formalizing cardinality�based

feature models and their specialization. Software Process: Improvement and

Practice, 10 (1): 7-29.

Dastjerdi, A. V., Garg, S. K., Rana, O. F., and Buyya, R. (2015). CloudPick: a framework

for QoS-aware and ontology-based service deployment across clouds. Software:

Practice and Experience, 45 (2): 197-231.

Dastjerdi, A., and Buyya, R. (2011). A taxonomy of QoS management and service

selection methodology for cloud computing. In L. Wang, R. Ranjan, J. Chen, and

B. Benatallah, Cloud computing: methodology, systems, and applications (pp.

109-131). Boca Raton: CRC Press. ISBN: 9781439856413.

De Oliveira, R., Cherubini, M., and Oliver, N. (2012). Influence of Usability on Customer

Satisfaction: A Case Study on Mobile Phone Services. International Workshop on

the Interplay between User Experience and Software Development, (pp. 14-19).

204

Deelstra, S., Sinnema, M., and Bosch, J. (2005). Product derivation in software product

families: a case study. Journal of Systems and Software, 74 (2): 173-194.

Ding, S., Yang, S., Zhang, Y., Liang, C., and Xia, C. (2014). Combining QoS prediction

and customer satisfaction estimation to solve cloud service trustworthiness

evaluation problems. Knowledge-Based Systems, 56 (1): 216-225.

Draper, G. M., Livnat, Y., and Riesenfeld, R. F. (2009). A survey of radial methods for

information visualization. IEEE transactions on visualization and computer

graphics, 15 (5): 759-776.

Ehrgott, M., Waters, C., Kasimbeyli, R., and Ustun, O. (2009). Multiobjective

programming and multiattribute utility functions in portfolio optimization.

INFOR: Information Systems and Operational Research, 47 (1): 31-42.

Elfaki, A. O., Abouabdalla, O. A., Fong, S. L., Johar, M. G., Aik, K. L., and Bachok, R.

(2012). Review and future directions of the automated validation in software

product line engineering. Journal of Theoretical and Applied Information

Technology, 42 (1): 75-93.

Esposito, C., Ficco, M., Palmieri, F., and Castiglione, A. (2016). Smart loud storage

service selection based on fuzzy logic, theory of evidence and game theory. IEEE

Transactions on Computers, 65 (8): 2348-2362.

Forman, E. H., and Gass, S. I. (2001). The analytic hierarchy process-an exposition.

Operations research, 49 (4): 469-486.

Galitz, W. O. (2007). The essential guide to user interface design: an introduction to GUI

design principles and techniques. John Wiley and Sons. ISBN:0470053429.

Garcıa-Galán, J. R.-C. (2013). Migrating to the cloud: a software product line based

analysis. 3rd International Conference on Cloud Computing and Services Science

(CLOSER): (pp. 416-426).

Garg, S. K., Versteeg, S., and Buyya, R. (2013). A framework for ranking of cloud

computing services. Future Generation Computer Systems, 29 (4): 1012-1023.

Garg, S. K., Versteeg, S., and Buyya, R. (2011). SMICloud: A framework for comparing

and ranking cloud services. Fourth IEEE International Conference on Utility and

Cloud Computing (UCC) (pp. 210-218). IEEE.

Gartner. (2016). Public Cloud Services, Worldwide, 2011-2016, 4Q12 Update. Retrieved

2016, from Gartner: www.gartner.com/resId=2332215

205

Gatzioura, A., Menychtas, A., Moulos, V., and Varvarigou, T. (2012). Incorporating

business intelligence in cloud marketplaces. IEEE 10th International Symposium

on Parallel and Distributed Processing with Applications (ISPA) (pp. 466-472).

IEEE.

Ge, M., Delgado-Battenfeld, C., and Jannach, D. (2010). Beyond accuracy: evaluating

recommender systems by coverage and serendipity. Proceedings of the fourth

ACM conference on Recommender systems (pp. 257-260). ACM.

Ghosh, P., and Shneiderman, B. (1999). Zoom-only vs. overview-detail pair: a study in

browsing techniques as applied to patient histories. University of Maryland

Technical Report CS-TR-4028.

Gui, Z., Yang, C., Xia, J., Huang, Q., Liu, K., Li, Z., et al. (2014). A service brokering

and recommendation mechanism for better selecting cloud services. Plos One, 9

(8): e105297.

Hamwele, T. (2005, December 17). SARPN - Namibia. Retrieved May 15, 2012, from

Southern African Regional Poverty Network (SARPN) Website:

http://www.sarpn.org/documents/d0001692/P2029-SMEs_Tuwilika_Oct2005.pdf

Han, S.-M., Hassan, M. M., Yoon, C.-W., and Huh, E.-N. (2009). Efficient service

recommendation system for cloud computing market. Proceedings of the 2nd

international conference on interaction sciences: information technology, culture

and human (pp. 839-845). ACM.

Haug, A., Hvam, L., and Mortensen, N. H. (2011). The impact of product configurators

on lead times in engineering-oriented companies. Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, 25 (2): 197-206.

Haynes, G. A. (2009). Testing the boundaries of the choice overload phenomenon: The

effect of number of options and time pressure on decision difficulty and

satisfaction. Psychology and Marketing, 26 (3): 204-212.

He, Q., Han, J., Yang, Y., Grundy, J., and Jin, H. (2012). QoS-driven service selection for

multi-tenant SaaS. IEEE 5th international conference on Cloud computing (cloud)

(pp. 566-573). IEEE.

Herman, I., Melancon, G., and Marshall, M. S. (2000). Graph visualization and

navigation in information visualization: A survey. IEEE Transactions on

visualization and computer graphics, 6 (1): 24-43.

206

Hornbæk, K., and Frøkjær, E. (2001). Reading electronic documents: The usability of

linear, fisheye, and overview+detail interfaces. Proceedings of the SIGCHI

conference on Human factors in computing systems (pp. 293-300). ACM.

Hornbцk, K. B., and Plaisant, C. (2002). Navigation patterns and usability of

overview+detail and Zoomable user interfaces for maps. Transactions on

Computer Human Computer Interaction, 9 (4): 362-389.

Hubaux, A., Jannach, D., Drescher, C., Murta, L., Mannisto, T., Czarnecki, K., et al.

(2012). Unifying software and product configuration: A research roadmap.

Proceedings of the Workshop on Configuration (ConfWS’12): (pp. 31-35).

Montpellier, France.

Hvam, L., Henrik Mortensen, N., and Riis, J. (2008). Product Customization. Springer

Science and Business Media. ISBN: 978-3-540-71449-1.

Hwang, C., Lai, Y., and Liu, T. (1993). A new approach for multiple objective decision

making. Computers and Operational Research, 20 (8): 889–899.

Hwang, L., and Yoon, K. (1981). Multiple attribute decision making: methods and

applications. New York: Springer-Verlag. ISBN: 978-3-642-48318-9.

Iyengar, S. S., and Lepper, M. R. (2000). When choice is demotivating: Can one desire

too much of a good thing? Journal of personality and social psychology, 79 (6):

995-1006.

Jahani, A., Khanli, L. M., and Razavi, S. N. (2014). W_SR: A QoS based ranking

approach for cloud computing service. Computer Engineering and Applications

Journal, 3 (2): 55-62.

Jahanshahloo, G., Lotfi, F. H., and Izadikhah, M. (2006). Extension of the TOPSIS

method for decision-making problems with fuzzy data. Applied Mathematics and

Computation, 181 (2): 1544–1551.

Jarvenpaa, S. L. (1989). The effect of task demands and graphical format on. information

processing strategies. Management Science, 35 (3): 285-303.

Jarvenpaa, S.-L., and Dickson, G. W. (1988). Graphics and managerial decision making:

Research-based guidelines. Communications of the ACM, 31 (6): 764-774.

Javanbarg, M. B., Scawthorn, C., Kiyono, J., and Shahbodaghkhan, B. (2012). Fuzzy

AHP-based multicriteria decision making systems using particle swarm

optimization. Expert Systems with Applications, 39 (1): 960–966.

207

Javed, B., Bloodsworth, P., Rasool, R. U., Munir, K., and Rana, O. (2016). Cloud market

maker: An automated dynamic pricing marketplace for cloud users. Future

Generation Computer Systems, 54: 52-67.

Jula, A., Sundararajan, E., and Othman, Z. (2014). Cloud computing service composition:

A systematic literature review. Expert Systems with Applications, 41 (8): 3809–

3824.

Jung, G., Mukherjee, T., Kunde, S., Kim, H., Sharma, N., and Goetz, F. (2013).

CloudAdvisor: A recommendation-as-a-service platform for cloud configuration

and pricing. 203 IEEE Ninth World Congress on Services (SERVICES) (pp. 456-

463). IEEE.

Jussien, N., Rochart, G., and Lorca, X. (2008). Choco: an open source java constraint

programming library. CPAIOR'08 Workshop on Open-Source Software for Integer

and Contraint Programming (OSSICP'08, (pp. 1-10).

Kang, J., and Sim, K. M. (2010). Cloudle: a multi-criteria cloud service search engine.

2010 IEEE Asia-Pacific Services Computing Conference (APSCC) (pp. 339-346).

IEEE.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, S. (1990, November). Feature–

Oriented Domain Analysis (FODA) Feasibility. Technical Report CMU/SEI-90-

TR-21 . Software Engineering Institute, Carnegie Mellon University.

Karataş, A. S., Oğuztüzün, H., and Doğru, A. (2012). From extended feature models to

constraint logic programming. Science of Computer Programming, 78 (12): 2295-

2312.

Karim, R. a. (2013). An end-to-end QoS mapping approach for cloud service selection.

Proceedings of IEEE Ninth World Congress on Services (pp. 341-348). IEEE.

Khadka, R., Saeidi, A., Jansen, S., Hage, J., and Helms, R. (2011). An evaluation of

Service frameworks for the management of service ecosystems. PACIS 2011

proceedings, (Paper 93).

Khan, M., and Khan, S. (2011). Data and information visualization methods, and

interactive mechanisms: A survey. International Journal of Computer

Applications, 34 (1): 1-14.

Knijnenburg, B. P., and Willemsen, M. C. (2009). Understanding the effect of adaptive

preference elicitation methods on user satisfaction of a recommender system.

Proceedings of RecSys’09, (pp. 381-384).

208

Kuniavsky, M. (2003). Observing the user experience: a practitioner's guide to user

research. Morgan kaufmann. ISBN: 0123848695

Kwon, H.-K., and Seo, K.-K. (2013). A decision-making model to choose a cloud service

using fuzzy AHP. Advanced Science and Technology Letters, 35: 93-96.

Lam, H., Bertini, E., Isenberg, P., Plaisant, C., and Carpendale, S. (2012). Empirical

studies in information visualization: Seven scenarios. IEEE Transactions on

Visualization and Computer Graphics, 18 (9): 1520-1536.

Lenz, M., and Burkhard, H.-D. (1996). Case retrieval nets: Basic ideas and extensions.

Annual Conference on Artificial Intelligence (pp. 227-239). Springer.

Lewis, G. (2011). Architectural Implications of Cloud Computing. Retrieved March 17,

2012, from SEI-CMU.

Lewis, J. (1992). Psychometric evaluation of the post-study system usability

questionnaire: The PSSUQ. Proceedings of the Human Factors Society 36th

Annual Meeting (pp. 1259–1263). Santa Monica, CA: Human Factors Society.

Li, H., and Jeng, J.-J. (2010). CCMarketplace: a marketplace model for a hybrid cloud.

Proceedings of the 2010 Conference of the Center for Advanced Studies on

Collaborative Research (pp. 174-183). IBM Corp.

Li, J., Zheng, X.-L., Chen, S.-T., Song, W.-W., and Chen, D.-r. (2014). An efficient and

reliable approach for quality-of-service-aware service composition. Information

Sciences, 269: 238-254.

Liang, T.-P., and Lai, H.-J. (2002). Effect of store design on consumer purchases: an

empirical study of on-line bookstores. Information and Management, 39 (6): 431–

444.

Liang, T.-P., Lai, H.-J., and Ku, Y.-C. (2006). Personalized content recommendation and

user satisfaction: Theoretical synthesis and empirical findings. Journal of

Management Information Systems, 23 (3): 45-70.

Liu, L., Chen, M., and Huang, B. (2012). Analysis of user experience at B2C e-commerce

website. Proceedings of the 2012 2nd International Conference on Computer and

Information Application (ICCIA 2012) (pp. 2-4). Atlantis Press.

Ludwig, S. A. (2012). Clonal selection based genetic algorithm for workflow service

selection. 2012 IEEE Congress on Evolutionary Computation (pp. 1-7). IEEE.

Lurie, N., and Mason, C. (2007). Visual Representation: implications for decision

making. Journal of Marketing, 71 (1): 160-177.

209

Ma, H., and Hu, Z. (2014). Cloud service recommendation based on trust measurement

using ternary interval numbers. Proceedings of International Conference on Smart

Computing (SMARTCOMP) (pp. 21-24). IEEE.

Mamoon, M. H., El-Bakry, H. M., Salama, A. A., and Mastorakis, N. (2013).

Visualization of retrieved information: A survey. WSEAS International

Conference. Proceedings. Recent Advances in Computer Engineering Series (pp.

152-166). WSEAS.

Martens, B., Teuteberg, F., and Gräuler, M. (2011). Design and implementation of a

community platform for the evaluation and selection of cloud computing services:

A Market Analysis. ECIS 2011 PROCEEDINGS. (Paper No: 215).

Mell, P., and Grance, T. (2011, September). The NIST Definition of Cloud Computing.

Retrieved October 26, 2012, from National institute of standards and technology

website: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Menychtas, A., Gomez, S. G., Giessmann, A., Gatzioura, A., Stanoevska, K., Vogel, J., et

al. (2011). A marketplace framework for trading cloud-based services.

Proceedings of the 8th international conference on Economics of Grids, Clouds,

Systems, and Services (pp. 76-89). Springer-Verlag.

Menychtas, A., Vogel, J., Giessmann, A., Gatzioura, A., Garcia Gomez, S., Moulos, V.,

et al. (2014). 4CaaSt marketplace: An advanced business environment for trading

cloud services. Future Generation Computer Systems, 41: 104–120.

Mikhailov, L. (2003). Deriving priorities from fuzzy pairwise comparison judgments.

Fuzzy Sets and Systems, 134 (3): 365–385.

Mikhailov, L., and Tsvetino, P. (2004). Evaluation of services using a fuzzy analytic

hierarchy process. Applied Soft Computing, 5 (1): 23-33.

Millet, I. (1997). The effectiveness of alternative preference elicitation methods in the

analytic hierarchy process. Journal of Multi-Criteria Decision Analysis, 6 (1): 41-

51.

Mirmotalebi, R., Ding, C., and Chi, C.-H. (2012). Modeling user’s non-functional

preferences for personalized service ranking. In Service-Oriented Computing (pp.

359-373). Berlin Heidelberg: Springer-Verlag.

Moere, A. V., and Purchase, H. (2011). On the role of design in information visualization.

Information Visualization, 10 (4): 356-371.

210

Mohabbati, B., Gašević, D., Hatala, M., Asadi, M., Bagheri, E., and Bošković, M. (2011).

A Quality Aggregation Model for Service-Oriented Software Product Lines Based

on Variability and Composition Patterns. International Conference on Service-

Oriented Computing (pp. 436-451). Springer.

Mu, B., Li, S., and Yuan, S. (2014). QoS-Aware cloud service selection based on

uncertain user preference. International Conference on Rough Sets and

Knowledge Technology (pp. 589-600). Springer International Publishing.

Nestor, D., O'Malley, L., Healy, P., Quigley, A., and Thiel, S. (2007). Visualisation

techniques to support derivation tasks in software product line development.

Proceedings of the 2007 conference of the center for advanced studies on

Collaborative research (pp. 315-325). IBM Corp.

North, C., and Shneiderman, B. (2000). Snap-together visualization: Evaluating

coordination usage and construction. Int'l Journal of Human-Computer Studies

special issue on Empirical Studies of Information Visualization, 53 (5): 715-739.

O’Hagan, M. (1993). A fuzzy decison maker. Retrieved June 10, 2015, from Proceedings

of Fuzzy Logic ‘93 (Computer):

https://pdfs.semanticscholar.org/09ba/3f0a63b5932a6a47f8f9b4840baeee763f40.p

df

OASIS. (2007, April 11). Web Services Business Process Execution Language. Retrieved

February 27, 2011, from OASIS: http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html#_Toc164738475

Obata, T., and Ishii, H. (2003). A method for discriminating efficient candidates with

ranked voting data. European Journal of Operational Research, 151 (1): 233-237.

Oehlert, G. W. (2010). A first course in design and analysis of experiments. New York:

W.H Freeman. ISBN: 0-7167-3510-5.

Oltean, G. (2004). Multiobjective fuzzy optimization method. Scientific Bulletin of the

Politechnica University of Timisoara, Trans. on Electronics and Communications,

49 (63): 220-225.

Pajic, D. (2014). Browse to search, visualize to explore: Who needs an alternative

information retrieving model? Computers in Human Behavior, 39: 145-153.

Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F. (2007). Service-Oriented

Computing: State of the art and research challenges. Computer, 40 (11): 38 - 45.

211

Papazoglou, M., and van den Heuvel, W.-J. (2011). Blueprinting the cloud. IEEE Internet

Computing, 15 (6): 74-79.

Patiniotakis, I., Verginadis, Y., and Mentzas, G. (2014). Preference-based cloud service

recommendation as a brokerage service. Proceedings of the 2nd International

Workshop on CrossCloud Systems (pp. 1-5). ACM.

Pillat, R. M., Valiati, E. R., and Freitas, C. M. (2005). Experimental study on evaluation

of multidimensional information visualization techniques. Proceedings of the

2005 Latin American conference on Human-computer interaction (pp. 20-30).

ACM.

Pirolli, P., Card, S. K., and Van Der Wege, M. M. (2003). The effects of information

scent on visual search in the hyperbolic tree browser. ACM Transactions on

Computer-Human Interaction (TOCHI), 10 (1): 20-53.

Plaisant, C., Carr, D. A., and Shneiderman, B. (1994). Image browsers: Taxonomy,

guidelines, and informal specifications. Technical Report CS-TR-3282 Dept. of

Computer Science at Univ. of Maryland.

Pleuss, A., Rabiser, R., and Botterweck, G. (2011). Visualization Techniques for

Application in Interactive Product Configuration. Proceedings of the 15th

International Software Product Line Conference, Volume 2 (p. 22). CM.

Pu, P., Faltings, B., Chen, L., Zhang, J., and Viappiani, P. (2011). Usability guidelines for

product recommenders based on example critiquing research. In Recommender

Systems Handbook (pp. 511-545). US: Springer.

Qaisar, E. J. (2012). Introduction to Cloud Computing for Developers-Key concepts, the

players and their offerings. Information Technology Professional Conference

(TCF Pro IT): (pp. 1-6). IEEE.

Qian, H., Zu, H., Cao, C., and Wang, Q. (2013). CSS: Facilitate the cloud service

selection in IaaS platforms. Proceedings of International Conference on

Collaboration Technologies and Systems (CTS) (pp. 347-354). IEEE.

Qu, C., and Buyya, R. (2014). A cloud trust evaluation system using hierarchical fuzzy

inference system for service selection. 28th International Conference on

Advanced Information Networking and Applications (pp. 850-857). IEEE.

Qu, L., Wang, Y., Orgun, M., Liu, L., and Bouguettaya, A. (2014). Context-aware cloud

service selection based on comparison and aggregation of user subjective

assessment and objective performance assessment. IEEE International Conference

on Web Services (ICWS) (pp. 81-88). IEEE.

212

Quinton, C., Duchien, L., Heymans, P., Mouton, S., and Charlier, E. (2012). Using

feature modelling and automations to select among cloud solutions. Proceedings

of the Third International Workshop on Product LinE Approaches in Software

Engineering (pp. 17-20). IEEE.

Quinton, C., Haderer, N., Rouvoy, R., and Duchien, L. (2013). Towards multi-cloud

configurations using feature models and ontologies. Proceedings of the 2013

international workshop on Multi-cloud applications and federated clouds (pp. 21-

26). ACM.

Quinton, C., Romero, D., and Duchien, L. (2014). Automated selection and configuration

of cloud environments using software product Lines principles. IEEE 7th

International Conference on Cloud Computing (CLOUD) (pp. 144-151). IEEE.

Rabiser, R., Wolfinger, R., and Grunbacher, P. (2009). Three-level customization of

software products Using a product line approach. 42nd International Conference

on System Sciences HICSS'09 (pp. 1-10). Hawaii: IEEE.

Raman, R., Livny, M., and Solomon, M. (1998). Matchmaking: Distributed resource

management for high throughput computing. The Seventh International

Symposium on High Performance Distributed Computing, 1998. Proceedings. (pp.

140-146). IEEE.

Rehman, Z. u., Hussain, F., and Hussainz, O. K. (2011). Towards multi-criteria cloud

service selection. Fifth International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing (pp. 44-48). IEEE.

Rehman, Z., Hussain, O. K., and Hussain, F. K. (2012). IaaS cloud selection using

MCDM methods. e-Business Engineering (ICEBE): 2012 IEEE Ninth

International Conference on (pp. 246-251). IEEE.

Rehman, Z., Hussain, O. K., and Hussain, F. K. (2014). Parallel cloud service selection

and ranking based on QoS history. International Journal of Parallel

Programming, 42 (5): 820-852.

Riemer, K., and Totz, C. (2003). The many faces of personalization-an integrative

economic overview. In M. Tseng, and F. Piller, The Customer Centric Enterprise

(pp. 35-50). Springer.

Rimal, B. P., Jukan, A., Katsaros, D., and Goeleven, Y. (2011). Architectural

requirements for cloud computing systems: An enterprise cloud approach. Journal

of Grid Computing, 9 (1): 3-26.

213

Ross, P. K., and Blumenstein, M. (2015). Cloud computing as a facilitator of SME

entrepreneurship. Technology Analysis and Strategic Management, 27 (1): 87-

101.

Roy, B. (1991). The outranking approach and the foundations of ELECTRE methods.

Theory and decision, 31: 49-73.

Ruiz-Alvarez, A., and Humphrey, M. (2011). An automated approach to cloud storage

service selection. Proceedings of the 2nd international workshop on Scientific

cloud computing (pp. 39-48). ACM.

Saaty, T. L. (1990). Decision making for leaders. The Analytic Hierarchy Process for

decisions in a complex world. RWS publications. ISBN: 096203178X.

Saaty, T. L. (1980). The analytic hierarchy process: planning, priority setting, resources

allocation. New York: McGraw. ISBN: 0070543712.

Saaty, T. (1988). What is the analytic hierarchy process? In G. Mitra, H. Greenberg, F.

Lootsma, M. Rijkaert, and H. Zimmermann (Eds.): Mathematical Models for

Decision Support (pp. 109-121). Springer.

Saaty, T., and Sodenkamp, M. (2010). The analytic hierarchy and analytic network

measurement processes: the measurement of intangibles. In Handbook of

Multicriteria Analysis (pp. 91-166). Springer.

Sahri, S., Moussa, R., Long, D. D., and Benbernou, S. (2014). DBaaS-Expert: A

recommender for the selection of the right cloud database. International

Symposium on Methodologies for Intelligent Systems (pp. 315-324). Springer.

Salesforce.com. (2000-2015). Retrieved September 9, 2015, from Salesforce.com

Website: http://www.salesforce.com/

Sanchez, S. M. (2005). Work smarter, not harder: guidelines for designing simulation

experiments. Proceedings of the 37th conference on Winter simulation (pp. 69-

82). Winter Simulation Conference.

Saripalli, P., and Pingali, G. (2011). MADMAC: Multiple attribute decision Methodology

for adoption of clouds. IEEE International Conference on Cloud Computing

(CLOUD) (pp. 316-323). IEEE.

Schäfer, R. (2001). Rules for using multi-attribute utility theory for estimating a user’s

interests. Ninth Workshop Adaptivitat und Benutzermodellierung in Interaktiven

Softwaresystemen, (pp. 8-10).

214

Scheibehenne, B., Grifeneder, R., and Todd, P. (2010). Can there ever be too many

options? A meta-analytic review of choice overload. Journal of Consumer

Research, 37 (3): 409-425.

Schubert, P., and Ginsburg, M. (2000). Virtual communities of transaction: The role of

personalization in electronic commerce. Electronic Markets, 10 (1): 45-55.

Schulz-Hofen, J. (2007). Web service middleware - an infrastructure for near future real

life web service ecosystems. IEEE International Conference on Service-Oriented

Computing and Applications (pp. 261-270). IEEE.

Schwartz, B. (2004). Paradox of choice. New York: Ecco. ISBN: 149151423X.

Sebrechts, M. M., Cugini, J. V., Laskowski, S. J., Vasilakis, J., and Miller, M. S. (1999).

Visualization of search results: a comparative evaluation of text, 2D, and 3D

interfaces. Proceedings of the 22nd annual international ACM SIGIR conference

on Research and development in information retrieval (pp. 3-10). ACM.

Shezi, T., Jembere, E., Adigun, M., and Nene, M. (2012). Analysis of Open Source

Enterprise Service Buses toward Supporting Integration in Dynamic Service

Oriented Environments. International Conference on e-Infrastructure and e-

Services for Developing Countries, (pp. 115-125).

Shneiderman, B. (1987). Designing the user interface. Addison Wesley. ISBN:

0201694972.

Shneiderman, B. (1994). Dynamic queries for visual information seeking. IEEE Software,

11 (6): 70-77.

Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information

visualizations. Proceedings of IEEE Symposium on Visual Languages (pp. 336--

343). IEEE.

Soltani, S., Asadi, M., Gasevic, D., Hatala, M., and Bagheri, E. (2012). Automated

planning for feature model configuration based on functional and non-functional

requirements. Proceedings of the 16th International Software Product Line

Conference-Volume 1 (pp. 56-65). ACM.

Song, H., Qi, Y., Tian, X., and Xu, D. (2007). Navigating and visualizing long lists with

fisheye view and graphical representation. Second Workshop on Digital Media

and its Application in Museum and Heritages (pp. 123-128). IEEE.

Spence, R. (2014). Information visualization: An introduction (3rd ed.). Springer. ISBN:

3319073400.

215

Sultan, N. A. (2011). Reaching for the “cloud”: How SMEs can manage. International

journal of information management, 31 (3): 272-278.

Sun, C.-C. (2010). A performance evaluation model by integrating fuzzy AHP and fuzzy

TOPSIS methods. Expert Systems with Applications, 37: 7745–7754.

Sun, L., Dong, H., Hussain, F. K., Hussain, O. K., and Chang, E. (2014). Cloud service

selection: State-of-the-art and future research directions. Journal of Network and

Computer Applications, 45: 134-150.

Sun, L., Dong, H., Hussain, F. K., Hussain, O. K., Ma, J., and Zhang, Y. (2014). A hybrid

fuzzy framework for cloud service selection. IEEE International Conference on

Web Services (ICWS) (pp. 313-320). IEEE.

Sundar, S. S., Bellu, S., Oh, J., Xu, Q., and Jia, H. (2014). User experience of on-screen

interaction techniques: An experimental investigation of clicking, sliding,

zooming, hovering, dragging, and flipping. Human--Computer Interaction, 29 (2):

109-152.

Sundareswaran, S., Squicciarini, A., and Lin, D. (2012). A brokerage-based approach for

cloud service selection. Fifth International Conference on Cloud Computing (pp.

558-565). IEEE.

Tajvidi, M., Ranjan, R., Kolodziej, J., and Wang, L. (2014). Fuzzy cloud service selection

framework. IEEE 3rd International Conference on Cloud Networking (CloudNet)

(pp. 443-448). IEEE.

Takeda, H., Hamada, S., Tomiyama, T., and Yoshikawa, H. (1990). A cognitive approach

of the analysis of design processes. Design theory and methodology-DTM, 27:

153-160.

Tang, J., Wang, D., Fung, R. Y., and Yung, K.-L. (2004). Understanding of fuzzy

optimization: theories and methods. Journal of Systems Science and Complexity,

17 (1): 117-136.

Teoh, S. T., and Ma, K.-L. (2005). Hifocon: Object and Dimensional Coherence and

Correlation in Multidimensional Visualization. In G. Bebis, R. Boyle, D. Koracin,

and B. Parvin (Eds.): Advances in Visual Computing (pp. 235-242). Springer.

Toffler, A. (1970). Future shock. New York: Amereon Ltd. ISBN: 0553277375.

Torfi, F., Farahani, R. Z., and Rezapour, S. (2010). Fuzzy AHP to determine the relative

weights of evaluation criteria and fuzzy TOPSIS to rank the alternatives. Applied

Soft Computing, 10 (2): 520–528.

216

Townsend, C., and Kahn, B. E. (2014). The “visual preference heuristic”: the influence of

visual versus verbal depiction on assortment processing, perceived variety, and

choice overload. Journal of Consumer Research, 40 (5): 993-1015.

Travis, D. (2008, March 3). Measuring satisfaction: Beyond the usability questionnaire.

Retrieved September 20, 2015, from User Focus Website:

http://www.userfocus.co.uk/articles/satisfaction.html

Triantaphyllou, E. (2013). Multi-criteria decision making methods: a comparative study.

Springer Science and Business Media. ISBN: 0792366077.

Turner, C., Lewis, J., and Nielsen, J. (2006). Determining usability test sample size. In W.

Karwowski, International Encyclopedia of Ergonomics and Human Factors (pp.

3084-3088). Boca Raton: CRC Press.

Valiati, E. (2005). Taxonomia de Tarefas para Técnicas de Visualização de Informações

Multidimensionais. Porto Alegr. Retrieved October 7, 2016, from Porto Alegre,

PPGC/UFRGS Technical Report:

http://www.inf.ufrgs.br/~carla/papers/EValiati.pdf

Van Laarhoven, P., and Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory.

Fuzzy sets and Systems, 11 (1-3): 229-241.

Van Schaik, P., and Ling, J. (2008). Modelling user experience with web sites: Usability,

hedonic value, beauty and goodness. Interacting with Computers, 20: 419-432.

Venesaar, U., and Loomets, P. (2006). The Role of entrepreneurship in economic

development and implications for SME policy in Estonia. 14th Nordic Conference

on Small Business Research. Sweden: Unplublished Paper.

Vigne, R., Mach, W., and Schikuta, E. (2013). Towards a smart webservice marketplace.

IEEE 15th Conference on Business Informatics (CBI) (pp. 208-215). IEEE.

Vigne, R., Mangler, J., Schikuta, E., and Rinderle-Ma, S. (2012). A structured

marketplace for arbitrary services. Future Generation Computer Systems, 1 (28):

48-57.

Walker, J., Borgo, R., and Jones, M. W. (2016). TimeNotes: A study on effective chart

visualization and interaction techniques for time-series data. IEEE transactions on

visualization and computer graphics, 22 (1): 549-558.

Wang, S., Liu, Z., Sun, Q., Zou, H., and Yang, F. (2014). Towards an accurate evaluation

of quality of cloud service in service-oriented cloud computing. Journal of

Intelligent Manufacturing, 25 (2): 283-291.

217

Wang, T. C., Lee, H. D., and Chang, M. (2007). A fuzzy TOPSIS approach with entropy

measure for decision making problem. IEEE International Conference on

Industrial Engineering and Engineering Management (pp. 124–128). IEEE.

Whaiduzzaman, M., Gani, A., Anuar, N. B., Shiraz, M., Haque, M. N., and Haque, I. T.

(2014). Cloud service selection using multicriteria decision analysis. The

Scientific World Journal, 2014: Article ID 459375. DOI:10.1155/2014/459375.

White, J., Schmidt, D. C., Benavides, D., Trinidad, P., and Ruiz–Cortés, A. (2008).

Automated diagnosis of product-line configuration errors in feature m.

Proceedings of 12th International Software Product Line Conference (pp. 225 -

234). IEEE Computer Society.

Wilson, D. R., and Martinez, T. R. (1997). Improved heterogeneous distance functions.

Journal of Artificial Intelligence Research, 6: 1-34.

Wittern, E., Kuhlenkamp, J., and Menzel, M. (2012). Cloud service selection based on

variability modeling. Proceedings of the 10th international conference on Service-

Oriented Computing, (pp. 127-141).

Wohlin, C. R., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2012).

Experimentation in software engineering. Springer Science and Business Media.

ISBN: 3642290434.

Wong, W., Bartels, M., and Chrobot, N. (2014). Practical eye tracking of the ecommerce

website user experience. In C. Stephanidis, and M. Antona (Eds.): Universal

Access in Human-Computer Interaction. Design for All and Accessibility Practice

(Vol. 8516, pp. 109-118). Springer International Publishing.

Yager, R. (1977). Multiple objective decision-making using fuzzy sets. International

Journal of Man-Machine Studies, 9: 375-382.

Yang, C. C., Chen, H., and Hong, K. (2003). Visualization of large category map for

internet browsing. Decision support systems, 35 (1): 89-102.

Yang, C., and Chen, B. (2004). Key quality performance evaluation using fuzzy AHP.

Journal of the Chinese Institute of Industrial Engineers, 21 (6): 543–550.

Ye, Z., Zhou, X., and Bouguettaya, A. (2011). Genetic algorithm based QoS-aware

service compositions in cloud computing. International Conference on Database

Systems for Advanced Applications (pp. 321-334). Springer.

Yoon, K. (1987). A reconciliation among discrete compromise situations. Journal of

Operational Research Society, 38: 277–286.

218

Yoon, K. P., and Hwang, C.-L. (1995). Multiple attribute decision making: an

introduction. Sage publications. ISBN: 0803954867.

Yu, Q. (2014). CloudRec: a framework for personalized service recommendation in the

cloud. Knowledge and Information Systems, 43 (2): 417-443.

Yu, T., and Lin, K.-J. (2005). Service selection algorithms for composing complex

services with multiple QoS constraints. Proceedings of the International

Conference on Service-Oriented Computing-ICSOC 2005, (pp. 130–143).

Yu, Z., and Zhang, L. (2014). QoS-aware SaaS services Selection with interval numbers

for group user. Journal of Software, 9 (3): 553-559.

Zadeh, L. A. (1974). The concept of a linguistic variable and its application to

approximate reasoning. Learning systems and intelligent robots, 8 (9): 1-10.

Zanakis, S. H., Solomon, A., Wishart, N., and Dublish, S. (1998). Multi-attribute decision

making: A simulation comparison of select methods. European journal of

operational research, 107 (3): 507-529.

Zeng, W., Zhao, Y., and Zeng, J. (2009). Cloud service and service selection algorithm

research. Proceedings of the first ACM/SIGEVO Summit on Genetic and

Evolutionary Computation (pp. 1045-1048). ACM.

Zhang, L.-J., and Zhou, Q. (2009). CCOA: Cloud computing open architecture. IEEE

International Conference on Web Services (pp. 607-616). IEEE.

Zhang, M., Ranjan, R., Haller, A., Georgakopoulos, D., and Strazdins, P. (2012).

Investigating decision support techniques for automating cloud service selection.

IEEE 4th International Conference on Cloud Computing Technology and Science

(CloudCom) (pp. 759-764). IEEE.

Zhang, M., Ranjan, R., Nepal, S., Menzel, M., and Haller, A. (2012). A declarative

recommender system for cloud infrastructure services selection. 9th International

Conference on Economics of Grids, Clouds, Systems, and Services (pp. 102-113).

Berlin, Germany: Springer-Verlag.

Zhao, X., Wen, Z., and Li, X. (2014). QoS-aware web service selection with negative

selection algorithm. Knowledge and Information Systems, 40 (2): 349-373.

Zheng, Z., Ma, H., Lyu, M. R., and King, I. (2011). QoS-aware web service

recommendation by collaborative filtering. IEEE Transactions on Services

Computing, 4 (2): 140-152.

219

Zhu, K., Shang, J., and Yang, S. (2012). The triangular fuzzy AHP: Fallacy of the

popular extent analysis method. Retrieved May 16, 2015, from

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2078576

Zimmermann, H.-J. (1975). Description and optimization of fuzzy system. International

Journal of General System, 2 (1): 209-215.

Zimmermann, H.-J. (2010). Fuzzy Set Theory. Wiley Interdisciplinary Reviews:

Computational Statistics, 2 (3): 317-332.

Zoss, A. (2015, December 8). Introduction to data visualization: Visualization types.

Retrieved February 17, 2016, from Duke University Library:

http://guides.library.duke.edu/datavis/vis_types

220

APPENDIX A: LIST OF PUBLICATIONS SO FAR FROM THE THESIS

Ezenwoke, A., Olawande, D., and Adigun, M. (2017). Towards a Fuzzy-Oriented
Framework for Service Selection in Cloud e-Marketplaces. The 7th International
Conference on Cloud Computing and Services Science (CLOSER2017).

Ezenwoke, A., Olawande, D., and Adigun, M. (2017). Towards a Constraint-based
Approach for Service Aggregation and Selection in Cloud e-Marketplaces. Future
Technologies Conference (FTC2017).

Ezenwoke, A., Olawande, D., and Adigun, M. (2017). A visualization framework for
service selection in cloud e-marketplace. 13th IEEE World Congress on Services
(SERVICES2017).

221

APPENDIX B: DATA USED IN EXPERIMENTS

B.1. Queries used in Experiment-2

Table B1.1: Minimum QoS Values, Maximum QoS Values and 5 Test Queries for Dataset,
n=100

Availability Response Time Reliability Cost

Min 23 42.5 42 100.28

Max 100 4207.5 83 498.21

Query1 92.33 1478.33 53.41 467.4

Query2 52.49 3580.85 46.15 116.64

Query3 90.89 3346.46 67.05 177.94

Query4 77.94 3855.53 64.64 299.05

Query5 40.83 898.46 66.6 453.86

Table B1.2: Minimum QoS Values, Maximum QoS Values and 5 Test Queries for Dataset,
n=350

Availability Response Time Reliability Cost

Min 9 42.5 42 100.79

Max 100 4637.61 89 497.86

Query1 58.89 1587.48 81.58 323.47

Query2 38.88 1790.82 48.16 453.56

Query3 16.25 3889.45 69.64 463.36

Query4 92.17 4247.19 76.43 479.14

Query5 59.83 909.44 79.12 332.55

Table B1.3: Minimum QoS Values, Maximum QoS Values and 5 Test Queries for Dataset,
n=750

Availability Response Time Reliability Cost

Min 8 40 33 103.2

Max 100 4758 89 499.54

Query1 21.69 2140.04 81.38 318.1

Query2 24.6 3079.98 34.01 456.6

Query3 22.97 2846.15 76.23 412.06

Query4 94.91 2551.7 35.14 131.65

Query5 10.86 2651.62 67.95 316.65

222

Table B1.4: Minimum QoS Values, Maximum QoS Values and 5 Test Queries for Dataset,
n=1000

Availability Response Time Reliability Cost

Min 7 37 33 101.5

Max 100 4989.67 89 499.9

Query1 52.23 960.51 44.33 200.64

Query2 13.66 903.83 50.41 433.1

Query3 23.07 3984.38 63.61 142.07

Query4 70.26 1853.95 62.41 377.11

Query5 14.28 1292.89 84.57 440.49

B.2. Data obtained for Exeperiment-1

Table B2.1: Execution time in milliseconds for top-10 rankings

#Trials 50 Services
100

Services
350

Services
750

Services
1000

Services
Trial1 359 313 344 406 360
Trial2 343 360 328 390 328
Trial3 313 312 328 376 359
Trial4 344 343 339 344 344
Trial5 328 328 359 344 359
Trial6 343 378 340 344 328
Trial7 368 376 344 328 359
Trial8 328 328 312 328 344
Trial9 333 328 375 359 344
Trial10 391 344 312 359 344
Trial11 313 313 328 328 391
Trial12 328 328 391 344 343
Trial13 312 329 329 328 343
Trial14 313 313 344 328 343
Trial15 313 359 328 360 344
Trial16 336 328 438 375 359
Trial17 344 328 344 344 344
Trial18 328 399 359 359 329
Trial19 328 375 328 344 329
Trial20 360 359 329 344 328
Trial21 312 312 344 313 359
Trial22 359 328 390 338 344
Trial23 344 391 344 328 359
Trial24 343 343 313 313 328
Trial25 336 343 323 328 343
Trial26 328 328 328 312 359
Trial27 328 328 328 375 406
Trial28 328 344 312 344 391
Trial29 375 328 328 328 329
Trial30 328 328 375 328 343

Mean Execution time 336.8666667 340.4667 342.8 344.6333 349.4333

223

B.3. Data obtained from simulation Experiment-2

Figure B3.1: Methods versus ranking accuracy by four metrics

